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Abstract. An updatable encryption scheme allows a data host to update
ciphertexts of a client from an old to a new key, given so-called update
tokens from the client. Rotation of the encryption key is a common
requirement in practice in order to mitigate the impact of key compromises
over time. There are two incarnations of updatable encryption: One is
ciphertext-dependent, i.e. the data owner has to (partially) download all
of his data and derive a dedicated token per ciphertext. Everspaugh et al.
(CRYPTO’17) proposed CCA and CTXT secure schemes in this setting.
The other, more convenient variant is ciphertext-independent, i.e., it allows
a single token to update all ciphertexts. However, so far, the broader
functionality of tokens in this setting comes at the price of considerably
weaker security: the existing schemes by Boneh et al. (CRYPTO’13) and
Lehmann and Tackmann (EUROCRYPT’18) only achieve CPA security
and provide no integrity protection. Arguably, when targeting the scenario
of outsourcing data to an untrusted host, plaintext integrity should be
a minimal security requirement. Otherwise, the data host may alter or
inject ciphertexts arbitrarily. Indeed, the schemes from BLMR13 and
LT18 suffer from this weakness, and even EPRS17 only provides integrity
against adversaries which cannot arbitrarily inject ciphertexts. In this
work, we provide the first ciphertext-independent updatable encryption
schemes with security beyond CPA, in particular providing strong integrity
protection. Our constructions and security proofs of updatable encryption
schemes are surprisingly modular. We give a generic transformation
that allows key-rotation and confidentiality/integrity of the scheme to
be treated almost separately, i.e., security of the updatable scheme is
derived from simple properties of its static building blocks. An interesting
side effect of our generic approach is that it immediately implies the
unlinkability of ciphertext updates that was introduced as an essential
additional property of updatable encryption by EPRS17 and LT18.

1 Introduction

Updatable encryption was introduced by Boneh et al. [1] as a convenient solution
to enable key rotation for symmetric encryption. Rotating secret keys is considered
good practice to realize proactive security: Periodically changing the cryptographic
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key that is used to protect the data reduces the risk and impact of keys being
compromised over time. For instance, key rotation is mandated when storing
encrypted credit card data by the PCI DSS standard [21], and several cloud
storage providers, such as Google and Amazon, offer data-at-rest encryption with
rotatable keys [8].

The challenge with key rotation is how to efficiently update the existing
ciphertexts when the underlying secret key is refreshed. The straightforward
solution is to decrypt all old ciphertexts and re-encrypt them from scratch using
the new key. Clearly, this approach is not practical in the typical cloud storage
scenario where data is outsourced to a (potentially untrusted) host, as it would
require the full download and upload of all encrypted data.

An updatable encryption scheme is a better solution to this problem: it extends
a classic symmetric encryption scheme with integrated key rotation and update
capabilities. More precisely, these schemes allow to derive a short update token
from an old and new key, and provide an additional algorithm that re-encrypts
ciphertexts using such a token. A crucial property for updatable encryption is
that learning an update token does not impact the confidentiality and also the
integrity of the ciphertexts. Thus, the procedure for re-encrypting all existing
ciphertexts can be securely outsourced to the data host.

State of the Art. There are two different variants of updatable encryption,
depending on whether the update tokens are generated for a specific ciphertext
or are ciphertext-independent. The former type – called ciphertext-dependent
updatable encryption – has been introduced by Boneh et al. [2] and requires the
data owner to (partially) download all outsourced ciphertexts, derive a dedicated
token for each ciphertext, and return all tokens to the host. Everspaugh et
al. [8] provide a systematic treatment for such schemes i.e., defining the desirable
security properties and presenting provably secure solutions. Their focus is on
authenticated encryption schemes, and thus CCA security and ciphertext integrity
(CTXT) are required and achieved by their construction.

