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Abstract. In privacy amplification, two mutually trusted parties aim to amplify
the secrecy of an initial shared secret X in order to establish a shared private key K
by exchanging messages over an insecure communication channel. If the channel
is authenticated the task can be solved in a single round of communication using
a strong randomness extractor; choosing a quantum-proof extractor allows one to
establish security against quantum adversaries.
In the case that the channel is not authenticated, this simple solution is no longer
secure. Nevertheless, Dodis and Wichs (STOC’09) showed that the problem can
be solved in two rounds of communication using a non-malleable extractor, a
stronger pseudo-random construction than a strong extractor.
We give the first construction of a non-malleable extractor that is secure against
quantum adversaries. The extractor is based on a construction by Li (FOCS’12),
and is able to extract from source of min-entropy rates larger than 1/2. Com-
bining this construction with a quantum-proof variant of the reduction of Dodis
and Wichs, due to Cohen and Vidick (unpublished) we obtain the first privacy
amplification protocol secure against active quantum adversaries.
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1 Introduction

Privacy amplification. We study the problem of privacy amplification [5, 30, 4, 31]
(PA). In this problem, two parties, Alice and Bob, share a weak secret X (a random
variable with min-entropy at least k). Using X and an insecure communication channel,
Alice and Bob would like to securely agree on a secret key R that is ε-close to uniformly
random even to an adversary Eve who may have full control over their communication
channel. This elegant problem has multiple applications including biometric authenti-
cation, leakage-resilient cryptography, and quantum cryptography.

If the adversary Eve is passive, i.e., she is only able to observe the communication
but may not alter the messages exchanged, then there is a direct solution based on
the use of a strong seeded randomness extractor Ext [33]. This can be done by Alice
selecting a uniform seed Y for the extractor, and sending the seed to Bob; Alice and Bob
both compute the key R = Ext(X, Y), which is close to being uniformly random and
independent of Y by the strong extractor property. The use of a quantum-proof extractor
suffices to protect against adversaries holding quantum side information about the secret
X.

Privacy amplification is substantially more challenging when the adversary is ac-
tive, i.e. Eve can not only read but also modify messages exchanged across the commu-
nication channel. This problem has been studied extensively in several works includ-
ing [31, 35, 16, 19, 8, 17, 13, 27, 25, 26, 20, 2, 28, 9, 12, 3, 29], yielding constructions
that are optimal or near-optimal in any of the parameters involved in the problem, in-
cluding the min-entropy k, the error ε, and the communication complexity of the proto-
col.

Active adversaries with quantum side information. We consider the problem of active
attacks by quantum adversaries. This question arises naturally when privacy amplifica-
tion is used as a sub-protocol, e.g., as a post-processing step in quantum key distribution
(QKD), when it may not be safe to assume that the classical communication channel
is authenticated.5 To the best of our knowledge the question was first raised in [7],
whose primary focus is privacy amplification with an additional property of source
privacy. Although the authors of [7] initially claimed that their construction is secure
against quantum side information, they later realized that there was an issue with their
argument, and withdrew their claim of quantum security. The only other work we are
aware of approaching the question of privacy amplification in the presence of active
quantum adversaries is [14]. In this paper it is shown that a classical protocol for PA
introduced by Dodis and Wichs [19] remains secure against active quantum attacks
when the main tool used in the protocol, a non-malleable extractor, is secure against
quantum side information (a notion that is also formally introduced in that paper, and
to which we return shortly). Unfortunately, the final contribution of [14], a construction
of a quantum-proof non-malleable extractor, also had a flaw in the proof, invalidating
the construction. Thus, the problem of quantum-secure active privacy amplification re-
mained open.

5 QKD relies on an authenticated channel at other stages of the protocol, and here we only
address the privacy amplification part: indeed, PA plays an important role in multiple other
cryptographic protocols, and it is a fundamental task that it is useful to address first.



It may be useful to discuss the difficulty faced by both these previous works, as it
informed our own construction. The issue is related to the modeling of the side infor-
mation held by the adversary Eve, and how that side information evolves as messages
are being exchanged, and possibly modified, throughout the privacy amplification pro-
tocol. To explain this, consider the setting for a non-malleable extractor, whose security
property can be defined without referring to the way the extractor is used for privacy
amplification. Here, Alice initially has a secret X (the source), while Eve holds side
information E, a quantum state, correlated with X. Alice selects a uniformly random
seed Y and computes Ext(X, Y). However, in addition to receiving Y (as would already
be the case for a strong randomness extractor), Eve is also given the possibility to select
an arbitrary Y′ 6= Y and receive Ext(X, Y′) as “advice” to help her break the extractor
— i.e., distinguish Ext(X, Y) from uniform. Now, clearly in any practical scenario the
adversary may use her side information E in order to guide her choice of Y′; thus Y′

should be considered as the outcome of a measurement {My′
y }, depending on Y = y

and performed on E, which returns an outcome Y′ = y′ and a post-measurement state
E′. This means that the security of the extractor should be considered with respect to
the side information E′. But due to the measurement, E′ may be correlated with both
X and Y in a way that cannot be addressed by standard techniques for the analysis of
strong extractors. Indeed, even if E′ is classical, so that we can condition on its value,
X and Y may not be independent after conditioning on E′ = e′; due to the lack of inde-
pendence it is unclear whether extraction works. (Classical proofs condition on E = e
at the outset, which does preserve independence.)

The issue seems particularly difficult to accommodate when analyzing extractors
based on the technique of “alternate extraction”, as was attempted in [7, 14]. In fact,
in the original version of [7] the issue is overlooked, resulting in a flawed security
proof. In [14] the authors attempted to deal with the difficulty by using the formalism
of quantum Markov chains; unfortunately, there is a gap in the argument and it does not
seem like the scenario can be modeled using the Markov chain formalism. Note that
in the classical setting the issue does not arise: having fixed E = e we can consider
Y′ to be a fixed, deterministic function of Y — there is no E′ to consider, and X is
independent of both Y and Y′ conditioned on E = e. In this paper we do not address
the issue, but instead focus on a specific construction of non-malleable extractor whose
security can be shown by algebraic techniques sidestepping the difficulty; we explain
our approach in more detail below.

Our results. We show that a non-malleable extractor introduced by Li [27] in the clas-
sical setting is secure against quantum side information. Combining this construction
with the protocol of Dodis and Wichs and its proof of security from [14], we obtain the
first protocol for privacy amplification that is secure against active quantum adversaries.

Before describing our results in more detail we summarize Li’s construction and
its analysis for the case of classical side information. The construction is based on
the inner product function. Let p be a prime, Fp the finite field with p elements, and
〈·, ·〉 the inner product over Fp. Consider the function Ext : Fn

p × Fn
p → Fp given

by Ext(X, Y) := 〈X, Y〉, where X ∈ Fn
p is a weak secret with min-entropy (condi-

tioned on the adversary’s side information) assumed to be greater than (n log p)/2,



and Y is a uniformly random and independent seed. For this function to be a non-
malleable extractor, it is required that Ext(X, Y) is close to uniform and independent
of Ext(X, f (Y)), where f is any adversarially chosen function such that f (Y) 6= Y
for all Y. This is clearly not true, since if f (Y) = cY for some c ∈ Fp \ {1}, then
Ext(X, f (Y)) = cExt(X, Y), and hence we don’t get the desired independence. Thus,
for such a construction to work, it is necessary to encode the source Y as Enc(Y), for
a well-chosen function Enc, in such a way that 〈X,Enc(Y)〉 − c · 〈X,Enc( f (Y))〉 is
hard to guess. The non-uniform XOR lemma [17, 13, 3] shows that it is sufficient to
show that 〈X,Enc(Y)〉 − c · 〈X,Enc( f (Y))〉 = 〈X,Enc(Y)− c · Enc( f (Y))〉 is close
to uniform conditioned on Y and E. The encoding that we use in this paper (which is
almost the same as the encoding chosen by Li) is to take Y ∈ Fn/2

p , and encode it as
Y‖Y2, which we view as an n-character string over Fp, with the symbol ‖ denoting con-
catenation of strings and the square taken by first interpreting Y as an element of Fpn/2 .
Then it is not difficult to show that for any function f such that f (Y) 6= Y and any c,
we have that (Y‖Y2)− (c · f (Y)‖c · f (Y)2) (taking the addition coordinatewise) has
min-entropy almost (n log p)/2. Thus, provided X has sufficiently high min-entropy
and using the fact that X and (Y‖Y2)− (c · f (Y)‖c · f (Y)2) are independent condi-
tioned on E, the strong extractor property of the inner product function gives the desired
result.6

Our main technical result is a proof of security of Li’s extractor, against quantum
side information. We show the following (we refer to Definition 5 for the formal defini-
tion of a quantum-proof non-malleable extractor):

Theorem 1. Let p 6= 2 be a prime. Let n be an even integer. Then for any ε > 0 the
function nmExt(X, Y) : Fn

p×Fn/2
p → Fp given by 〈X, Y‖Y2〉 is an (

( n
2 + 6

)
log p−

1 + 4 log 1
ε , ε) quantum-proof non-malleable extractor.

