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Abstract. We construct a concretely practical proof-of-space (PoS) with
arbitrarily tight security based on stacked depth robust graphs and constant-
degree expander graphs. A proof-of-space (PoS) is an interactive proof
system where a prover demonstrates that it is persistently using space
to store information. A PoS is arbitrarily tight if the honest prover uses
exactly N space and for any ε > 0 the construction can be tuned such
that no adversary can pass verification using less than (1 − ε)N space.
Most notably, the degree of the graphs in our construction are indepen-
dent of ε, and the number of layers is only O(log(1/ε)). The proof size
is O(d/ε). The degree d depends on the depth robust graphs, which are
only required to maintain Ω(N) depth in subgraphs on 80% of the nodes.
Our tight PoS is also secure against parallel attacks.
Tight proofs of space are necessary for proof-of-replication (PoRep),
which is a publicly verifiable proof that the prover is dedicating unique
resources to storing one or more retrievable replicas of a specified file.
Our main PoS construction can be used as a PoRep, but data extrac-
tion is as inefficient as replica generation. We present a second variant
of our construction called ZigZag PoRep that has fast/parallelizable data
extraction compared to replica generation and maintains the same space
tightness while only increasing the number of levels by roughly a factor
two.

1 Introduction

Proof-of-space (PoS) has been proposed as an alternative to proof-of-work
(PoW) for applications such as SPAM prevention, DOS attacks, and Sybil
resistance in blockchain-based consensus mechanisms [8, 11, 16]. Several
industry projects1 are underway to deploy cryptocurrencies similar to
Bitcoin that use proof-of-space instead of proof-of-work. Proof-of-space is
promoted as more egalitarian and eco-friendly that proof-of-work because
it is ASIC-resistant and does not consume its resource (space instead of
energy), but rather reuses it.

A PoS is an interactive protocol between a prover and verifier in which
the prover uses a minimum specified amount of space in order to pass ver-
ification. The protocol must have compact communication relative to the

1 https://chia.net/,https://spacemesh.io/, https://filecoin.io/
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prover’s space requirements and efficient verification. A PoS is persistent
if repeated audits force the prover to utilize this space over a period of
time. More precisely, there is an “offline” phase in which the prover ob-
tains challenges from a verifier, generates a (long) string σ that it stores,
and outputs a compact verification tag τ to the verifier. (The offline phase
can be made non-interactive using the Fiat-Shamir transform). This is
followed by an “online” challenge-response protocol in which the verifier
uses τ to generate challenges and the prover uses σ to efficiently compute
responses to the verifier’s challenges.

The soundness of the PoS relies on a time bound on the online prover
that is enforced by frequent verifier audits. A time bound is necessary as
otherwise the prover could store its compact transcript and simulate the
setup to re-derive the advice whenever it needs to pass an online proof.
If the PoS guarantees that an adversary must use the minimum amount
of space to pass challenges within the wall-clock time allotted no matter
how much (polynomially bounded) computation it expends then the PoS
is said to resist parallelization attacks. A PoS must resist parallelization
attacks in order to be considered unconditionally secure. Otherwise, the
security may still be reasoned through a cost benefit analysis for a rational
prover, who will not expend significant computation to save a relatively
small fraction of space.

More formally, correctness and (S, T, µ)-soundness for a PoS protocol
is defined as follows. First, if the prover commits to persistently utilize N
blocks of space then the honest prover algorithm defined by the protocol
must use O(N) persistent space and must succeed in passing the veri-
fier’s challenges without error. Next, a pair of offline/online adversaries is
considered. The “offline” adversary generates an adversarial string σ′ and
offline proof π′. An (S, T, µ)-sound protocol guarantees that if the string
length of σ′ output by the online adversary is less than S then either
the verifier accepts π′ with negligible probability or otherwise any online
adversary who runs in time less than T on the input σ′ and the verifier’s
challenge will fail verification with probability at least 1− µ.

There is generally a gap between the honest space utilization and the
lower bound S on the adversary’s space. If the honest prover uses S′ space
and some adversary is able to use (1− ε)S′ space then this PoS protocol
has at least an ε space gap. Loosely speaking, a tight PoS construction
makes ε arbitrarily small. The construction is allowed to involve ε as a
parameter, and the value of ε may impact efficiency. All else equal, a
tighter PoS is obviously more desirable as it has tighter provable security.
Nearly all existing PoS constructions have enormous space gaps, including
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those that are currently being used in practice [2, 8]. The one exception
is a recent PoS protocol by Pietrzak [18]. Although this PoS construction
is provably tight, the concrete parameters required in the analysis result
in an impractically large offline proof.

Proof-of-replication (PoRep) [1, 9, 10, 18] is a recently proposed vari-
ant of PoS. A PoRep demonstrates that the prover is dedicating unique
resources to storing a retrievable copy of a committed data file, and is
therefore a useful proof of space. It has been proposed as an alternative
Sybil resistance mechanism (e.g. for a blockchain) that is not only ASIC
resistant and eco-friendly, but also has a useful side-effect: file storage.
Furthermore, since the prover may run several independent PoReps for
the same file that each require unique resources, PoReps may be used as
a publicly verifiable proof of data replication/duplication.

Unfortunately, it is not possible to cryptographically guarantee that
a prover is persistently storing data in a replicated format. A prover
can always sabotage the format (e.g. by encrypting it and storing the
key separately) and can then recover the original format quickly when
challenged. A recently proposed security model for PoReps is ε-rational
replication [9], which says that an adversary can save at most an ε fraction
of its space by deviating from storing the data in a replicated format. A
PoRep that satisfies ε-rational replication is also a PoS with an ε space
gap. Intuitively, if a PoRep is not a tight proof of space then there may
exist some adversary that would be rationally incentivized to deviate from
honest behavior in a way that also destroys the replication format. In
fact, if the input file is incompressible then any adversary who manages
to saves an ε fraction of the claimed space cannot be storing the data
in the replicated format. Thus, tight proofs of space are necessary for
PoReps because a PoRep construction is only meaningfully secure when
ε is very small.

The goal of this work is to construct a practical and provably tight
PoS that can also be used as a PoRep that satisfies ε-rational replication
for arbitrarily small ε.

1.1 Related work

The original PoS of Dziembowski et. al. [8] was based on hard to peb-
ble directed acyclic graphs (DAGs), using a blend of techniques from
superconcentrators, random bipartite expander graphs and depth robust
graphs [17]. During the offline initialization the prover computes a label-
ing of the graph using a collision-resistant hash function where the label
ev on each node v ∈ G of the graph is the output of the hash function
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on the labels of all parent nodes of v. It outputs a commitment to this
labeling along with a proof that the committed labeling was “mostly”
correct. This offline proof consists of randomly sampled labels and their
parent labels, which the verifier checks for consistency. During the online
challenge-response phase the verifier simply asks for random labels that
the prover must produce along with a standard proof that these labels
are consistent with the commitment. The construction leaves a space gap
of at least 1− 1

512 .

Ren and Devadas [19] construct a PoS from stacked bipartite expander
graphs that dramatically improved on the space gap, although it is not se-
cure against parallel attacks. Their construction involves λ levels V1, ..., Vλ
consisting of n nodes each, with edges between the layers defined by the
edges of a constant-degree bipartite expander. The prover computes a
labeling of the graph just as in the Dziembowski et. al. PoS, however it
only stores the labels on the final level. Their construction still leaves a
space gap of at least2 1/2.

Recently, Abusalah et. al. [2] revived the simple PoS approach based
on storing tables of random functions. The basic idea is for the prover to
compute and store the function table of a random function f : [N ]→ [N ]
where f is chosen by the verifier or a random public challenge. During
the online challenge-response the verifier asks the prover to invert f on
a randomly sampled point x ∈ [n]. Intuitively, a prover who has not
stored most of the function table will likely have to brute force f−1(x),
performing Ω(N) work. This simple approach fails to be a PoS due to
Hellman’s time/space tradeoffs, which enable a prover to succeed with S
space and T computation for any ST = O(N). However, Abusalah et.
al. build on this approach to achieve a provable time/space tradeoff of
SkT = Ω(εkNk). This PoS is not secure against parallel attacks, and also
has a very large (even asymptotic) space gap.