While ciphertext-dependent schemes allow for fine-grained control of which
ciphertexts should be re-encrypted towards the new key, they are clearly far less
efficient and convenient for the data owner than ciphertext-independent ones.
In ciphertext-independent schemes, the update token only depends on the new
and old key and allows to re-encrypt all ciphertexts. The idea of ciphertext-
independent schemes was informally introduced by Boneh et al. [1] and recently
Lehmann and Tackmann [17] provided a rigorous treatment of their formal security
guarantees. The broader applicability of update tokens in ciphertext-independent
schemes is an inherent challenge for achieving strong security properties though:
as a single token can be used to update all ciphertexts, the corruption of such
a token gives the adversary significantly more power than the corruption of
a ciphertext-dependent token. As a consequence, the ciphertext-independent
schemes proposed so far only achieve CPA security instead of CCA, and did not
guarantee any integrity protection [17].
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Encrypt-and-MAC (E&M, Sec. 3) Naor-Yung (NYUAE, Sec. 4)
Confidentiality CCA RCCA

Integrity ciphertext integrity plaintext integrity
ReEnc algorithm deterministic probabilistic

ReEnc oracle honestly derived ciphertexts only arbitrary ciphertexts

Fig. 1. Overview of the core differences of our two main schemes and considered settings.

Updatable encryption needs (stronger) integrity protection. Given that updatable
encryption targets a cloud-based deployment setting where encrypted data is
outsourced to an (untrusted) host, neglecting the integrity protection of the
outsourced data is a dangerous shortcoming. For instance, the host might hold
encrypted financial or medical data of the data owner. Clearly, a temporary
security breach into the host should not allow the adversary to create new and
valid ciphertexts that will temper with the owners’ records. For the targeted
setting of ciphertext-independent schemes no notion of (ciphertext) integrity
was proposed so far, and the encryption scheme presented in [17] is extremely
vulnerable to such attacks: their symmetric updatable encryption scheme (termed
RISE) is built from (public-key) ElGamal encryption, which only uses the public
key in the update token. However, a single corruption of the update token will
allow the data host to create valid ciphertexts of arbitrary messages of his choice.

For the ciphertext-dependent setting, the scheme by Everspaugh et al [8]
does provide ciphertext-integrity, but only against a weak form of attacks: the
security definition for their CTXT notion does not allow the adversary to obtain
re-encryptions of maliciously formed ciphertexts. That is, the model restricts
queries to the re-encryption oracle to honestly generated ciphertexts that the
adversary has received from previous (re)encryption oracle queries. Thus, integrity
protection is only guaranteed against passive adversaries. Again, given the cloud
deployment setting in which updatable encryption is used in, assuming that an
adversary that breaks into the host will behave honestly and does not temper
with any ciphertexts is a critical assumption.

Our Contributions. In this work we address the aforementioned shortcomings
for ciphertext-independent updatable encryption and present schemes that provide
significantly stronger security than existing solutions. First, we formally define
the desirable security properties of (R)CCA security, ciphertext (CTXT) and
plaintext integrity (PTXT) for key-evolving encryption schemes. Our definitions
allow the adversary to adaptively corrupt the secret keys or update tokens of the
current and past epochs, as long as it does not empower him to trivially win the
respective security game. We then propose two constructions: the first achieves
CCA and CTXT security (against passive re-encryption attacks), and the second
scheme realizes RCCA and PTXT security against active attacks. Both schemes
make use of a generic (proof) strategy that derives the security of the updatable
scheme from simple properties of the underlying static primitives, which greatly
simplifies the design for such updatable encryption schemes. In more detail, our
contributions are as follows:
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Scheme Assumption Ciph.
indep.

arbitr.
ReEnc

IND INT UN-
LINK

|c| (Re)Enc Dec

BLMR [2] DDH (+ ROM) 7 7 (?) 7 (?) 2G* 2G 2G
EPRS [8] DDH + ROM 7 (7) CPA CTXT 3 2G* 2G 2G
RISE [17] DDH 3 7 CPA 7 3 2G 2G 2G

E&M Sec. 3 DDH + ROM 3 7 CCA CTXT 3 3G 3G 3G
NYUE Sec. 4 SXDH 3 3 RCCA 7 3 (34, 34) (60, 70) 22e

NYUAE Sec. 4 SXDH 3 3 RCCA PTXT 3 (58, 44) (110, 90) 29e

Fig. 2. Comparison of ciphertext-independent and -dependent updatable encryption
schemes. The second set of columns states the achieved security notions, and whether
security against arbitrary (opposed to honest) re-encryption attacks is achieved. For
EPRS, security against arbitrary re-encryption attacks is only considered for confiden-
tiality, not for integrity. For BLMR, it was shown that a security proof for confidentiality
is unlikely to exist [8], and the formal notion of unlinkability of re-encryptions was only
introduced later. The final set of columns states the efficiency in terms of ciphertext
size and costs for (re-)encryption and decryption in the number of exponentiations and
pairings. Tuples (x, y) specify x (resp. y) elements/exponentiations in G1 (resp. G2)
in case of underlying pairing groups, and a pairing is denoted by e. (Re)encryption
and decryption costs for NYUE and NYUAE are approximate. The ciphertext size is
given for messages represented as a single group element (in G or G1). BLMR and EPRS
support encryption of arbitrary size message with the ciphertext size growing linearly
with the message blocks.