We give the main ideas behind our proof of security for this construction, highlight-
ing the points of departure from the classical analysis. Subsequently, we explain the
application to privacy amplification.

Proof ideas. We begin by generalizing the first step of Li’s argument, the reduction
provided by the non-uniform XOR lemma, to the quantum case. An XOR lemma with
quantum side information is already shown in [22], where the lemma is used to show
security of the inner product function as a two-source extractor against quantum side
information. This version is not sufficient for our purposes, and we establish the fol-
lowing generalization, which may be of independent interest (we refer to Section 3 for
relevant definitions):

Lemma 1. Let p be a prime power and t an integer. Let ρX0XE be a ccq state with
X0 ∈ Fp and X = (X1, . . . , Xt) ∈ Ft

p. For all a = (a1, . . . , at) ∈ Ft
p, define a

random variable Z = X0 + 〈a, X〉 = X0 + ∑t
i=1 aiXi. Let ε ≥ 0 be such that for all

6 This description is a little different from Li’s description since he was working with a field of
size 2n, but we find it more convenient to work with a prime field.



a, 1
2

∥∥ρa
ZE −UZ ⊗ ρE

∥∥
1 ≤ ε. Then

1
2

∥∥ρX0XE −UX0 ⊗ ρXE
∥∥

1 ≤ p
t+1

2

√
ε

2
. (1.1)

XOR lemmas are typically proved via Fourier-based techniques (including the
one in [22]). Here we instead rely on a collision probability-based argument inspired
from [3]. We prove Lemma 1 by observing that such arguments generalize to the quan-
tum setting, as in the proof of the quantum leftover hash lemma in [36].

Based on the XOR lemma (used with t = 1), following Li’s arguments it remains
to show that the random variable 〈X, g(Y, Y′)〉 ∈ Fp, where g(Y, Y′) = Y‖Y2 −
c(Y′‖Y′2) ∈ Fn

p, is close to uniformly distributed from the adversary’s point of view,
specified by side information E′, for every c 6= 0 ∈ Fp. As already mentioned earlier,
this cannot be shown by a reduction to the security proof of the inner product function as
a two-source extractor against side information, as X and g(Y, Y′) are not independent
(not even conditioned on the value of E′ when E′ is classical).

Instead, we are led to a more direct analysis which proceeds by formulating the
problem as a communication task.7 We relate the task of breaking our construction —
distinguishing 〈X, g(Y, Y′)〉 from uniform — to success in the following task. Alice is
given access to a random variable X, and Bob is given a uniformly random Y. Alice is
allowed to send a quantum message E, correlated with X, to Bob. Bob then selects a
Y′ 6= Y and returns a value b ∈ Fp. The players win if b = 〈X, g(Y, Y′)〉. Based on
our previous reductions it suffices to show that no strategy can succeed with probability
substantially higher than random in this game, unless Alice’s initial message to Bob
contains a large amount of information about X; more precisely, unless the min-entropy
of X, conditioned on E, is less than half the length of X.

Note that the problem as we formulated it does not fall in standard frameworks for
communication complexity. In particular, it is a relation problem, as Bob is allowed
to choose the value Y′ to which his prediction b applies. This seems to prevent us
from using any prior results on the communication complexity of the inner product
function, and we develop an ad-hoc proof which may be of independent interest. We
approach the problem using the “reconstruction paradigm” (used in e.g. [15]), which
amounts to showing that from any successful strategy of the players one may construct
a measurement for Bob which completely “reconstructs” X, given E; if this can be
achieved with high enough probability it will contradict the min-entropy assumption
on X, via its dual formulation as a guessing probability [23]. We show this by running
Bob’s strategy “in superposition”, and applying a Fourier transform to recover a guess
for X. This argument is similar to one introduced in [11, 32]. We refer to Section 4.1
for more detail.

Application to privacy amplification. Finally we discuss the application of our
quantum-proof non-malleable extractor to the problem of privacy amplification against
active quantum attacks, which is our original motivation. The application is based

7 The correspondence between security of quantum-proof strong extractors and communication
problems has been used repeatedly before, see e.g. [21, 22].



on a breakthrough result by Dodis and Wichs [19], who were first to show the exis-
tence of a two-round PA protocol with optimal (up to constant factors) entropy loss
L = Θ(log(1/ε)), for any initial min-entropy k. This was achieved by defining and
showing the existence of non-malleable extractors with very good parameters.

The protocol from [19] is recalled in Section 5. The protocol proceeds as follows.
Alice sends a uniformly random seed Y to Bob over the communication channel, which
is controlled by Eve. Bob receives a possibly modified seed Y′. Then Alice computes a
key K = nmExt(X, Y), and Bob computes K′ = nmExt(X, Y′). In the second round,
Bob generates another uniformly random seed W ′, and sends W ′ together with T′ =
MACK′(W ′) to Alice, where MAC is a one-time message authentication code. Alice
receives a possibly modified T, W and checks whether T = MACK(W). If yes, then the
shared secret between Alice and Bob is Ext(X, W) = Ext(X, W ′) with overwhelming
probability, where Ext is any strong seeded extractor.

The security of this protocol intuitively follows from the following simple obser-
vation. If the adversary does not modify Y, then K′ = K, and so W ′ must be equal to
W by the security of the MAC. If Y′ 6= Y, then by the non-malleability property of
nmExt, K is uniform and independent of K′, and so it is impossible for the adversary
to predict MACK(W) for any W even given K′ and W ′.

Since [19] could not construct an explicit non-malleable extractor, they instead de-
fined and constructed a so called a look-ahead extractor, which can be seen as a weak-
ening of the non-malleability requirement of a non-malleable extractor. This was done
by using the alternating extraction protocol by Dziembowski and Pietrzak [18].

In [14], Dodis and Wichs’ reduction is extended to the case of quantum side infor-
mation, provided that the non-malleable Extractor nmExt used in the protocol satisfies
the approriate definition of quantum non-malleability, and Ext is a strong quantum-
proof extractor. Based on our construction of a quantum-proof non-malleable extractor
(Theorem 1) we immediately obtain a PA protocol that is secure as long as the initial
secret X has a min-entropy rate of (slightly more than) half. The result is formalized as
Corollary 1 in Section 5.

In Section 5.2 we additionally prove security of a one-round protocol due to Dodis et
al. [16] against active quantum attacks. The protocol has the advantage of being single-
round, but it induces a significantly higher entropy loss, (n/2) + log(1/ε), than the
Dodis-Wichs protocol, for which the loss is independent of n.

Future work. There have been a series of works in the classical setting [17, 13, 27, 25,
20, 28, 9, 12, 3, 29] that have given privacy amplification protocols (via construct-
ing non-malleable extractors or otherwise) that achieve near-optimal parameters. In
particular, Li [29] constructed a non-malleable extractor that works for min-entropy
k = Ω(log n + log(1/ε) log log(1/ε)), where ε is the error probability.

Our quantum-proof non-malleable extractor requires the min-entropy rate of the
initial weak secret to be larger than 1/2. We leave it as an open question whether one
of the above-mentioned protocols that work for min-entropy rate smaller than 1/2 in
the classical setting can be shown secure against quantum side information.



2 Preliminaries

2.1 Notation

For p a prime power we let Fp denote the finite field with p elements. For any positive
integer n, there is a natural bijection φ : Fn

p 7→ Fpn that preserves group addition and
scalar multiplication, i.e., the following hold:

– For all c ∈ Fp, and for all x ∈ Fn
p, φ(c · x) = c · φ(x).

– For all x1, x2 ∈ Fn
p, φ(x1) + φ(x2) = φ(x1 + x2).

We use this bijection to define the square of an element in Fn
p, e.g. for y ∈ Fn

p

y2 = φ−1
(
(φ(y))2

)
. (2.1)

We write 〈·, ·〉 for the inner product over Fn
p. log denotes the logarithm with base 2.

We write H for an arbitrary finite-dimensional Hilbert space, L(H) for the linear
operators onH, Pos(H) for positive semidefinite operators, and D(H) ⊂ Pos(H) for
positive semidefinite operators of trace 1 (density matrices). A linear map T : L(H)→
L(H′) is CPTP if it is completely positive, i.e. T ⊗ Id(A) ≥ 0 for any d ≥ 0 and
A ∈ Pos(H⊗Cd), and trace-preserving.