Pietrzak [18] and Fisch et. al [9, 10] independently proposed simpler
variants of the graph labeling PoS by Dziembowski et. al. based solely
on pebbling a depth robust graph (DRG). A degree d DAG on n nodes
is (α, β)-depth robust if any subgraph on αn nodes contains a path of
at least length βn. It is trivial to construct DRGs of large degree (a
complete DAG is depth robust), but much harder to construct DRGs with
small degree. Achieving constant α, β is only possible asymptotically with
degree Ω(logN). The graph labeling PoS on a DRG results in a PoS with

2 For practical parameters, the Ren and Devadas construction has a space gap larger
than 1/2. For example, it requires a graph of degree at least 40 in order to achieve
a space gap of less than 2/3.
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an α space gap that is also secure against parallel attacks. Fisch et. al.
also suggested combining this labeling PoS with a verifiable delay function
(VDF) [5] to increase the expense of labeling the graph without increasing
the size of the proof verification complexity. The delay on the VDF can
be tuned depending on the value of n. Both of these constructions were
proposed for PoReps. In this variant of the PoS protocol, the prover uses
the labeling of the graph to encode a data file on n blocks D = d1, ..., dn.
The ith label ei is computed by first deriving a key ki by hashing the
labels on the parents of the ith node, and then setting ei = ki ⊕ di. If all
the labels are stored then any data block can be quickly extracted from ei
by recomputing ki. More generally, this DAG encoding of the data input
could use any encoding scheme (enc, dec), where enc is sequentially slow
and dec is fast, in order to derive ei = enc(ki, di). The data is decoded by
computing di = dec(ki, ei).

The labeling PoS on a DRG is not technically a tight PoS because
decreasing α also decreases the time bound βn on the prover’s required
computation to defeat the PoS. Moreover, while there exist constructions
of (α, β)-DRGs for arbitrarily small α, these constructions have concretely
very high degrees and are thus not useful for building a practical PoS.
Pietrzak [18] improved on the basic construction by relying on a stronger
property of special DRGs [4, 17] that have degree Ω((log n)/ε) and are
(α, β)-depth robust for all (α, β) such that 1− α+ β ≥ 1− ε. This DRG
can be constructed for any value of ε < 1. In Pietrzak’s PoS, the prover
builds a DRG on 4n nodes and only stores the labels on the topologically
last n nodes. This can similarly be used as a PoRep where the data
is encoded only on the last level and the labels on previous levels are
just used as keys. This PoRep has a slow data extraction time because
extracting the data requires recomputing most of the keys from scratch,
which is as expensive as the PoS initialization.

Pietrzak shows that a prover who deletes an ε′ fraction of the labels on
the last n nodes will not be able to re-derive them in fewer than n sequen-
tial steps. The value ε′ can be made arbitrarily small, but at the expense
of increasing the degree of the graph proportionally to 1/ε′. The resulting
proof has asymptotic size Ω((logN)/ε2). Moreover, although these spe-
cial DRGs achieve asymptotic efficiency, their current analysis requires
the graphs to have impractically large degrees. According to the analysis
in [4], achieving just a 1/2 space gap would require instantiating these
graphs with degree at least 2, 760 logN . The proof size is proportional
to the graph degree, so to achieve the space gap ε = 1/2 with soundness
µ = 2−10 and N = 230 the proof size would be at least 26 MB.
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Boneh et. al. [5] describe a simple PoRep (also a PoS) just based
on storing the output of a verifiable delay function (VDF) on N ran-
domly sampled points, which generalizes an earlier proposal by Sergio
Demian Lerner [13]. This is in fact an arbitrarily tight PoS with very
practical proof sizes (essentially optimal). However, the time complexity
of initializing the prover’s O(N) storage is O(N2), and therefore is not
practically feasible for large N . This construction is similar to the PoS
based on storing function tables [2], but uses the VDF as a moderately
hard (non-parallelizable) function on a much larger domain (exponential
in the security parameter) and stores a random subset of its function ta-
ble. The reason for the large initialization complexity is that the prover
cannot amortize its cost of evaluating the VDF on the entire subset of
points.

1.2 Summary of Contributions

We construct a new tight PoS based on graph labeling with asymptotic
proof size O(logN/ε) where ε is the achieved space gap. We can instanti-
ate this construction with relatively weak3 depth robust graphs that do
not require any special properties other than retaining Ω(N) depth in
subgraphs on some constant fraction of the nodes bounded away from 1
(e.g. our concrete analysis assumes 80%).

PoS from Stacked DRGs Our basic approach is a combination of the
stacked bipartite expanders of Ren and Devadas [19] with depth robust
graphs. Instead of stacking λ path graphs we stack O(log(1/ε)) levels of
fixed-degree DRGs where ε is a construction parameter. We refer to this
graph construction as Stacked DRGs. We are able to show that this results
in a PoS that has only an ε space gap. Intuitively, the expander edges
between layers amplify the dependence of nodes on the last layer and
nodes on earlier layers so that deletion of a small ε fraction of node labels
on the last level will require re-derivation of nearly all the node labels on
the first several layers. Thus, since every layer is a DRG, recomputing the
missing ε fraction of labels requires Ω(N) sequential computation. It is
easy to see that this would be the case if the prover were only storing (1−
ε)n labels on the last level and none of the labels on earlier levels, however
the analysis becomes much more difficult when the prover is allowed to
store any arbitrary (1 − ε)n labels. This analysis is the main technical

3 There is experimental evidence that a simple DRG construction with concretely
small constant degree (even degree 2) has this property on a graph of sizeN = 220 [3].
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contribution of this work. Concretely, we analyze the construction with
an (n, 0.80n,Ω(n)) DRG, i.e. deletion of 20% of nodes leaves a high depth
graph on the 80% remaining nodes, regardless of the value of ε.

Our construction is efficient compared to prior constructions of tight
PoS primarily because we can keep the degree of the graphs fixed for
arbitrary ε while keeping the number of levels proportional to log(1/ε).
In a graph labeling PoS, the offline PoS proofs sample O(1/ε) labels along
with their parent labels, which the verifier checks for consistency. Thus,
any construction based on this approach that requires scaling the degree
of graphs by 1/ε also scales the proof size by 1/ε, resulting in a proof
complexity of at least O(1/ε2). In our stacked DRG PoS construction the
offline proof must include queries from each level to prove that each level
of computed labels are “mostly” correct. If done naively, O(1/ε) challenge
labels are sampled from each level, resulting in a proof complexity O(d/ε ·
log(1/ε)) where d is the degree of the level graphs. This is already an
improvement, however with a more delicate analysis we are able to go
even further and show that the total number of queries over all layers can
be kept at O(1/ε), achieving an overall proof complexity O(d/ε).4

The PoS on Stacked DRGs can also be used as the basis for a PoRep
that satisfies ε-rational replication for arbitrarily small ε. The PoRep sim-
ply uses the labels on the `− 1st level as keys to encode the n-block data
input D = d1, ..., dn on the `th (last) level, using the same method de-
scribed earlier for encoding data into the labels of a PoS (see Related
Work, [9,10,18]). However, extracting data from this PoRep is as expen-
sive as initializing the PoRep space because it requires recomputing the
keys on the `− 1st level.

PoRep from ZigZag Expander DRGs Our second contribution is a
variant of the PoS on Stacked DRGs that compromises slightly on initial-
ization efficiency and proof size (requires doubling the number of levels
for the same security guarantee) but improves the efficiency of extracting
data when this is used as a PoRep. Instead of adding bipartite expander
edge dependencies between the layers, these edges are mapped into each
layer itself. Specifically, an edge from the ith node of one layer to the jth
node of the next is replaced with edges between the ith and jth nodes in
each layer. The directionality of these mapped edges alternates between
layers, forming a “zig-zag”. The only edges retained between layers are

4 Asymptotically, this is close to the optimal proof complexity achievable for any PoS
based on graph labeling that has an ε space gap. If the prover claims to be storing
n labels and the proof queries less than 1/ε then a random deletion of an ε fraction
of these labels evades detection with probability at least (1 − ε)1/ε ≈ 1/e.
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c1 c2 c3 c4 c5

d1 d2 d3 d4 d5

c6 c7 c8 c9 c10

c11 c12 c13 c14 c15

Fig. 1.1. Stacked DRGs. Dotted edges are the DRG edges and dashed edges are
expander edges. In the PoS on Stacked DRGs the prover computes a labeling of the
graph and stores the labels on the nodes in green.

c1 c2 c3 c4 c5

d1 d2 d3 d4 d5

c6 c7 c8 c9 c10

c11 c12 c13 c14 c15

Fig. 1.2. ZigZag DRGs. The dashed edges in ZigZag DRGs are the same as in Stacked
DRGs but projected into the layers. Dashed edges in ZigZag DRGs are reversed every
other layer while dotted edges are redefined by reversing the order of the nodes. Dashed
edges correspond to encoding instead of key-derivation dependencies. In the PoRep on
ZigZag DRGs each labeling on a layer encodes the previous layer and the prover stores
only the encoding labels of the green nodes.
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between nodes at the same indices. As an undirected graph, every layer is
the union of a DRG and a constant degree non-bipartite expander graph.
As a directed graph, each layer forms a DAG where the union of any sub-
set with its dependencies and targets is a constant fraction larger than the
subset itself. By alternating the direction of the edges between layers, the
dependencies of a subset in one layer become targets of the same subset
in the adjacent layer, and the dependencies between layers expands. We
refer to this graph construction as ZigZag DRGs.

