
A Modular Treatment of Blind Signatures from
Identification Schemes

Eduard Hauck, Eike Kiltz, and Julian Loss

Ruhr University Bochum
{eduard.hauck,eike.kiltz,julian.loss}@rub.de

Abstract. We propose a modular security treatment of blind signatures
derived from linear identification schemes in the random oracle model.
To this end, we present a general framework that captures several well
known schemes from the literature and allows to prove their security.
Our modular security reduction introduces a new security notion for
identification schemes called One-More-Man In the Middle Security which
we show equivalent to the classical One-More-Unforgeability notion for
blind signatures.
We also propose a generalized version of the Forking Lemma due to
Bellare and Neven (CCS 2006) and show how it can be used to greatly
improve the understandability of the classical security proofs for blind
signatures schemes by Pointcheval and Stern (Journal of Cryptology
2000).
Keywords. Blind Signatures

1 Introduction

Blind Signatures are a fundamental cryptographic building block. Informally, a
blind signature scheme is an interactive protocol between a signer and an user in
which the signer issues signatures on messages chosen by the user. There are two
security requirements: blindness ensures that the signer cannot link a signature
to the run of the protocol in which it was created and one-more unforgeability
that the user cannot forge a new signature. Originally proposed by Chaum [12]
as the basis of his e-cash system, blind signatures have since found numerous
applications including e-voting [22] and anonymous credentials [13,19,9,11,10,5,3].
Despite a flurry of schemes having been published over the past three and a half
decades, only a handful of works has considered blind signature schemes which
are mutually efficient, instantiable from standard assumptions, and remain secure
even when executed in an arbitrarily concurrent fashion. The notoriously difficult
task of constructing such schemes was first tackled by Pointcheval and Stern [21].
Their groundbreaking work introduces the well-known forking lemma and shows
how it can be applied to prove security of the Okamoto-Schnorr blind signature
scheme [18] under the discrete logarithm assumption in the random oracle model
(ROM) [8]. Their proof technique was subsequently employed to prove the security
of further schemes [20,23,4]. Unfortunately, due to the complexity and subtlety
of the argument in [21], these works present either only proof sketches [20] or
follow the proof of [21] almost verbatim.

2 E. Hauck, E. Kiltz, J. Loss

Name Type Definition of linear function F : D → R S Collision resistance

OS Group F : Z2
q → G, (x1, x2) 7→ gx1

1 gx2
2 Zq DLOG

OGQ RSA F : Zλ × Z∗N → Z∗N , (x1, x2) 7→ ax1xλ2 Zλ RSA
FS RSA F : (Z∗N)k → (Z∗N)k, (x1, . . . , xk) 7→ (x2

1, . . . , x
2
k) Zk2 FACTORING

Table 1. Examples of linear function families. Group type functions are defined over G
of prime order q with generators g1, g2, RSA type functions are defined over an RSA
modulus N = pq and a ∈ Z∗N satisfying ord(a) > 2λ. Set S is the challenge set.

1.1 Our Contribution: A Modular Framework for Blind Signatures

In this work, we propose a general framework which shows how to derive a blind
signature scheme from any linear function family (with certain properties), as
recently introduced by Backendahl et al. [2]. Whereas blindness can be proved
directly, one-more unforgeability is proved in two modular steps. In the first
step, one builds a linear identification scheme from the linear function family.
One-more unforgeability of the blind signature scheme in the random oracle model
is shown to be tightly equivalent to a new and natural security notion of the
linear identification scheme, which we call one-more man-in-the-middle security.
In the second, technically involved, step it is shown that the latter is implied
by collision resistance of the linear function family. Our framework captures
several important schemes from the literature including the Okamoto-Schnorr
(OS) [18], the Okamoto-GQ (OGQ) [18], and (a slightly modified version of) the
Fiat-Shamir (FS) [20] blind signature schemes and offers, for the first time, a
complete and formal proof for some of them. We now provide some details of our
contributions.

Linear Function Families and Identification Schemes. A canonical
identification scheme ID [1] is a three-move protocol of a specific form in which
a prover P convinces a verifier Ver (holding a public key pk) that he knows
the corresponding secret key sk. ID = ID[LF] is a linear identification scheme
[2] if it follows a certain homomorphic structure induced by a linear function
LF. For our purpose of building blind signatures, we will also require LF to be
perfectly correct, collision resistant, and the kernel to contain a torsion-free
element. (Note that this also makes LF many-to-one.) Example instantiations of
(collision resistant) linear function families can be derived from OS, OGQ, and
FS, cf. Table 1.

We introduce a natural new security notion for (arbitrary, not necessarily
linear) canonical identification schemes called One-More Man-in-the-Middle
(OMMIM)-security. Informally, ID is OMMIM-secure if it is infeasible to
complete QP + 1 (or more) runs of ID in the role of prover P after completing at
most QP runs of ID in the role of verifier Ver. Note that OMMIM is weaker than
standard Man-in-the-Middle security [15] (which we show to be unachievable
for linear identification schemes) but stronger than impersonation against active
attacks [14,7].

A Modular Treatment of Blind Signatures from Identification Schemes 3

OMMIM Security of Linear Identification Schemes. Our first main
result can be stated as follows:
Theorem 1 (informal). If LF is collision resistant, then ID[LF] is OMMIM
secure.

Our proof is based on a new Subset Forking Lemma that generalizes the one by
Bellare and Neven [6] and contains many technical ingredients from [21] who prove
the security of the Okamoto-Schnorr Blind Signature scheme. Unfortunately, the
security bound from Theorem 1 is only meaningful if QQP+1

V ≤ |C| =: q, where QV
refers to the (potentially large) number of sessions with the verifier and challenge
set C is a parameter of the identification scheme. We next show in Theorem 2
that a natural generalization of Schnorr’s ROS-problem [24] to linear functions
can be used to break the OMMIM of ID[LF]. The ROS-problem (for the relevant
parameters) becomes information theoretically hard when QQP+1

V ≤ q. For all
other cases, it can be solved in sub-exponential time (QV + 1) 2

√
log q/(1+log(QV+1))

using Wagner’s k-List algorithm [25]. Our ROS-based attack works whenever C
is a finite field, which is the case for OS and OGQ.
Canonical Blind Signature Schemes. We introduce the notion of canonical
blind signature schemes (BS), which are three-move blind signature schemes of a
specific form. In terms of security we define blindness and one-more unforgeability
(OMUF). Intuitively, OMUF states that the adversary cannot produce more
valid message-signatures pairs, then it has completed successful sessions with
the signer. (Note that each such session yields a valid message-signature pair.)
Here we consider a natural and strong version of OMUF in which abandoned
session with the signer (i.e., sessions that are started but never completed) are
not counted as a successful sessions with the signer as they do not yield a valid
message-signature pair. We propose a general compiler to convert any linear
identification scheme ID[LF] and a hash function H into a canonical blind signature
scheme BS[LF,H]. Our second main result can be stated as follows:
Theorem 3 (informal). OMUF security of BS[LF,H] is tightly equivalent to
OMMIM security of ID[LF] in the random oracle model.
Theorem 4 (informal). BS[LF,H] is perfectly blind.

Figure 1.1 summarizes our modular security analysis of BS[LF,H]. Combining
our main theorems, we obtain security proofs for the OS, OGQ, and FS blind
signature schemes. Here, the number of random oracle queries QH corresponds to
the numberQV of open sessions with the verifier, whereas the numberQS of signing
sessions corresponds to the number of sessions QP with the prover. Hence, OMUF
security of BS[LF,H] is only guaranteed if QQS+1

H � q, i.e., for polylogarithmically
parallel signing sessions QS. Our ROS-based attack demonstrates that this
restriction is required.

1.2 Technical details

We now give an intuition for the proof of Theorem 1. Roughly, it states that
one can reduce the OMMIM security of ID[LF] from the problem of finding a

4 E. Hauck, E. Kiltz, J. Loss

CRLF OMMIMID[LF] OMUFBS[LF,H]

ROSLF

Th. 1 Th. 3

Th. 2

Fig. 1. Overview of our modular security analysis for BS[LF,H]. The arrows denote
security implications.

non-trivial collision with respect to the linear function LF. Our proof follows the
ideas of Pointcheval and Stern [21], but uses as a key ingredient a novel forking
lemma, which enables us to present the proof in [21] in a much more clean and
general fashion. The main idea behind our reduction is to run the adversary M
against OMMIM-security twice, where the instance I and randomness ω in the
second run are kept the same, and part of the oracle answers, denoted h,h′, are
re-sampled uniformly. In this way, we hope to obtain from M two distinct values
χ̂, χ̂′ which yield a collision with respect to LF. The main challenge in our setting
is that χ̂ and χ̂′ depend on the internal state of M. To show that χ̂ 6= χ̂′ with
high probability, one requires an intricate argument that heavily builds upon
a generalized version of Bellare and Neven’s Forking Lemma [6]. Our lemma is
tailored toward the ideas of the proof in [21] and allows for a more fine-grained
replay strategy than the version of [6]. More precisely, our version of the forking
lemma considers not only the probability of successfully running an algorithm
twice with the same instance I, randomness ω, and (partially distinct) oracle
answers h,h′, but also allows to analyze in more detail the properties of the
triples (I, ω,h), (I, ω,h′).

1.3 Blind Signatures from Lattices?

We remark that our proof requires linear functions with perfect correctness.
This leaves open the question of whether our framework can be extended to
cover also the lattice-based identification scheme due to Lyubashevsky [16]
and the resulting blind signature scheme due to Rückert [23]. At a technical
level, imperfect correctness causes a problem in the proof of Theorem 3 which
relates the OMMIM-security of ID[LF] to OMUF-security of BS[LF,H]. If the
adversary manages to abort even a single run of BS[LF,H] in the simulated
OMUF experiment, our reduction fails at simulating the necessary amount of
completed runs of BS[LF,H] to the adversary. This subtlety in the proof arises
from the fact that in the OMMIM experiment, there is no way of telling whether
a run of ID[LF] with the adversary in the role of the verifier was completed. On
the other hand, in BS[LF,H], the user can prove to the signer that it obtained an
invalid signature for a particular run of the protocol and hence force a restart.
We leave it as an open problem to adapt our framework to linear functions with
correctness errors.

A Modular Treatment of Blind Signatures from Identification Schemes 5

2 Preliminaries and Notation

Sets and Algorithms. We denote as h $← H the uniform sampling of the
variable s from the set H. If ` is an integer, then [`] is the set {1, . . . , `}. We write
bold lower case letters h to denote a vector of elements and denote the length of
h as |h|. For j > 1, we write h[j] to refer to the first j entries of h. For 1 ≤ j ≤ Q
and g ∈ Hj−1 we now define the conditional distribution h′ $← CQV |g which
samples h′ $← HQ conditioned on h′

[j−1] = g. (This can be implemented by
copying vector g into the first j− 1 entries of h′ and next sampling the subvector
h′j , . . . ,h

′
Q

$← HQ−j+1.)
We write bold upper case letters A to denote matrices. We denote the i-th row

vector of A as Ai and the j-th entry of Ai as Ai,j . We use uppercase letters A,B
to denote algorithms. Unless otherwise stated, all our algorithms are probabilistic
and we write (y1, ...) $← A(x1, ...) to denote that A returns (y1, ...) when run on
input (x1, ...). We write AB to denote that A has oracle access to B during its
execution. Any probabilistic algorithm A(x), on some input x can be written as a
deterministic algorithm A(x;ω) on input x and randomness ω. We use standard
code-based security games and write GA ⇒ 1 to denote the event that algorithm
A is successful in game G.