We use capital letters A, B, E, X, Y, Z, . . . to denote quantum or classical random
variables. Generally, the letters near the beginning of the alphabet, such as A, B, E, rep-
resent quantum variables (density matrices on a finite-dimensional Hilbert space), while
the letters near the end, such as X, Y, Z represent classical variables (ranging over a fi-
nite alphabet). We sometimes represent classical random variables as density matrices
diagonal in the computational basis, and write e.g. (A, B, . . . , E)ρ for the density ma-
trix ρA,B,...,E. For a quantum random variable A, we denote HA the Hilbert space on
which the associated density matrix ρA is supported, and dA its dimension. If X is
classical we loosely identify its range {0, . . . , dX − 1} with the space HX spanned by
{|0〉X , . . . , |dX − 1〉X}. We denote IA the identity operator on HA. When an identity
operator is tensor producted with another matrix, we sometimes omit the identity oper-
ator for brevity, e.g. writing IA ⊗ B as B. When a density matrix specifies the states of
two random variables, one of which is classical and the other is quantum, we call it a
classical-quantum(cq)-state. A cq state (X, E)ρ takes the form

ρXE = ∑
x
|x〉〈x|X ⊗ ρx

E ,

where the summation is over all x in the range of X and {ρx
E} are positive semidefinite

matrices with Tr ρx
E = px, where px is the probability of getting the outcome x when

measuring the X register. Similarly, a ccq state (X, Y, E)σ is a density matrix over two
classical variables and one quantum variable, e.g. σXYE = ∑x,y |x〉〈x|X ⊗ |y〉〈y|Y ⊗
σ

xy
E . We will sometimes add or remove random variables from an already-specified

density matrix. When we omit a random variable, we mean the reduced density matrix,
e.g. (Y, E)σ = TrX(σXYE). When we introduce a classical variable, we mean that the



classical variable is computed into another classical register. For example, for a function
F(·, ·) on variables X, Y,

(F(X, Y), X, Y, E)σ = ∑
f ,x,y

δ( f , F(x, y))| f 〉〈 f | ⊗ |x〉〈x| ⊗ |y〉〈y| ⊗ σ
xy
E ,

where δ(·, ·) is the Kronecker delta function, and the summation over f is taken over
the range of F. When F is a random function, the density matrix is averaged over the
appropriate probability distribution.

We use UΣ to denote the uniform distribution over a set Σ. For m-bit string {0, 1}m,
we abbreviate U{0,1}m as Um. For a classical random variable X, UX denote the uniform
distribution over the range of X.

For p ≥ 1 we write ‖·‖p for the Schatten p-norm (this is the p-norm of the vector
of singular values). We write ‖·‖ for the operator norm.

We write ≈ε to denote that two density matrices are ε-close to each other in trace
distance. For example, (X, E)ρ ≈ε (UX , E)ρ means 1

2 ‖ρXE −UX ⊗ ρE‖1 ≤ ε. Note
that in case both X and E are classical random variables, this reduces to the statistical
distance.

2.2 Quantum information

The min-entropy of a classical random variable X conditioned on quantum side infor-
mation E is defined as follows.

Definition 1 (Min-entropy). Let ρXE ∈ D(HX ⊗HE) be a cq state. The min-entropy
of X conditioned on E is defined as

Hmin(X|E)ρ = max{λ ≥ 0 : ∃σE ∈ Pos(HE), Tr (σE) ≤ 1, s.t. 2−λ IX⊗σE ≥ ρXE}.

When the state ρ with respect to which the entropy is measured is clear from context we
simply write Hmin(X|E) for Hmin(X|E)ρ.

Definition 2 ((n, k)-source). A cq state ρXE is an (n, k)-source if n = log dX and
Hmin(X|E))ρ ≥ k.

Rather than using Definition 1, we will most often rely on an operational expression
for the min-entropy stated in the following lemma from [23].

Lemma 2 (Min-entropy and guessing probability). For a cq state ρXE ∈ D(HX ⊗
HE), the guessing probability is defined as the probability to correctly guess X with the
optimal strategy to measure E, i.e.

pguess(X|E)ρ = sup
{Mx}

∑
x

px Tr (Mxρx
E) , (2.2)

where {Mx} is a positive operator-valued measure (POVM) onHE. Then the guessing
probability is related to the min-entropy by

pguess(X|E)ρ = 2−Hmin(X|E)ρ . (2.3)



2.3 Extractors

We first give the definition of a strong quantum-proof extractor. Recall the notation
(X, E)ρ ≈ε (X′, E′)ρ for 1

2‖ρXE − ρX′E′‖1 ≤ ε, and Um for a random variable uni-
formly distributed over m-bit strings.

Definition 3. Let k be an integer and ε ≥ 0. A function Ext : HX ×HY → HZ is
a strong (k, ε) quantum-proof extractor if for all cq states ρXE ∈ D(HX ⊗HE) with
Hmin(X|E) ≥ k, and for a classical uniform Y ∈ HY independent of ρXE,

(Ext(X, Y), Y, E)ρ ≈ε (UZ, Y, E)ρ .

There are known explicit constructions of strong quantum-proof extractors.

Theorem 2 ([36]). For any integers dX , k and for any ε > 0 there exists an explicit
strong (k, ε) quantum-proof extractor Ext : {0, . . . , dX − 1} × {0, . . . , dY − 1} →
{0, . . . , dZ − 1} with log dY = O(log dX) and log dZ = k−O(log(1/ε)−O(1).

We use the same definition of non-malleable extractor against quantum side infor-
mation that was introduced in the work [14]. The definition is a direct generalization
of the classical notion of non-malleable extractor introduced in [19]. The first step is to
extend the notion that the adversary may query the extractor on any different seed Y′

than the seed Y actually used to the case where Y′ may be generated from Y as well as
quantum side information held by the adversary.

Definition 4 (Map with no fixed points). Let HY, HE and HE′ be finite-dimensional
Hilbert spaces. We say that a CPTP map T : L(HY ⊗HE) → L(HY ⊗HE′) has no
fixed points if for all ρE ∈ D(HE) and all computational basis states |y〉 ∈ HY it
holds that

〈y|Y TrHE′

(
T
(
|y〉〈y|Y ⊗ ρE

))
|y〉Y = 0 .

The following definition is given in [14]:

Definition 5 (Non-mallleable extractor). Let HX , HY, HZ be finite-dimensional
Hilbert spaces, of respective dimension dX , dY, and dZ. Let k ≤ log dX and ε > 0. A
function

nmExt : {0, . . . , dX − 1} × {0, . . . , dY − 1} → {0, . . . , dZ − 1}

is a (k, ε) quantum-proof non-malleable extractor if for every cq-state (X, E)ρ on
HX ⊗HE such that Hmin(X|E)ρ ≥ k and any CPTP map Adv : L(HY ⊗HE) →
L(HY ⊗HE′) with no fixed points,∥∥σnmExt(X,Y)nmExt(X,Y′)YY′E′ −UZ ⊗ σnmExt(X,Y′)YY′E′

)∥∥
1 ≤ ε ,

where

σYY′XE′ =
1

dY
∑
y
|y〉〈y|Y ⊗ (IX ⊗Adv)(|y〉〈y|Y ⊗ ρXE) (2.4)

and σnmExt(X,Y)nmExt(X,Y′)YY′E′ is obtained from σYY′XE′ by (classically) computing
nmExt(X, Y) and nmExt(X, Y′) in ancilla registers and tracing out X.



2.4 Hölder’s inequality

We use the following Hölder’s inequality for matrices. For a proof, see e.g. [6].

Lemma 3 (Hölder’s inequality). For any n × n matrices A, B, C with complex en-
tries, and real numbers r, s, t > 0 satisfying 1

r +
1
s +

1
t = 1,

‖ABC‖1 ≤ ‖|A|
r‖1/r

1 ‖|B|s‖1/s
1
∥∥|C|t∥∥1/t

1 . (2.5)

3 Quantum XOR lemma

In this section we prove two XOR lemmas with quantum side information. We prove a
non-uniform version, Lemma 1, in Section 3.1. In the full version of the paper [1], we
also prove a more standard XOR lemma with quantum side indformation for complete-
ness.8 Since XOR lemmas often play a fundamental role, they might be of independent
interest. Our proofs are based on quantum collision probability techniques9 from [36]
to transform a classical collision probability-based proof into one that also allows for
quantum side information. The idea of non-uniform XOR lemma is natural in the con-
text of non-malleable extractors, and has been explored in [27, 13, 3]. Our non-uniform
XOR lemma generalizes a restricted version of Lemma 3.15 of [27] to Fp with quantum
side information.10

The quantum collision probability is defined as follows.

Definition 6 (Quantum collision probability). Let ρAB ∈ D(HA ⊗HB) and σB ∈
D(HB). The collision probability of ρAB, conditioned on σB, is defined as

Γc(ρAB|σB) ≡ Tr
(

ρAB(IA ⊗ σ−1/2
B )

)2
, (3.1)

where σB ∈ D(HB).

A careful reader might notice that Γc ≤ 1 is not generally true, so calling Γc colli-
sion probability seems misleading. We give a general definition which allows arbitrary
states ρAB and σB to match the existing literature, but here we always consider cq states
ρAB and take σB = ρB. We prove in the full version [1] that Γc ≤ 1 in such cases.
Γc(ρAB|σB) also reduces to the classical collision probability when both of A, B are
classical and σB = ρB.

We will often use the following relation, also taken from [36], valid for any ρAB ∈
D(HA ⊗HB):

Tr
(
(ρAB −UA ⊗ ρB)(IA ⊗ ρ−1/2

B )
)2

= Γc
(
ρAB|ρB

)
− 1

dA
, (3.2)

8 When restricted to F2, our standard XOR lemma is very similar to Lemma 10 of [22], although
the result from [22] provides a tighter bound in this case. [22] provides a bound of p2tε2 ,
while ours scales as ptε, a quadratic loss. However our result applies to Fp, while it is unclear
whether the proof of [22] generalizes to p > 2. [22] obtains ther result by Fourier analysis.