The PoRep on ZigZag DRGs encodes in the labels of each layer the
labels of the previous levels. The edges within a layer enforce dependencies
between labels by deriving a key for each encoding using a cryptographic
hash function. A special key is derived for the encoding on each ith node
from the labels on the parents of the ith node within the same layer.
Essentially, this construction on ` DAG layers iterates the basic DAG
encoding of the data inputs ` times rather than performing a long key
derivation. The labels in any given layer can be decoded (in parallel) from
the labels in the preceding layer.

2 Preliminaries

2.1 Proofs of Space

A PoS interactive protocol has three procedures:

1. Setup The setup runs on security parameters λ and outputs public
parameters pp for the scheme. The public parameters are implicit
inputs to the next two protocols.

2. Initialization is an interactive protocol between a prover P and verifier
V that run on shared input (id,N). P outputs Φ and S, where S is its
storage advice of length N and Φ is a compact O(polylog(N)) length
string given to the verifier.

3. Execution is an interactive protocol between P and V where P runs
on input S and V runs on input Φ. V sends challenges to P , obtains
back a proof π, and outputs accept or reject.

Efficiency. The commitment Φ is O(polylog(N)) size, the storage S is
size N , and the verifier runs in time O(polylog(N)).

Completeness. The prover succeeds with probability 1 (causes verifier
to accept) if it follows the protocol honestly.
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Soundness. The PoS is (s, t, µ)-sound if for all adversaries P ∗ running in
time t and storing advice of size s during Execution, P ∗ passes verification
with probability at most µ. The PoS is parallel (s, t, µ)-sound if P ∗ may
run in parallel time t. We say that a PoS construction is tight if for any
constant ε < 1 the PoS can be parametrized so that the resulting PoS is
(εN, t, µ)-sound for t ∈ Ω(N) and µ = negl(λ).

Amortization-free soundness An (s, t, µ) PoS is amortization-free if
for any k distinct ids id1, ..., idk, the modified PoS protocol that runs
Initialization on k independent inputs (idi, N) for each i to get outputs
(Si, Φi) and then runs Execution independently on each (Si, Φi) is (ks, t, kµ)-
sound.

2.2 Graph pebbling games

Pebbling games are the main analytical tool used in graph-based proofs
of space and memory hard functions.

Black pebbling game The black pebbling game is a single-player game
on a DAG G = (V,E). At the start of the game the player chooses a start-
ing configuration of P0 ⊆ V of vertices that contain black pebbles. The
game then proceeds in rounds where in each round the player may place a
black pebble on a vertex only if all of its parent vertices currently contain
pebbles placed in some prior round. In this case we say that the vertex is
available. Placing a pebble constitutes a move, whereas placing pebbles
on all simultaneously available vertices consumes a round. The adversary
may also remove any black pebble at any point. The game stops once the
adversary has placed pebbles on all vertices in some target/challenge set
VC ⊆ V .

Pebbling complexity The pebbling game on graph G with vertex set
V and target set VC ⊆ V is (s, t)-hard if no player can pebble the set VC
in t moves (or fewer) starting from s initial pebbles, and is (s, t)-parallel-
hard if no player can complete the pebbling in t rounds (or fewer) starting
from an initial configuration of at most s pebbles. If a 1 − α fraction of
the nodes in VC each require t rounds to pebble then the pebbling game
on (G,VC) is (s, t, α)-parallel-hard, i.e. every subset containing more than
an α fraction of the nodes in V C requires t rounds to pebble.

In a random pebbling game a challenge node is sampled randomly
from VC after the player commits to the initial configuration P0 of s
vertices, and the hardness measure includes the adversary’s probability of
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success. The random pebbling game is (s, t, ε)-(parallel)-hard if from any
s fixed initial pebbles the probability that a uniformly sampled challenge
node can be pebbled in t or fewer moves (resp. t or fewer rounds) is less
than ε.

The following facts are easy to prove:

Fact 1 The random pebbling game on a DAG G on n nodes with target
set VC is (s, t, α)-parallel-hard if and only if the deterministic pebbling
game on G with target set VC is (s, t, α)-parallel-hard.

Fact 2 A random pebbling game with a single challenge is (s, t, α)-parallel-
hard if and only if the the random pebbling with κ challenges is (s, t, αk)-
parallel-hard.

DAG labeling game A labeling game on a degree d DAG G is anal-
ogous to the pebbling game, but involves a cryptographic hash function
H : {0, 1}dm → {0, 1}m, often modeled as a random oracle. The vertices of
the graph are indexed in [n] and each ith vertex associated with the label
ci where ci = H(i) if i is a source vertex, or otherwise ci = H(i||cparents(i))
where cparents(i) = {cv1 , ..., cvd} if v1, ..., vd are the parents of the ith ver-
tex, i.e. the vertices with a directed edge to vertex i. The game ends when
the player has computed all the labels on a target/challenge set of ver-
tices VC . A “fresh” labeling of G could be derived by choosing a salt id
for the hash function so that Hid(x) = H(id||x), and the labeling may be
associated with the identifier id.

The complexity of the labeling game (on a fresh identifier id) is mea-
sured in queries to the hash function instead of pebbles. This includes
the number of labels initially stored, the total number of queries, and the
total rounds of sequential queries, etc. The labeling game is (s, r, q, ε, δ)-
labeling-hard if no algorithm that stores initial advice of size s and after
receiving a uniform random challenge node v ∈ [n] makes a total of q
queries to H in r sequential rounds can output the correct label on v
with probability greater than ε over the challenge v and δ over the ran-
dom oracle H.

Random oracle query complexity A general correspondence between
the complexity of the black pebbling game on the underlying graph G and
the random oracle labeling game is not yet known. However, Pietrzak
[18] recently proved an equivalence between the parallel hardness of the
randomized pebbling game and the parallel hardness of the random oracle
labeling game for arbitrary initial configurations S0 adapting the “ex post
facto” technique from [7].
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Theorem 1 (Pietrzak [18]). If the random pebbling game on a DAG
G with n nodes and in-degree d is (s, r, ε)-parallel-hard then the labeling
game on G with a random oracle H : {0, 1}md → {0, 1}m is (s′, r, ε, δ, q)-
labeling-hard with s′ = s(m− 2(log n+ log q))− log(1/δ).

Generic PoS from graph labeling game Many PoS constructions are
based on the graph labeling game [8,18,19]. Let G(·) be a family of d-in-
regular DAGs such thatGn ← G(n) is a d-in-regular DAG onN > n nodes
and VC(n) is a subset of n nodes from Gn. Let H : {0, 1}dm → {0, 1}m
be a collision-resistant hash function (or random oracle). Let Chal(n,Λ)
denote a distribution over challenge vectors in [N ]λ. For each n ∈ N, the
generic PoS based on the labeling game with Gn and target set VC(n) is
as follows:

Initialization: The prover plays the labeling game on Gn using a hash
function Hid = H(id||·). The prover does the following:

1. Computes the labels c1, ..., cN on all nodes of G and commits to them
in com using any vector commitment scheme.

2. Obtains vector of λ challenges r ←R Chal(n) from the verifier (or non-
interactively derives them using as a seed Hid(com)).

3. For challenges r1, ..., rλ , the prover opens the label on the rith node of
Gn, which was committed in com, as well as the labels cparents(ri) of all
its parent nodes. The labels are added to a list L with corresponding
opening proofs in a list Λ and the prover outputs the proof Φ =
(com,L,Λ).

The verifier checks the openings Λ with respect to com. It also checks
for each challenge specifying an index v ∈ [N ], the label cv in L label
and its parent labels cparents(cv), that cv = Hid(v||cparents(cv)). Finally,
the prover stores as S only the n labels in VC .

Execution: The verifier selects κ challenge nodes v1, ..., vκ uniformly at
random from VC . The online prover uses its input S to respond with the
label on v and an opening of com at the appropriate index. The verifier
can repeat this sequentially, or ask for a randomly sampled vector of chal-
lenge vertices to amplify soundness.