3 Linear Functions and Identification Schemes

A module is specified by two sets S andM, where S is a ring with multiplicative
identity element 1S and 〈M,+, 0〉 is an additive Abelian group and a mapping · :
S×M→M, s.t. for all r, s ∈ S and x, y ∈M we have (i) r · (x+y) = r ·x+r ·y;
(ii) (r + s) · x = r · x+ s · x; (iii) (rs) · x = r · (s · x); and (iv) 1S · x = x.
Syntax of Linear Function Families. A linear function family LF [2] is a
tuple of algorithms (PGen,F). On input the security parameter, the randomized
algorithm PGen returns some parameters par, which implicitly define the sets
S = S(par),D = D(par) and R = R(par). S is a set of scalars such that D and
R are modules over S. Further, F(par , ·) implements a mapping from D to R. To
simplify our presentation, we will omit par from F’s input from now on. F(·) is
required to be a module homomorphism, meaning that for any (x, y) ∈ (D ×D)
and s ∈ S:

F(s · x+ y) = s · F(x) + F(y).

We say that LF has a torsion-free element from the kernel if for all par
generated with PGen, there exist z∗ ∈ D \ {0} such that (i) F(z∗) = 0; and (ii)
for all s ∈ S satisfying s · z∗ = 0 we have s = 0. Note that this implies that F is
a many-to-one mapping.
Security Properties of Linear Function Families. We now define two
security properties of a linear function family (collision resistance and ROS
security) which will play a significant role in the subsequent sections.

6 E. Hauck, E. Kiltz, J. Loss

We define the advantage of an adversary A, breaking the collision resistance
of LF as

AdvCR
LF (A) := Pr

par $←PGen,(x1,x2) $←A(par)
[F(x1) = F(x2) ∧ x1 6= x2]

and say that LF is (ε, t)-CR if for all adversaries A running in time Time(A) ≤ t
we have AdvCR

LF (A) ≤ ε.
The ROS (Random inhomogenities in an Overdetermined, Solvable system of

linear equations) problem was introduced by Schnorr [24] (also in the context of
blind signatures). Here, we generalize Schnorr’s formulation to linear function
families. For a linear function family LF we define the advantage of an adversary
A as

AdvROS
LF (A) := Pr[ROSA

LF ⇒ 1],

where game ROSLF is defined in Figure 2. We furthermore say that LF is
(ε, t, `,QH)-ROS secure if for all adversaries A running in time Time(A) ≤ t and
making at most QH queries to the random oracle, we have AdvROS

LF (A) ≤ ε.

GAME ROSLF :
00 par $← PGen
01 (c ∈ S`+1,A ∈ S(`+1)×(`+1))← AH(par)
02 If (c`+1 = −1) ∧ (Ac = 0) ∧ (∀i, j ∈ [`+ 1] : H(Ai,1, . . . ,Ai,`) = Ai,`+1) ∧ (Ai 6= Aj) Then
03 Return 1
04 Return 0

Fig. 2. Game ROSLF, where H : {0, 1}∗ → S is a random oracle.

The following Lemma summarizes the known hardness results for the Gener-
alized ROS-Problem for the specific case in which S is a field of prime order q.

Lemma 1 ([24,25,17]). Let LF be a linear function family for which S is a
field of prime order q. For every t, LF is (t, ε = Q`+1

H /q, `,QH)-ROS secure. Con-
versely, LF is not (t, 1/4, `, QH)-ROS secure for QH = (`+ 1) 2

√
log q/(1+log(`+1))

and t = O
(

(`+ 1)2
√

log q/(1+log(`+1))
)
.

Examples of Linear Function Families. We now give three examples of
LF with the required properties. We remark that [2] contains more examples of
linear functions, but not all of them have a torsion-free element from the kernel.
Okamoto-Schnorr. PGen returns the parameters par := (G, g1, g2) $←
PGen(1λ), where g1, g2 ∈ G, q is prime, and |G| = q. par defines sets S,D,R,
and the homomorphic evaluation function F as

S := Zq; D := Z2
q; R := G; F : Z2

q → G, (x1, x2) 7→ gx1
1 gx2

2 .

A Modular Treatment of Blind Signatures from Identification Schemes 7

It is not hard to see that F is an homomorphism. It is also not hard to see that
collision resistance of LF is equivalent to the discrete logarithm problem over G,
i.e., AdvCR

LF (A) = AdvDLOG
G (B). For all parameters par and for w = logg1(g2),

the element z∗ = (z∗1 , z∗2) := (w,−1), yields a torsion-free in the kernel of LF
since F(z∗) = gw1 g

−1
2 = 1, where 1 = 0G is the neutral element in G. Furthermore,

for all s ∈ Zq satisfying s · z∗ = (s · w,−s) = (0, 0) we have s = 0 mod q since q
is prime.
Okamoto-Guillou-Quisquater. PGen returns the parameters par := (N =
pq, λ, a) $← PGen(1λ), where p, q are prime and λ is prime and co-prime with
N,ϕ(N) and a ∈ Z∗N , ord(a) > 2λ. The parameters par define

S := Zλ; R := Z∗N ; D = {(x1, x2 = zab
x1
λ c) mod N | x1 ∈ Zλ, z ∈ Z∗N},

where D is an abelian group with the group operation (x1, x2) ◦ (y1, y2) =
(x1 + y1 mod λ, x2y2a

b x1+y1
λ c mod N). The evaluation function F is defined as

F : Zλ × Z∗N → Z∗N ,F(x1, x2) := ax1xλ2 .

F is an homomorphism, since:

F((x1, x2) ◦ (y1, y2)) = F(x1 + y1 mod λ, x2y2a
b x1+y1

λ c mod N)

= ax1+y1 mod λ
(
x2y2a

b x1+y1
λ c

)λ
= a((x1+y1) mod λ)+λb x1+y1

λ c(x2y2)λ (1)
= ax1+y1(x2y2)λ (2)
= F(x1, x2)F(y1, y2),

where (1) and (2) follow from the identity: (x mod λ) = x− λbxλc.
A collision (x1, x2) 6= (y1, y2) with F(x1, x2) = F(y1, y2) implies ax1−y1 =

(y2/x2)λ with gcd(λ, x1 − x2) = 1 from which one can extract the a1/λ using the
extended Euclidean Algorithm. Hence, collision resistance is implied by the RSA
assumption.

For all parameters par , z∗ = (z∗1 , z∗2) := (−1, a1/λ) is a torsion-free element in
the kernel of F since F(z∗) = a−1 mod λ(a1/λ)λab−1

λ c = a(−1 mod λ)+b−1
λ ca = 1,

where 1 = 0R is the neutral element in R. Furthermore, for all s ∈ Zλ satisfying
s · z∗ = (−s, (a1/λ)sab−sλ c) = (0, 1) we have s = 0 mod λ.
Fiat-Shamir. PGen returns parameters par := (N = pq, k), where p, q are prime
and k is an integer. Parameters par define

S := Zk2 ; D := (Z∗N)k,R := (Z∗N)k;
F : (Z∗N)k → (Z∗N)k,F(x1, . . . , xk) 7→ (x2

1, . . . , x
2
k).

Clearly, collision resistance of LF is equivalent to factorization. For all parameters
par , z∗ = (z∗1 , . . . , z∗k) := (−1, . . . ,−1) is a torsion-free element from the kernel
of F since F(z∗) = (1, . . . , 1), where (1, . . . , 1) = 0R is the neutral element in R.
Furthermore, for all s ∈ Zk2 satisfying s · z∗ = (−1s1 , . . . ,−1sk) = (1, . . . , 1) we
have s = 0 mod 2.

8 E. Hauck, E. Kiltz, J. Loss

4 Canonical Identification Schemes

4.1 Syntax and Security

We now recall the definition of define canonical identification schemes [1] and
discuss their security notions.

Definition 1 (Canonical Identification Scheme). A canonical identification
scheme is a tuple of algorithms ID = (IGen,P,Ver).

– The key generation algorithm IGen takes as input parameters par and outputs
a public/secret key pair (pk, sk). We assume that pk implicitly defines a
challenge set C = C(pk).

– The prover algorithm P is split into two randomized algorithms P1,P2, i.e.,
P = (P1,P2). P1 takes as input a secret key sk and returns a commitment R
and a state st. The deterministic algorithm P2 takes as input a state st, a
secret key sk, a commitment R, and a challenge c ∈ C. It returns a response
s.

– The deterministic verification algorithm Ver takes as input a public key pk, a
commitment R, a challenge c ∈ C, and a response s. It returns b ∈ {0, 1}.

The diagram below depicts an interaction between prover P and verifier V.
For correctness we require that for all (pk, sk) ∈ IGen(par), all (st, R) ∈ P1(sk),
all c ∈ C, and all s ∈ P2(sk,R, c, st), it holds that Ver(pk,R, c, s) = 1.

Prover P(sk) Verifier V(pk)

(st, R) $← P1(sk) R−→
c←− c $← C

s← P2(sk, R, c, st) s−→ b← Ver(pk, R, c, s)
Output 1 Output b

Standard security notions for canonical identification schemes include im-
personation security against passive and active attacks, and Man-in-the-Middle
security [1,7]. We now introduce a new security notion called One-More Man-
in-the-Middle security. The One-More Man-in-the-Middle (OMMIM) security
experiment for an identification scheme ID and an adversary A is defined in
Figure 3. Adversary A simultaneously plays against a prover (modeled through
oracles P1 and P2) and a verifier (modeled through oracles V1 and V2). Session
identifiers pSid and vSid are used to model an interaction with the prover and
the verifier, respectively. A call to P1 returns a new prover session identifier pSid
and sets flag pSesspSid to open. A call to P2(pSid, ·) with the same pSid sets the
flag pSesspSid to closed. Similarly, a call to V1 returns a new verifier session
identifier vSid and sets flag vSessvSid to open. A call to V2(vSid, ·) with the
same pSid sets the flag vSessvSid to closed. A closed verifier session vSid is
successful if the oracle V2(vSid, ·) returns 1. Lines 03-06 define several internal
random variables for later references. Variable QP2(A) counts the number of

A Modular Treatment of Blind Signatures from Identification Schemes 9

closed prover sessions and QP1(A) counts the number of abandoned sessions
(i.e., sessions that were opened but never closed). Most importantly, variable
`(A) counts the number of successful verifier sessions and variable QP2(A) counts
the number of closed sessions with the prover. Adversary A wins the OMMIM
game, if `(A) ≥ QP2(A) + 1, i.e., if A convinces the verifier in at least one
more successful verifier sessions than there exist closed sessions with the prover.
The OMMIM advantage function of an adversary A against ID is defined as
AdvOMMIM

ID (A) := Pr[OMMIMA
ID ⇒ 1].