9 The term “quantum collision probability” is ours.
10 Compared to [27, Lemma 3.15], we have m = 1 and n = t.



which can be verified by expanding the square:

Tr
(
(ρAB −UA ⊗ ρB)(IA ⊗ ρ−1/2

B )
)2

= Tr
(

ρAB ρ−1/2
B

)2
− 2 Tr

(
ρAB ρ−1/2

B (UAρB)ρ
−1/2
B

)
+ Tr

(
(UAρB)ρ

−1/2
B

)2

= Γc(ρAB|ρB)−
1

dA
.

3.1 Non-uniform XOR lemma

Our non-uniform XOR lemma bounds the distance to uniform of a ccq state, a state
with two classical registers and one quantum register. Roughly speaking, the lemma
states that given two random variables X0 ∈ Fp and X ∈ Ft

p, if X0 + 〈a, X〉 is close to
uniform, then X0 is close to uniform given X.

Lemma 1 (restated). Let p be a prime power, t an integer and ε ≥ 0. Let ρX0XE be a
ccq state with X0 ∈ Fp and X = (X1, . . . , Xt) ∈ Ft

p. For all a = (a1, . . . , at) ∈
Ft

p, define a random variable Z = X0 + 〈a, X〉 = X0 + ∑t
i=1 aiXi. If for all a,

1
2

∥∥ρa
ZE −UZ ⊗ ρE

∥∥
1 ≤ ε, then

1
2

∥∥ρX0XE −UX0 ⊗ ρXE
∥∥

1 ≤
p(t+1)/2
√

2

√
ε . (3.3)

The proof of the non-uniform XOR lemma has the following structure: we bound
the collision probability by the trace distance in Lemma 5, then prove the non-uniform
XOR lemma based on that. First we establish that for any ccq state ρXZE:

Tr
(
(ρXZE −UX ⊗ ρZE)(IXZ ⊗ ρ−1/2

E )
)2

= Tr
(

ρXZE ρ−1/2
E

)2
− 2 Tr

(
ρXZE ρ−1/2

E (UXρZE)ρ
−1/2
E

)
+ Tr

(
(UXρZE)ρ

−1/2
E

)2

= Γc(ρXZE|ρE)−
1

dX
Γc(ρZE|ρE) . (3.4)

We need the following lemma to bound the collision probability by the trace distance
in Lemma 5.

Lemma 4. Let ρXZE be a ccq state. Then

− 1
dX

IXZE ≤
(

IXZ ⊗ ρ
− 1

2
E

)
(ρXZE −UX ⊗ ρZE)

(
IXZ ⊗ ρ

− 1
2

E

)
≤
(

1− 1
dX

)
IXZE .

(3.5)



Proof. We bound the eigenvalues of the middle expression. Since ρXZE is a ccq state,
we know that the middle expression(

IXZ ⊗ ρ−1/2
E

)
(ρXZE −UX ⊗ ρZE)

(
IXZ ⊗ ρ−1/2

E

)
= ∑

x,z
|x〉〈x| ⊗ |z〉〈z| ⊗ ρ−1/2

E

(
ρxz

E −
1

dX
ρz

E

)
ρ−1/2

E (3.6)

is block diagonal, where ρz
E = ∑x ρxz

E and ρE = ∑x,z ρxz
E . For any state |φ〉 ∈ HE and

x, z in the range of X, Z,

〈φ|ρ−1/2
E

(
ρxz

E −
1

dX
ρz

E

)
ρ−1/2

E |φ〉 ≥ 〈φ|ρ−1/2
E

(
− 1

dX
ρz

E

)
ρ−1/2

E |φ〉 ≥ − 1
dX

.

(3.7)

This proves the first inequality. We also have

〈φ|ρ−1/2
E

(
ρxz

E −
1

dX
ρz

E

)
ρ−1/2

E |φ〉

= 〈φ|ρ−1/2
E

(
ρxz

E −
1

dX
∑
x′

ρx′z
E

)
ρ−1/2

E |φ〉

=

(
1− 1

dX

)
〈φ|ρ−1/2

E ρxz
E ρ−1/2

E |φ〉 − 1
dX

∑
x′ 6=x
〈φ|ρ−1/2

E ρxz
E ρ−1/2

E |φ〉

≤
(

1− 1
dX

)
. (3.8)

This proves the second inequality.

We then bound the collision probability by the trace distance.

Lemma 5 (Bounding collision probability with trace distance, non-uniform). Let
ρXZE be a ccq state. If

1
2
‖ρXZE −UXρZE‖1 = ε , (3.9)

then

4ε2

dXdZ
≤ Γc(ρXZE|ρE)−

1
dX

Γc(ρZE|ρE) ≤ 2ε

(
1− 1

dX

)
. (3.10)

Proof. For the first inequality, we use Hölder’s inequality (Lemma 3) with
r = t = 4, s = 2, A = C = IXZ ⊗ ρ1/4

E , and B =



(
IXZ ⊗ ρ−1/4

E

)
(ρXZE −UXρZE)

(
IXZ ⊗ ρ−1/4

E

)
. This leads to

2ε = ‖ρXZE −UXρZE‖1

= ‖ABC‖1

≤
∥∥∥A4

∥∥∥1/4

1

∥∥∥B2
∥∥∥1/2

1

∥∥∥C4
∥∥∥1/4

1

=

√
dXdZ Tr

(
(ρXZE −UX ⊗ ρZE)

(
IXZ ⊗ ρ−1/2

E

))2

=

√
dXdZ

(
Γc(ρXZE|ρE)−

1
dX

Γc(ρZE|ρE)

)
, (3.11)

where we used Eq. (3.4) in the last line. Squaring both sides and dividing by dXdZ, we
get the desired inequality. For the second inequality, we use Lemma 4 to show that

− 1
dX

IXZE ≤
(

IXZ ⊗ ρ
− 1

2
E

)
(ρXZE −UX ⊗ ρZE)

(
IXZ ⊗ ρ

− 1
2

E

)
≤
(

1− 1
dX

)
IXZE

⇒
∣∣∣(IXZ ⊗ ρ−1/2

E

)
(ρXZE −UX ⊗ ρZE)

(
IXZ ⊗ ρ−1/2

E

)∣∣∣ ≤ (1− 1
dX

)
IXZE .

(3.12)

Starting with Eq. (3.4), we have

Γc(ρXZE|ρE)−
1

dX
Γc(ρZE|ρE)

= Tr
(
(ρXZE −UX ⊗ ρZE)

(
IXZ ⊗ ρ−1/2

E

))2

≤ Tr
(
|ρXZE −UXρZE|

∣∣∣(IXZ ⊗ ρ−1/2
E

)
(ρXZE −UX ⊗ ρZE)

(
IXZ ⊗ ρ−1/2

E

)∣∣∣)
≤ Tr

(
|ρXZE −UXρZE|

(
1− 1

dX

)
IXZE

)
= 2ε

(
1− 1

dX

)
, (3.13)

where we used Eq. (3.12) on the fourth line.

Now we restate and prove the non-uniform XOR lemma. The proof idea is to start
from the trace distance of X0 given X to uniform, apply Lemma 5 to get an upper
bound in terms of the collision probability of X0 given X, apply Eq. (3.4) and expand
the square to express the collision probability of X0 given X in terms of the collision
probability of X0 + 〈a, X〉, and finally apply Lemma 5 again to get an upper bound in
terms of the trace distance of X0 + 〈a, X〉 to uniform.

Lemma 1 (restated). Let p be a prime power, t an integer and ε ≥ 0. Let ρX0XE be a
ccq state with X0 ∈ Fp and X = (X1, . . . , Xt) ∈ Ft

p. For all a = (a1, . . . , at) ∈



Ft
p, define a random variable Z = X0 + 〈a, X〉 = X0 + ∑t

i=1 aiXi. If for all a,
1
2

∥∥ρa
ZE −UZ ⊗ ρE

∥∥
1 ≤ ε, then

1
2

∥∥ρX0XE −UX0 ⊗ ρXE
∥∥

1 ≤
p(t+1)/2
√

2

√
ε . (3.14)

Proof. We start by relating the collision probability of Z and X0 + 〈a, X〉:

Γc(ρ
a
ZE|ρE)−

1
p

= Tr
[
(ρa

ZE −UZρE)IZ ⊗ ρ−1/2
E

]2

= Tr

[
∑
z
|z〉〈z| ∑

x,x0

(
δ (z− x0 − 〈a, x〉, 0)− 1

p

)
ρx0x

E IZρ−1/2
E

]2

= ∑
z

Tr

[
∑
x0x

(
δ (z− x0 − 〈a, x〉, 0)− 1

p

)
ρx0x

E ρ−1/2
E

]2

= ∑
z,x0,x′0,x,x′

[
δ (z− x0 − 〈a, x〉, 0) δ

(
z− x′0 − 〈a, x′〉, 0

)
− 2

p
δ (z− x0 − 〈a, x〉, 0) +

1
p2

]
Tr
(

ρx0x
E ρ−1/2

E ρ
x′0x′

E ρ−1/2
E

)
= ∑

x0,x′0,x,x′

[
δ
(

x0 − x′0 + 〈a, x− x′〉, 0
)
− 1

p

]
Tr
(

ρx0x
E ρ−1/2

E ρ
x′0x′

E ρ−1/2
E

)
= ∑

x0,x′0,x

(
δ
(

x0 − x′0, 0
)
− 1

p

)
Tr
(

ρx0x
E ρ−1/2

E ρ
x′0x
E ρ−1/2

E

)
+ ∑

x0,x′0,x 6=x′

[
δ
(

x0 − x′0 + 〈a, x− x′〉, 0
)
− 1

p

]
Tr
(

ρx0x
E ρ−1/2

E ρ
x′0x′

E ρ−1/2
E

)
= ∑

x0,x
Tr
(

ρx0x
E ρ−1/2

E ρx0x
E ρ−1/2

E

)
− 1

p ∑
x0,x′0,x

Tr
(

ρx0x
E ρ−1/2

E ρ
x′0x
E ρ−1/2

E

)
+ ∑

x0,x′0,x 6=x′

[
δ
(

x0 − x′0 + 〈a, x− x′〉, 0
)
− 1

p

]
Tr
(

ρx0x
E ρ−1/2

E ρ
x′0x′

E ρ−1/2
E

)
= Γc(ρX0XE|ρE)−

1
p

Γc(ρXE|ρE)

+ ∑
x0,x′0,x 6=x′

[
δ
(

x0 − x′0 + 〈a, x− x′〉, 0
)
− 1

p

]
Tr
(

ρx0x
E ρ−1/2

E ρ
x′0x′

E ρ−1/2
E

)
.

(3.15)

When we average over a, the last term vanishes,

Ea

(
Γc(ρ

a
ZE|ρE)−

1
p

)
= Γc(ρX0XE|ρE)−

1
p

Γc(ρXE|ρE) . (3.16)



With the heavy work done, we put everything together and prove the lemma∥∥ρX0XE −UX0 ρXE
∥∥2

1
pt+1 ≤ Γc(ρX0XE|ρE)−

1
p

Γc(ρXE|ρE)

= Ea

(
Γc(ρ

a
ZE|ρE)−

1
p

)
≤ 2ε , (3.17)

where we used Lemma 5 one the first line, Eq. (3.16) on the second line, Lemma 5 and

the assumption of the lemma on the third line. Multiplying both sides by pt+1

2 and take
a square root, we get the desired result:

1
2

∥∥ρX0XE −UX0 ρXE
∥∥

1 ≤
p(t+1)/2
√

2

√
ε . (3.18)

4 Quantum-Proof Non-malleable Extractor

In this section we introduce our non-malleable extractor and prove its security. The
extractor was first considered by Li [27]. We use the symbol ‖ for concatenation of
strings, and for a, b ∈ Fn

p write 〈a, b〉 for the standard inner product over Fn
p.

Definition 7 (Inner product-based non-malleable extractor). Let p 6= 2 be a
prime. For any even integer n, define a function nmExt : Fn

p × Fn/2
p → Fp by

nmExt(X, Y) = 〈X, Y||Y2〉, where Y2 is defined as in Section 2.1.

Theorem 1. Let p 6= 2 be a prime. Let n be an even integer. Then for any ε > 0 the
function nmExt(X, Y) = 〈X, Y‖Y2〉 is an (

( n
2 + 6

)
log p− 1 + 4 log 1

ε , ε) quantum-
proof non-malleable extractor.

The proof of Theorem 1 is based on a reduction showing that any successful at-
tack for an adversary to nmExt leads to a good strategy for the players in a certain
communication game, that we introduce next.

4.1 A communication game

Let p 6= 2 be a prime. Let n be an even integer, and g : Fn/2
p × Fn/2

p → Fn
p an

arbitrary function such that for any z ∈ Fn
p there are at most two possible pairs (y, y′)

such that y 6= y′ and g(y, y′) = z. Consider the following communication game, called
GUESS(n, p, g), between two players Alice and Bob.

1. Bob receives y ∈ Fn/2
p from the referee.

2. Alice creates a cq state ρXE, where X ∈ Fn
p, and sends the quantum register E to

Bob.



3. Bob returns y′ ∈ Fn/2
p and b ∈ Fp.

The players win if and only if b = 〈x, g(y, y′)〉 and y′ 6= y.
Note that Alice does not receive anything from the referee and is completely free

in what state she wants to create, so it is easy for the players to win with probability
1 by creating a trivial state, e.g. ρXE = |0〉〈0| ⊗ |0〉〈0|. Therefore we benchmark the
success probability of a strategy by the min-entropy of Alice’s ”input” X, conditioned
on her message E to Bob. The following lemma bounds the players’ maximum success
probability in this game over uniformly random input y and quantum measurements as
a function of the min-entropy of Alice’s input X, conditioned on her message E to Bob.

Lemma 6 (Success probability of the communication game). Suppose there exists a
communication protocol for Alice and Bob in GUESS(n, p, g) that succeeds with prob-
ability at least 1

p + ε, on average over a uniformly random choice of input y to Bob.

Then Hmin(X|E)ρ ≤ n
2 log p + 1 + 2 log 1

ε .

Proof. Let ρXE = ∑x |x〉〈x|X ⊗ ρx
E be the cq state prepared by Alice. A strategy

for Bob is a family of POVM {My′ ,b
y }y′ ,b, indexed by y ∈ Fn/2

p and with outcomes

(y′, b) ∈ Fn/2
p × Fp. We can assume that {My′ ,b

y }y′ ,b is projective, since Alice can
send ancilla qubits along with ρ and allow Bob to apply Naimark’s theorem to his
POVM in order to obtain a projective measurement; this will change neither his suc-
cess probability nor the min-entropy of Alice’s state. By definition, the players’ success
probability in GUESS(n, p, g) is

1
p
+ ε = ∑

x
p−

n
2 ∑

y
∑
y′

∑
b

δ(b, 〈x, g(y, y′)〉)Tr
(

My′ ,b
y ρx

E
)

. (4.1)

For each u ∈ Fp let Ay′
y,u = ∑b ωub My′ ,b

y , where ω = e
2iπ

p . By inversion, My′ ,b
y =

1
p ∑u ω−ub Ay′

y,u. Replacing this into (4.1) we obtain

1
p
+ ε =

1
p ∑

u
p−

n
2 ∑

y
∑
y′

∑
b

δ(b, 〈x, g(y, y′)〉)ω−ub Tr
(

Ay′
y,u ρx

E
)

≤ 1
p
+
(

1− 1
p

)
max
u 6=0

∣∣∣p− n
2 ∑

y
∑
y′

∑
b

δ(b, 〈x, g(y, y′)〉)ω−ub Tr
(

Ay′
y,u ρx

E
)∣∣∣ ,

(4.2)

where for the second line we used that ∑y′ Ay′
y,0 = ∑y′ ,b My′ ,b

y = IE.
Fix u 6= 0 that achieves the maximum in (4.2). For fixed y, define the map Ty,u on

HE by

Ty,u : |ψ〉 7→∑
y′

∣∣y′〉Ay′
y,u|ψ〉 . (4.3)



Ty,u has norm at most 1, since

T†
y,uTy,u = ∑

y′
(Ay′

y,u)
† Ay′

y,u = ∑
y′

∑
b

(
My′ ,b

y

)2
= IE .

For the second equality we used that {My′ ,b
y }y′ ,b is projective. Therefore Ty,u is a phys-

ical operation.

Consider the following guessing strategy for an adversary holding side information
ρx

E about x. The adversary first prepares a uniform superposition over y. Conditioned on
y, it applies the map Ty,u. It computes g(y, y′) in an ancilla register, and erases (y, y′),
except for one bit of information r(y, y′) ∈ {0, 1}, which specifies which pre-image
(y, y′) is, given g(y, y′) (this is possible by the 2-to-1 assumption on g). The adversary
applies a Fourier transform on the register containing g(y, y′), using ωu = ω−u as
primitive p-th root of unity (this is possible since u 6= 0 and p is prime). It measures
the result and outputs it as a guess for x. Formally, the transformation this implements
is

|ψ〉 7→ p−
n
4 ∑

y
|y〉∑

y′

∣∣y′〉Ay′
y,u|ψ〉

7→ p−
n
4 ∑

y,y′

∣∣g(y, y′)
〉∣∣r(y, y′)

〉
Ay′

y,u|ψ〉

7→∑
v
|v〉
(

p−
3n
4 ∑

y,y′
ω
〈v,g(y,y′)〉
u

∣∣r(y, y′)
〉

Ay′
y,u

)
|ψ〉 .