Red-black pebbling game An adversary places both black and red
pebbles on the graph initially. The red pebbles correspond to incorrect
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labels that the adversary computes during Initialization and the black peb-
bles correspond to labels the adversary stores in its advice S. Without loss
of generality, an adversary that cheats generates some label that does not
require any space to store, which is why red pebbles will be “free” pebbles
and counted separately from black pebbles. The adversary’s choice of red
pebble placements (specifically how many to place in different regions of
the graph) is constrained by the λ non-interactive challenges, which may
catch these red pebbles and reveal them to the verifier. The formal de-
scription of the red-black pebbling security game for a graph labeling PoS
construction with G(n), VC(n), and Chal(n) is as follows.

Red-Black-PebblesA(G, VC ,Chal, t):

1. A outputs a set R ⊆ [N ] (of red pebble indices) and S ⊆ [N ] (of black
pebble indices).

2. The challenger samples c1, ..., cλ ←R Chal(n). If ci ∈ R for some i then
A immediately loses. The challenger additionally samples v1, ...., vκ
uniformly at random from indices in VC(n) and sends these to A.

3. A plays the random (black) pebbling game on G(n) with the challenges
v1, ..., vκ and initial pebble configuration P0 = R ∪ S. It runs for t
parallel rounds and outputs its final pebble configuration Pt. A wins
if Pt contains pebbles on all of v1, ..., vκ.

Graph labeling PoS soundness Given the correspondence between
the hardness of the random oracle labeling game and parallel black peb-
bling game, we can entirely capture the soundness of the graph label-
ing PoS in terms of the complexity of Red-Black-PebblesA(G, VC , t). Let
c : N → N denote a cost function c : N → N representing the parallel
time cost (e.g. in sequential steps on a PRAM machine) of computing a
label on a node of G(n) for each n ∈ N.

Definition 1. A graph labeling PoS with G(n), VC(n),Chal(n) and cost
function c(n) is parallel (s, c(n) · t, µ)-sound if and only if the probability
that any A wins Red-Black-PebblesA(G, VC ,Chal, t) is bounded by µ where
|S| = s.

2.3 Depth Robust Graphs

A directed acyclic graph (DAG) on n nodes with d-indegree is (n, α, β, d)
depth robust graph (DRG) if every subgraph of αn nodes contains a path
of length at least βn.
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DRGs have been constructed for constant α, β and d = O(log n)
using extreme constant-degree bipartite expander graphs, or local ex-
panders [4, 14, 17]. Explicit constructions of local expanders exist [15],
however they are complicated to implement and their concrete practical-
ity is hindered by very large hidden constants. The most efficient way to
instantiate these extreme expander graphs is probabilistically. A proba-
bilistic DRG construction outputs a graph that is a DRG with overwhelm-
ing probability. The most efficient probabilistic construction to date is due
to Alwen et. al. [3]. The analysis still leaves large gaps between security
and efficiency although was shown to resist depth-reducing attacks em-
pirically. Their construction is also locally navigatable, meaning that it
comes with an efficient parent function to derive the parents of any node
in the graph using polylogarithmic time and space.

2.4 Expander graphs

The vertex expansion of a graph G on vertex set V characterizes the size
of the boundary of vertex subsets S ⊆ V (i.e. the number of vertices
in V \ S that are neighbors with vertices in S). In the case of directed
bipartite graphs, vertex expansion is defined by the minimum number of
sources connected to any given number of sinks.

Definition 2. For any constants α, β where 0 < α < β < 1 and integer
n ∈ N, an (n, α, β) bipartite expander is a directed bipartite graph with
n sources and n sinks such that any subset of αn sinks are connected to
at least βn sources. For any δ > 0, a subset S of sinks is called (1 + δ)-
expanding if it is connected to at least (1 + δ)|S| sources.

Chung’s bipartite expander The randomized construction of Chung
[6] defines the edges of a d-regular bipartite expander on 2n vertices by
connecting the dn outgoing edges of the sources to the dn incoming edges
of the sinks via a random permutation Π : [d] × [n] → [d] × [n]. The ith
source is connected to the jth sink if there is some k1, k2 ∈ [d] such that
Π(k1, i) = (k2, j).

Lemma 1 (RD [19]). The Chung random bipartite graph construction
is a d-regular (n, α, β) expander with probability 1− negl(nHb(α)) for all
d, α, β satisfying:

Hb(α) +Hb(β) + d(βHb(α/β)−Hb(α)) < 0 (2.1)

where Hb(x) = −x log2 x − (1 − x) log2(1 − x) is the binary entropy
function.
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For example, the above formula shows that for α = 1/2 and β = 0.80
Chung’s construction gives an (n, 0.5, 0.80) expander for d ≥ 8, meaning
any subset of 50% of the sinks are connected to at least 80% of the sources
when the degree is at least 8.

The following lemmas establish further properties of Chung’s bipartite
expander construction that will be used in the analysis of our PoS. The
proofs are included in the full version of this paper. Let βG(α) denote the
smallest expansion of a subset of αn sources in a bipartite graph G, i.e.
every subset of αn sources is connected to at least βG(α) sinks.

Lemma 2. For any k > 1 and d > 2, if the output of Chung’s construc-
tion is a d-regular (n, α, kα) bipartite expander for some α < d−k−1

k(d−2) with

probability 1 − negl(nHb(α)) then βG(α′) ≥ kα′ for every α′ < α with
probability 1− negl(nHb(α

′)).

Corollary 1. For d = 8 Chung’s construction is an 8-regular bipartite
graph such that every subset of at most 1/3 of the nodes is 2-expanding,
i.e. it is an (n, α, 2α)-bipartite expander for every α ≤ 1/3 with over-
whelming probability.

Proof. Plugging α = 1/3 and β = 2/3 into the formula for degree (Equa-
tion 2.1) gives d = 7.21 < 8. With d = 8 and k = 2 the condition in
Lemma 2 is satisfied: α = 1/3 < (d− k − 1)/k(d− 2) = 5/12.

For fixed d the expansion improves further as α decreases. Figure 2.1
provides a table of expansion factors over a range of α with fixed degree
d = 8. Figure 2.2 plots the expansion as a function of subset size.

Size (α) 0.01 0.10 0.20 0.30 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80

Expansion (β) 0.04 0.33 0.53 0.65 0.75 0.78 0.81 0.84 0.88 0.89 0.91 0.93 0.94

Factor (β/α) 4 3.3 2.65 2.1 1.8 1.73 1.62 1.53 1.47 1.37 1.3 1.24 1.17

Fig. 2.1. A table of the maximum expansion (β) satisfying the condition from Lemma 1
for Chung’s construction with fixed degree d = 8 over a range of subset sizes (α).

In a bipartite expanders, the “boundary” of a set of sources is the set
of sinks connected to these sources that have distinct index labels from the
sources, which is at least βG(α)−α. Lemma 3 gives a smooth lower bound
on βG(α)−α for Chung’s bipartite expander graphs that we can show has
a unique local maximum in (0, 1).To simplify the analysis, we look at the
function defined by the zeros of φ(α, β) = d(βHb(α/β)−Hb(α)) + 2 = 0.
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Fig. 2.2. The graph on the left plots the lower bound from Lemma 1 on the expansion
β as a function of the subset size α (in fractions of the sources/sinks) for Chung’s con-
struction with fixed d = 8. The graph on the right plots the corresponding lower bound
on β − α, which is the analog of the subgraph boundary in non-bipartite expanders.
Specifically, this is a lower bound on the fraction of sinks connected to an α fraction
of sources that have distinct index labels from the sources.

Any α, β satisfying this relation also satisfies the relation in Lemma 1
because Hb(α) + Hb(β) < 2 when β > α. This implicitly defines β as
a function of α, as well as the function β̂ = β − α, by pairs of points
(α, β̂(α)) such that φ(α, α+ β̂(α)) = 0 is a lower bound to the boundary
of subsets of size α, which holds at any point α with probability at least
1− negl(nHb(α)).

Lemma 3. Define φ(x, y) = d(yHb(x/y) − Hb(x)) + c where c is any
constant and let β̂ be the function on (0, 1) defined by pairs of points
(α, β − α) such that φ(α, β) = 0 and 0 < α < β < 1. The function β̂ is
continuously differentiable on (0, 1) and has a unique local maximum.

Corollary 2. With overwhelming probability in n, Chung’s construction
(with d = 8) is an 8-regular bipartite graph on n sinks and n sources
each indexed in [n] such that for all α ∈ (0.10, 0.80) every αn sinks are
connected to at least 0.12n sources with distinct indices.

