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Abstract. We show, via a non-interactive reduction, that the existence
of a secure multi-party computation (MPC) protocol for degree-2 func-
tions implies the existence of a protocol with the same round complexity
for general functions. Thus showing that when considering the round
complexity of MPC, it is sufficient to consider very simple functions.
Our completeness theorem applies in various settings: information theo-
retic and computational, fully malicious and malicious with various types
of aborts. In fact, we give a master theorem from which all individual
settings follow as direct corollaries. Our basic transformation does not
require any additional assumptions and incurs communication and com-
putation blow-up which is polynomial in the number of players and in
S, 2D, where S,D are the circuit size and depth of the function to be
computed. Using one-way functions as an additional assumption, the
exponential dependence on the depth can be removed.
As a consequence, we are able to push the envelope on the state of the
art in various settings of MPC, including the following cases.
– 3-round perfectly-secure protocol (with guaranteed output delivery)

against an active adversary that corrupts less than 1/4 of the parties.
– 2-round statistically-secure protocol that achieves security with “se-

lective abort” against an active adversary that corrupts less than
half of the parties.

– Assuming one-way functions, 2-round computationally-secure pro-
tocol that achieves security with (standard) abort against an active
adversary that corrupts less than half of the parties. This gives a
new and conceptually simpler proof to the recent result of Ananth
et al. (Crypto 2018).

Technically, our non-interactive reduction draws from the encoding method
of Applebaum, Brakerski and Tsabary (TCC 2018). We extend these
methods to ones that can be meaningfully analyzed even in the presence
of malicious adversaries.
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1 Introduction

A secure multi-party computation (MPC) allows a collection of n parties to
jointly compute a function f of their joint inputs without leaking additional in-
formation other than the output. The focus of this work is on the so-called “ma-
licious” setting, where security should be guaranteed even if an adversary, that
controls up to t parties, actively deviates from the protocol instructions. Security
is usually formalized using the ideal vs. real paradigm, essentially translating an
adversarial behavior in the protocol (the real model) into an indistinguishable
behavior in a model where f is computed by a trusted party (the ideal model).
Various flavors of this notion have been considered in the literature, but since
our results apply in multiple settings we wish to keep the discussion general at
this point and not commit to a specific ideal model (however, we do focus on
the case where there are private channels between the parties).

A significant resource to optimize when designing an MPC protocol is the
round complexity, the number of communication rounds that are required in or-
der to complete the protocol (as usual, we assume simultaneous message trans-
mission in each round). Efforts to minimize round complexity started as soon
as MPC was introduced [24] and are receiving a lot of attention recently as well
(e.g. [1,6,9,10] and many others). A prominent approach to reducing round com-
plexity is tied to reducing the algebraic degree of the function to be computed.3

This can be traced back to the work of Beaver, Micali and Rogaway [4, 22] and
to the randomizing polynomials approach of Ishai and Kushilevitz [15, 16]. The
latter work is based on the following paradigm: Reduce the task of securely
computing the function f to the task of securely computing a different function
h, such that h has low algebraic degree, and such that the output of h can be
decoded to produce the appropriate output for f . Once such reduction exists,
with adequate security guarantees (as we elaborate below), one can focus on
providing a secure MPC protocol for h, a task that usually gets easier as the
degree of h drops.

In this context, it is most desirable to present a non-interactive reduction.
Such a reduction yields a function h together with a set of (possibly randomized)
local preprocessing function `i, and a method to decode the value h(`1, . . . , `n)
to recover the output of f . In terms of security, one has to show that the protocol
where each party computes `i locally, sends the value to a trusted realization
of h (“an h oracle”), and then performs the decoding of the output locally, is a
secure MPC protocol for computing f , respective to a security model specified
in the proof.

The resemblance of the h-oracle-aided protocol to the “ideal model” described
above allows to compose the reduction with a secure implementation of h, re-
sulting in a secure realization of f . Since the reduction is non-interactive, the
round complexity of the resulting protocol is the same as the round-complexity
of (the low degree function) h.

3 In this work we consider the algebraic degree over the binary field. This is the
common setting, but one could consider working over other fields as well.
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Given this paradigm, it is natural to ask how low can the degree of h be
while still allowing a reduction from any arbitrary f . It is not hard to verify
that a linear (i.e. degree 1) h cannot be used to compute general functions.
However, the randomizing polynomials approach seems to only imply h of degree
3.4 Recently, Applebaum, Brakerski and Tsabary [3], showed how to reduce
any function to degree-2, but their reduction was only secure in a semi-honest
setting, where the adversary is required to follow the protocol (i.e. to compute
the functions `i correctly using a properly sampled random tape). Nevertheless,
the [3] reduction allowed them to improve the round complexity of semi-honest
MPC with perfect security and with honest majority to the optimum of 2 rounds.
The question whether there is non-interactive reduction to a quadratic function
in the malicious setting, and the implications of such reduction on the round
complexity of malicious MPC, remained open and is addressed in this work.

1.1 Our Results

We show that in various settings, a non-interactive reduction to a degree-2 func-
tion is possible. This means that it is sufficient to design protocols for degree-2
functions in order to optimize round complexity. We then design round-optimal
protocols by constructing round-efficient protocols for degree-2 functions in some
of these settings. Our results are all derived using a single “master theorem”,
which we believe can serve as basis for deriving additional results in other set-
tings as well. We elaborate on these contributions below.

A Master Non-Interactive Reduction (Section 4). The technical heart of
our result is a generic non-interactive “master reduction” from any function f
to a degree-2 function h. Methodologically, we show how to convert any proto-
col Π for computing f (irrespective of round complexity) into a non-interactive

h-oracle-aided protocol Π̂ (we denote this by Π̂h), while preserving the secu-
rity properties of Π. Specifically, we show that any adversarial strategy in the
h-oracle-aided protocol can be (perfectly) simulated by an adversary against the

protocol Π. In terms of the ideal/real paradigm, we show that for any Π̂h ad-
versary there exists a Π adversary with an identical real model view. We believe
that this could be an instrumental tool in constructing and analyzing MPC pro-
tocols, since it allows to translate arbitrary protocols to ones that make a single
oracle call to a fairly simple function.

We note that the conversion between Π and Π̂h incurs a communication
and computation overhead that is polynomial in (roughly) the total computa-
tional complexity of Π (i.e. the sum of computational complexities of all parties
participating in Π throughout the execution of the protocol) and exponential
in the depth of Π (roughly the longest computational path between an input
and an output in the protocol). Therefore, if communication and computational

4 It is known that general functions cannot be represented by degree-2 perfectly-private
randomizing polynomials [15]. The existence of statistically-private degree-2 random-
izing polynomials has been open for nearly two decades.
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complexity are of importance, we must be careful to only apply our theorem on
fairly “shallow” protocols Π.

Our master theorem generalizes the “multi-party randomized encoding” (MPRE)
approach of [3], both in terms of theorem statement and in terms of techniques.
The notion of h-oracle-aided protocol converges in the semi-honest setting to
MPRE, but allows to handle malicious adversarial behavior whereas MPRE is
by default a “passive” notion. Our master theorem, while building on the tech-
niques of [3], also implies their MPRE result as a special case since a semi-honest

Π̂h adversary translates to a semi-honest Π adversary.

A Completeness Theorem (Section 5). To illustrate the power of our master
theorem, we show a non-interactive reduction from the task of computing an
arbitrary function f to the task of computing degree-2 functions, in the context
of full security (guaranteed output delivery):

– A perfectly secure reduction, assuming more than 2/3 of the parties are
honest.

– A statistically secure reduction, assuming more than 1/2 of the parties are
honest.

– A computationally secure reduction, assuming more than 1/2 of the parties
are honest, and assuming the existence of one-way functions (that are used
in a black-box manner).

All of those reductions incur a communication and computation overhead. In all
reductions this overhead is polynomial in the number of parties and in the size
of the circuit computing f , and in the first two reductions (i.e. without making
computational assumptions) it is also exponential in the depth of f . We note
that these results are optimal in terms of the size of the adversarial coalition
achievable in each of these settings.

Optimal Round-Complexity Results (Sections 6, 7). Finally, we obtain
new protocols with low round complexity for general functions in various MPC
settings. We believe that numerous results can be derived using our techniques.
For concreteness, we focus on achieving perfect malicious security with optimal
round complexity (i.e. 3 round). We then consider the setting of 2 round pro-
tocols, where malicious security is not achievable, and instead show statistical
security with selective aborts, and (assuming one way functions) computational
security with aborts. To this end, we devise round-efficient protocols for degree-2
functions with different malicious security guarantees and derive the following
corollaries.