The adversary’s success probability in guessing v = x on input ρx
E is therefore

ps = ∑
x

Tr
((

p−
3n
4 ∑

y,y′
ω
〈x,g(y,y′)〉
u

∣∣r(y, y′)
〉
⊗ Ay′

y,u

)
ρx

E

·
(

p−
3n
4 ∑

y,y′
ω
−〈x,g(y,y′)〉
u

〈
r(y, y′)

∣∣⊗ (Ay′
y,u)

†
))

=
1

p
3n
2

∑
x

∑
r∈{0,1}

Tr
((

∑
y,y′ : r(y,y′)=r

ω
〈x,g(y,y′)〉
u Ay′

y,u

)†

·
(

∑
y,y′ : r(y,y′)=r

ω
〈x,g(y,y′)〉
u Ay′

y,u

)
ρx

E

)
≥ 1

p
3n
2

∑
x

1
2

Tr
((

∑
y,y′

ω
〈x,g(y,y′)〉
u Ay′

y,u

)†(
∑
y,y′

ω
〈x,g(y,y′)〉
u Ay′

y,u

)
ρx

E

)
, (4.4)



where for the last line we used Tr(A† Aρ) + Tr(B†Bρ) ≥ 1
2 Tr((A + B)†(A + B)ρ) if

ρ is positive semidefinite. Now, recall from (4.2) and our choice of u that

ε ≤ p−
n
2

∣∣∣ ∑
x,y,y′

ω−u(〈x,g(y,y′)〉) Tr
(

Ay′
y,u ρx

E
)∣∣∣

≤ p−
n
2

(
∑
x

Tr(ρx
E)
)1/2

·
(

∑
x

Tr
((

∑
y,y′

ω−u(〈x,g(y,y′)〉) Ay′
y,u

)
ρx

E

(
∑
y,y′

ω−u(〈x,g(y,y′)〉) Ay′
y,u

)†))1/2
,

(4.5)

where the inequality is Cauchy-Schwarz. Comparing (4.4) and (4.5) gives

ps ≥
1
2

p−
n
2 ε2 .

We conclude using that by Lemma 2, Hmin(X|E) ≤ − log ps.

4.2 Proof of Theorem 1

In this section we give the proof of Theorem 1. Towards this we first prove a prelimi-
nary lemma showing that a certain function, based on the definition of nmExt, has few
collisions.

Lemma 7. Let p 6= 2 be a prime and n an even integer. For a ∈ Fp define a function
ga : Fn/2

p ×Fn/2
p → Fn

p by

ga(y, y′) = y + ay′‖y2 + ay′2 , (4.6)

where y2 is defined in Section 2.1. Then for any a ∈ Fp, a 6= 0 and z ∈ Fn
p there are at

most 2 distinct pairs (y, y′) such that y′ 6= y and ga(y, y′) = z.

Proof. We use the bijection defined in Section 2.1 to interpret y and y′ in Fpn/2 . For
a 6= 0, we fix an image ga = (c, d), where c, d are interpreted as elements of Fpn/2 ,
and solve for (y, y′) in Fpn/2 ×Fpn/2 satisfying

y + ay′ = c , (4.7)

y2 + ay′2 = d . (4.8)

Using (4.7) to eliminate y we get

(c− ay′)2 + ay′2 = d

⇒ (a + a2)y′2 + (−2ca)y′ + (c2 − d) = 0 . (4.9)

Since (4.9) is a quadratic equation, there are at most two solutions unless all coefficients
are zero. Since p 6= 2, −2 6= 0. If all coefficients are zero, −2 6= 0, and a 6= 0, then
c = d = 0, a = −1, which implies y′ = y by (4.7) and contradicts our assumption.
So there are at most two different y′ that can be mapped to (c, d). By (4.7) each y′

corresponds to a unique y, so there are at most two pre-images.



We are ready to give the proof of Theorem 1. The proof depends on a simple
lemma relating trace distance and guessing measurements, Lemma 8, which is stated
and proved after the proof of the theorem.

Proof of Theorem 1. Let k =
( n

2 + 6
)

log p− 1 + 4 log 1
ε and ρXE ∈ D(Cpn ⊗HE)

an (n log p, k)-source. Fix a CPTP map Adv : L(Cpn/2 ⊗HE) → L(Cpn/2 ⊗HE′)
with no fixed points, and define σnmExt(X,Y)nmExt(X,Y′)YY′E′ as in Definition 5. Given
the definition of nmExt, to prove the theorem we need to show that

(〈X, Y‖Y2〉, 〈X, Y′‖Y′2〉, Y′, Y, E′)σ ≈ε (UFp , 〈X, Y′‖Y′2〉, Y′, Y, E′)σ . (4.10)

Applying the XOR lemma, Lemma 1, with X0 = 〈X, Y||Y2〉, X = 〈X, Y′||Y′2〉,
E = (Y′, Y, E′) and t = 1, (4.10) will follow once it is shown that

(〈X, Y||Y2〉+ a〈X, Y′‖Y′2〉, Y′, Y, E′)σ ≈ 2ε2
p2

(UFp , Y′, Y, E′)σ , (4.11)

for all a ∈ Fp. For a = 0, (4.11) follows from the fact that inner product is a quantum-
proof two source extractor, which can be shown by the combination of Theorem 5.3
of [10] and Lemma 1 in [24]. For non-zero a ∈ Fp, recall the function ga : Fn/2

p ×
Fn/2

p → Fn
p defined in (4.6). Lemma 7 shows that for any a 6= 0, the restriction of ga

to {(y, y′) : y 6= y′} is at most 2-to-1, and y 6= y′ is ensured by the fact that Adv has
no fixed points. We establish (4.11) by contradiction. Assume thus that

(〈X, ga(Y, Y′)〉, Y′, Y, E′)σ ≈ 2ε2
p2

(UFp , Y′, Y, E′)σ (4.12)

does not hold, for some non-zero a ∈ Fp. Fix such an a and write ga for g. From
Lemma 8 it follows that there exists a POVM measurement {Mz}z∈Fp on σY′YE′ such
that

∑
z∈Fp

Tr
(

Mzσz
YY′E

)
≥ 1

p
+

2ε2

p3 , (4.13)

where σz
YY′E is the reduced density of σ on YY′E conditioned on 〈X, g(Y, Y′)〉 = z.

To conclude the proof of the theorem we show that the adversary’s map Adv and the
POVM {Mz} can be combined to give a “successful” strategy for the players in the
communication game introduced in Section 4.1. To see this, consider the state ρXE
that is instantiated as the source for the extractor; by definition Hmin(X|E)ρ = k =( n

2 + 6
)

log p− 1 + 4 log 1
ε . In the third step of the game, Bob applies the map Adv

to the registers Y and E containing his input Y and the state sent by Alice, and mea-
sures to obtain an outcome Y′. He then applies the measurement {Mz} on his registers
(Y, Y′, E) to obtain a value b = z ∈ Fp that he provides as his output in the game.
By (4.13) it follows that this strategy succeeds in the game with probability at least
1
p + 2ε2

p3 , which by Lemma 6 implies Hmin(X|E) ≤ n
2 log p + 1 + 2 log p3

2ε2 , contra-
dicting our choice of k. This proves (4.11) and thus the theorem.



The following lemma is used in the proof of the theorem.

Lemma 8. Let ρXE = ∑x |x〉〈x| ⊗ ρx
E be such that

1
2
‖(X, E)− (U, E)‖1 =

1
2

∥∥ρXE −UX ⊗ ρE
∥∥

1 = ε ,

where UX is the totally mixed state on X and ρE = ∑x ρx
E. Then there exists a POVM

{Mx} on ρE such that

∑
x

Tr(Mxρx
E) =

1
dX

+
ε

dX
.

Proof. Since ρXE is a cq state, ‖ρXE −UX ⊗ ρE‖1 = ∑x ‖ρx
E −

1
dX

ρE‖1. For each x,

let M′x be the projector onto the positive eigenvalues of ρx
E −

1
dX

ρE, so

∑
x

Tr(M′x(ρ
x
E −

1
dX

ρE)) =
1
2 ∑

x
‖ρx

E −
1

dX
ρE‖1 . (4.14)

Let M′ = ∑x M′x and Mx = 1
dX

(M′x + (IE − 1
dX

M′)). Then Mx ≥ 0 and ∑x Mx =
1

dX
(M′ + dX IE −M′) = IE. Moreover,

∑
x

Tr(Mxρx
E) = ∑

x
Tr
[

1
dX

(M′x + (IE −
1

dX
M′))ρx

E

]
=

1
dX

[
∑
x

(
Tr(M′xρx

E)
)
+ Tr

(
(IE −

1
dX

M′)ρE

)]

=
1

dX
+

1
dX

∑
x

(
Tr(M′xρx

E)−
1

dX
Tr(M′xρE)

)
=

1
dX

+
1

dX

(
∑
x

Tr
(

M′x(ρ
x
E −

1
dX

ρE)
))

=
1

dX
+

1
2dX

∑
x

∥∥∥ρx
E −

1
dX

ρE

∥∥∥
1

by (4.14).

5 Privacy amplification

Dodis and Wichs [19] introduced a framework for constructing a two-message pri-
vacy amplification protocol from any non-malleable extractor. In [14] it is shown that
the same framework, when instantiated with a quantum-proof non-malleable extrac-
tor nmExt as defined in Definition 5, leads to a protocol that is secure against active
quantum adversaries. In Section 5.1 we recall the Dodis-Wichs protocol, and state the
security guarantees that follow by plugging in our non-malleable extractor construc-
tion. The guarantees follows from the quantum extension of the Dodis-Wichs results



in [14]; since that work has not been published we include their results regarding the
Dodis-Wichs protocol in Appendix A.