Lemma 4. For any d ≥ 4, Chung’s construction yields a d-regular bi-
partite graph that is an (n, α, (d/3)α) bipartite expander for every α ≤ 3

2d
with probability 1− negl(nHb(α)).

3 Stacked DRG Proof of Space

In this section we show that stacking DRGs with bipartite expander edges
between layers yields an arbitrarily tight proof of space with the number
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of layers increasing as O(log2(1/ε)) where ε is the desired space gap.
Moreover, the proof size is also O(log2(1/ε)), which is asymptotically
optimal. Our proofs attempt a tight analysis as well, e.g. showing that
just 10 layers achieve a PoS with a 1% space gap, degree 8 + d graphs
where d is the degree of the DRG, and relies only on a DRG that retains
depth in 80% subgraphs.

3.1 Review of the Stacked-Expander PoS

The PoS construction by Ren and Devadas [19] based on stacked bipartite
expander graphs is a building block towards our tight PoS construction.
Their construction uses a layered graph where each layer is a directed
line on n nodes and the directed edges of a bipartite expander graph are
placed between layers. This was shown to be an (εγn, (1− 2ε)γn)-sound
PoS for parameters ε < 1/2 and γ < 1 [19].

The graph GSE The stacked-expander PoS uses the same underlying
graph as the Balloon Hash memory hard function [12]. The graph GSE
consists of ` = O(λ) layers V1, ..., V` consisting each of n vertices indexed
in each level by the integers [n], and where λ is a security parameter.
First directed edges are placed from each kth vertex to the k+ 1st vertex
in each level, i.e. forming a directed line. Next directed edges are placed
from Vi−1 to Vi according to the edges of an (n, α, β) bipartite expander
on (Vi−1, Vi). Finally a “localization” operation is applied so that each
kth vertex uk in Vi−1 is connected to the kth vertex vk in Vi and any
directed edge from the kth vertex of Vi−1 to some jth vertex of Vi where
j > k is replaced with a directed edge from the kth vertex of Vi to the jth
vertex of Vi. GSE can be pebbled in n` steps using a total of n pebbles.

Stacked-expander PoS The PoS follows the generic PoS based on
graph labeling. We remark only on several nuances. Due to the topol-
ogy of GSE after localization, the prover only needs to use a buffer of size
n and deletes the labels of Vi−1 as it derives the labels of Vi. After com-
pleting the labels Ci in the ith level it computes a vector commitment (e.g.
Merkle commitment) to the labels in Ci denoted comi. Once it has derived
the labels C` of the final level V` it computes com = Hid(com1|| · · · ||com`)
and uses Hid(com||j) to derive λ non-interactive challenges for each jth
level.
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3.2 A new tight PoS from stacked DRGs

By simply replacing each of the path graphs Vi in the stacked-expander
PoS construction with a depth robust graph results in an arbitrarily
tight PoS. Specifically, only O(log 1/ε) layers are needed to achieve a
((1− ε)n,Ω(n))-parallel-sound PoS. We demand only very basic proper-
ties from the DRG, e.g. that any subgraph on 80% of the nodes contains
a long path of Ω(n) length.

Construction of GSDR[`] The graph GSDR[`] will be exactly like GSE
only each of the ` layers V1, ..., V` contains a copy of an (n, 0.80n, βn)-
depth-robust graph for some constant β. For concreteness, we define the
directed edges between the layers using the degree 8 Chung random bipar-
tite graph construction. For simplicity we will analyze the construction
without applying localization to the expander edges between layers. Even
without localization this is already a valid PoS, only the initialization
requires a buffer of size 2n rather than n. The PoS is still “tight” with
respect to the persistent space storage.

Vector commitment storage If the vector commitment storage over-
head required for the PoS is significant then this somewhat defeats the
point of a tight PoS. Luckily this is not the case. Most vector commitment
protocols, including the standard Merkle tree, offer smooth time/space
tradeoffs. With a Merkle tree the honest prover can delete the hashes
on nodes on the first k levels of the tree to save a factor 2k space and
re-derive all hashes along a Merkle path by reading at most 2k nodes and
computing at most 2k hashes. If k = 7 this is less than a 1% overhead in
space, and requires at most 128 additional hashes and reads. Furthermore,
as remarked in [18] these 2k reads are sequential memory reads, which
in practice are inexpensive compared to the random reads for challenge
labels.

Proof size We show that ` = O(log( 1
3(ε−2δ))) suffices to achieve negl(λ)

soundness against any prover running in parallel time less than βn rounds
of queries where Chal samples λ/δ nodes in each layer. This would result
in a proof size of O((1/ε) log(1/ε)), which is already a major improve-
ment on any PoS involving a graph of degree O(1/ε) (recall that the only
previously known tight PoS construction relied on very special DRGs
whose degree must scale with 1/ε, which results in a total proof size of
O(1/ε2)). However, we are able to improve the result even further and
show that only O(1/δ) challenge queries are required overall, achieving
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proof complexity O(1/ε). This is the optimal proof complexity for the
generic pebbling-based PoS with at most an ε space gap. If the prover
claims to be storing n pebbles and the proof queries less than 1/ε then a
random deletion of an ε fraction of these pebbles evades detection with
probability at least (1− ε)1/ε ≈ 1/e. The same applies if a random ε frac-
tion of the pebbles the prover claims to be storing are red (i.e. errors).

Analysis outline We prove the hardness of the red-black pebbling
game Red-Black-PebblesA(GSDR[`], V`,Chal) where Chal samples λi uni-
form challenges over Vi. We first show that it suffices to consider the
parallel complexity of pebbling the set U` ⊆ V` of all unpebbled nodes on
V` from an initial configuration of γn black pebbles overall and δin red
pebbles in each layer where δ` < ε/2.

As a shorthand notation, we will say that GSDR[`] is (γ, δ, t, µ)-hard if
every subset containing a µ fraction of the nodes in V` require t rounds to
pebble (i.e. greater than a 1−µ fraction of the nodes each individually re-
quire t rounds to pebble) from an initial configuration of γn black pebbles
overall and δin red pebbles in each layer where δ` < ε/2. In Claim 1 we
show that if GSDR[`] is (γ, δ, t, µ)-hard then the labeling PoS on GSDR[`]
is (γn, t,max{p∗, µκ})-sound where p∗ = maxi(1 − δi)λi . (Recall that κ
and λ are parameters defined in the game).

For µ = 1, (γ, δ, t, 1)-hardness is nearly equivalent to the standard
parallel pebbling complexity of U`. The one distinction5 is its dependency
on the restriction to δi red pebbles in each layer, counted separately from
black pebbles. In Claim 3 we show that if GSDR[`] is (1− ε+ 2δ`, δ, t, 1)-
hard then GSDR[`+ 1] is (1− ε, δ∗, t, 1− ε/2)-hard where δ∗ is equal to δ
on all common indices and δ`+1 = δ`.

Finally, we analyze the complexity of pebbling all of U`, i.e. the
(γ, δ, t, 1)-hardness of GSDR[`]. We show in Claim 5 that when the ad-
versary uses at most γ < 1 − ε black pebbles and δ red pebbles in each
layer then pebbling all the unpebbled nodes in layer V` (for ` dependent
on ε and δ) requires pebbling 0.80n unpebbled nodes (including both
red and black pebbles) in some layer Vi. Since the layer Vi contains a
(n, 0.80, βn)-depth-robust graph, this takes at least βn rounds. We then
generalize this analysis (Claim 6) to apply when δi is allowed to increase
from level ` to 1 by a multiplicative factor such that

∑
i δi = O(δ`).

5 In prior uses of the red-black pebbling game to analyze proofs of space, it sufficed
to consider parallel black pebbling complexity because replacing red pebbles with
“free” black pebbles only increases the adversary’s power. Our more refined analysis
requires analyzing the weaker adversary who is restricted to a maximum number of
red pebbles on each level of the graph, enforced by the construction.
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Theorem 2 ties everything together, taking into account the con-
straints of each claim to derive the PoS soundness of the labeling PoS
on GSDR[`].