We say that ID is (ε, t,QV, QP1 , QP2)-OMMIM secure if for all adversaries
A satisfying Time(A) ≤ t, QV(A) ≤ QV, QP2(A) ≤ QP2 , and QP1(A) ≤ QP1 , we
have AdvOMMIM

ID (A) ≤ ε.

GAME OMMIMA
ID:

00 (sk, pk)← IGen
01 pSid ← 0, vSid ← 0 //initialize prover/verifier session id
02 AP1,P2,V1,V2 (pk)
03 QV(A)← vSid //#total sessions with verifier
04 QP1 (A)← #{1 ≤ k ≤ pSid | pSessk = open} //#abandoned prover sessions
05 QP2 (A)← #{1 ≤ k ≤ pSid | pSessk = closed} //#closed prover sessions
06 `(A)← #{1 ≤ k ≤ vSid | vSessk = closed ∧ b′k = 1} //#successful verifier sessions
07 If `(A) ≥ QP2 (A) + 1 Then //A’s winning condition
08 Return 1
09 Return 0

Procedure P1
10 pSid ← pSid + 1
11 pSesspSid ← open
12 (stpSid ,RpSid) $← P1
13 Return (pSid,RpSid)

Procedure P2(pSid, c)
14 If pSesspSid Then
15 Return ⊥
16 pSesspSid ← closed
17 spSid ← P2(stpSid , sk,RpSid , c)
18 Return spSid

Procedure V1(R′)
19 vSid ← vSid + 1
20 vSessvSid ← open
21 R′vSid ← R′; c′vSid

$← C
22 Return (vSid, c′vSid)

Procedure V2(vSid, s′)
23 If vSessvSid 6= open Then
24 Return ⊥
25 vSessvSid ← closed
26 b′vSid ← Ver(pk,R′vSid , c

′
vSid , s

′)
27 Return b′vSid

Fig. 3. The One-More Man-in-the-Middle security game OMMIMA
ID

We remark that impersonation against active and passive attacks is a weaker
notion than OMMIM security, whereas Man-in-the-Middle (MIM) security is
stronger. Concretely, in the standard MIM experiment the winning condition
is relaxed in the sense that there only has to exist a successful session with the
verifier with a transcript that does not result from a closed session with the
prover.

10 E. Hauck, E. Kiltz, J. Loss

4.2 Identification schemes from linear function families

As showed in [2], a linear function family LF directly implies a canonical identifi-
cation scheme ID[LF]. The construction is given in Figure 4, where par $← PGen
are fixed global system parameters. We will prove later that ID[LF] is OMMIM
secure. This is the best we can hope for since by the linearity of LF, ID[LF] can
never be (fully) MIM secure. (Concretely, an adversary receiving a commitment
R from the prover can send R′ = F(r̂) +R for some r̂ 6= 0 to the verifier. After
forwarding c′ = c from verifier to prover, it receives s from the prover and submits
s′ = s+ r̂ to the verifier. Since (R, c, s) 6= (R′, c′, s′), A wins the MIM experiment
with advantage 1.)

Algorithm IGen(par)
00 sk $← D
01 pk ← F(sk)
02 Return (sk, pk)

Algorithm Ver(pk, R, c, s)
03 S ← F(s)
04 If S = c · pk +R Then
05 Return 1
06 Return 0

Algorithm P1(sk)
07 r $← D; R← F(r)
08 stP := r
09 Return (stP, R)

Algorithm P2(sk, stP, c)
10 r ← stP
11 s← c · sk + r
12 Return s

Fig. 4. Construction of ID[LF] := (IGen,P := (P1,P2),Ver) with challenge set C = S.

Theorem 1. Suppose LF is a linear function family with a torsion-free element
from the kernel. If LF is (ε′, t′)-CR secure, then ID[LF] is (ε, t,QV, QP2 , QP1)-
OMMIM secure where

t′ = 2t, ε′ = O

((
ε− (QVQP)QP2 +1

q

)
1

Q2
VQ

3
P2

)
and QP = QP1 +QP2 .

The proof of this theorem will be given in Section 6.

Theorem 2. Let LF be a linear function family. If ID[LF] is (ε, t,QV, QP2 , QP1 =
0)-OMMIM secure then LF is (ε, t, ` = QP2 , QH = QV)-ROS secure.

Proof. Let A be an (ε, t, `,QH)-adversary in game ROS. We assume w.l.o.g. that
A only makes distinct queries to the random oracle H. In Figure 5, we show
how to construct an (ε, t,QV, QP2 , QP1)-adversary B that is executed in game
OMMIMID and uses A as a subroutine. First, B starts QP2 sessions with the
Prover oracle P1, receiving commitments R. Next, A is executed, where B answers
a query of the form H(a) from A as c′a, where c′a := V1(

∑QP2
j=1 ajRj). Note that

A Modular Treatment of Blind Signatures from Identification Schemes 11

Adversary BP1,P2,V1,V2 (pk) :
00 For j ∈ [QP2] Do:
01 (pSidj ,Rj) $← P1 //start QP2 sessions with
Prover
02 (c ∈ SQP2 +1,A ∈ S(QP2 +1)×(QP2 +1)) $← AH(par)
03 Parse (Z ∈ S(QP2 +1)×QP2 , z ∈ SQP2 +1)← A
04 For j ∈ [QP2] Do:
05 sj ← P2(pSidj , cj) //close QP2 Prover sessions
06 For i ∈ [QP2 + 1] Do:
07 s′i ←

∑QP2
j=1 Ai,jsj

08 bi ← V2(vSidZi , s
′
i)

Oracle H(a) :
09 R′a ←

∑QP2
j=1 ajRj

10 (vSida, c′a) $← V1(R′a)
11 Return c′a

Fig. 5. Adversary B in the OMMIMB
ID game

in this manner, each query to H prompts B to open a session with the verifier
in OMMIMID. Finally, from A’s solution to the ROS problem, B successfully
closes QP2 + 1 (out of Q) sessions with the verifier.

If A is successful then cQP2 +1 = −1 and ∧ Ac = 0. Furthermore for all
i ∈ [QP2 + 1], H(Zi) = Ai,QP2 +1 and we have

F(s′i) =F(
QP2∑
j=1

Ai,jsj) =
QP2∑
j=1

Ai,j(cj · pk +Rj) = pk
QP2∑
j=1

Ai,jcj +R′Zi

=pk · c′Zi +R′Zi ,

which is equivalent to Ver(pk,R′Zi , c
′
Zi , s

′
i) = 1. This shows bi = 1 for all i ∈

[QP2 + 1], which concludes the proof.

5 Canonical Blind Signature Schemes

5.1 Syntax of Canonical Blind Signature Schemes

We now introduce the syntax of a canonical blind signature scheme. We use the
term canonical to describe a three-move blind signature protocol in which the
signer’s and the user’s moves consist of picking and sending a random strings
of some length, and the user’s final signature is a deterministic function of the
conversation and the public key. For simplicity, we assume the existence of a
public set of parameters par .

Definition 2 (Canonical Blind Signature Scheme). A canonical blind sig-
nature scheme BS is a tuple of algorithms BS = (KG,S,U,Ver).

– The key generation algorithm KG outputs a public key/secret key pair (pk, sk).
We assume that pk implicitly defines a challenge set C = C(pk).

12 E. Hauck, E. Kiltz, J. Loss

– The Signer algorithm S is split into two algorithms S = (S1,S2). S1 returns
the first message of the transcript, commitment R and the Signers’s state stS.
Deterministic algorithm S2 takes as input the Signer’s state stS, a secret key
sk, a commitment R, and a challenge c ∈ C. It returns with the last message
of the transcript, the answer s.

– The User algorithm U is split into two algorithms U = (U1,U2). U1 takes
as input the public key pk, a commitment R, a message m and returns the
Users’ state stU and the second message of the transcript, a challenge c ∈ C.
Deterministic algorithm U2 takes as input the public key pk, the transcript
(R, c, s), a message m, the Users’ state stU and outputs a signature σ.

– The deterministic verification algorithm Ver takes as input a message m, a
signature σ, a public key pk and outputs a bit b indicating accept (b = 1) or
reject (b = 0).

The diagram below depicts an interaction between signer S and user U. For perfect
correctness we require that for all (pk, sk) $← KG(par), m ∈ {0, 1}∗, σ being the
output of the interaction of S(sk) and U(pk,m) we have Ver(pk, σ,m) = 1.

Signer S(sk) User U(pk,m)

(stS, R) $← S1(sk) R−→
c←− (stU, c) $← U1(pk, R,m)

s← S2(sk, R, c, stS) s−→ σ ← U2(pk, R, c, s,m, stU)
Output 1 Output σ

We remark that modeling S2 and U2 as deterministic algorithms is w.l.o.g. since
randomness can be transmitted through the states.

5.2 Security of canonical blind signature schemes

Security of a Canonical Blind Signature Scheme BS is captured by two security
notions: blindness and one more unforgability.
Blindness. Intuitively, blindness ensures that a signer S that issues signatures
on two messages (m0,m1) of its own choice to a user U, can not tell in what
order it issues them. In particular, S is given both resulting signatures σ0,σ1, and
gets to keep the transcripts of both interactions with U. Let A be an adversary
in the BlindA

BS experiment. In BS, the experiment takes the role of an User
and A takes the role of the signer. First, the experiment selects a random bit b
which will decide the order of adversarially chosen messages in both transcripts.
Then A is given access to all three oracles Init, U1 and U2. By convention, A
first has to query oracle Init. Then, by the definition of the experiment, A
may query at most two sessions. During these two sessions A learns two sets
of transcripts T0 = (R0, c0, s0) and T1 = (R1, c1, s1). In transcripts T0 and
T1, the experiment embeds messages mb and m1−b, respectively. If A behaves
honestly, A learns signatures σb and σ1−b on messages mb and m1−b, else
nothing at all. At the end of the experiment, for A to win, A has to guess

A Modular Treatment of Blind Signatures from Identification Schemes 13

GAME BlindA
BS:

00 b $← {0, 1}; b1 ← b; b2 ← 1− b
01 b′ $← AInit,U1,U2 ()
02 Return b = b′

Oracle Init(pk,m0,m1) //one, first query
03 Absorb pk as public key
04 sess1 ← sess2 ← init

Oracle U1(sid, R)
05 If sid 6∈ {1, 2} ∨ sesssid 6= init Then
06 Return ⊥ //max. two sessions
07 sesssid ← open
08 Rsid ← R
09 (stsid , csid) $← U1(pk,Rsid ,mbsid)
10 Return (sid, csid)

Oracle U2(sid, s)
11 If sesssid 6= open Then
12 Return ⊥
13 sesssid ← closed
14 ssid ← s
15 σbsid

$← U2(pk, stsid ,Rsid , csid , ssid)
16 If sess1 = sess2 = closed Then
17 If σ0 = ⊥ ∨ σ1 = ⊥ Then
18 (σ0,σ1) := (⊥,⊥)
19 Return (σ0,σ1) //return both signatures
20 Else
21 Return ε

Fig. 6. Games defining BlindA
BS for a canonical blind signature scheme BS, with the

convention that A makes exactly one query to Init at the beginning of its execution.

the bit b. In Figure 6 we formally define the BlindA
BS experiment. Formally,

the advantage function of an adversary A in attacking the blindness of BS is
defined as AdvBlind

BS (A) := Pr[BlindA
BS ⇒ 1]− 1

2 . We say BS is perfectly blind if
AdvBlind

BS (A) = 0.