In Section 5.2 we show that a different protocol for privacy amplification due to
Dodis et al. [16], whose main advantage is of being a one-round protocol, is also
quantum-proof. The construction and analysis of the protocol of [16] is simple, with
the drawback of a large entropy loss.

We start with the definition of a quantum-secure privacy amplification protocol
against active adversaries. A privacy amplification protocol (PA, PB) is defined as
follows. The protocol is executed by two parties Alice and Bob sharing a secret
X ∈ {0, 1}n, whose actions are described by PA, PB respectively.11 In addition there
is an active, computationally unbounded adversary Eve, who might have some quan-
tum side information E correlated with X but satisfying Hmin(X|E)ρ ≥ k, where ρXE
denotes the initial state at beginning of the protocol.

Informally, the goal for the protocol is that whenever a party (Alice or Bob) does not
reject, the key R output by this party is random and statistically independent of Eve’s
view. Moreover, if both parties do not reject, they must output the same keys RA = RB
with overwhelming probability.

More formally, we assume that Eve is in full control of the communication channel
between Alice and Bob, and can arbitrarily insert, delete, reorder or modify messages
sent by Alice and Bob to each other. At the end of the protocol, Alice outputs a key
RA ∈ {0, 1}m ∪ {⊥}, where⊥ is a special symbol indicating rejection. Similarly, Bob
outputs a key RB ∈ {0, 1}m ∪ {⊥}. The following definition generalizes the classical
definition in [17].

Definition 8. Let k, m be integer and ε ≥ 0. A privacy amplification protocol (PA, PB)
is a (k, m, ε)-privacy amplification protocol secure against active quantum adversaries if
it satisfies the following properties for any initial state ρXE such that Hmin(X|E)ρ ≥ k,
and where σ be the joint state of Alice, Bob, and Eve at the end of the protocol:

1. Correctness. If the adversary does not interfere with the protocol, then Pr[RA =
RB ∧ RA 6=⊥ ∧ RB 6=⊥] = 1.

2. Robustness. This property comes in two flavors. The first is pre-application ro-
bustness, which states that even in the presence of an active adversary, Pr[RA 6=
RB ∧ RA 6=⊥ ∧ RB 6=⊥] ≤ ε. The second is post-application robustness, which
is defined similarly, except the adversary is additionally given the key RA that is the
result of the interaction (PA, PE), and the key RB that results from the interaction
(PE, PB), where PE denotes the adversary’s actions in its interaction with Alice and
Bob.

3. Extraction. Given a string r ∈ {0, 1}m ∪ {⊥}, let purify(r) be a random variable
on m-bit strings that is deterministically equal to ⊥ if r =⊥, and is otherwise
uniformly distributed. Let V denotes the transcript of an execution of the protocol
execution, and ρE′ the final quantum state possessed by Eve. Then the following

11 It is not necessary for the definition to specify exactly how the protocols are formulated; in-
formally, each player’s actions is described by a sequence of efficient algorithms that compute
the player’s next message, given the past interaction.



should hold:

(RA, V, E′)σ ≈ε (purify(RA), V, E′)σ and (RB, V, E′)σ ≈ε (purify(RB), V, E′)σ .

In other words, whenever a party does not reject, the party’s key is indistinguishable
from a fresh random string to the adversary.

The quantity k−m is called the entropy loss.

5.1 Dodis-Wichs protocol with non-malleable extractor

Here we first recall the Dodis-Wichs protocol for privacy amplification (hereafter called
Protocol DW), which is summarized in Figure 5.1, and the required security definitions,
taken from [14]. We then state the result obtained by instantiating the protocol with the
quantum-proof non-malleable extractor from Theorem 1.

Protocol DW

Let dX , dY , d2, `, dZ, t, k be integers and εMAC, εExt, εnmExt > 0.
Let MAC : {0, . . . , dZ − 1} × {0, 1}d2 → {0, 1}t be a one-time εMAC-information-

theoretically secure message authentication code.
Let Ext : {0, . . . , dX − 1} × {0, 1}d2 → {0, 1}m be a strong (k − ` − log(1/εExt), εExt)

quantum-proof extractor.
Let nmExt : {0, . . . , dX − 1} × {0, , . . . , dY − 1} → {0, . . . , dZ − 1} be a (k, εnmExt)

quantum-proof non-malleable extractor.
It is assumed that both parties, Alice and Bob, have access to a shared random variable X ∈
{0, . . . , dX − 1}.

1. Alice samples a YA uniformly from {0, , . . . , dY − 1}. She sends YA to Bob. She com-
putes Z = nmExt(X, YA).

2. Bob receives Y′A from Alice. He samples a uniform YB ∼ Ud2 , and computes Z′ =
nmExt(X, Y′A) and W = MAC(Z′, YB). He sends (YB, W) to Alice. Bob then reaches
the KEYDERIVED state and outputs RB = Ext(X, YB).

3. Alice receives (Y′B, W ′) from Bob. If W ′ = MAC(Z, Y′B) she reaches the
KEYCONFIRMED state and outputs RA = Ext(X, Y′B). Otherwise she outputs RA =⊥.

Fig. 5.1. The Dodis-Wichs privacy amplification protocol.

Aside from the use of a strong quantum-proof extractor (Definition 3) and
a quantum-proof non-malleable extractor (Definition 5), the protocol relies on an
information-theoretically secure one-time message authentication codes, or MAC. This
security notion is defined as follows.

Definition 9. A function MAC : {0, . . . , dZ − 1} × {0, 1}d → {0, 1}t is an εMAC-
information-theoretically secure one-time message authentication code if for any func-
tion A : {0, 1}d × {0, 1}t → {0, 1}d × {0, 1}t it holds that for all m ∈ {0, 1}d

Pr
k←UZ

[
(MAC(k, m′) = σ′) ∧ (m′ 6= m) : (m′, σ′)← A(m, MAC(k, m))

]
≤ εMAC.



Efficient constructions of MAC satisfying the conditions of Definition 9 are known.
The following proposition summarizes some parameters that are achievable using a
construction based on polynomial evaluation.

Proposition 1 (Proposition 1 in [34]). For any εMAC > 0, integer d > 0, dZ ≥
d2

ε2
MAC

, there exists an efficient family of εMAC-information-theoretically secure one-time

message authentication codes

{MAC : {0, . . . , dZ − 1} × {0, 1}d → {0, 1}t}d∈N

with t ≤ log d + log(1/εMAC).

The correctness and security requirements for the protocol are natural extensions
of the classical case (see Definition 18 in [19]). Informally, the adversary has the fol-
lowing control over the outcome of the protocol. First, it possess initial quantum side
information E about the weak secret X shared by Alice and Bob. That is, it has a choice
of a cq source ρXE, under the condition that Hmin(X|E) is sufficiently large. Second,
the adversary may intercept and modify any of the messages exchanged. In Protocol
DW there are only two messages exchanged, YA from Alice to Bob and (YB, σ) from
Bob to Alice. To each of these messages the adversary may apply an arbitrary trans-
formation, that may depend on its side information E. We model the two possible at-
tacks, one for each message, as CPTP maps T1 : L(HY ⊗HE) → L(HY ⊗HE′) and
T2 : L(C2d2 ⊗H2t ⊗HE′) → L(C2d2 ⊗ C2t ⊗HE′′), where H denotes the Hilbert
space associated with system E. Note that we may always assume thatH is large enough
for the adversary to keep a local copy of the messages it sees, if it so desires.

The following result on the security of protocol DW is shown in [14]. We include
the proof in Appendix A.

Theorem 3. Let k, t, dZ and εMAC, εExt, εnmExt be parameters of Protocol DW, as
specified in Figure 5.1. Let nmExt be a (k, εnmExt) quantum-proof non-malleable
extractor, Ext a strong (k − log dZ − log(1/εExt), εExt) quantum-proof extractor,
and MAC an εMAC-information-theoretically secure one-time message authentication
code. Then for any active attack (ρXE, T1, T2) such that Hmin(X|E)ρ ≥ k, the DW
privacy amplification protocol described in Figure 5.1 is (k, m, ε)-secure as defined in
Definition 8 with ε = O(εExt + εnmExt + εMAC).

Combined with Theorem 1 stating the security of our construction of a quantum-
proof non-malleable extractor, Theorem 3 provides a means to obtain privacy amplifi-
cation protocol secure against active attacks for a range of parameters. Due to the lim-
itations of our non-malleable extractor we are only able to extract from sources whose
entropy rate is at least 1

2 . This is a typical setting in the case of quantum key distribu-
tion, where the initial min-entropy satisfies Hmin(X|E) ≥ α log dX for some constant
α which depends on the protocol and the noise tolerance, but is generally larger than
3/4. Specifically, we obtain the following:

Corollary 1. For any ε > 0, there exists a constant c > 0, such that the following
holds. For any active attack (ρXE, T1, T2) such that Hmin(X|E)ρ = k ≥ 1

2 log dX +
c · log(1/ε), there is an O(ε)-secure DW protocol that outputs a key of length m =
k−O(log(1/ε)).