– Fully Malicious Security in Three Rounds (Section 6). For all f ,
there exists a 3 round protocol which is secure against fully malicious ad-
versarial coalitions containing less than 1/4 fraction of the parties. For NC1

the protocol is perfectly secure and for arbitrary polynomial-time functions
the protocol has computational security with black-box access to one-way
functions.
In both cases the protocol provides full security (i.e. no abort). This is the
optimal round complexity, as Gennaro et al. [12] showed that full security
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cannot be achieved in less than three rounds even when the adversary is
allowed to corrupt at most 2 players. Prior to our work, it was known that
general 3-round MPC with perfect security can be achieved with security
threshold of t = αn for some small (unspecified) constant α� 1/4 [11]. Our
protocol shows that the threshold can be improved to n/4.

– Security with Aborts in Two Rounds (Section 7). For all f , there
exists a 2 round protocol (not requiring broadcast) which is secure with
selective aborts5 against any adversarial coalition containing a minority of
the parties. For NC1 the protocol is statistically secure and for arbitrary
polynomial-time functions the protocol has computational security with black-
box access to one-way functions. This improves over the result of Ishai et
al. [17], that achieve, in the same setting, security against an adversary that
corrupts less than 1/3-fraction of the parties.
We further show that in the computational setting (for polynomial-size func-
tions) the protocol can be modified to be secure with (unanimous) aborts6 at
the expense of using a broadcast channel. A result with similar parameters
was already shown by Ananth et al. [1]. Recently [20] showed that selec-
tive abort is the best possible security for two-round protocols that only use
secure channels. Concurrently and independently from our work, Ananth
et al. [2] presented a two-round protocol achieving statistical security with
(unanimous) abort. Contrary to our work, they do not propose a general
framework and do not achieve our general degree-2 completeness theorem or
our results in the fully malicious setting.

1.2 Technical Overview

We now provide a high level overview of our techniques.

Our Master Theorem. Recall that we want to show how to encode an arbitrary
protocol Π by an oracle aided protocol Π̂ that uses a quadratic oracle h, while
preserving the security properties of Π. As mentioned above, our techniques
extend those of [3] to the malicious setting.

In [3], the authors consider the boolean circuit induced by an execution of
the protocol Π, with wires corresponding to the internal values computed by
all parties throughout the protocols, and gates that represent either local com-
putation performed by a certain party, or a transmission of a value from one
party to another. Their encoding constitutes of an information-theoretic point-
and-permute garbled circuit [4, 16, 22] for this induced circuit. The encoding of
Π is a protocol where the parties jointly compute this garbled circuit using their
inputs and local randomness.

5 Security with selective aborts is a notion where in the ideal model the adversary can
prevent some of the honest parties of his choice from learning the output.

6 Security with aborts is a notion where in the ideal model the adversary can prevent
either all or none of the honest parties from receiving the output (but cannot allow
only some of them to receive it). We specify “unanimous aborts” in places where
there is a risk of confusion with the aforementioned notion of selective aborts.
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The randomness required for computing the garbled circuit is distributed
between the parties in a clever way that ensures that the garbled circuit can be
written as h(`1, . . . , `n) for a quadratic h and for values `i that only depend on
the local input and randomness of each party. This allows to derive a protocol
encoding theorem for the semi-honest setting, where parties in Π̂ simply compute
their local `i and send these values to the h oracle. Garbled circuit security
ensures that any adversarial coalition can only learn from the garbled circuit
their respective views in an honest execution of Π (assuming that the `i values
were computed correctly).

However, the aforementioned approach relies on the values `i being computed
honestly. In contrast, a malicious adversary in this Π̂ can compute the `i values
belonging to the parties under its control arbitrarily, and thus a-priori we are
not guaranteed that h(`1, . . . , `n) is even a garbled circuit at all, not to mention
that it does not reveal “forbidden” values to the adversary.

Our main insight is that if the garbled circuit and the manner of distributing
randomness between parties are properly defined, such a malicious modification
must lead to h(`1, . . . , `n) being a secure garbled circuit, but one that does not
encode an honest execution of Π. Instead, h(`1, . . . , `n) can encode an execu-
tion of Π where the parties under the adversary’s control may deviate from the
protocol. In other words, any cheating strategy in the compiled protocol Π̂ (i.e.
some adversarial modification of the values `i controlled by the adversary) trans-
lates into some cheating strategy against Π with the same adversarial coalition.
Hence, Π̂ inherits the security properties of Π. More details follow.

Let us first be more specific about the “partition of work” between the local
functions `i and the quadratic function h. The local function `i takes the input
of the ith party xi, and two types of random tapes which we denote si,αi. The
function performs some (deterministic) preprocessing on αi, producing prei(αi),
and outputs (xi, si,αi, prei(αi)). Our adversary is allowed to arbitrarily modify
all of these values, let us examine the effects of such modification on each of
these components.

– Changing the value xi is equivalent to selecting a different input for the ith
party, which cannot be avoided in any model of secure computation.

– The random string si is used by h as shares for wire keys of the garbled
circuit. The exact functionality does not matter for this outline, but the im-
portant thing is that h XORs these values among all parties. Thus, choosing
si maliciously does not buy the adversary any leverage, since h only uses the
aggregate value (⊕isi), which is uniform from the adversary’s viewpoint (so
long as there is at least one honest party).

– The random string αi is used to produce mask bits for the values of the
wires in the garbled circuit. Essentially, the evaluation of a point and per-
mute garbled circuit results in producing, for each wire of the circuit that
was garbled, the value of this wire XORed with a random mask bit. Cru-
cially, the string αi contains the mask bits for the wires of the circuit whose
values party i is allowed to see. (The definition of the induced circuit for
a protocol guarantees that there is a disjoint partitioning of wires between
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the parties). Hence, an adversarial choice αi gives the adversary no leverage.
Such behavior can only hurt the privacy of the adversary’s own wires, and
has no effect on the privacy of honest parties.

– The crux of the matter is prei(αi). The preprocessing prei is in fact what
allows to reduce the degree of h to 2. A malicious adversary can certainly
damage these computed values and indeed effect the resulting garbled circuit.
What we show next is that the damage of such malleability is controllable.
To explain, we go into a little more detail about the functionality of prei.

Recall that each gate in the circuit to be garbled represents either a local
computation by a party or communication from one party to another. The
function prei only computes on bits in αi that are associated with inputs of
local computation gates. For each such gate prei(αi) contains four evalua-
tions of the gate function (say NAND, w.l.o.g), on the four possible inputs in
a specific permuted order, where the permutation is determined by respec-
tive αi bits. Specifically, the permutation is obtained by taking the canonical
sequence 00, 01, 10, 11, and XOR-ing it with the respective mask bits of the
input wires of that gate.

The adversary might plug in 4 arbitrary bits instead of the correct values to
be computed by prei, regardless of the actual values it chose for the mask
bits αi, and possibly depending on any other value that the adversary might
have. The crucial part of our argument is to notice that any change in the
preprocessing can equivalently be described as a change in the gate function,
e.g. computing OR instead of NAND, but executing this gate on the correct
mask bits. Once this is established, we can take a step back and notice that
in fact, all that the adversary can do by corrupting its prei(αi) values is
equivalent to changing the garbled circuit from one that corresponds to an
honest execution of the protocol Π, to an execution of Π where the parties
that are controlled by the adversary change the functionality of their local
computation gates!