OMUF-Security of Blind Signature Schemes. We now define the stan-
dard unforgeability notion for blind signatures, namely one-more unforgeability.
Intuitively, One-More Unforgeability ensures that a user U can not produce a
single signature more than it should be able to learn from interactions with the
signer S. Let A be an adversary in the OMUFA

BS experiment, which takes the
role of the User. Let QS ← QS1 + QS2 . Session identifier sid ∈ [QS] is used to
model one interaction with the signer. A call to S1 returns a new session identifier
sid ∈ [QS] and sets flag sesssid to open. A call to S2(sid, ·) with the same sid sets
the flag sesssid to closed. The closed sessions result in QS2 different transcripts
(Rk, ck, sk), where each challenge ci is adversarially chosen. (The remaining QS1

abandoned sessions are of the form (Rk,⊥,⊥) and hence do not contain a com-
plete transcript.) A wins the experiment, if it is able to produce `(A) ≥ QS2(A)+1
signatures (on distinct messages) after having interacted with QS2(A) ≤ QS2

closed signer sessions (from which he should be able to compute ` signatures). In
Figure 7 we formally define the OMUFA

BS experiment. Formally, the advantage
function of an adversary A in attacking the One-More Unforgeability of BS is
defined as AdvOMUF

BS (A) := Pr[OMUFA
BS ⇒ 1].

We say that BS is (ε, t,QS1 , QS2)-OMUF secure if for all adversaries A satisfy-
ing Time(A) ≤ t, QS2(A) ≤ QS2 , and QS1(A) ≤ QS1 , we have AdvOMUF

BS (A) ≤ ε.
In the random oracle model we say BS is (ε, t,QS1 , QS2 , QH)-OMUF secure if
for all adversaries A variables ε, t,QS1 and QS2 satisfy the latter conditions and
QH is the number of queries to H.

14 E. Hauck, E. Kiltz, J. Loss

GAME OMUFA
BS:

00 (sk, pk)← KG(par)
01 sid ← 0 //initialize signer session id
02 ((m1,σ1), ..., (m`(A),σ`(A)))← AS1,S2 (pk)
03 If ∃i 6= j : mi = mj Then //all messages have to be distinct
04 Return 0
05 If ∃i ∈ [`(A)] : Ver(pk,mi,σi) = 0 Then //all signatures have to be valid
06 Return 0
07 QS1 (A)← #{k | sessk = open} //#abandoned signer sessions
08 QS2 (A)← #{k | sessk = closed} //#closed signer sessions
09 If `(A) ≥ QS2 (A) + 1 Then
10 Return 1
11 Return 0

Oracle S1
12 sid ← sid + 1
13 sesssid ← open
14 (stsid ,Rsid) $← S1(sk)
15 Return (sid,Rsid)

Oracle S2(sid, c)
16 If sesssid 6= open Then
17 Return ⊥
18 sesssid = closed
19 ssid ← S2(sk, stsid ,Rsid , c)
20 Return ssid

Fig. 7. OMUFA
BS Game

5.3 Linear Blind Signature Schemes

Let LF be a linear function family and H a random oracle. Figure 8 shows how
to construct a blind signature scheme BS[LF,H].

Algorithm KG(par)
00 sk $← D
01 pk ← F(sk)
02 Return (sk, pk)

Algorithm S1(sk)
03 r $← D; R← F(r)
04 stS := r
05 Return (stS, R)

Algorithm S2(sk, stS, c)
06 r ← stS
07 s← c · sk + r
08 Return s

Algorithm U1(pk, R,m)
09 α $← D, β $← S
10 R′ ← R+ F(α) + β · pk
11 c′ ← H(R′,m)
12 c← c′ + β
13 stU ← (α, β)
14 Return (c, stU)

Algorithm U2(pk, R, c, s,m, stU)
15 (α, β)← stU
16 R′ ← R+ F(α) + β · pk
17 c′ ← H(R′,m)
18 s′ ← s+ α
19 Return σ ← (c′, s′)

Algorithm Ver(pk,m, σ)
20 (c′, s′)← σ
21 R′ ← F(s′)− c′ · pk
22 If c′ 6= H(R′,m) Then
23 Return 0
24 Return 1

Fig. 8. Let LF be a linear function and H : {0, 1}∗ → C be a hash function. This figure
shows the construction of the canonical blind signature scheme BS[LF,H] = (KG,S =
(S1, S2),U = (U1,U2),Ver).

A Modular Treatment of Blind Signatures from Identification Schemes 15

Theorem 3. Let LF be a linear function family and H be a random oracle.
ID[LF] is (ε′, t′, QV, QP1 , QP2)-OMMIM secure if and only if BS[LF,H] is (ε, t,
QS1 , QS2 , QH)-OMUF secure , where

t′ = t, ε′ = ε, QV = QH +QS2 + 1, QP1 = QS1 , QP2 = QS2 .

Proof. Let A be an (ε, t,QS1 , QS2 , QH)-OMUF adversary in the OMUFBS ex-
periment. In Figure 9 we construct an (ε′, t′, QV, QP1 , QP2)-OMMIM adversary
B that is executed in the OMMIMID experiment that perfectly simulates A’s
oracles S1, S2 and H via its own oracles P1, P2, and V1, respectively. Suppose that
A is successful, i.e., it outputs QP2 + 1 valid signatures on distinct messages and
the number of successfully sessions with the signer is at most QP2 . Since σi is a
valid signature on mi, B can make a successful query to oracle V2(vSid, s′i) in
line 06 resulting in bi = 1. Overall, B makes QP2 + 1 successful queries to V2 such
that the internal counter `(A) is set to QP2 + 1 and B wins. This proves ε′ ≥ ε.
Moreover, the number of abandoned sessions (denoted as QS1) in the OMUFBS
experiment equals the number of abandoned sessions (denoted as QP1) in the
OMMIMID experiment and the number of calls to oracle V1 is bounded by QH
plus additional QP + 1 implicit calls in Line 04.

Adversary BP1,P2,V1,V2 (pk):
00 ((m1,σ1), ..., (mQP2 +1,σQP2 +1))← AS1,S2,H(pk)
01 For i ∈ [QP2 + 1] do
02 (c′i, s′i)← σi
03 R′i ← F(s′i)− c′i · pk
04 hi ← H(R′i,mi)
05 vSid ← SID(R′

i
,mi)

06 bi ← V2(vSid, s′i)

Oracle S1
07 (pSid,RpSid) $← P1
08 Return (pSid,RpSid)

Oracle S2(pSid, c)
09 spSid ← P2(pSid, c)
10 Return spSid

Oracle H(R′,m)
11 if H(R′,m) 6= ⊥ Then
12 Return H(R′,m)
13 (vSid, h) $← V1(R′)
14 SID(R′,m) ← vSid
15 Return H(R′,m) ← h

Fig. 9. Reduction from OMMIMB
ID to OMUFA

BS

Let B be an (ε, t,QV, QP1 , QP2)-OMMIM adversary in the OMMIMID
experiment. In Figure 10 we construct an (ε′, t′, QS1 , QS2 , QH)-OMUF adversary
A that is executed in the OMUFBS experiment that perfectly simulates B’s
oracles P1, P2 and V1 via its own oracles S1, S2 and H, respectively. To simulate
oracle V2, A executes the same code as specified in the OMMIMID experiment,
with the only difference being line 20. This additional line does not change the
behavior of V2 and is thus not detectable by B. Suppose that B is successful, i.e.,
it completes QP2 sessions as a verifier and QP2 + 1 sessions as a prover (denoted
as `(B) in the OMMIMID experiment). From the QP2 + 1 successful calls of B to
V2, it follows that A learns QP2 +1 transcripts (R, c, s) from the view of an honest
User in BS. Since messages m are constructed by calling U1, A creates QP2 + 1
signatures after learning values s by simply following the protocol specification of

16 E. Hauck, E. Kiltz, J. Loss

U2. This proves ε′ ≥ ε. Moreover the number of abandoned sessions (denoted as
QP1(B)) in the OMMIMID experiment equals the number of abandoned sessions
(denoted as QS1(A)) in the OMUFBS experiment.

Adversary A S1,S2,H(pk):
00 vSid ← 0
01 B P1,P2,V1,V2 (pk)
02 i← 1
03 For all k where vSessk = closed :
04 mi ← k,σi ← (c′k := ck − βk, s′k := sk + αk)
05 i← i+ 1
06 Return (m1,σ1), . . . , (m`+1,σ`+1)

Oracle P1
07 (pSid,RpSid) $← S1
08 Return (pSid,RpSid)

Oracle V1(R)
09 vSid ← vSid + 1
10 vSessvSid ← open
11 (cvSid , stvSid)← U1(pk,R,m := vSid)
12 (αvSid ,βvSid)← stvSid
13 Return (vSid, cvSid)

Oracle P2(pSid, c)
14 spSid ← S2(pSid, c)
15 Return spSid

Oracle V2(vSid, s)
16 If vSessvSid 6= open Then
17 Return ⊥
18 bvSid ← Ver(pk,RvSid , cvSid , s)
19 vSessvSid ← closed
20 svSid ← s
21 Return bvSid

Fig. 10. Reduction from OMUFA
BS to OMMIMB

ID

Theorem 4. If LF is a linear function, then BS[LF,H] is perfectly blind.

Proof. Let A be an adversary playing in game BlindA
BS[LF,H]. After its execution,

A holds (m0,σ0), (m1,σ1) where σ0 is a signature on m0 and σ1 is a signature
on m1. (Here we assume without loss of generality that both signatures are valid
as otherwise A obtains σ0 = σ1 = ⊥ and thus AdvA

Blind,BS[LF,H] = 0.) Adversary
A furthermore learns two transcripts T1 = (R1, c1, s1) and T2 = (R2, c2, s2)
from its interaction with the first and the second signer session, respectively. The
goal of A is to match the message/signature pairs with the two transcripts.

We show that there exists no adversary which is able to distinguish, whether
the message m0 was used by the experiment to create Transcript T1 or T2. We
argue that for all sessions 1 ≤ i ≤ 2 and indexes 0 ≤ j ≤ 1, the tuple (Ti,mj ,σj)
completely determines stj = (α(i,j),β(i,j)). This implies that given A’s view, it
is equally likely that the experiment was executed with b = 0 or b = 1 since for
both choices b ∈ {0, 1} there exists properly distributed states (st0, st1) that
would have resulted in A’s view.