Proof. Let p be a prime and n a positive integer such that log p = Θ(log(1/ε))
and dX = pn. Let dY = pn/2, and dZ = p. Also, let d2 = O(log dX), m = k −
O(log(1/ε)), and t = O(log(1/ε)). We instantiate Theorem 3 with the following.

– Let Ext : {0, . . . , dX − 1} × {0, 1}d2 → {0, 1}m be the (k −O(log(1/ε)), ε)
strong quantum-proof extractor from Theorem 2.

– Let nmExt : {0, . . . , dX − 1} × {0, , . . . , dY − 1} → {0, . . . , dZ − 1} be the
( 1

2 · log dX + O(log(1/ε)), ε) non-malleable extractor from Theorem 1.
– Let MAC : {0, . . . , dZ − 1} × {0, 1}d2 → {0, 1}t be the one-time ε-information-

theoretically secure message authentication code from Proposition 1.

The result follows.

5.2 One-round Privacy Amplification Protocol

In this section we show that the one-round protocol of Dodis et al. [16] is also quantum-
proof. This protocol has significantly higher entropy loss, (n/2) + log(1/ε), than the
DW protocol we presented in the previous section.

One-round Privacy Amplification Protocol

Let n, k be integers and ε > 0. Let v = n− k + log(1/ε) and m = (n/2)− v.
It is assumed that both parties, Alice and Bob, have access to a shared random variable X ∈
{0, 1}n. They interpret X as a pair X = (X1, X2) where X1, X2 are identified as elements
in F2n/2 .

1. Alice samples a Y uniformly from F2n/2 and computes Z = YX1 + X2. Let W =

[Z]v1 be the first v bits of Z. She sends (Y, W) to Bob and outputs RA = [Z]n/2
v+1, the

remaining part of Z.
2. Bob receives (Y′, W ′) from Alice and computes Z′ = Y′X1 + X2. If W ′ = [Z′]v1 , then

Bob outputs RB = [Z′]n/2
v+1. Otherwise he outputs ⊥.

Fig. 5.2. The one-round privacy amplification protocol from [16].

Theorem 4. For any integer n and k > n/2, and any ε > 0, the protocol in Fig-
ure 5.2 is a one-round (k, m, ε)-quantum secure privacy amplification protocol with
post-application robustness and entropy loss k−m = (n/2) + log(1/ε).

Proof. Correctness and extraction follow as in the classical proof by observing that
Ext(X, Y) = YX1 + X2 is a quantum-proof extractor since hY(X1, X2) = YX1 + X2
is a family of universal hash function, which is shown to be a quantum-proof strong
extractor in [36]. For robustness, the classical proof does not generalize directly. We
prove post-application robustness as follows.

We proceed by contradiction. Suppose post-application robustness is violated, i.e.
Pr[RA 6= RB ∧ RA 6=⊥ ∧ RB 6=⊥] > ε. Then there is an initial state ρXE with



Hmin(X|E)ρ ≥ k and a CPTP map T : L(HY ⊗ HW ⊗ HRA ⊗ HE) → L(HY ⊗
HW ⊗HE′) that can be applied by an adversary Eve to produce a modified message
that is accepted by Bob with probability greater than ε. Note that T has RA as input
since we consider post-application robustness. Let (Y′, W ′, E′) = T(Y, W, RA, E). If
post-application robustness is violated, then Pr[W ′ = [Y′X1 + X2]

v
1] > ε.

Consider the following communication game: Alice has access to a cq-state ρXE.
Alice samples a uniformly random Y, computes W = [YX1 + X2]

v
1, RA = [YX1 +

X2]
n/2
v+1, and sends E, Y, W, and RA to Bob. They win if Bob guesses X correctly

from E, Y, W, and RA. Using the map T introduced above, Bob can execute the
following strategy. First, apply T on Alice’s message to generate a guess (Y′, W ′).
Second, guess a uniformly random R′B. Third, use Y, Y′, (W, RA) = YX1 + X2,
and (W ′, R′B) = Y′X1 + X2 to solve for a unique X = (X1, X2). Note that Bob
succeeds if the guesses (Y′, W ′) and R′B in the first two steps are both correct (i.e.,
(W ′, R′B) = Y′X1 + X2), which has probability greater than ε · 2−((n/2)−v). On the
other hand, we can upper bound the winning probability of the communication game
using the min entropy assumption H(X|E)ρ ≥ k. Since Y is independent of X and
the length of (W, RA) is n/2, Hmin(X|E, Y, W)ρ ≥ k − (n/2). Thus the winning
probability is less than 2−(k−(n/2)). Putting the two calculations together we have

ε · 2−((n/2)−v) ≤ Pr[ Bob wins ] ≤ 2−(k−(n/2)),

which implies v < n− k− log(1/ε), a contradiction.
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A The Dodis-Wichs Protocol

In this appendix we reproduce the proof of Theorem 3, taken from [14].

Proof of Theorem 3. Let an active attack on Protocol DW be specified by

– A cq state ρXE ∈ D(HX ⊗HE) such that Hmin(X|E)ρ ≥ k;
– A CPTP map T1 : L(HY ⊗ HE) → L(HY ⊗ HE′) whose output on the first

registered is systematically decohered in the computational basis; formally, for any
ρYE, T1(ρYE) = ∑y(|y〉〈y|Y ⊗ IdE)T1(ρYE)(|y〉〈y|Y
⊗ IdE);

– A CPTP map T2 : L(C2d2 ⊗C2t ⊗HE′)→ L(C2d2 ⊗C2t ⊗HE′′).

Given an active attack (ρXE, T1, T2) we instantiate random variables YA, Z, Y′A, YB, Z′,
σ, Y′B, σ′ and RA, RB in the obvious way, as defined in the protocol and taking into
account the maps T1 and T2, applied successively to determine Y′A and (Y′B, σ′).

The correctness of the protocol is clear.
To show robustness, let σY′AYAXE′ denote the joint state of Y′A, YA (which represents

a local copy of YA kept by Alice), X, and Eve’s registers after her first map T1 has been
applied. Further decompose ρ as a sum of sub-normalized densities σ=

Y′AYAXE′ , corre-

sponding to conditioning on Y′A = YA, and σ⊥Y′AYAXE′ , corresponding to conditioning

on Y′A 6= YA.



Conditioned on Y′A = YA, by definition of a MAC the probability that (Y′B, W ′) 6=
(YB, W) and Alice reaches the KEYCONFIRMED state is at most εMAC. If (Y′B, W ′) =
(YB, W) then RA = RB, so that in this case robustness holds with error at most εMAC.

Now suppose Y′A 6= YA. Consider a modified adversary Adv′ that keeps a copy of
YA, applies the map T1, and if Y′A = YA replaces Y′A with a uniformly random string
that is distinct from YA. This adversary implements a CPTP map T′1 that has no fixed
point. By the assumption that nmExt is a quantum-proof non-malleable extractor,

σ′nmExt(X,YA)nmExt(X,Y′A)YAY′AE′ ≈εnmExt Um ⊗ σ′nmExt(X,Y′A)YAY′AE′ , (A.1)

where here Y′AE′ is defined as the output system of the map T′1 implemented by Adv′.
Conditioned on YA 6= Y′A the maps T1 and T′1 are identical, thus it follows from (A.1)
and the definition of ρ⊥ that

σ⊥nmExt(X,YA)nmExt(X,Y′A)YAY′AE′ ≈εnmExt Um ⊗ σ⊥nmExt(X,Y′A)YAY′AE′ ,

where now the states are sub-normalized. Since Z′ = nmExt(X, Y′A) this means
that the key used by Alice to verify the signature in Step 3. of Protocol DW is
(up to statistical distance εnmExt) uniform and independent of the key used by Bob
to make the MAC. By the security of MAC, the probability for Alice to reach the
KEYCONFIRMED state in this case is at most εnmExt + εMAC. Adding both parts to-
gether, Pr(RA /∈ {RB,⊥}) ≤ εnmExt + 2εMAC. Since RB is never ⊥, this implies the
robustness property.

For the extraction property, it is sufficient to show that (RB, V, E) ≈ε (Um, V, E)
since then key extraction property follows from the robustness and the fact that RB is
never ⊥. We have that RB = Ext(X, YB) is close to uniform given V = YAYBW
and E′, and we need to establish two properties: first, independence between X and YB
given YAZ′E′ and second, that the source has enough entropy conditioned on YAZ′E′.
Regarding the first property, observe that conditioned on YAZ′, X and YB are inde-
pendent given E′. Regarding the source entropy, by the chain rule for the (smooth)
min-entropy [37], it follows that HεExt

min(X|YAZ′E′) ≥ k− log dZ − c log(1/εExt) for
some constant c > 0. Note that∥∥(RB, V, E′)σ − (Um, V, E′)σ

∥∥
1 ≤

∥∥(RB, YA, YB, Z′, E′)σ − (Um, YA, YB, Z′, E′)σ

∥∥
1,

which follows since W is a deterministic function YB and Z′. Using that Ext is a strong
quantum-proof extractor, we conclude that (RB, V, E) ≈ε (Um, V, E), as long as ε is
such that ε > εExt.


	A Quantum-Proof Non-Malleable Extractor[2mm] With Application to Privacy Amplification against Active Quantum Adversaries