We conclude that even if the `i values controlled by the adversary are ma-
liciously corrupted, h will still output a garbled circuit which corresponds to
an execution of Π, possibly with some parties behaving dishonestly (the parties
corresponding to the corrupted `i values). The security of this garbled circuit
(which follows from the fact that the wire keys and the mask keys for honest
parties remain random, as we described above) guarantees that the parties in

Π̂h learn the exact same information as they do in an execution of Π with the
respective adversary (we use a perfectly secure garbled circuit which implies that
the adversary’s views in the two cases are identical).7

7 In fact, the adversary in Π is somewhat weaker than a full malicious adversary.
First, the adversarial parties are required to have the same circuit topology as honest
parties, since only gate functionality changes and not the interconnection of gates.
Second, the adversary cannot adjust the behavior of party i under its control based
on a message received by a different party j under its control during the execution of
the protocol. We find this property quite interesting and potentially useful, although
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Lastly, we note that an additional modification to the [3] approach is required
in order to handle broadcast channel, i.e. the possibility of a party to send a
message to all other parties, such that parties are guaranteed that the same
message was sent to all. This is a useful component that aids in the design of
maliciously secure protocols, and is not needed in the semi-honest setting (since
parties there follow the protocol specifications, so if a party is instructed to send
the same value to all others, that is what it will do). If the underlying protocol
Π is one that uses broadcast, this needs to be enforced by the “induced circuit”
for which a garbled circuit is computed. Fortunately this is easy to handle by
generalizing the point-to-point transmission gates into fan-out gates with a single
input and multiple outputs. The way such gates are garbled guarantees that it
is impossible to produce an execution where the outputs are inconsistent (i.e.
where different parties receive different values).

The Completeness Theorem. Applying the master theorem is, on the face
of it, straightforward. Instantiating Π with a protocol that is secure in the mali-
cious setting, should immediately imply the theorem statement, and indeed the
fraction of honest parties required exactly matches that of best known malicious
MPC protocols with many rounds. However, there is one caveat that requires
careful consideration. The encoding theorem induces a blowup in the communi-
cation and computational complexity of the protocol Π̂, which is related to the
size of the (information theoretic) garbled circuit of the circuit induced by Π. In
particular, the size of the garbled circuit scales exponentially with the depth. We
want to argue that our reduction scales with the properties of the target function
f to be be computed. Thus, for example, using an underlying Π whose depth
is (say) n times the depth of f will incur an exponential cost in the parameters
of the reduction. We thus carefully analyze existing protocols so as to guarantee
that there exists Π where the depth of the induced circuit only relates linearly
to the depth of the function f being evaluated.

One observation that proves very helpful is that there is no need to encode
local postprocessing that takes place after all the messages has been sent. That
is, given a protocol Π it is sufficient to apply our master theorem on a truncated
protocol Π ′ in which the parties send all messages as in Π, but instead of per-
forming the final postprocessing computation they just output their view in the
execution. This modification leads to a much shallower circuit for our encoding
theorem and at the same time allows to achieve the required functionality and
security. Functionality is maintained since the postprocessing in the final step
can be done on the output of the garbled circuit evaluation, rather than being
included in the garbled circuit itself. See Section 5 for more details.

Optimal Round-Complexity Results. As explained above, these are achieved
by plugging in secure protocols for evaluating degree-2 functions in various mod-
els. Such protocols are usually not made explicit in the literature (as comput-
ing degree-2 functions was not a major goal until this work). However, known
techniques do seem to become monotonously more round-efficient as the degree

we do not need to exploit it to derive the consequences in the cases analyzed in this
paper.
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drops. We apply modifications on top of existing methods in order to reduce the
round complexity to the very optimum.

Three-Round Protocols with Full Security. In Section 6 we implement
MPC with full security for degree-2 functions f via the following template:

1. Each party shares each of its inputs between all the parties using a sub-
protocol for Verifiable Secret Sharing (VSS).

2. Each party locally computes the degree-2 functionality f over its shares and
gets a share of the outputs. To enable this computation, the underlying secret
sharing scheme has to be 2-multiplicative over the binary field.

3. The parties broadcast the result (after some randomization) and apply a
correction procedure for handling malformed shares.

The template can be instantiated with different ingredients (e.g., for the VSS
and for the recovery step). The security and round complexity of the result-
ing protocol depend on the corresponding properties of the underlying building
blocks.

We instantiate the above template with the standard polynomial-based Shamir
secret sharing scheme [23]. Gennaro et al. [11] showed that the sharing phase
of this secret sharing scheme can be perfectly realized (with full security) in 2
rounds for our security threshold. This VSS natively supports secrets that are
taken from a medium-size field of size at least n+ 1, and we show how to mod-
ify it into a binary VSS.8 Eventually, we get a 2-round binary VSS with the
guarantee that at the end of the sharing phase, the honest parties hold shares
that are consistent with some binary secret, even if the dealer was malicious.
We observe that for our security threshold, after the third round (in which the
parties broadcast their shares of the output), the honest parties can recover the
output via the standard Reed-Solomon decoding algorithm.

Two-Round Protocols with Selective Abort. Here we rely on two results
from [17]. In their work, they consider a weaker notion of security, Privacy with
Knowledge of Outputs (PKO)9, and show that:

1. Any r-rounds protocol with PKO security for functions in NC1 (resp. polynomial-
size functions) induces a r-rounds protocol with selective abort security for
functions in NC1 (resp. polynomial-size functions).

2. Any degree-2 function can be efficiently computed in two rounds with sta-
tistical PKO security for threshold n/2, without a broadcast channel.

8 In particular, we use an extension field of GF(2), and add a mechanism that forces
the adversary to use binary inputs. Implementing this mechanism without increasing
the round complexity is somewhat challenging, and for this, we rely on some specific
properties of the [11] scheme. See Sections 6 and full version for details.

9 Intuitively, this means that the correctness of honest parties may be violated, but
the adversary is required to “know” the (possibly incorrect) outputs of the honest
parties. Formally, in the ideal model, the ideal functionality first delivers the outputs
of the corrupted parties to the simulator, and then receives from the simulator an
output to deliver to each of the uncorrupted parties.
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To complete the proof, we show that our completeness theorem maintains PKO
security. This turns to be somewhat subtle since, as we observe, PKO security
is not always preserved under composition. (See full version for details.)

Two-Round Protocols with Abort. Lastly we use a modification from [19]
which shows how a 2-round protocol with SSA security for polynomail-size func-
tions can be converted to a 2-round protocol with SA security of similar com-
plexity and security guarantees, at the expense of using a broadcast channel and
one way functions. The general reduction, however, involves a reduction to a
functionality f ′ that invokes the signing algorithm of a digital signature scheme.
When instantiated with an arbitrary signature scheme, computing f ′ results in
a non black-box use of a one-way function. We observe that the transformation
of [19] requires only one-time secure signatures, and therefore can be instanti-
ated with Lamport’s one-time signatures (cf. [13, Chapter 6.4.1]), in which the
one-way function is used only in the key-generation and verification algorithms,
but not in the signing algorithm. See full version for details.
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2 Preliminaries

In this section, we define Boolean circuits, multi-party protocols, oracle-aided
protocols and security for multi-party computation. Briefly, we consider an ac-
tive non-adaptive rushing adversary that may be computationally unbounded
or computationally bounded (depending in the context) and, unless stated oth-
erwise, assume a fully connected network with point-to-point private channels
and a broadcast.

2.1 Boolean Circuits

In this work, we consider Boolean circuits containing two types of gates:

– A (p-ary) fan-out gate, sometimes denoted as a transmission gate, that has
a single input and p outputs, its functionality is to copy its input to all
outputs.

– A local gate has two input wires and one output wire. It computes some
arbitrary function G : {0, 1}2 → {0, 1} (that can vary from one gate to the
next).

For purposes of analysis, we define the depth of a p-ary transmission gate to
be dlog pe, and the depth of a local gate to be 1. The depth of a circuit C is the
computed by considering the cumulative depth of gates along each path from an
input wire to an output wire in C, and taking the maximum among all paths.
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The size of a circuit, m, is the number of wires in the circuit (including input
and output wires). We assume a topological ordering of the wires in [m].

We say that two circuit C1, C2 are topologically equivalent (or have the same
topology) if they are identical, except perhaps in the functions G associated with
local gates.

2.2 Functionalities and Protocols

It will be convenient to treat functionalities and protocols as finite (fixed length)
objects. The infinite versions of these objects will be defined and discussed laster
in Section 2.3. We continue with a formal definition.

Notation. For any set T ⊆ [n], we denote T = [n]/T where n, which denotes
the number of players, will be clear from the context. For any sequence x =
(x1, . . . , xn) and any S ⊆ [n] let x[S] denote the ordered set {xi}i∈S .

Definition 2.1 (multi-party functionality). An n-party functionality f :
({0, 1}∗)n → ({0, 1}∗)n is a (possibly randomized) function that maps a sequence
of n inputs x = (x1, . . . , xn) to a sequence of n outputs y = (y1, . . . , yn). If f
sends the same output to all parties then we denote its output as a scalar, i.e.
we use the shorthand f : ({0, 1}∗)n → {0, 1}∗ and y = f(x1, . . . , xn).