A Modular Treatment of Blind Signatures from Identification Schemes 17

It remains to argue that Ti = (Ri, ci, si), mj , and σj = (c′j , s′j) determine
values α(i,j),β(i,j) such that c′j = H(Ri +β(i,j) · pk + F(α(i,j)),mj) and α(i,j) =
s′j − si,β(i,j) = ci − c′j . Uniformity of (α(i,j),β(i,j)) is implied by uniformity of
(s′j , c′j), which come from the experiment.

Since Ti is a valid transcript, we have F(si) = Ri + ci · pk. Therefore

Ri + β(i,j) · pk + F(α(i,j)) = Ri + (ci − c′j) · pk + F(s′j − si)
= Ri + ci · pk − F(si) + F(s′j)− c′j · pk
= F(s′j)− c′j · pk .

Since σj is a valid signature on mj we have H(F(s′j)− c′j · pk,mj) = c′j which
concludes the proof.

Corollary 1. Let LF be a linear function family with a torsion-free element
from the kernel. If LF is (ε′, t′)-CR secure, then BS[LF,H] is (ε, t,QS1 , QS2 , QH)-
OMUF secure where

t′ = 2t, ε′ = O

((
ε− (Q+QS)QS2 +1

q

)
1

Q2Q3
S2

)
,

QS = QS2 +QS1 and Q = QH +QS2 + 1. Moreover, BS[LF,H] is perfectly blind.

Proof. The proof of the one-more unforgability security follows from combining
Theorems 1 and 3. Perfect blindness follows directly from Theorem 4.

6 Proof of Theorem 1

Before we give the proof of Theorem 1, we provide some intuition about the
difficulty that arises in the context of proving the OMMIM-security of ID[LF]
and how our proof overcomes it. The main issue is that the adversary M in
OMMIM can interleave sessions between the oracles P1,P2 and V1, V2. This
gives M strong adaptive capabilities which lead to the ROS-attack described in
4.2. The ROS-attack is reflected in Corollary 2, which can be translated into
an upper bound on M’s success probability of providing our reduction with two
identical values χ̂, χ̂′ that result from running the adversary twice with fixed
public key pk and randomness ω, but (partially) different replies h,h′ to V1.
If the adversary succeeds in setting χ̂ = χ̂′, the reduction fails in recovering a
collision with respect to LF, i.e., values χ̂ 6= χ̂′ s.t. LF(χ̂) = LF(χ̂′).

To prove the bound in Corollary 2, our proof follows the ideas of [21], but takes
into account also the abandoned sessions with P1, which [21] does not consider.
The intuitive idea behind ensuring χ̂ 6= χ̂′ is to run M on an instance I = pk that
could be the result of applying F to either sk or ŝk = sk+ z∗ from the domain D
of F. One can show that from M’s perspective, the resulting view is identical in
both cases (Lemma 7). On the other hand, since χ̂ depends non-trivially on sk (or
ŝk, respectively), it should take (with high probability) different values from the
reduction’s point of view, depending on whether the reduction used sk or sk + z∗

18 E. Hauck, E. Kiltz, J. Loss

as a preimage to pk. Indeed, this intuition is supported by Corollary 2. However,
Corollary 2 can only be translated into an upper bound on the probability that
χ̂ takes the same particular value C(sk, ω,h), regardless of whether sk or ŝk
was used by the reduction. Intuitively, C(sk, ω,h) is the value that is most likely
taken by the random variable χ̂′, which occurs as the result of rewinding M with
the same sk, ω, but a partially different set of V1-replies h′ (i.e., the probability
is over the fresh values in h′). To ensure that χ̂ 6= χ̂′, the analysis first defines
the set B of tuples (sk, ω,h) which yield a successful run of M, but for which
χ̂(sk, ω,h) 6= C(sk, ω,h). It then estimates the probability that both tuples
(sk, ω,h), (sk, ω,h′) that are used to run M, are tuples from the set B. The final
step of the proof is to leverage this fact to obtain a lower bound on the success
probability of the reduction, i.e., to ensure that χ̂ 6= χ̂′ (Lemma 2). To argue
that not only both runs of M are successful, but yield tuples in B, we present a
more general version of the forking lemma by Bellare and Neven [6].

6.1 The reduction algorithm

Let M be an (ε, t,QV, QP1 , QP2)-OMMIM adversary that plays in game OMMIMID[LF].
Without loss of generality, we will assume throughout the proof that QP1(M) =
QP1 , QP2(M) = QP2 , QV(M) = QV, `(M) = QP2 + 1, as well as QP1 ≥ QP2 .

For 1 ≤ i ≤ QP2 + 1, we define an auxiliary algorithm Ai which ‘sandboxes’ M
and that will be used later by another adversary B to break collision resistance of
LF. More concretely, Ai obtains as input an instance I = sk, runs M on random
tape ω and uses vector h ∈ CQV to answer M’s QV queries to V1. The description
of algorithm Ai is given in Figure 11. Note that Ai is deterministic for fixed
randomness ω.
Analysis of Ai. To analyze Ai, we now introduce some notation. First, consider
the variables Ĵ i, χ̂i, ŝ′, and ĥi defined on Lines 32 through 35 of Figure 11. These
variables are introduced to simplify the referencing of values associated with
successful calls to the verification oracle V2(vSid, ·) over the course of the proof.
Concretely, the variable

χ̂i = ŝ′i − ĥi · sk
results from the i-th successful call to the verification oracle V2(vSid, ·), whereas
the index Ĵ i indicates which session identity vSid corresponds to this call.

We will fix an execution of Ai via the tuples I = sk, h, and Ai’s randomness
ω. We define the set W of successful inputs of Ai as the set of all such tuples
(I, ω,h) which lead to a successful run of Ai, i.e.,

W := {(I, ω,h) | Ĵ i 6= 0; (Ĵ i, χ̂i)← Ai(I,h;ω)}

Note that W is independent of i and, by construction of Ai,

Pr
(I,ω,h) $←(I×Ω×CQV)

[(I, ω,h) ∈ W] = AdvOMMIM
ID[LF] (M) = ε.

We can view Ĵ i, χ̂i, ŝ′, and ĥi as random variables whose distribution is induced
by the the uniform distribution on (I ×Ω ×CQV). Furthermore, their outcome is

A Modular Treatment of Blind Signatures from Identification Schemes 19

uniquely determined given (I, ω,h) ∈ W, so let us write in this case(
Ĵ i(I, ω,h), χ̂i(I, ω,h)

)
← Ai(I,h;ω).

Adversary Ai(I = sk,h;ω):
00 Parse (ωM, r)← ω
01 R← F(r)
02 pk ← F(sk)
03 ctr ← 0; pSid ← 0; vSid ← 0
04 MP1,P2,V1,V2 (pk)
05 `(M)← #{k | vSessk = closed ∧ bk = 1}
06 QP2 (M)← #{k | pSessk = closed}
07 QP1 (M)← #{k | pSessk = open}
08 QV(M)← vSid
09 If (`(M) ≥ QP2 (M) + 1) Then
10 Return (Ĵ i, χ̂i)
11 Return (Ĵ i, χ̂i)← (0, 0)

Procedure P1
12 pSid ← pSid + 1
13 pSesspSid ← open
14 cpSid ← ⊥
15 Return (pSid,RpSid)
Procedure P2(pSid, c)
16 If pSesspSid 6= open Then
17 Return ⊥
18 pSesspSid ← closed
19 spSid ← c · sk + rpSid
20 cpSid ← c
21 Return spSid

Procedure V1(R′)
22 vSid ← vSid + 1
23 R′vSid ← R′

24 vSesspSid ← open
25 Return (vSid,hvSid)

Procedure V2(vSid, s′)
26 If vSessvSid 6= open Then
27 Return ⊥
28 S′vSid ← F(s′)
29 vSessvSid ← closed
30 If S′vSid = hvSid · pk +R′vSid Then
31 ctr ← ctr + 1
32 ŝ′ctr ← s′

33 ĥctr ← hvSid
34 χ̂ctr ← ŝ′ctr − ĥctr · sk
35 Ĵctr ← vSid
36 b′vSid ← 1
37 Else
38 b′vSid ← 0
39 Return b′vSid

Fig. 11. Wrapping adversaries Ai for 1 ≤ i ≤ QP2 + 1

In the following, when stating probability distributions over I, ω, and h,
unless specified differently, we will always refer to the uniform distributions. That
is, (I, ω,h) $← (I ×Ω × CQV).

We consider the following probability for fixed (I, ω,h), j, c and i:

Pr
h′ $←CQV |h[j−1]

[Ĵ i(I, ω,h′) = j ∧ χ̂i(I, ω,h′) = c], (3)

where the conditional probability h′ $← CQV |h[j−1] was introduced in Section 2.
We denote by ci,j(I, ω,h) the lexicographically first value c s.t. the probability

in (3) is maximized when (I, ω,h), j, i are fixed. We then write Ci(I, ω,h) =
ci,Ĵi(I,ω,h)(I, ω,h). For fixed i, j, let us define Bi,j ⊂ W as

Bi,j := {(I, ω,h) ∈ W | Ĵ i(I, ω,h) = j ∧ χ̂i(I, ω,h) 6= Ci(I, ω,h)}.

20 E. Hauck, E. Kiltz, J. Loss

Adversary B(par):
00 i∗ $← [QP2 + 1]
01 h $← CQV

02 ω $← Ω
03 sk $← D
04 (Ĵ i∗ , χ̂i∗)← Ai∗(I = sk,h;ω) //First execution of Ai∗
05 If Ĵ i∗ = 0
06 Return ⊥
07 h′ $← CQV |h[Ĵi∗−1] //Conditionally resample h′

08 (Ĵ ′i∗ , χ̂′i∗)← Ai∗(I = sk,h′;ω) //Second execution of Ai∗
09 If (Ĵ ′i∗ = Ĵ i∗) ∧ (χ̂i∗ 6= χ̂′i∗) Then
10 return (χ̂i∗ , χ̂′i∗)
11 Return ⊥

Fig. 12. Adversary B against CR of LF.

and

βi,j = Pr
(I,ω,h) $←(I×Ω×CQV)

[(I, ω,h) ∈ Bi,j]

δi,j = Pr
(I,ω,h) $←(I×Ω×CQV),h′ $←CQV |h[j−1]

[
χ̂i(I, ω,h′) 6= χ̂i(I, ω,h)
∧Ĵ i(I, ω,h) = Ĵ i(I, ω,h′) = j

]
.

Lemma 2. For all i, j: δi,j ≥ βi,j
(
βi,j

8 −
1
2q

)
.

The proof of this lemma is postponed to Section 6.3.

Lemma 3. There exist i ∈ [QP2+1], j ∈ [QV] such that βi,j >
(
ε−

Q
QP2 +1
V ·(QP2 +QP1

QP1
)

q

)
·

1
2QV(QP2 +1) .