Theorem 2. The labeling PoS on GSDR[`] with Chal sampling λi chal-
lenges in each level Vi and κ online challenges in V` is ((1−ε−δ)n, βn, e−λ)-
sound with κ = 2λ/ε if either of the following conditions are met for
ε ≤ 0.24:

(a) ` = max(8, log2(
1

3(ε−2δ))+4) and each λi = λ/δ and δ < min(0.01, ε/3)

(b) ` = max(14, log2(
1

3(ε−3δ)) + 5) and each λi = λ/δi where δ` = δ <

min(0.01, ε/2) and δi = min(0.05, 23δi−1)

Proof. For any GSDR[`], if the set of unpebbled nodes in V` are connected
via unpebbled paths to at least 0.80n unpebbled nodes (including red and
black) in some prior level Vi, then pebbling all of V` requires pebbling all
these 0.80n unpebbled nodes, which requires βn rounds due to the fact
that Vi is (n, 0.80n, βn) depth robust. Claim 5 implies that GSDR[`] is
(1 − ε, δ, βn, 1)-hard for δ and ` such that δi = δ < ε/2 for all i and
` = max(7, log2(

1
3(ε−2δ) + 3)).

Claim 6 gives a different tradeoff between ` and δ, showing that
the same hardness holds for δ and ` such that δ` = δ < ε/3 and δi =
min(0.05, 23δi−1) and ` = max(13, log2(

1
3(ε−3δ)) + 4).

Assuming ε ≤ 0.24, Claim 3 implies that GSDR[` + 1] is (1 − ε −
δ, δ, βn, 1 − ε/2)-hard extending δ so that δ`+1 = δ` = δ. Finally, by
Claim 1, the labeling PoS on GSDR[`+ 1] with challenge set V` and Chal
sampling λi in each level Vi is ((1−ε−δ)n, βn,max{p∗, (1−ε/2)κ})-sound
where p∗ = maxi(1 − δi)λi . Setting λi = λ/δi and κ = 2λ/ε, the PoS is
((1− ε− δ)n, βn, e−λ)-sound.

Notation 1 (Common analysis notations) Let Ui denote the entire
index set of nodes that are unpebbled in Vi and Pi the set that are pebbled.
The total number of pebbles placed in the initial configuration is γn. Each
level initially has ρin black pebbles and δin red pebbles. Finally, γin =∑

j<i ρin is the number of black pebbles placed before level i.

Claim 1 If GSDR[`] is (γ, δ, t, µ)-hard then the labeling PoS on GSDR[`]
is (γn, t,max{p∗, µκ})-sound where p∗ = maxi(1− δi)λi.

Proof. Fix γ = 1− ε and δi for each i. The λi challenges during Initializa-
tion in each level ensure that A wins with at most probability (1−δi)λi if
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it places more than δi red pebbles on Vi. If A has exceeded the δi bound
in more than one level this only increases its probability of failure. Thus,
in case 1 (A places more than δi red pebbles on some level i), A’s suc-
cess probability is bounded by maximum value of (1− δi)λi over all i. In
case 2 (A places fewer than δi on each ith level), the fact that GSDR[`] is
(γ, δ, t, µ)-hard implies that at most a µ fraction of the nodes on V` can
individually be pebbled from the starting configuration in t rounds, hence
A’s success probability of answering κ independent challenges is bounded
by µκ. The success probability is bounded by the maximum of these two
cases.

Claim 2 (trivial) GSDR[`] is (γ, δ, t, 1)-hard if and only if given any
initial configuration P0 of γ`n black pebbles placed on layers V1, ..., V`−1
at most δin red pebbles in each layer, and any set U ⊆ V` of αn unpebbled
nodes in V` such that α − γ` ≥ 1 − γ − δ, no adversary can pebble U in
fewer than t rounds.

The proof of this claim is in the full version of the paper.

Claim 3 For any ε ≤ 0.24, if GSDR[`−1] is (1− ε+ δ`−1, δ, t−1, 1)-hard
then GSDR[`] is (1 − ε, δ∗,min(βn, t), 1 − ε/2)-hard where δ∗ is identical
to v on all common indices and δ` = δ`−1 ≤ ε/2.

Proof. Refer to Notation 1. Consider the graph GSDR[`] with γn = (1−ε)n
black pebbles initially placed. Let δ = δ` = δ`−1 ≤ ε/2. Let α` = |U`|/|V`|
denote the fraction of nodes in V` that are unpebbled. Every 1 − ε/2
fraction of V` contains at least α∗n = (α` − ε/2)n unpebbled nodes. If
α∗ ≥ 0.80, then every 1− ε/2 fraction of V` contains a path of length βn
because V` is a (n, 0.80n, βn)-depth robust graph. We consider the two
other cases next:

Case α∗ < 1/3: The α∗n unpebbled nodes have dependencies on at
least a 2α∗ = 2α` − ε fraction of nodes in V`−1 (Corollary 1, bipartite
expansion). These contain at least α′n = (2α`− ε− ρ`−1− δ)n unpebbled
nodes because in the worst case they include ρ`−1n black pebbles and δn
red pebbles. There are γ`−1n = (γ − ρ`−1 − ρ`)n pebbles placed on all
prior levels. By definition ρ` = 1 − α` − δ and γ = 1 − ε. Substituting
α` ≥ 1−γ−δ shows that α′−γ`−1 = 2α`−γ+ρ`−ε−δ = α`+1−γ−ε−2δ ≥
1 − 2γ − 3δ + 1 − ε = 1 − γ − 3δ. Setting γ′ = 1 − ε + δ = γ + δ gives
the relation α′ − γ`−1 ≥ 1 − γ′ − δ. It then follows from Claim 2 that if
GSDR[`− 1] is (γ′, δ, t− 1, 1)-hard then the α′n unpebbled nodes in V`−1
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require t − 1 rounds to pebbled. Thus, the α∗n unpebbled nodes in V`
require t rounds to pebble.

Case α∗ ≥ 1/3: In this case α∗ ∈ (0.33, 0.80). It is connected to β∗n
nodes in V`−1. Among these at least α′n for α′ ≥ β∗ − ρ`−1 − δ are
unpebbled. Since γ`−1 = γ− ρ`− ρ`−1 we get α′− γ`−1 ≥ β∗− γ+ ρ`− δ.
According to Corollary 2 on the bipartite expander boundary β∗ − α∗ ≥
0.12. Therefore, ρ` = 1 − α` − δ ≥ 1 − α∗ − ε/2 − δ so α′ − γ`−1 ≥
β∗ − γ + 1 − α∗ − ε/2 − 2δ = β∗ − α∗ + ε/2 − 2δ ≥ 0.12 + ε/2 − 2δ.
If GSDR[` − 1] is (1 − ε + δ, δ, t − 1, 1)-hard, then by Claim 2 the α′n
unpebbled nodes require t− 1 rounds as long as 0.12 + ε/2− 2δ ≥ ε− 2δ,
which is true for ε ≤ 0.24.

Claim 4 If GSDR initially has at most γn black pebbles for γ ≤ 1− ε and
at most δn < εn/2 red pebbles in each layer then for ` = log2(

1
3(ε−2δ)) the

unpebbled nodes in V` have unpebbled paths from at least n/3 unpebbled
nodes in some layer Vi.

Proof. Refer to Notations 1. Let αin denote the number of unpebbled
dependencies of U` in Vi, i.e. the number of nodes in Ui that have unpeb-
bled paths to U`. Suppose that αi is bounded by 1/3 for all levels up to
`− k, i.e. α` < 1/3, ..., α`−k < 1/3. We will prove the following bound:

α`−k ≥ 2k(α` − γ`/2− δ) ≥ 2k−1(α` + ε− 3δ) ≥ 2k(ε− 2δ) (3.1)

Before proving this bound let us note its implication. For k = log2(
1

3(ε−2δ))

this implies α`−k ≥ 1/3, which contradicts α`−k < 1/3. Therefore, it fol-
lows that αi ≥ 1/3 at some index i > ` − log2(

1
3(ε−2δ)), which leads to

the conclusion that for ` ≥ log2(
1

3(ε−2δ)) there exists some level Vi with

at least n/3 unpebbled nodes that have unpebbled dependency paths to
the set X` of unpebbled nodes in V`.