Next we define a multi-party protocol in a non-asymptotic setting.

Definition 2.2 (multi-party protocol, oracles). An n-party, r-round pro-
tocol Π is a tuple of n · r boolean circuits {Cj,i}j∈[r+1],i∈[n] that correspond to
the computation that party i in the protocol performs before the j-th communi-
cation round (or after the last round if j = r + 1). Each Ci,j (except for j = 1
and j = r + 1, see below) takes n input strings, and outputs n output strings.
The i′-th output of Cj,i is the message sent from party i to party i′ at round
j of the protocol. If i = i′ then the respective output is the state of party i af-
ter the j-th round of communication. We therefore require that for all i, i′, j the
i′-th output of Cj,i has the same length as the i-th input of Cj+1,i′ . In the first
round of communication C1,i only takes one input xi to be interpreted as party
i-th input for the protocol, and possibly an additional random tape. In the last
round of communication Cr+1,i only has one output which should be interpreted
as the output of party i in the protocol, sometimes denoted yi. We let Mi denote
the collection of circuits associated with party i, i.e. Mi = (C1,i, . . . , Cr+1,i) and
thus denote Π = (M1, . . . ,Mn). The view of the party in the protocol contains
its input, randomness and all messages it received during the execution.

Let h be an n-party functionality. A protocol Π with oracle h, which we
denote by Πh, is one that allows to replace some of the communication rounds
with calls to the functionality h (i.e. the circuits respective to this round each
produce one output that is sent to the oracle h as input, the outputs of h is then
fed as a single input to the next round circuit).

A protocol with broadcast is one with access to the broadcast functionality that
on input x = (x1, . . . , xn) outputs x to all parties. More generally, the framework
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in this paper can handle any oracle functionality that delivers the same output
(originating from a designated party) to a subset of parties. We note that in
circuit terminology this can be described as Cj,i producing an output associated
with sets of parties rather than a single party.

A non-interactive h-oracle-aided protocol is one that consists only of a single
round of oracle call, and no other communication between the parties.

Consistently with the above formal description, we often refer to Mi as
an interactive circuit that sends and receives messages (and maintains a state
throughout the execution), until finally producing an output after the r-th round
of communication.

2.3 Correctness and Security of Protocols

Security of multi-party computations is analyzed via the real vs. ideal paradigm.
The real model captures the information that can be made accessible to the
adversary in an actual execution of the protocol, which includes an arbitrary
function of the view of the corrupted parties, as well as honest parties’ input
and output (but not their internal state during the execution). The ideal model
considers a case where the target functionality is computed using oracle access.
The protocol is secure if the view of every real adversary can be simulated by
an ideal adversary.

We first define the notion of an adversary, note that we slightly deviate
from the standard notation and explicitly include the description of the set of
corrupted parties as a part of the definition of the adversary. This will be useful
for stating our results. We also note that the current definition is syntactic
and non-asymptotic and does not address the adversary’s having an efficient
implementation.

Definition 2.3 (adversaries, the real model, ideal model). An adversary
(A, T ) for an n-party protocol Π = (M1, . . . ,Mn) consists of an interactive cir-
cuit A (sometimes called the adversarial strategy), and a set T ⊆ [n]. The parties
in T (resp. T ) are the dishonest (resp. honest) parties.

The execution of Π with input x under (T,A) is as follows. The input to A
is the set of inputs x[T ] (the inputs for the parties in T ). In each round, A first
receives all messages sent to parties in T from parties in T , and then outputs
messages to be sent to the parties in T from the parties in T (i.e. A is rushing).
At the end of the protocol A produces outputs on behalf of all parties in T . The
parties in T execute according to their respective prescribed Mi algorithms.

A semi-honest adversary is one in which A executes according to the parties
{Mi}i∈T , and outputs some function of the views of {Mi}i∈T in the protocol as
the outputs of the parties in T .

The ordered sequence of outputs of all parties in the execution above is called
the output of the real-model execution and denoted REALΠ,T,A(x). The ideal-
model is defined by considering the trivial non-interactive f -oracle-aided protocol
Υ f in which each party simply sends its input xi to the f -oracle, gets the output
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yi from the oracle, and terminates with this output. For an adversary (A, T )
and vector of inputs x we denote the output of the ideal-model execution by
IDEALf,T,A(x).

In the ideal-model with selective abort (SSA), the f -oracle first delivers the
outputs of the corrupted parties to the adversary, which then can decide for each
uncorrupted party whether this party will receive its output or a special abort
symbol. The ideal-model with abort (SA) is similar to SSA except that when
the adversary decides to abort, all of the honest parties receive a special abort
symbol.10

Asymptotic versions. A sequence of functionalities F = {fκ}κ∈N is efficiently
generated if there exists a polynomial time algorithm that on input 1κ outputs
a circuit that computes the n(κ)-party functionality fκ. A sequence of protocols
Π = {Πκ} is efficiently generated if there exists a polynomial time algorithm
that takes 1κ as input and outputs all circuits Cj,i associated with Πκ. A se-
quence of adversaries A = {Aκ} is (non-uniformly) efficient if there exists a
polynomial p(·) such that for every κ the size of the circuit Aκ is at most p(κ).
We often abbreviate “efficient functionality/protocol/algorithm” and not refer
to the sequence explicitly. Throughout this work, we will be concerned with
constructing efficiently generated protocols for efficiently generated function en-
sembles. In fact, our results (implicitly) give rise to a compiler that efficiently
converts a finite functionality into a finite protocol.

Definition 2.4 (correctness and security of protocols). Let f = {fκ} be
an n(κ)-party functionality and Π = {Πκ} a (possibly oracle-aided) n(κ)-party
protocol. We say that Π t(κ)-securely computes f if for every probabilistic non-
uniform algorithm A = {Aκ} and every infinite sequence of sets {Tκ} where
Tκ ⊆ [n(κ)] is of cardinality at most t(κ), there exists a probabilistic non-uniform
algorithm B = {Bκ} and a polynomial p(·) so that the complexity of Bκ is at most
p(|Aκ|), such that for every infinite sequence of inputs {xκ}, the distribution
ensembles (indexed by κ)

IDEALfκ,Tκ,Bκ(xκ) and REALΠκ,Tκ,Aκ(xκ)

are either identical (this is called perfect security), statistically close (this is
called statistical security), or computationally indistinguishable (this is called
computational security). In the latter case, A is assumed to be asymptotically
efficient.

Note that for an efficiently generated protocol it follows from the definition that
the number of parties n, and the input lengths are polynomial in the security
parameter κ.

Definition 2.5 (secure reductions, non-interactive reductions). If there
exists a secure h-oracle-aided protocol for computing f , we say that f is reducible

10 The terminology of “security with abort” and “security with selective abort” is bor-
rowed from [17] and [19] and it corresponds to the notions of “security with unani-
mous abort and no fairness” and “security with abort and no fairness” from [14].
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to h. If the aforementioned oracle-aided protocol is non-interactive (i.e. only
consists of non-adaptive calls to h) we say that the reduction is non-interactive.

Appropriate composition theorems, e.g., [13, Thms. 7.3.3, 7.4.3], guarantee
that the call to h can be replaced by any secure protocol realizing g, without vio-
lating the security of the high-level protocol for f . (In the case of computational
security the reduction is required, of course, to be efficient.)

3 Building Blocks

In this section we define building blocks that rely on previous works and will
be used for our master theorem in Section 4. Circuit representation of protocols
is defined in Section 3.1, and our presentation of point and permute garbled
circuits follows in Section 3.2.

3.1 Circuit Representation of a Protocol

Recall that a protocol Π = (M1, . . . ,Mn), is a sequence of interactive circuits. It
will be convenient to collapse all these circuits to a single “circuit representation”
of a protocol. (A similar abstraction appears in [3], but some of the details differ,
e.g., the treatment of fan-out gates which are needed for handling protocol that
employ broadcast.)

Informally, we consider the computation of all parties throughout the proto-
col as parts of one large computation. Each wire of the new circuit is associated
with an index corresponding to the party in the protocol that computes this
value. This includes the local computations performed by parties throughout
the protocol, which are represented as gates whose inputs and outputs are asso-
ciated with the party who is performing the local computation, and also message
transmissions between parties, that are modeled as gates that simply copy their
input to the output, where the inputs are associated with the sender and outputs
are associated with the receiver.