The proof of this lemma is postponed to Section 6.4.
Adversary B against CR of LF. We are now ready to describe our (ε′, t′)-
adversary B depicted in Figure 12, which plays in the collision resistance game of
LF. B works roughly as follows. It first samples randomness ω $← Ω, a secret key
sk $← D, a vector h $← CQV , and an index i∗ $← [QP2 + 1] and runs Ai∗ on input
(I = sk,h;ω). It samples a second random vector h′ as h′ $← CQV |h[Ĵi∗−1] and
runs Ai∗ a second time with the same randomness ω and the same instance I,
but replacing h by h′. In the case that B does not abort, note that by definition
of Ai∗ ,

F(χ̂i∗) =F(ŝ′i∗ − ĥi∗ · sk)
=S′Ĵi∗ − hĴi∗ · pk = R′Ĵi∗

Because Ai∗ sees identical answers for the first Ĵ i∗ − 1 queries to V1, it behaves
identically in both runs until it receives the answer to the Ĵ i∗ -th query to V1. In

A Modular Treatment of Blind Signatures from Identification Schemes 21

particular, Ai∗ poses the same Ĵ i∗ -th query to V1 which means that F(χ̂′i∗) = R′Ĵi∗
and therefore also F(χ̂i∗) = F(χ̂′i∗). We now consider

ε′ = AdvCR
LF (B) = Pr

par $←PGen,(χ̂i∗ ,χ̂′i∗) $←B(par)
[χ̂i∗ 6= χ̂′i∗ ∧ F(χ̂i∗) = F(χ̂′i∗)]

=
QV∑
j=1

Pr[χ̂i∗ 6= χ̂′i∗ ∧ F(χ̂i∗) = F(χ̂′i∗) ∧ Ĵ i∗ = Ĵ ′i∗ = j]

=
QV∑
j=1

Pr[χ̂i∗ 6= χ̂′i∗ ∧ Ĵ i∗ = Ĵ ′i∗ = j] =
QV∑
j=1

δi∗,j

≥ 1
QP2 + 1 · max

i∈[QP2 +1]

QV∑
j=1

δi,j

≥ max
i,j

βi,j
2(QP2 + 1)

(
βi,j
4 − 1

q

)
,

where for the first inequality we used that
∑
δi∗,j = maxi

∑
δi,j with probability

at least 1/(QP2 + 1) and in the last step we applied Lemma 2. By Lemma 3 we
finally obtain

ε′ ≥
ε−

Q
QP2 +1
V ·(QP2 +QP1

QP1
)

q

32Q2
V(QP2 + 1)3 ·

ε− Q
QP2 +1
V ·

(QP2 +QP1
QP1

)
q

− 16Q2
V(QP2 + 1)2

q


= O

((
ε− (QVQP1)QP2 +1

q

)
1

Q2
VQ

3
P2

)
,

where the last equality holds for QP1 ≥ QP2 .

6.2 A Generalized Forking Lemma

In this section we will introduce our Subset Forking Lemma, a generalization of
the forking lemma that will be useful for proving Lemma 2.

Lemma 4 (Subset Splitting Lemma). Let B ⊂ X × Y be such that

Pr
(x,y) $←X×Y

[(x, y) ∈ B] ≥ ε.

For any α ≤ ε, define

Bα =
{

(x, y) ∈ X × Y | Pr
y′

$←Y
[(x, y′) ∈ B] ≥ ε− α

}
.

Then
Pr

y,y′
$←Y,x $←X

[(x, y′) ∈ B ∧ (x, y) ∈ B] ≥ (ε− α) · α.

22 E. Hauck, E. Kiltz, J. Loss

Proof. The standard splitting lemma [21] states that

∀(x, y) ∈ Bα : Pr
y′

$←Y
[(x, y′) ∈ B] ≥ ε− α (4)

Pr
(x,y) $←B

[(x, y) ∈ Bα] ≥ α/ε (5)

For the conditional probability, we have that

Pr
y,y′

$←Y,x $←X
[(x, y′) ∈ B | (x, y) ∈ B]

≥ Pr
y,y′

$←Y,x $←X
[(x, y′) ∈ B ∧ (x, y) ∈ Bα | (x, y) ∈ B]

= Pr
y,y′

$←Y,x $←X
[(x, y′) ∈ B | (x, y) ∈ Bα ∩ B] · Pr

(x,y) $←X×Y
[(x, y) ∈ Bα | (x, y) ∈ B]

= Pr
y,y′

$←Y,x $←X
[(x, y′) ∈ B | (x, y) ∈ Bα] · Pr

(x,y) $←X×Y
[(x, y) ∈ Bα | (x, y) ∈ B]

= Pr
y,y′

$←Y,x $←X
[(x, y′) ∈ B | (x, y) ∈ Bα] · Pr

(x,y) $←B
[(x, y) ∈ Bα]

≥ (ε− α) · α
ε
,

where the inequalities follow from (4) and (5), respectively. We conclude the
proof by

Pr
y,y′

$←Y,x $←X
[(x, y′) ∈ B ∧ (x, y) ∈ B]

= Pr
y,y′

$←Y,x $←X
[(x, y′) ∈ B | (x, y) ∈ B] · Pr

(x,y) $←X×Y
[(x, y) ∈ B]

≥ (ε− α) · α
ε
· ε = (ε− α) · α.

Lemma 5 (Subset Forking Lemma). Fix any integer Q ≥ 1 and a set H of
size > 2 as well as a set of side outputs Σ, instances I, and a randomness space
Ω. Let C be an algorithm that on input (I,h) ∈ I ×HQ and randomness ω ∈ Ω
returns a tuple (j, σ), where 1 ≤ j ≤ Q and σ ∈ Σ. We partition its input space
I ×Ω ×HQ into sets W1, . . . ,WQ where for fixed 1 ≤ j ≤ Q, Wj is the set of
all (I, ω,h) that result in (j, σ)← C(h, I;ω) for some arbitrary side output σ.

For any 1 ≤ j ≤ Q and B ⊆ Wj define

acc(B) := Pr
(I,ω,h) $←I×Ω×HQ

[(I, ω,h) ∈ B]

frk(B, j) := Pr
(I,ω,h) $←I×Ω×HQ,h′ $←CQV |h[j−1]

[
hj 6= h′j
(I, ω,h) ∈ B ∧ (I, ω,h′) ∈ B

]
.

Then
frk(B, j) ≥ acc(B) ·

(
acc(B)

4 − 1
|H|

)
.

A Modular Treatment of Blind Signatures from Identification Schemes 23

Proof. By applying Lemma 4 to ε = acc(B), α := ε/2, and to the two sets
X = I ×Ω ×Hj−1 and Y = HQ−j+1, we obtain

Pr
(I,ω,h) $←I×Ω×HQ,h′ $←CQV |h[j−1]

[(I, ω,h) ∈ B ∧ (I, ω,h′) ∈ B] ≥ acc2(B)
4 .

Next, we observe that

frk(B, j) = Pr[(I, ω,h) ∈ B ∧ (I, ω,h′) ∈ B ∧ hj 6= h′j]
= Pr[(I, ω,h) ∈ B ∧ (I, ω,h′) ∈ B]− Pr[(I, ω,h) ∈ B ∧ (I, ω,h′) ∈ B ∧ hj = h′j]
≥ Pr[(I, ω,h) ∈ B ∧ (I, ω,h′) ∈ B]− Pr[(I, ω,h) ∈ B ∧ hj = h′j]

= Pr[(I, ω,h) ∈ B ∧ (I, ω,h′) ∈ B]− Pr[(I, ω,h) ∈ B]
|H|

,

where the last equation follows from independence and uniformity of hj and h′j .
We continue with

= Pr[(I, ω,h) ∈ B ∧ (I, ω,h′) ∈ B]− Pr[(I, ω,h) ∈ B]
|H|

≥ acc2(B)
4 − Pr[(I, ω,h) ∈ B]

|H|
= acc2(B)

4 − acc(B)
|H|

= acc(B) ·
(

acc(B)
4 − 1

|H|

)
,

which completes the proof.

Note that lemma 5 implies the version of the Forking Lemma in [6]. Namely,
by, defining the set W =

⋃
jWj , acc(W) = Pr

(I,ω,h) $←I×Ω×HQ,(j,σ)←C(I,h;ω)
[j ≥ 1]

and frk :=
Q∑
j=1

frk(Wj , j), we obtain

frk =
Q∑
j=1

frk(Wj , j) =
Q∑
j=1

acc(Wj) ·
(

acc(Wj)
4 − 1

|H|

)

=

 Q∑
j=1

acc2(Wj)
4

− acc(W)
|H|

≥ 1
4Q

 Q∑
j=1

acc(Wj)

2

− acc(W)
|H|

= 1
4Qacc2(W)− acc(W)

|H|
= acc(W) ·

(
acc(W)

4Q − 1
|H|

)
,

where the inequality follows from Jensen’s inequality (Lemma 3 in [6]).

24 E. Hauck, E. Kiltz, J. Loss

6.3 Proof of Lemma 2

We will show in the following that for all (I, ω,h) $← (I ×Ω × CQV), d ∈ D :

αi,j(I, ω,h, d) := Pr
h′ $←CQV |h[j−1]

[χ̂i(I, ω,h′) 6= d ∧ Ĵ i(I, ω,h′) = j]

≥ µi,j(I, ω,h)/2, (6)

where

µi,j(I, ω,h) := Pr
h′ $←CQV |h[j−1]

[(I, ω,h′) ∈ Bi,j ∧ hj 6= h′j].

For a true/false statement s, define B(s) as 1 if s is true and 0 otherwise. It
is easy to see that (6) implies the theorem statement since

δi,j = Pr
(I,ω,h) $←(I×Ω×CQV),h′ $←CQV |h[j−1]

[
χ̂i(I, ω,h′) 6= χ̂i(I, ω,h)
∧Ĵ i(I, ω,h) = Ĵ i(I, ω,h′) = j

]
=
∑
d

Pr
(I,ω,h) $←(I×Ω×CQV),h′ $←CQV |h[j−1]

[
χ̂i(I, ω,h′) 6= d ∧ χ̂i(I, ω,h) = d

∧Ĵ i(I, ω,h) = Ĵ i(I, ω,h′) = j

]
=
∑
d

EI,ω,h[B(χ̂i(I, ω,h) = d ∧ Ĵ i(I, ω,h) = j) · αi,j(I, ω,h, d)]

≥ 1
2
∑
d

EI,ω,h[B(χ̂i(I, ω,h) = d ∧ Ĵ i(I, ω,h) = j) · µi,j(I, ω,h)],

where in the last step, we have applied linearity and monotonicity of the
expectation and the fact that due to (6), for all I, ω,h ∈ CQV , d, we have
αi,j(I, ω,h, d) ≥ µi,j(I, ω,h)/2. We continue with

1
2
∑
d

EI,ω,h[B(χ̂i(I, ω,h) = d ∧ Ĵ i(I, ω,h) = j) · µi,j(I, ω,h)]

= 1
2 ·
∑
d

Pr
(I,ω,h) $←(I×Ω×CQV),h′ $←CQV |h[j−1]

[
χ̂i(I, ω,h) = d ∧ Ĵ i(I, ω,h) = j
∧(I, ω,h′) ∈ Bi,j ∧ hj 6= h′j

]
= 1

2 · Pr
(I,ω,h) $←(I×Ω×CQV),h′ $←CQV |h[j−1]

[
Ĵ i(I, ω,h) = j
∧(I, ω,h′) ∈ Bi,j ∧ hj 6= h′j

]
(7)

≥ 1
2 · Pr

(I,ω,h) $←(I×Ω×CQV),h′ $←CQV |h[j−1]

[(I, ω,h) ∈ Bi,j ∧ (I, ω,h′) ∈ Bi,j ∧ hj 6= h′j]

(8)

= 1
2 · frk(Bi,j , j) (9)

≥ βi,j
(
βi,j/8−

1
2q

)
, (10)

where from (7) to (8), we have used the fact that (I, ω,h′) ∈ Bi,j implies
Ĵ i(I, ω,h′) = j. The inequality from (9) to (10) follows directly from Lemma 5.