Let j = ` − i. From Corollary 1 (bipartite expansion), if αj ≤ 1/3
then Xj is connected to at least 2αj nodes in Vj−1. At most (ρj−1 + δ)n
of these are pebbled. Therefore, αj−1 ≥ 2αj − ρj−1 − δ. Now we show by
induction that α`−k ≥ 2kα` − 2k−1ρ`−1 − (2k − 1)δ. The base case k = 0
is trivial. Assuming this holds for k:

α`−k−1 ≥ 2α`−k − ρ`−k−1 − δ ≥ 2(2kα` − 2k−1ρ`−1 − (2k − 1)δ)− ρ`−k−1 − δ
≥ 2k+1α` − 2kρ`−1 − (2k+1 − 1)δ

The last inequality used the fact that
∑k

i=1 ρ`−i ≤ γ` and therefore∑k
i=1 2k−iρ`−i is maximized by setting ρ`−1 = γ` and ρ`−i = 0 for all

i > 1.
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From the identities γ` = γ − ρ` and α` = 1 − ρ` − δ we derive γ` =
γ + α` − 1 + δ ≤ α` + δ − ε. Finally, inserting this into the bound above
and using the fact that α` ≥ ε− δ gives:

α`−k ≥ 2k−1(2α` − γ` − 2δ) ≥ 2k−1(α` + ε− 3δ) ≥ 2k(ε− 2δ)

We could stop here as we have already shown unpebbled dependency
paths from the unpebbled sinks in V` to a 1/3 fraction of nodes in some
level for ` = O(log(1/(ε − 2δ)) and the remainder of our PoS analysis
could rely on a graph that is (n, 0.33n,Ω(n))-depth-robust. However, we
can tighten the analysis further so that we only need to assume the graph
is (n, 0.80, Ω(n))-depth robust.

Claim 5 If GSDR initially has at most γn black pebbles for γ ≤ 1 − ε
and at most δ < ε/2 red pebbles in each layer then the unpebbled nodes
in V` have unpebbled paths to at least 0.80n unpebbled nodes in some
layer Vi for ` = max(0.68−ε+δ0.12−δ , log2(

1
3(ε−2δ )) + 3). In particular, ` =

max(7, log2(
1

3(ε−2δ )) + 3) when δ ≤ 0.01.

Proof. In Claim 4 we showed that for ` ≥ log2(
2

3(α`+ε−3δ)) there exists an

index i where αi ≥ 1/3 and α` + ε− 3δ ≥ 2ε− 4δ (Equation 3.1). Picking
up from here, we consider what happens once αi ≥ 1/3. We break the
analysis into two cases: in the first case α` < 1/3 and in the second case
α` ≥ 1/3.

In both cases we will use a different bound on αi−k because once αi >
1/3 the unpebbled sets may not be 2-expanding. Define the function β(α)
to be the minimum bipartite expansion of a set of fractional size α, i.e.
every set of αn nodes is connected to at least β(α)n nodes in the previous
level. Let β̂(α) = β(α)−α. Using the relation αi−1 ≥ β(αi)− ρi−1− δ we
derive that αi−2 ≥ β̂(αi−1) +β(αi)−ρi−1−ρi−2−2δ and more generally,
since

∑k
j=1 ρi−j ≤ γi:

αi−k ≥
k−1∑
j=1

β̂(αi−j) + β(αi)− kδ −
k∑
j=1

ρi−j

≥ (k − 1)(minj<kβ̂(αi−j)− δ) + β(αi)− γi − δ

The final ingredient is the bound γi ≤ αi − ε+ δ for all i. To see this,
first observe that α`−γ` = 1−ρ`−δ−(γ−ρ`) = ε−δ. If αi−γi ≥ ε−δ and
ε > 2δ, then 0.80 > αi > δ, and so the αin dependencies are connected
to β(αi)n > (αi + δ)n nodes in level Vi−1. Therefore αi−1 ≥ αi − ρi−1 =
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αi−(γi−γi−1). In words, decreasing the number of dependencies requires
using black pebbles 1-to-1, so αi−1 − γi−1 ≥ αi − γi.

αi−k ≥ (k − 1)(minj<kβ̂(αi−j)− δ) + β̂(αi) + ε− 2δ (3.2)

By Corollary 2 to Lemma 3, β̂(α) ≥ 0.12 for α ∈ (0.10, 0.80).
Case α` ≥ 1/3: First we claim that α`−i ≥ 0.12 for all i. If αi ≥ 0.12 then
as shown above αi−1 ≥ β̂(αi) + ε− 2δ ≥ 0.12 because β̂(α) ≥ 0.12 for all
α ∈ (0.10, 0.80) and ε > 2δ. Our claim thus follows by induction. There-
fore, for all j ≤ k we derive that minj≤k(β̂(α`−j)) ≥ 0.12. Equation 3.2
then shows that α`−k−1 ≥ k(0.12− δ) + 0.12 + ε− δ, or α`−k−1 ≥ 0.80 at
k ≥ (0.68− ε+ δ)/(0.12− δ) (e.g. k = 7 when δ ≤ 0.01).

Case α` < 1/3: From Equation 3.1, αi ≥ 1/3 at some index i ≥ `− k for
k = log2(

2
3(α`+ε−3δ)). At this point αi ≥ 1/3 and γi < γ` ≤ α` − ε + δ.

Combining this with Equation 3.2, we can apply the same analysis as in
the previous case to first show by induction that αi−k′ ≥ 0.12 for all k′

and then more generally: αi−k′ ≥ (k′−1)(0.12−δ)+β(αi)−α`+ ε−2δ ≥
k′(0.12− δ) + 0.68−α` + ε− 2δ. We used the fact that β(αi) ≥ β(0.33) ≥
0.68. Therefore, αi−k′−1 ≥ 0.80 when k′ ≥ (0.80 − 0.68 + α`)/(0.12 − δ).
This shows that the total number of levels where αi < 0.80 is at most:

` = k + k′ + 1 ≤ 1 + log2
( 2

3(α` + ε− 3δ)

)
+

0.12 + α`
0.12− δ

The derivative of this expression with respect to α` is 1
0.12−δ−

1
ln(2)(α`+ε−3δ) ,

which is initially decreasing when ln(2)(α`+ε−3δ) < 0.12−δ and then in-
creasing for larger α`. Therefore, the maxima are on the endpoints of the
interval α` ∈ (ε−δ, 0.33). We already considered the case α` = 0.33. When
α` = ε−δ then the number of levels is at most 1− log2(3(ε−2δ))+ 0.12

0.12−δ .
In conclusion, the total number of levels before αi ≥ 0.80 is at most:

` ≤ max
(
(0.68− ε+ δ)/(0.12− δ), 1− log2

(
3(ε− 2δ)

)
+ 1/(1− δ/12)

)
In particular, when δ ≤ 0.01 this becomesmax(7,− log2(3(ε−2δ))+3).

Relaxing δ Claim 5 improved on Claim 4 to show unpebbled dependency
paths to 80% of the subgraph in some layer. The final improvement is to
redistribute the δi such that

∑
i δi = O(δ) but security is still maintained.

Intuitively, ensuring δ < ε is necessary on level V` as otherwise γ + δ ≥ 1
and there are no unpebbled nodes on level V` (all the missing black pebbles
can be covered with red pebbles). However, as the dependencies expand

24



between levels a larger δ can be tolerated as well. Although the number
of black pebbles the prover will place on each level isn’t fixed a priori, we
show that if δ < ε/2 in level V` then we can tolerate a factor 3/2 increase
between levels as long as δ ≤ 0.05 in any layer.

That is, if δi denotes the bound on the number of red pebbles in the ith
layer then our new analysis requires δ` < ε/2 and δi = min(0.05, (3/2)δi+1).
This means that the total number of queries in the PoS over all levels is
O(1/ε) because

∑`
i=1 1/δi ≤ max(0.10`, 3

2δ`
).

Claim 6 For any γ ≤ 1−ε and δ < ε/3, if GSDR initially has at most γn
black pebbles, δ` = δ red pebbles in layer V`, and δi = min(0.05, (2/3)δi−1)
red pebbles in layer Vi, then for ` = max(13, log2(

1
3(ε−3δ )) + 4) the unpeb-

bled nodes in V` have unpebbled paths to at least 0.80n unpebbled nodes in
some layer Vi.

Proof. Modifying Equation 3.1 to account for the different values of δi
gives:

α`−k ≥ 2kα` − 2k−1γ` − (2k−1δ`−1 + 2k−2δ`−2 + · · ·+ δ`−k)

≥ 2kα` − 2k−1γ` −
k∑
i=1

2k−i(3/2)i−1δ`

Let σk =
∑k

i=1 2k−i(3/2)i−1. Then (4/3)σk = σk + 2k+1/3 − (3/2)k−1.
Therefore σk = 2k+1 − 3k/2k−1 < 2k+1. Using γ` ≤ α` + δ` − ε and
α` ≥ ε− δ` we derive the new bound:

α`−k ≥ 2kα` − 2k−1γ` − 2k+1δ` ≥ 2k−1(α` + ε− 5δ`) ≥ 2k(ε− 3δ) (3.3)

This shows that if ` ≥ log2(
1

3(ε−3δ)) then there is some level Vi where

αi ≥ 1/3.
We must also modify Equation 3.2 using

∑k
j=1 ρi−j ≤ γi ≤ αi− ε+δi:

αi−k ≥ (k − 1)minj<kβ̂(αi−j)−
k∑
j=0

δi−j + β̂(αi) + ε (3.4)

When i = ` and k is small δ`−k = (3/2)kδ` and δ` ≤ ε/3 implies:

α`−k ≥ (k − 1)minj<kβ̂(αi−j) + β̂(α`) + (
2

3
− 3k

2k+1
)ε

Otherwise, we can use δi ≤ 0.05.