Our definition only considers circuits corresponding to deterministic proto-
cols. This is both for the sake of simplicity (since we can always consider parties’
randomness as a part of their input) and since we will only apply this definition
to deterministic protocols in our results.

Definition 3.1 (Circuit Representation of a Protocol). The circuit rep-
resentation of a deterministic n-party protocol Π is a pair (C,P ), where C is
a Boolean circuit of size m as defined in Section 2.1, and P : [m] → [n] is a
mapping from the wires in C to the n parties.

Given a protocol Π = (M1, . . . ,Mn), the circuit C and the mapping P are
defined as follows.

1. Recalling Definition 2.2, Π consists of a sequence of circuits Cj,i which repre-
sent the local computation of party i before the j-th round of communication
(and a final circuit Cr+1,i for the local computation after the last round of
communication), we call this the j-th computational step of the protocol.
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2. All input wires of sub-circuits that correspond to the first step in the pro-
tocol are defined as input wires of C. All output wires of sub-circuits that
correspond to the last step in the protocol are defined as outputs wires of C.

3. The input wires representing the input state of Cj,i are connected to the wires
representing the output state of Cj−1,i via a unary transmission gate. That
is, the state of party i in the beginning of computation step j is identical to
its state in the end of computation step j − 1.

4. If party i expects a message in step j from party i′, then the respective output
wire of Cj−1,i′ is connected to the respective input wire of Cj,i via a unary
transmission gate. If party i0 was supposed to send some value via broadcast
to multiple parties i1, . . . , ip then a p-ary transmission gates connects the
respective output wire in Cj−1,i0 to the input wires in Cj,i1 , . . . , Cj,ip .

5. Note that by the description above, the set of wires in C is exactly the union
of wires of all circuits Cj,i. The mapping P associates with party i the wires
of circuits Cj,i, for all j.

We note that this description implies that for any local gate, all inputs and
outputs have the same association. We say that a local gate g belongs to player
i if all g-adjacent wires are associated with i.

The following is an observation that will be useful for our construction. Es-
sentially it says that if we switch some of the gates that belong to some party
with different gates, then the resulting circuit still represents a protocol.

Lemma 3.1. Let Π = (M1, . . . ,Mn) be a protocol, and let (C,P ) be its circuit
representation. Let T ⊆ [n] be some set and let H be a subset of the local gates
of T such that every gate in H belongs to a party i ∈ T . Consider a circuit C ′

topologically equivalent to C, which is identical to C except on the gates in H.
Then (C ′, P ) is a circuit representation of a protocol Π ′ = (M ′1, . . . ,M

′
n) with

the same round complexity and message pattern as Π, and where M ′i = Mi for
all i 6∈ T .

Proof. This follows almost by definition. Define the sub-circuits C ′j,i of C ′ ac-
cording to their isomorphic counterparts in C. Since only local gates belonging
to parties in T are changed, it follows that C ′j,i = Cj,i for all j and for all i 6∈ T .
Now define the party M ′i for i ∈ T to have the functionality that in computation
step j it runs the cub-circuit C ′j,i on its state from the previous step and incom-
ing messages, to produce the next state and outgoing messages. By definition
(C ′, P ) is the circuit representation of Π ′.

3.2 Point and Permute Garbled Circuits

We present an information theoretic variant of the point-and-permute construc-
tion of [4,22]. Our variant extends the information theoretic garble circuits of [16]
to handle (p-ary) transmission gates as in Definition 3.1. In addition, we slightly
modify the encoding and decoding procedures, Encode and Decode, as follows.
The encoding procedure Encode is decomposed into two parts, Permute and
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Encrypt, where Permute shuffles the truth tables of each gate based only on the
mask bits α (and is independent from the randomness s that is being used to
generate the gate keys) and the second part Encrypt (for “Table encryption”)
generates the encrypted gate tables (based on all the randomness and on the
outcome of the first part). We also modify the decoding procedure so that it
outputs the masked bits of all wires of the circuits (instead of outputting only
the un-masked bits of the outputs). We begin with a detailed description of the
encoding and decoding procedures, and continue by analyzing their properties.

The Construction Randomness of the encoder. The encoder Encode(C,x; s,α)
takes as input a circuit C with local and transmission gates, with m wires in
total, as well as an input x for C and random tape consisting of two strings: a
vector α = (αj)j∈[m] ∈ {0, 1}m of masks (one for each wire), and a vector of
“wire keys” s = (s0j , s

1
j )j∈[m]. The keys of the j-th wire s0j , s

1
j ∈ {0, 1}ωj are of

length ωj which is defined recursively. If j is an output wire then ωj = 0. If j is
an input wire of local gate whose output wire is k, then ωj = 2(ωk+1). If j is an
input wire of a p-ary transmission gate whose output wires are k1, . . . , kp then
ωj =

∑
i∈[p](ωki + 1). By our definition of depth, the total length of s, denoted

by ωC = 2 ·
∑
j∈[m] ωj , is polynomial in m and 2d where d is the depth of C.

Lastly, if j is an input wire for a local gate and s is one of its wire keys, we let
s[0], s[1] denote the first and second half of s respectively.

The encoding. We now turn to the encoding procedure, which is divided
into two parts, first we compute a sequence Γ by running a subroutine Γ =
Permute(C,α) (note that this subroutine depends only on α and not on any of
the other input values). Then we apply Encrypt(C,x, s,α,Γ ), which outputs the
final encoding. The procedures are described below.

– The procedure Permute(C,α) operates as follows. For every local gate g in
C, with input wires c, d ∈ [m], compute the (ordered) set

Γg :=
{
γβc,βdg := G(αc ⊕ βc, αd ⊕ βd)

}
βc,βd∈{0,1}

(1)

where G : {0, 1}2 → {0, 1} is the function that the gate g computes. Let Γ
denote the (ordered) set {Γg}g for all local gates in C, output Γ .

– The procedure Encrypt(C,x, s,α,Γ ) operates as follows. For every gate g in
C, construct its gate table Qg:
• If g is a local gate, with incoming wires c, d and outgoing wire k, the

gate table of g consist of four values. For every βc, βd ∈ {0, 1}, compute
Qβc,βdg by setting γ := γβc,βdg and computing:

Qβc,βdg︸ ︷︷ ︸
“ciphertext”

:= (sγk‖γ ⊕ αk)︸ ︷︷ ︸
“message”

⊕ sαc⊕βcc [βd] ⊕ sαd⊕βdd [βc] .

One can view Qβc,βdg as a one-time pad ciphertext, encrypted using the
wire keys of the input wires.
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• Transmission gates are treated analogously. That is, if g is a transmission
gate g with incoming wire c and outgoing wires k1, . . . , kp, the table of g
consists of two values. For every βc ∈ {0, 1}, set γ = βc ⊕ αc and define

Qβcg :=
(

(sγk1‖γ ⊕ αk1)‖ . . . ‖(sγkp‖γ ⊕ αkp)
)
⊕ sαc⊕βcc .

Finally, the encoding includes the sequenceQ containing all gate table values
Qβc,βdg , Qβcg , as well as a sequence σ containing the wire keys and masked

values (s
xj
j , xj ⊕ αj) for every input wire j.

Decoding. The decoding procedure Decode(Q,σ) takes as input a sequence of
gate tables, and pairs (sj , v̂j) for the input wires. It outputs a sequence v̂j for
all j ∈ [m] by traversing the gate tables in topological order. (Here we slightly
deviate from the standard convention in randomized encoding literature that
the decoder outputs the unmasked values of the output wires.) This is done by
traversing the circuit from the inputs to the outputs as follows. For input wires j
the pair v̂j , sj is given explicitly the input. For an internal wire that is an output
wire of a local gate g with incoming wires c, d, this is done by using the masked
bits v̂c, v̂d to select the ciphertext Qv̂c,v̂dg and then decrypting (i.e., XOR-ing) it
with sc[v̂d] ⊕ sd[v̂c]. The recovered value is then denoted (sk, v̂k). Transmission
gates are treated similarly: use the masked bit v̂c of the input wire to select the
ciphertext Qv̂cg and then XOR it with sc to obtain (ski , v̂ki) for i = 1, . . . , p.

Useful Properties We first state properties of Encrypt that will be important
for our purposes.

Proposition 3.1. The function Encrypt has algebraic degree 2 when written as
a polynomial over the binary field in its inputs.