A Modular Treatment of Blind Signatures from Identification Schemes 25

We prove (6) by analyzing two cases. For all I, ω,h, d, we define

γi,j(I, ω,h, d) := Pr
h′ $←CQV |h[j−1]

[χ̂i(I, ω,h′) = d ∧ (I, ω,h′) ∈ Bi,j ∧ hj 6= h′j].

Case 1: γi,j(I, ω,h, d) ≥ µi,j(I, ω,h)/2.
Note that in this case we can assume d 6= Ci(I, ω,h). (This is because if

d = Ci(I, ω,h), then γi,j(I, ω,h, d) ≤ Pr[χ̂i(I, ω,h′) = Ci(I, ω,h) ∧ (I, ω,h′) ∈
Bi,j] = 0 which would trivialize the claim.)

αi,j(I, ω,h, d) = Pr
h′ $←CQV |h[j−1]

[χ̂i(I, ω,h′) 6= d ∧ Ĵ i(I, ω,h′) = j]

≥ Pr[χ̂i(I, ω,h′) = Ci(I, ω,h) ∧ Ĵ i(I, ω,h′) = j]
≥ Pr[χ̂i(I, ω,h′) = d ∧ Ĵ i(I, ω,h′) = j]

Using again that (I, ω,h′) ∈ Bi,j implies Ĵ i(I, ω,h′) = j, we obtain

Pr[χ̂i(I, ω,h′) = d ∧ Ĵ i(I, ω,h′) = j] ≥ Pr[χ̂i(I, ω,h′) = d ∧ (I, ω,h′) ∈ Bi,j]
≥ γi,j(I, ω,h, d) ≥ µi,j(I, ω,h)/2.

Case 2: γi,j(I, ω,h, d) < µi,j(I, ω,h)/2. Now,

αi,j(I, ω,h, d) = Pr
h′ $←CQV |h[j−1]

[χ̂i(I, ω,h′) 6= d ∧ Ĵ i(I, ω,h′) = j]

≥ Pr[χ̂i(I, ω,h′) 6= d ∧ (I, ω,h′) ∈ Bi,j ∧ hj 6= h′j]
= Pr[(I, ω,h′) ∈ Bi,j ∧ hj 6= h′j]
− Pr[χ̂i(I, ω,h′) = d ∧ (I, ω,h′) ∈ Bi,j ∧ hj 6= h′j]

= µi,j(I, ω,h)− γi,j(I, ω,h, d) > µi,j(I, ω,h)/2.

This proves (6) and hence the lemma.

6.4 Proof of Lemma 3

Consider again the algorithm Ai in Figure 11 and its internal variables. On input
(I = sk, ω = (ωM, r),h), Ai invokes M on pk = F(sk) and randomness ωM and
answers its queries using the values in r,h. Similarly as before, this allows us to fix
an execution of M (within Ai) via a tuple of the form (I, ω,h) = (I, (ωM, r),h) .
Let c(I, ω,h) denote the vector of challenge values as defined in Line 20 of
Figure 11.

Recall that we have assumed that F : D −→ R and the existence of a torsion-
free element z∗ ∈ D \ {0} such that (i) F(z∗) = 0; and (ii) ∀s ∈ C : s · z∗ = 0 =⇒
s = 0.

26 E. Hauck, E. Kiltz, J. Loss

Lemma 6. Consider the mapping

Φ :W −→ (I×Ω×CQV), (sk, (ωM, r),h) 7→ (sk+z∗, (ωM, r−z∗ ·c(I, ω,h)),h),

where we make the convention that for v ∈ D ∪ C ∪ R, v · ⊥ := 0. Then Φ is a
permutation on W.

For the proof we require the following lemma.

Lemma 7. Let (I, ω,h) ∈ W. Then the tuples (I, ω,h) and Φ(I, ω,h) fix the
same execution of M.

Proof. We show that M sees identical values in both executions corresponding to
(I, ω,h) and Φ(I, ω,h). To this end we consider all values in the view of M.

– Initial input to M. Since Φ does not alter the values of ωM, we only need to
verify that M obtains the same public key in both executions. This is ensured
via F(sk + z∗) = F(sk) + F(z∗) = F(sk) = pk

– Outputs of oracle P1. Oracle P1 consecutively returns the values from
R = F(r), as defined in Line 01 of Figure 11. They remain the same in both
executions since F(r) = R = R− 0 · c(I, ω,h) = F(r)− F(z∗) · c(I, ω,h) =
F(r − z∗ · c(I, ω,h)).

– Outputs of oracle P2. Oracle P2 consecutively returns the values from
s = csk +r, as defined in Line 19 of Figure 11. They remain the same in both
executions since r + sk · c(I, ω,h) = s = r − z∗ · c(I, ω,h) + z∗ · c(I, ω,h) +
sk · c(I, ω,h) = (r − z∗ · c(I, ω,h)) + (sk + z∗) · c(I, ω,h).

– Outputs of oracle V2. Oracle P2 consecutively returns the values from b.
They remain the same in both executions since they depend on R, h, and
the randomness ωM.

Thus, (I, ω,h) and Φ(I, ω,h) fix the same executions of M.

Proof (Proof of Lemma 6). First note that Lemma 7 implies that Φ maps to
W. It remains to prove that Φ is also a bijection. Suppose Φ is not injective.
Thus, for distinct tuples (I, (ωM, r),h) 6= (I ′, (ω′M, r′),h′), Φ (I, (ωM, r),h) =
Φ(I ′, (ω′M, r′),h′). This implies ωM = ω′M and h = h′. Similarly, sk + z∗ =
sk ′ + z∗, which implies that sk = sk ′. Lastly, r − z∗ · c (I, (ωM, r),h) = r′ −
z∗ · c(I ′, ω′M, r′,h′). Since Φ (I, (ωM, r),h) = Φ(I ′, (ω′M, r′),h′), by Claim 7,
(I, (ωM, r),h) and (I ′, (ω′M, r′),h′) fix the same execution and therefore also
c (I, (ωM, r),h) = c(I ′, (ω′M, r′),h′). This implies r = r′, leading to the contra-
diction (I, (ωM, r),h) = (I ′, (ω′M, r′),h′).

To prove that Φ is surjective, we consider the function Φ−1 : (I×Ω×CQV) −→
(I×Ω×CQV), defined as Φ−1(sk, (ωM, r),h) = (sk−z∗, (ωM, r+z∗ ·c(I, ω,h)),h),
which is the inverse of Φ. With the same argument as above, one can also prove
that Φ−1 is injective which implies the surjectivity of Φ.

We now introduce the following notation. Let B =
⋃
i,j

Bi,j and let G =W \ B.

That is, for all (I, ω,h) ∈ G, we have ∀k ∈ [QP2 + 1] : χ̂k(I, ω,h) = Ck(I, ω,h).

A Modular Treatment of Blind Signatures from Identification Schemes 27

The following combinatorial lemma lower bounds the probability that χ̂ takes
different values (i.e., differs in at least one component) as a result of distinct
instances I = sk, I ′ = sk + z∗.

Lemma 8. For any fixed (I, (ωM, r)) ∈ I ×Ω,

Pr
h

$←CQV
[(I, (ωM, r),h) ∈ G ∧ Φ (I, (ωM, r),h) ∈ G] ≤

Q
QP2 +1
V ·

(QP2 +QP1
QP1

)
q

.

Proof. We argue by contradiction. Thus, assume that for some (I, (ωM, r)) ∈
I ×Ω,

Pr
h

$←CQV
[(I, (ωM, r),h) ∈ G ∧ Φ (I, (ωM, r),h) ∈ G] >

Q
QP2 +1
V ·

(QP2 +QP1
QP1

)
q

.

Then there exist a set {u1, ..., uQP2 +1} of QP2 + 1 distinct indices from [QV] such
that

Pr
h

$←CQV

[
((I, (ωM, r),h) ∈ G) ∧ (Φ (I, (ωM, r),h) ∈ G)
∧∀j : Ĵ j (I, (ωM, r),h) = uj

]
>

(QP2 +QP1
QP1

)
q

.

Similarly, there exists a vector d ∈ (C ∪ {⊥})QP2 +QP1 of challenges such that
d has exactly QP1 entries which are ⊥ and furthermore has the property that

Pr
h

$←CQV

[
((I, (ωM, r),h) ∈ G) ∧ (Φ (I, (ωM, r),h) ∈ G)
∧ (c (I, (ωM, r),h) = d) ∧

(
∀j : Ĵ j (I, (ωM, r),h) = uj

)]
>

1
qQP2 +1 .

Lastly, there exists a set {v1, ..., vQV−QP2−1} of QV −QP2 − 1 distinct indices
from [QV] \ {u1, ..., uQP2 +1} and a vector (h̃v1 , ..., h̃vQV−QP2−1) ∈ CQV−QP2−1 such
that

Pr
h

$←CQV

[
((I, (ωM, r),h) ∈ G) ∧ (Φ (I, (ωM, r),h) ∈ G) ∧ (c (I, (ωM, r),h) = d)
∧
(
∀j : (Ĵ j (I, (ωM, r),h) = uj

)
∧
(
∀j : hvj = h̃vj

)]

>
1

qQP2 +1qQV−QP2−1 = 1
qQV

.

Since the random variable h takes a particular value k ∈ CQV with probability
exactly q−QV , the statement inside the probability term above must be true for
at least two distinct vectors k,k′ ∈ CQV . Furthermore, since the condition in the
probability term above fixes all but the QP2 + 1 components {u1, ..., uQP2 +1} of
k and k′, there exists an index i ∈ [QP2 + 1] s.t. kui 6= k′ui .