αi−k ≥ (k − 1)(minj<kβ̂(αi−j)− 0.05) + β̂(αi) + ε− 0.10
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Now we turn back to the two cases for αi ≥ 1/3.

Case α` ≥ 1/3: We claim that α`−k ≥ 0.11 for all k. This is true for α`
by hypothesis. From the equation above and the bound β̂(α) ≥ 0.12
for all α ∈ (0.10, 0.80) (Corollary 2), α`−1 ≥ β̂(α`) − ε/12 > 0.11.
Therefore, α`−2 ≥ (0.12 − 0.05) + 0.12 − (11/24)ε ≥ 0.18. Now assume
that α`−2−j ≥ 0.12 for all j < k, then α`−2−j ≥ (k − 1)0.07 + 0.12 −
(11/24)ε > 0.11. The claim follows by induction. This also shows that
α`−k ≥ (k − 3)0.07 + 0.11 > 0.80 when k = 13.

Case α` < 1/3: From Equation 3.3, αi ≥ 1/3 at some index i ≥ `− k for
k = log2(

2
3(α`+ε−5δ`)). At this point αi ≥ 1/3 and γi < γ` ≤ α` − ε + δ`.

Combining this with Equation 3.4 gives:

αi−k′ ≥ (k′ − 1)(minj<k′ β̂(αi−j)− 0.05) + β(αi)− α` + ε− 0.05− δ`

We claim that αi−k′ ≥ 0.30 for all k′. Observe that αi− 1 ≥ β(αi)−
α` + ε− 0.05− δ` ≥ 0.68− 0.38 + ε− δell ≥ 0.30 for any value α` < 0.33
because β(αi) ≥ β(0.33) ≥ 0.68. Assuming this is true for all αi−j where
1 < j ≤ k′ implies αi−k′ ≥ (k′−1)0.07+0.30 ≥ 30. Therefore, we can state
more generally that αi−k′ ≥ (k′ − 1)0.07 + 0.68 − α` and αi−k′−1 ≥ 0.80
when k′ = (0.12 + α`)/0.07. The total number of levels where αi < 0.80
is thus at most:

k + k′ + 1 ≤ 1− log2((3/2)(α` + ε− 5δ`)) + 2 + α`/0.07

Differentiating this expression with respect to α` shows that the max-
ima over α` ∈ (ε− δ`, 0.33) are on the endpoints. The endpoint α` = 0.33
coincides with the case above. At the endpoint ε− δ` the number of levels
is bounded by 3− log2(3(α` + ε− 5δ)) + ε/0.07.

In conclusion, considering both cases, the total number of levels before
αi ≥ 0.80 is at most:

` ≥ max(13, 3− log2(3(ε− 3δ`)) + ε/0.07)

In particular, when ε ≤ 0.07 and δ` = δ then ` ≤ max(12, 4−log2(3(ε−
3δ)).

4 “ZigZag” DRG PoS/PoRep

The Stacked-DRG PoS can be adapted into a PoRep which encodes input
data D using the labels on the last level V` as encoding keys. However,
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decoding the data requires first re-computing the PoS labels, which is by
design expensive.

The basic idea of the ZigZag PoS/PoRep is to layer DRGs so that
each layer “encodes” the previous layer. The critical desired property to
achieve is: if all the labels on a given level are available in memory then
the labels can decoded in parallel. To achieve this, instead of adding edge
dependencies between the layers, we add the edges of a constant degree
expander graph in each layer so that every layer is both depth-robust and
has high “expansion”. Technically, the graph we construct in each layer is
an expander as an undirected graph. As a DAG this means that the union
of the dependencies and targets of any subset is large. By alternating the
direction of the edges between layers, forming a “zig-zag”, we are able to
show that the dependencies between layers expand. Now the only edges
between layers are between nodes at the same index, and the label on each
node encodes the label on the node at the same index in the previous level.
The dependencies used for keys are all contained in the same layer. Thus,
the labels in any layer are sufficient to recover the labels in the preceding
layer. Moreover, the decoding step can be done in parallel.

Without alternating the direction of the edges between layers this con-
struction would fail to be a tight proof of space because the topologically
last εn nodes in a layer would only depend on the topologically last εn
nodes in the previous layer. Moreover, if the prover stores the labels on
the topologically first (1− ε)n nodes it can quickly recover the labels on
the topologically first (1− ε)n nodes in the preceding level, allowing it to
recover the missing εn labels as well in parallel-time O(εn).

Construction of GZZ[`] Similar to GSDE , the graph GZZ [`] contains
a copy of an (n, 0.80n, βn)-depth-robust graph for some constant β in
each of the ` layers V1, ..., V`. The nodes in each layer are indexed in [n].
Every odd layer overlays the edges of the DRG in the forward direction
(edges go from lower to higher indices) while every even layer the edges
of the DRG in the reverse direction (edges go from higher indices to lower
indices).

Edges are added between same index nodes in adjacent layers (i.e.
the ith node in layer Vk is connected to the ith node in layer Vk+1 for all
i, k). Next, the edges that were between layers in GSDE [`] are projected
into each layer of GZZ [`] with the direction of each edge determined by
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the parity of the layer. We call these expander edges to distinguish6 them
from other edges. More precisely, if GSDE [`] has an edge from the ith
node of a layer Vk to the jth node of layer Vk+1 then GZZ [`] has an edge
between the ith node of Vk+1 and the jth node of Vk+1. The direction of
the edges added to Vk+1 is from lower indices to higher indices when k+1
is odd, and from higher indices to lower indices when k + 1 is even. (For
concreteness in the analysis, the edges between layers in the reference
graph GSDE are assumed to be constructed using the degree 8 Chung
random bipartite graph construction).

DAG encoding Instead of the standard DAG labeling, the ZigZag
PoS/PoRep uses a DAG encoding scheme. It takes in a data file X
on n blocks x1, ..., xn, a salt σ for a collision-resistant hash function
H : {0, 1}md → {0, 1}m, and a d-inregular DAG on n nodes together
with its parent function Parents(i) which outputs the parent nodes of the
ith node. It uses a randomized encoding scheme Enc,Dec to derive the
label ci on each node as Enc(ki, xi) where ki ← H(σ||cv1 || · · · ||cvd) for
(v1, ..., vd) ← Parents(i). This encoding scheme may be as simple as the
identity function, or could use sequentially slow encoding for added delay.

4.1 PoS analysis of ZigZag PoRep

Invertible pebbling game The red-black pebbling game no longer en-
tirely captures the PoS security of the ZigZag PoRep due to the involve-
ment of the encoding scheme (Enc,Dec) in the labeling rather than purely
a collision-resistant hash function. Most significantly, the labels are now
invertible. In terms of the dependency graph of the labeling computation,
the keys in each layer Vi still need to be computed in topological order,
however the labels may either be derived by decoding labels in layer Vi+1

or encoding labels in layer Vi−1. We modify the black pebbling game to
capture invertibility of labels by coloring edges.

White & green colored edges White edges are “one-way streets”
corresponding to edge dependencies involved in deriving keys via calls
to the random oracle and are treated like normal pebbling game edges.
Green edges are “two-way street”, but still have a direction and different
rules in either direction. If there is a directed green edge from u to v then
a pebble can be placed on v if and only if u and all nodes with white

6 The distinction between expander edges and all other edges is important in the
analysis. In particular, the expander edges are between the same index nodes in
every layer and differ only in their directionality.
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edges to v have pebbles. A pebble can be placed on u if and only if v and
all nodes with white edges to v have pebbles.

We still analyze the soundness of a PoS with invertible labels through
the game Red-Black-Pebbles as in Definition 1, however with the modifica-
tion that the adversary plays the black pebbling game with white/green
edges instead of the plain black pebbling game. Specifically we analyze
the hardness of a modification of Red-Black-PebblesA(GZZ [`], V`,Chal) us-
ing green/white edges where the directed edges within every layer Vi are
white and the directed edges between the same index nodes in adjacent
layers are green. Our analysis, included in the full version of this paper,
will demonstrate in this model that the ZigZag PoRep is an arbitrarily
tight PoS with only ` = O(log(1/ε) layers.
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