Proof. This property is straightforward from the definition, since the only non-
linear components in Encrypt are ones that require making a selection of the
form sz, where z is some variable from α or Γ (or a linear shift thereof), such a
value can be expressed as s0 ⊕ z · (s0 ⊕ s1), i.e. a quadratic function. (Note that
all β values are fixed and known whenever they are used.)

The next proposition follows by definition.

Proposition 3.2. The function Encrypt is only dependent on the topology of C
and not on the functionality G of local gates.

The following propositions (3.3, 3.4) have been proven multiple times in the
garbled circuit literature (cf. [16]).

Proposition 3.3 (Efficiency). For all C,x, s,α, where C if of depth d and
size m, the computational complexity of Encode(C,x; s,α) is a fixed polynomial
in m, 2d.

For every circuit C and input x, we define for all j ∈ [m] the value vj as the
value that the wire takes when evaluating C on x (in particular for input wires,
vj = xj).
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Proposition 3.4 (Correctness). For all C,x, s,α, setting z = Encode(C,x; s,α),
and then {v̂j}j∈[m] = Decode(z), it holds that v̂j = vj ⊕ αj.

In Section 3.3 we will prove the following, somewhat non-standard, simulation
property of garbled circuit. (The case where W is taken to be set of output wires
corresponds to the standard simulation property of information-theoretic garbled
circuits.)

Proposition 3.5. There exists a ppt simulator Sim that takes as an input a cir-
cuit C, a subset of wires W , and for every wire j ∈W a mask-bit/intermidiate-
value pair (αj , vj) ∈ {0, 1}×{0, 1} such that the following holds. For every C,W
and {αj}j∈W and every input x the random variable

Sim(C,W, {αj , vj}j∈W ),

where the value vj is the value induced on the j-th wire of C by the input x, is
distributed identically to the random variable

Encode(C,x; s,α),

where s is uniformly random and α = {αj}j∈W ∪ {αj}j /∈W for a uniformly
random {αj}j /∈W .

Recall that the outcome Γ of Permute(C,α) is a vector that is indexed by
the gates of C where for each gate g the entry Γg is a four-bit string as defined
in Eq. (1). The following key lemma shows that a corruption of some entries of
Γ corresponds to applying Permute to a corrupted version of the circuit C with
the same randomness α.

Lemma 3.2 (Corruption Lemma). For all C,α, let Γ = Permute(C,α), let
H be a subset of the gates of C, and let Γ ′ be a vector for which Γ ′g = Γg for
all gates g /∈ H. Then there exists a circuit C ′ which is obtained from C by
(possibly) modifying only gates in H, such that Γ ′ = Permute(C ′,α). Moreover,
C ′ can be efficiently computed based on C,H, {Γ ′g}g∈H and based on the values
of the masked bits αi for all wires i that enter the gates in H.

Proof. We define C ′ by modifying the H gates of the circuit C as follows. For
all g ∈ H, consider Γ ′g = {γ′β1,β2}β1,β2∈{0,1}. Let α1, α2 denote the α values
corresponding to the input wires of g. Define a new gate functionality G′g :

{0, 1}2 → {0, 1} as

G′(β1, β2) = γ′(β1,β2)⊕(α1,α2) .

The property Γ ′ = Permute(C ′,α) follows by definition.

3.3 Proof of Proposition 3.5

We begin with the following standard proposition that captures the privacy
property of garbled circuits. Note that our Encode procedure as defined above
does not release any of the α values in the clear.
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Proposition 3.6 (Simulation). Let (C(1),x(1)), (C(2),x(2)) be such that C(1), C(2)

are topologically equivalent. Then for uniformly random s,α, the random vari-
ables Encode(C(1),x(1); s,α) and Encode(C(2),x(2); s,α) are identically distributed.

The following claim will be useful for deriving Proposition 3.5 below.

Claim 1. Let (C(1),x(1),α(1)), (C(2),x(2),α(2)) be such that C(1), C(2) are topo-
logically equivalent, and such that v(2) ⊕ y(2) = v(2) ⊕ y(2). Then, consid-
ering a uniformly random s, the distributions Encode(C(1),x(1); s,α(1)) and
Encode(C(2),x(2); s,α(2)) are identical distributed.

Proof. Let y(1),y(2), s(1), s(2) be uniform and independent, and define, for i ∈
{1, 2}, random variables ζ(i) = Encode(C(i),x(i); s(i),α(i)). Then by Proposi-
tion 3.6, the two random variables are identically distributed: ζ(1) ≡ ζ(2). We
recall that by the definition of Decode, there exists a deterministic function d s.t.
d(ζ(i)) = v(i) ⊕ y(i). As for any deterministic function, we have (ζ(1), d(ζ(1))) ≡
(ζ(2), d(ζ(2))), i.e. (ζ(1),v(1) ⊕ y(1)) ≡ (ζ(2),v(2) ⊕ y(2)). This implies that for
any value of y∗ it holds that (ζ(1)|v(1) ⊕ y(1) = y∗) ≡ (ζ(2)|v(2) ⊕ y(2) = y∗).
That is, the conditional distributions are identical.

Now set y∗ = v(1) ⊕ y(1) = v(2) ⊕ y(2), and notice that the random variable
(ζ(i)|v(i)⊕ y(i) = y∗) is distributed identically to Encode(C(i),x(i); s,α(i)). The
claim follows.

We can now prove Proposition 3.5.

Proof (Proof of Proposition 3.5). The simulator Sim(C,W, {αj , vj}j∈W ) consid-
ers a circuit C ′ topologically equivalent to C, but such that the values on the
wires W are always fixed to the respective vj regardless of the input. This can
be done by fixing some of the local gates to always output the desired values.
This is possible since in v[W ], for any fan-out gate, the input and all outputs
take the same value. The simulator then samples random values for α′[W ], and
creates α′ by merging them with the values α[W ]. Finally it samples a random
s′ and outputs z′ ← Encode(C ′,0; s′,α′).

Consider now z ← Encode(C,x; s,α), where s is uniformly random and
α = {αj}j∈W ∪ {αj}j /∈W for a uniformly random {αj}j /∈W . Recall that C,C ′

are topologically equivalent, so have the same set of wires, and let vj , v
′
j denote

the values of wire j in the executions C(x) and C ′(0) respectively. We note that
α[W ] = α′[W ], and that by the definition of C ′ it holds that v[W ] = v′[W ].
Since α[W ], α′[W ] are uniformly random, it must be the case that v ⊕ α and
v′ ⊕α′ are identically distributed. Invoking Claim 1 concludes the proof.

4 Our Master Theorem

We show how to convert any protocol Π for computing a functionality f (irre-

spective of round complexity) into a non-interactive h-oracle-aided protocol Π̂h,
where h is a quadratic function and while preserving the security properties of
Π. A formal statement follows.
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Theorem 4.1 (Master Theorem). For every n-party protocol Π there exists

an n-party non interactive oracle-aided protocol Π̂h and an L = poly(2d, n,m),
where d (resp. m) is the depth (resp. size) of the circuit representation of Π (see
Definition 3.1), with the following properties.

1. Efficiency. The communication and computational complexity of Π̂h is at
most L times larger than that of Π.

2. Quadratic Oracle. The oracle h is a quadratic function.
3. Simulation. For every strategy Â acting on Π̂h, there exists a strategy A of

complexity at most L times larger acting on Π, such that for all T ⊆ [n] and
for all x = (x1, . . . , xn), the distributions REALΠ,T,A(x) and REALΠ̂h,T,Â(x)

are identical. Furthermore, if Â is semi-honest (i.e. follows the protocol) then
so is A.

Note that the simulation property also guarantees that the functionality of Π̂ is
the same as that of Π since the outputs of honest parties is included in the real
model distribution.

Remark 4.1. It suffices to prove Theorem 4.1 only for deterministic protocols
Π, since for a randomized protocol we can always consider Π to be the induced
deterministic protocol where the parties’ coins are treated as part of their input.
Since our theorem quantifies over all inputs x, this will also capture the case
where part of the input (corresponding to the random tapes of the randomized
protocol) is uniformly sampled.

Remark 4.2. Interestingly, we are able to prove the theorem using strategies A
that are somewhat weaker than the most general conceivable malicious strategy,
in the following sense. The colluding parties can only communicate before the
execution of Π starts. That is, they cannot change their strategy in intermediate
rounds of Π according to messages that were received by other parties in the
collusion, however they share their initial views after seeing their inputs and
before the first round begins.