W.l.o.g., let i be the smallest such index. This implies that ∀j < ui : kj = k′j
and kui 6= k′ui . Therefore,

Ci(I, (ωM, r),k) = Ci(I, (ωM, r),k′). (11)

28 E. Hauck, E. Kiltz, J. Loss

Furthermore, by Lemma 7,

Ci(I, (ωM, r),k) = ŝ′i(I, (ωM, r),k)− sk · kui
= ŝ′i(Φ(I, (ωM, r),k))− sk · kui
= ŝ′i(Φ(I, (ωM, r),k))− sk · kui + z∗ · kui − z∗ · kui
= ŝ′i(Φ(I, (ωM, r),k))− (sk + z∗) · kui + z∗ · kui
= Ci(Φ(I, (ωM, r),k)) + z∗ · kui
= Ci(I, ωM, r − z∗ · c(I, (ωM, r),k),k) + z∗ · kui . (12)

Analogously, we infer

Ci(I, (ωM, r),k′) = ŝ′i(I, (ωM, r),k′)− sk · k′ui
= Ci(I, ωM, r − z∗ · c(I, (ωM, r),k′),k′) + z∗ · k′ui . (13)

Combining (in this order) equations 12, 11, and 13, we obtain:

Ci(I, ωM, r − z∗ · c(I, (ωM, r),k),k) + z∗ · kui
= Ci(I, (ωM, r),k) = Ci(I, (ωM, r),k′)
= Ci(I, ωM, r − z∗ · c(I, (ωM, r),k′),k′) + z∗ · k′ui . (14)

Since above we have fixed c(I, (ωM, r),k) = c(I, (ωM, r),k′) = d, we also know
that

Ci(I, ωM, r − z∗ · c(I, (ωM, r),k),k)
= Ci(I, ωM, r − z∗ · d,k)
= Ci(I, ωM, r − z∗ · d,k′) (15)
= Ci(I, ωM, r − z∗ · c(I, (ωM, r),k′),k′), (16)

where 15 follows again from the fact that ∀j < ui : kj = k′j . By combining 14 and
16, it now follows that z∗ ·kui = z∗ ·k′ui or, equivalently, z

∗ ·(kui−k′ui) = 0. Thus,
torsion-freeness of z∗ implies that kui = k′ui which contradicts the assumption
that kui 6= k′ui . This completes the proof.

Corollary 2. Pr
(I,ω,h) $←(I×Ω×CQV)

[(I, ω,h) ∈ G∧Φ(I, ω,h) ∈ G] ≤
Q
QP2 +1
V ·(QP2 +QP1

QP1
)

q .

Discussion. The lower bound in Corollary 2 exponentially depreciates with
the number QP2 of parallel sessions allowed in the OMMIM experiment. Un-
fortunately, the ROS-attack in 4.2 shows that the bound in Corollary 2 can
not be improved beyond a factor of

(QP2 +QP1
QP1

)
. The reason for this is that our

attacker computes χ̂ in a manner that does not depend on h, but only on ω, I
(more precisely, any contribution of h ‘cancels out’ in the values returned by
the attacker). Therefore, χ̂ always takes the ‘most likely’ value according to
3 in the sense that, regardless of h, the attacker can force (ω, I,h) ∈ G and
Φ(ω, I,h) ∈ G.

A Modular Treatment of Blind Signatures from Identification Schemes 29

Lemma 9. Pr
(I,ω,h) $←(I×Ω×CQV)

[(I, ω,h) ∈ B] ≥ 1
2

(
ε−

Q
QP2 +1
V ·(QP2 +QP1

QP1
)

q

)
.

Proof. We partition G into subsets Gg,Gb such that all elements in Gg are mapped
into G via Φ and all elements in Gb are mapped into B via Φ. It follows that

Pr
(I,ω,h) $←(I×Ω×CQV)

[(I, ω,h) ∈ G]

= Pr
(I,ω,h) $←(I×Ω×CQV)

[(I, ω,h) ∈ Gg] + Pr
(I,ω,h) $←(I×Ω×CQV)

[(I, ω,h) ∈ Gb]. (17)

By Corollary 2 and because Φ is a bijection, we can infer that

Pr
(I,ω,h) $←(I×Ω×CQV)

[(I, ω,h) ∈ Gg] ≤
Q
QP2 +1
V ·

(QP2 +QP1
QP1

)
q

, (18)

Pr
(I,ω,h) $←(I×Ω×CQV)

[(I, ω,h) ∈ Gb] ≤ Pr
(I,ω,h) $←(I×Ω×CQV)

[(I, ω,h) ∈ B]. (19)

It follows from 17,18, 19 that

Pr[(I, ω,h) ∈ G] ≤
Q
QP2 +1
V ·

(QP2 +QP1
QP1

)
q

+ Pr[(I, ω,h) ∈ B]. (20)

From 20, we can bound Pr[(I, ω,h) ∈ B] as

Pr[(I, ω,h) ∈ B] = Pr[(I, ω,h) ∈ W]− Pr[(I, ω,h) ∈ G]

≥ Pr[(I, ω,h) ∈ W]− Pr[(I, ω,h) ∈ B]−
Q
QP2 +1
V ·

(QP2 +QP1
QP1

)
q

.

Since ε = Pr
(I,ω,h) $←(I×Ω×CQV)

[(I, ω,h) ∈ W], we finally obtain

Pr
(I,ω,h) $←(I×Ω×CQV)

[(I, ω,h) ∈ B] ≥ 1
2

ε− Q
QP2 +1
V ·

(QP2 +QP1
QP1

)
q

 .

We are now ready to prove Lemma 3, i.e., we show that there exist i ∈

[QP2 +1], j ∈ [QV] such that βi,j >
(
ε−

Q
QP2 +1
V ·(QP2 +QP1

QP1
)

q

)
· 1

2QV(QP2 +1) . Toward

a contradiction, suppose instead that for all i ∈ [QP2 + 1], j ∈ [QV], we have that

Pr
(I,ω,h) $←(I×Ω×CQV)

[(I, ω,h) ∈ Bi,j] <

ε− Q
QP2 +1
V ·

(QP2 +QP1
QP1

)
q

· 1
2QV(QP2 + 1) .

30 E. Hauck, E. Kiltz, J. Loss

By Lemma 9,

1
2

ε− Q
QP2 +1
V ·

(QP2 +QP1
QP1

)
q

 ≤ Pr[(I, ω,h) ∈ B] = Pr[(I, ω,h) ∈
⋃
i,j

Bi,j]

≤
∑
i,j

Pr[(I, ω,h) ∈ Bi,j] <
1
2

ε− Q
QP2 +1
V ·

(QP2 +QP1
QP1

)
q

 .

This is a contradiction.

References
1. M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. From identification to

signatures via the Fiat-Shamir transform: Minimizing assumptions for security and
forward-security. In L. R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of
LNCS, pages 418–433. Springer, Heidelberg, Apr. / May 2002. 2, 8

2. M. Backendal, M. Bellare, J. Sorrell, and J. Sun. The fiat-shamir zoo: Relating
the security of different signature variants. Cryptology ePrint Archive, Report
2018/775, 2018. https://eprint.iacr.org/2018/775. 2, 5, 6, 10

3. F. Baldimtsi and A. Lysyanskaya. Anonymous credentials light. In A.-R. Sadeghi,
V. D. Gligor, and M. Yung, editors, ACM CCS 13, pages 1087–1098. ACM Press,
Nov. 2013. 1

4. F. Baldimtsi and A. Lysyanskaya. On the security of one-witness blind signature
schemes. In K. Sako and P. Sarkar, editors, ASIACRYPT 2013, Part II, volume
8270 of LNCS, pages 82–99. Springer, Heidelberg, Dec. 2013. 1

5. M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and
H. Shacham. Randomizable proofs and delegatable anonymous credentials. In
S. Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 108–125. Springer,
Heidelberg, Aug. 2009. 1

6. M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a
general forking lemma. In A. Juels, R. N. Wright, and S. Vimercati, editors, ACM
CCS 06, pages 390–399. ACM Press, Oct. / Nov. 2006. 3, 4, 18, 23

7. M. Bellare and A. Palacio. GQ and Schnorr identification schemes: Proofs of
security against impersonation under active and concurrent attacks. In M. Yung,
editor, CRYPTO 2002, volume 2442 of LNCS, pages 162–177. Springer, Heidelberg,
Aug. 2002. 2, 8

8. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press,
Nov. 1993. 1

9. S. Brands. Untraceable off-line cash in wallets with observers (extended abstract). In
D. R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 302–318. Springer,
Heidelberg, Aug. 1994. 1

10. J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. In R. Cramer,
editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 302–321. Springer, Hei-
delberg, May 2005. 1

11. J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In B. Pfitzmann, editor,
EUROCRYPT 2001, volume 2045 of LNCS, pages 93–118. Springer, Heidelberg,
May 2001. 1

https://eprint.iacr.org/2018/775

This
page
is ex-
ceed-
ing
the
page
limit.

A Modular Treatment of Blind Signatures from Identification Schemes 31

12. D. Chaum. Blind signatures for untraceable payments. In D. Chaum, R. L. Rivest,
and A. T. Sherman, editors, CRYPTO’82, pages 199–203. Plenum Press, New York,
USA, 1982. 1

13. D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In S. Goldwasser,
editor, CRYPTO’88, volume 403 of LNCS, pages 319–327. Springer, Heidelberg,
Aug. 1990. 1

14. U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. Journal of
Cryptology, 1(2):77–94, June 1988. 2

15. R. Gennaro. Multi-trapdoor commitments and their applications to proofs of
knowledge secure under concurrent man-in-the-middle attacks. In M. Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 220–236. Springer, Heidelberg,
Aug. 2004. 2

16. V. Lyubashevsky. Lattice-based identification schemes secure under active attacks.
In R. Cramer, editor, PKC 2008, volume 4939 of LNCS, pages 162–179. Springer,
Heidelberg, Mar. 2008. 4

17. L. Minder and A. Sinclair. The extended k-tree algorithm. In C. Mathieu, editor,
20th SODA, pages 586–595. ACM-SIAM, Jan. 2009. 6

18. T. Okamoto. Provably secure and practical identification schemes and corresponding
signature schemes. In E. F. Brickell, editor, CRYPTO’92, volume 740 of LNCS,
pages 31–53. Springer, Heidelberg, Aug. 1993. 1, 2

19. T. Okamoto and K. Ohta. Universal electronic cash. In J. Feigenbaum, editor,
CRYPTO’91, volume 576 of LNCS, pages 324–337. Springer, Heidelberg, Aug. 1992.
1

20. D. Pointcheval and J. Stern. New blind signatures equivalent to factorization
(extended abstract). In ACM CCS 97, pages 92–99. ACM Press, Apr. 1997. 1, 2

21. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361–396, June 2000. 1, 3, 4, 17, 22

22. F. Rodriuguez-Henriquez, D. Ortiz-Arroyo, and C. Garcia-Zamora. Yet another im-
provement over the mu-varadharajan e-voting protocol. Comput. Stand. Interfaces,
29(4):471–480, 2007. 1

23. M. Rückert. Lattice-based blind signatures. In M. Abe, editor, ASIACRYPT 2010,
volume 6477 of LNCS, pages 413–430. Springer, Heidelberg, Dec. 2010. 1, 4

24. C.-P. Schnorr. Security of blind discrete log signatures against interactive attacks.
In S. Qing, T. Okamoto, and J. Zhou, editors, ICICS 01, volume 2229 of LNCS,
pages 1–12. Springer, Heidelberg, Nov. 2001. 3, 6

25. D. Wagner. A generalized birthday problem. In M. Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 288–303. Springer, Heidelberg, Aug. 2002. 3, 6

Acknowledgments

We would like to thank David Pointcheval for helpful discussions and for answering
many of our questions.

	 A Modular Treatment of Blind Signatures from Identification Schemes