In the remainder of the section we prove Theorem 4.1. We note that Lemma
3.1 and Lemma 3.2 are new observations made in this work and they constitute
a fundamental part of this proof.

Proof. As explained in Remark 4.1, we may assume that Π is deterministic. Our
protocol essentially computes the point-and-permute encoding (Section 3.2) of
the circuit representation of the protocol Π (Definition 3.1). The oracle h will
correspond to the procedure Encrypt, and the Γ values are to be precomputed
by the parties. Details follow.

Let (C,P ) be the circuit representation of Π, and consider the computation

Encode(C,x; s,α). The protocol Π̂h is a non-interactive oracle-aided protocol,
i.e. it contains a pre-processing step where each party locally computes a message
to send to the oracle, followed by an oracle response and local post-processing.
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– Preprocessing. Each party i, on input xi, samples a uniform vector si ∈
{0, 1}ωC (see the description of Encode in Section 3.2 for the definition of
ωC), and uniform values αj for all j for which P (j) = i (i.e. for all wires
“belonging” to player i). Then for each local gate g that belongs to player i,
the party computes the values Γg as in Eq. (1) (note that since g belongs to
i, then i possesses all α values required for this computation). Finally, player
i sends `i = (xi, si,αi,Γ i) to the oracle h.

– Oracle. The oracle h takes all messages `i = (xi, si,αi,Γ i). It concatenates
all xi into a joint input x for C, unites all αi into a vector α containing
a value for every wire, and unites all Γ i into a single Γ containing a set
Γg for every local gate g. Finally, it XORs the si values into a single string
s = ⊕isi. Note that all of these are linear operations.
Finally it computes z = Encrypt(C,x, s,α,Γ ) and sends (the same) z to all
parties as response to their query.

– Postprocessing. Upon receiving z, each party i applies Decode(z) to obtain
the sequence v̂j for all j ∈ [m]. Then, for any output wire j belonging to
party i, it computes v̂j⊕αj to obtain the output value (recall that for a wire
j belonging to party i, the value αj was locally generated by party i and is
therefore available for postprocessing). Its output contains the collection of
values on these output wires.

Properties 1, 2 in the theorem follow immediately from the properties of
the point-and-permute encoding (Propositions 3.3 and 3.1). It remains to prove
property 3.

Let (Â, T ) be an adversary for Π̂. Since Π̂ is non-interactive, then Â only
gets to choose the values `[T ] = {`i}i∈T based on the inputs x[T ], and then
postprocess the oracle response z. We can further simplify and consider w.l.o.g
only adversaries Â that are deterministic (since our simulation is perfect and
therefore holds even conditioned on any random string) and do not perform any
postprocessing but instead just output z (since any postprocessing results in a
deterministic function of z, thus simulating z allows to simulate any such value).

Our Simulator. Our task is to produce an adversary (A, T ) for the original
protocol Π with the same real-model distribution as our (deterministic, no-

postprocessing) Â. We assume throughout that T 6= [n] (i.e. there exist honest

parties) otherwise the result is trivial. The adversary A first runs Â on x[T ]
to obtain the values `[T ]. Let us denote by W all wires j s.t. P (j) ∈ T , i.e. all
wires that belong to parties controlled by the adversary (and W the complement
set of wires), and by H all local gates that are controlled by parties in T (and
H the complement set of local gates). By parsing `[T ] appropriately, we derive
the values x′[T ], α[W ] and Γ [H], namely all α and Γ values associated with
adversarially controlled parts of C. (Note that x′[T ] is not necessarily identical
to x[T ] since the adversary is allowed to “change its input”.)

By the Corruption Lemma (3.2) we can efficiently generate a circuit C ′ that is
topologically equivalent to C and only differs from it in local gates controlled by
the adversary. By Lemma 3.1, (C ′, P ) is a protocol representation of a protocol
Π ′ where all M ′i for i 6∈ T are the same as in Π, but M ′i for i ∈ T might differ.
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The adversary A now sets each party i ∈ T to (honestly) execute the protocol
Π ′ (i.e. the machine M ′i) using its respective input x′i. Since for honest parties
Mi = M ′i , we have that the parties jointly execute Π ′ on input x′ = x[T ]∪x′[T ].

Notice that if Â is semi-honest then Γ ′ = Γ and thus C ′ = C, which, in turn,
implies that Π ′ = Π and therefore A is semi-honest as well.

After the end of the execution of Π ′, the parties under the adversary’s control
do not return their prescribed output in Π ′. Instead, the adversary A collects
the views of all parties under its control, which correspond to the set of values
v[W ], i.e. the values on the W wires of C ′ when computed on x′ (however A
does not know x[T ] or any of the values v[W ]). Lastly we apply the simulator
from Proposition 3.5, i.e. the adversary A executes Sim(C ′,W,α[W ],v[W ])→ z′

and sets the outputs of all parties in T to be z′.

Proof of Simulation. It remains to show that indeed REALΠ̂h,T,Â(x) ≡ REALΠ,T,A(x).

Let us fix a value for x throughout the proof. Since we assume w.l.o.g that Â is
deterministic, this also fixes values for x′[T ], α[W ], Γ [H], and {si}i∈T . Recall
that x′ = x[T ] ∪ x′[T ] (again a fixed value).

We start by noting that in REALΠ̂h,T,Â the parties in T all output the same

value z, and in REALΠ,T,A they all output the same z′. Letting y[T ] denote the
output of T parties in REALΠ̂h,T,Â, and y′[T ] denote the outputs of these parties

in REALΠ,T,A, we conclude that our goal is to prove that (y[T ], z) is distributed
identically to (y′[T ], z′).

Consider the distribution (y[T ], z), and note that z = Encrypt(C,x′, s,α,Γ ).
The vector s is random since it is XOR of all parties’ si and there exists at least
one honest party that samples its si uniformly. The vector α is the union of
α[W ] and a uniformly sampled α[W ]. The vector Γ , by Lemma 3.2, is equal to
Permute(C ′,α). Since Encrypt only cares about the topology of its input circuit
(Proposition 3.2), then in fact

z = Encrypt(C,x′, s,α,Γ )

= Encrypt(C ′,x′, s,α,Γ )

= Encode(C ′,x′; s,α) ,

where the last inequality is because Encode by definition first generates Γ =
Permute(C ′,α), and then applies Encrypt.

Defining z in this way will allow us to show that the marginal distributions of
y[T ] and y′[T ] are both identical and in fact fixed (having fixed x, deterministic

Â). To see this, first note that by Proposition 3.4 (correctness of garbled circuit),
y[T ] is determined by the values of the output wires belonging to T parties in
the evaluation of C ′ on x′. These values are determined by C ′,x′ regardless of
randomness. Likewise, y′[T ] by definition is the output of the honest parties
during the execution of Π ′ on x′, and since Π ′ is represented by C ′, the output
values are exactly the output values of C ′. Lastly, z ≡ z′ since by Proposition 3.5

Encode(C ′,x′; s,α) ≡ Sim(C ′,W,α[W ],v[W ])
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where the randomness is taken over s, α[W ] and the coins of Sim. This finalizes
the proof of the theorem.

5 Completeness Theorems

In this section we prove that degree-2 functionalities are complete under non-
interactive reductions. We say that a protocol has a security loss of L if any
viable real-world adversary A can be simulated by an ideal-world adversary B
whose complexity is at most L times larger than the complexity of A. We prove
the following theorem.

Theorem 5.1 (Completeness of quadratic functions). Let f be an n-party
functionality computable by a circuit of size S and depth D. Then there exists
a non-interactive reduction from the task of securely computing f to the task of
computing a degree-2 functionality over F2. The reduction can take any of the
following forms:

1. Perfectly secure reduction with threshold of t =
⌈
n
3 − 1

⌉
and computational

complexity and security loss of poly(n, S, 2D).
2. Statistically secure reduction with threshold of t =

⌈
n
2 − 1

⌉
and computa-

tional complexity and security loss of poly(n, S, 2D).
3. Assuming one-way functions, computationally secure reduction with thresh-

old of t =
⌈
n
2 − 1

⌉
and computational complexity and security loss of poly(n, S).

Furthermore, the reduction makes a black-box use of the one-way function
(as part of the preprocessing and postprocessing phases).11

The protocols are employed over synchronous network with pairwise private
channels and a broadcast channel (which is our default setting). In all three
settings, we require full security (in particular, the adversary cannot abort the
honest players). It is well known that in this case the best achievable thresh-
old is d(n/3)− 1e for perfect MPC (cf. [5]) and d(n/2)− 1e for statistical, or
even computational, MPC [21]. Hence, the theorem achieves optimal security
thresholds in all three cases.

As usual in the context of constant-round information-theoretic MPC, our
information-theoretic protocols are efficient only for NC1 functionalities.12 Nev-
ertheless, even for general functions, for which our perfect and statistical re-
ductions are inefficient, the result remains meaningful since the protocols resist
computationally unbounded adversaries.

See full version for proof of Theorem 5.1.

6 Perfect Three-Round MPC

In this section we obtain a 3-round protocol with full security (i.e. no abort) for
general functions. Namely, we prove the following theorem.

11 In the computational setting, we let the circuit size S play the role of the security
parameter, and assume that n is at most polynomial in S.

12 This can be slightly pushed to log-space computation via standard techniques.
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Theorem 6.1 (Perfect 3-round MPC with threshold of quarter).

– Every NC1 functionality can be securely computed in 3 rounds with perfect
security and threshold of t =

⌈
n
4 − 1

⌉
.

– Given a black-box access to a one-way function, the above extends to arbitrary
polynomial-time functionalities at the expense of downgrading security to
computational.

By item 1 and item 3 of Theorem 5.1, the design of such protocols reduces to
the design of a protocol with similar security properties for degree-2 functional-
ities. It therefore suffices to prove the following proposition.

Proposition 6.1. Let f be an n-party functionality with complexity S and de-
gree 2 (over the binary field). Then f can be perfectly computed in 3 rounds with
security threshold of t =

⌈
n
4 − 1

⌉
and complexity of poly(n, S).

The proof of Proposition 6.1 appears in Section 6.1.

6.1 Proof of Proposition 6.1

VSS and friends. A key component in the proof is verifiable secret sharing
(VSS) [7]. In such secret sharing schemes, even if the dealer acts maliciously
while sharing the secret s, all of the honest parties end up with shares that are
consistent with some secret s′. We consider the Shamir-based VSS for threshold
t where n = 4t + 1. The VSS will be implemented over an extension field F of
GF(2) of size at least n+ 1, e.g., F = GF(2blogn+1c). In particular, we will need
2-round protocols that realize the following functionalities with perfect security
and threshold of t.

– The functionality Shared in which a single designated party (denoted as the
dealer) holds as an input a degree d univariate polynomial P over F (whose
zero coefficient s plays the role of the secret) and all other parties have no
input. The functionality delivers to the i-th party the value s[i] = P (i).13

We refer to (s[1], . . . , s[n]) as a degree-d sharing of s. Note that security
guarantees that for any adversarial set T of cardinality at most t, after the
execution of Shared the outputs of honest parties, i.e. s[T ], lie on a single
polynomial P ′ of degree d, and, if the dealer is honest (i.e. not in T ) then
P ′ = P . For every degree-bound d ≤ t, Gennaro et al. [11] describe a 2-round
n-party protocol that perfectly realizes Shared.

– The functionality Shared,0 which is defined similarly to Shared except that
the free coefficient of the dealer’s input polynomial P must be zero. This
functionality will be employed with degree d = 2t, and we can realize it in

13 As usual we assume that every i ∈ [n] is associated with some public distinct field
element αi 6= 0 and, by abuse of notation, we denote this element by i.
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2 rounds with perfect security and threshold t via the following standard
reduction to Sharet. The dealer decomposes her polynomial P (Z) into

t∑
j=1

ZjRj(Z) (2)

where R1, . . . , Rt are degree t polynomial that are chosen uniformly at ran-
dom subject to the above constraint. Then the dealer shares each Rj via
Sharet, and the i-th party gets R1(i), . . . , Rt(i) and locally set his output to
i1R1(i) + · · ·+ itRt(i).

– The functionality BinSharet which is defined similarly to Sharet except that
the free coefficient of the dealer’s input polynomial P must be zero or one.
We realize this functionality in 2 rounds with perfect security and threshold
t via a reduction to the Sharet protocol of Gennaro et al. [11]. This reduction,
described in the full version, is non-black-box and it relies on some concrete
properties of the protocol. (To the best of our knowledge this reduction has
not appeared in the literature.)

Given the above ingredients the protocol is quite straightforward. In par-
ticular, we rely on the following two standard properties of polynomial-based
secret sharing: (1) 2-multiplicative: If the parties share the secrets (s1, . . . , sk)
via a degree-d sharing then, for every degree-2 mapping f over F, we can get
a degree 2d-sharing of the secret f(s1, . . . , sk) by locally applying the degree-2
mapping f to the shares of each party. (2) Noisy interpolation: Given N points
(y1, . . . , yN ) ∈ FN with the promise that there exists a degree-D polynomial P
for which P (i) = yi for all but b(N −D)/2c of i ∈ [N ], we can efficiently recover
the polynomial P (and this polynomial is unique) via the standard Reed-Solomon
decoder.

The protocol. Let f be a degree-2 n-party functionality. We view f as a formal
degree-2 polynomial over F with 0-1 coefficients. For ease of notation, assume
that each party holds a single input xi, and that the functionality has a single
output that is delivered to all parties. (The protocol can be easily modified to
handle the more general case.)

1. In parallel, every party i ∈ [n] that holds an input xi ∈ {0, 1} samples a
random degree-t polynomial Pi over F whose free coefficient is xi. The party
invokes the 2-round protocol that implements BinSharet as a dealer whose
input is Pi. All parties receive the shares (xi[1], . . . , xi[n]). In addition, every
party i ∈ [n] chooses a random degree-2t polynomial Ri whose free coefficient
is zero and distribute it to all the parties using via Share2t,0.

2. Each party j computes f over its shares, i.e. f(x1[j], . . . , xn[j]) → y[j]. It
then randomizes the result by adding the value R1(j) + · · · + Rn(j) and
broadcasts the randomized share ỹ[i].

3. Each party interpolates a degree 2t polynomial Y which is consistent with
at least n− t of the points (ỹ[1], . . . , ỹ[n]), the party outputs the value Y (0).

Standard analysis (cf. [8, Section 2.2]) shows that the above protocol perfectly
computes f with threshold t. ut
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7 Two-Round MPC with Abort

We move on to the case of two-round protocols. As already mentioned, even if
a broadcast channel is given we cannot hope for full security (or even fairness)
when more than a single party is corrupted [12]. We therefore consider two
standard relaxations of security with abort. As explained in Section 3, both
notions are formalized by modifying the ideal-model in a way that grants the
adversary additional power. We repeat the definition for the convenience of the
reader.

– Security with Selective Abort (SSA) allows the adversary to selectively abort
some of the honest parties (after the adversary learns his output). Formally,
the ideal functionality first delivers the outputs of the corrupted parties to
the simulator, which then can decide for each uncorrupted party whether
this party will receive its output or a special abort symbol.

– Security with Abort (SA) allows the adversary to abort the honest parties
even after the adversary learns his output. This is formalized similarly to
SSA except that when the adversary decides to abort, all the honest parties
receive a special abort symbol.

In the remainder of this section we prove the following theorems.

Theorem 7.1 (2-Round MPC with selective abort).

– Every NC1 functionality can be computed in 2 rounds with statistical security,
selective abort and security threshold of t =

⌈
n
2 − 1

⌉
. The protocol does not

use a broadcast channel.
– Given a black-box access to a one-way function, the above extends to arbitrary

polynomial-time functionalities at the expense of downgrading security to
computational.

Theorem 7.2 (Computational 2-Round MPC with abort). Given a black-
box access to a one-way function, every polynomial-time functionality can be
computed in 2 rounds with computational security, standard abort and security
threshold of t =

⌈
n
2 − 1

⌉
.

Theorem 7.2 and the computational part in Theorem 7.1 both introduce
2-round protocols with black-box access to one-way functions for polynomial-
time functions and the same security threshold. They differ, however, since the
protocols in Theorem 7.2 guarantee the stronger security notion (SA) at the
expense of using a broadcast channel. (Indeed, the proof of Theorem 7.2 relies
on Item 2 in Theorem 7.1.). By [20], selective abort is the best possible security
for 2-round protocols that only use secure channels.

For proofs of Theorems 7.1, 7.2, see full version.
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