CCA and CTXT Secure Ciphertext-Independent Updatable Encryption. Our first
updatable encryption applies the Encrypt-and-MAC (E&M) transformation to
primitives which are key-rotatable and achieves CCA and CTXT security. Using
Encrypt-and-MAC is crucial for the updatability as we need direct access to
both the ciphertext and the MAC. In order to use E&M, which is not a secure
transformation for authenticated encryption in general, we require a one-to-
one mapping between message-randomness pairs and ciphertexts as well as the
decryption function to be randomness-recoverable. By applying a PRF on both,
the message and the encryption randomness, we obtain the desired ciphertext
integrity. Interestingly, we only need the underlying encryption and PRF to be
secure w.r.t. their standard, static security notions and derive security for the
updatable version of E&M from additional properties we introduce for the update
token generation.

An essential property of this first scheme is that its re-encryptions are de-
terministic. This enables us to define and realize a meaningful CCA security
notion, as the determinism allows the challenger to keep track of re-encryptions
of the challenge ciphertext and prevent decryption of such updates. Similar to
the CCA-secure (ciphertext-dependent) scheme of [8], we only achieve security
against passive re-encryption attacks, i.e., where the re-encryption oracle in the
security game can only be queried on honestly generated ciphertexts.

RCCA and PTXT Security Against Malicious Re-Encryption Attacks. Our second
scheme then provides strong security against active re-encryption attacks. On a
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high-level, we use the Naor-Yung approach [20] that lifts (public-key) CPA to
CCA security by encrypting each message under two public keys and appending a
NIZK that both ciphertexts encrypt the same message. The crucial benefit of this
approach is that it allows for public verifiability of ciphertexts, and thus for any
re-encryption it can first be checked that the provided ciphertext is valid — which
then limits the power of malicious re-encryption attacks. To lift the approach
to an updatable encryption scheme, we rely on the key-rotatable CPA-secure
encryption RISE [17] and GS proofs [12, 5] that exhibit the malleability necessary
for rotating the associated NIZK proof.

A consequence of this approach is that re-encryptions are now probabilistic
(as in RISE) and ciphertexts are re-randomizable in general. Therefore, CCA
and CTXT are no longer achievable, and we revert to Replayable CCA (RCCA)
and plaintext integrity. Informally, RCCA is a relaxed variant of CCA security
that ensures confidentiality for all ciphertexts that are not re-randomization of
the challenge ciphertext [3]. Plaintext integrity is a weaker notion than cipher-
text integrity, as forging ciphertexts is now trivial, but still guarantees that an
adversary can not come up with valid ciphertexts for fresh messages.

In Fig. 1 we provide an overview of both solutions and their settings, and
Fig. 2 gives a compact comparison between our new schemes and the existing
ones.

Generic (Proof) Transformation & Unlinkability of Re-Encryption. The security
models for updatable encryption are quite involved, which in turn makes proving
security in these models rather cumbersome [8, 17]. A core contribution of our
work is a generic transformation that yields a surprisingly simple blueprint for
building updatable encryption: We show that it is sufficient to consider the
underlying encryption and the key-rotation capabilities (almost) separately. That
is, we only require the underlying scheme – provided by the Enc,Dec algorithms
in isolation – to satisfy standard security. In addition we need re-encryption to
produce ciphertexts that are indistinguishable from fresh encryption and token
generation to be simulatable. The latter allows us to produce “fake” tokens
when we are dealing with a static CCA/RCCA game, and the former is used to
answer re-encryption oracle calls in the security game with decrypt-then-encrypt
calls. Further, we leverage the fact that all ciphertext-independent schemes so
far are bi-directional, i.e., ciphertexts can also be downgraded. This property
comes in very handy in the security proof as it essentially allows to embed a
static-CCA/RCCA challenger in one epoch, and handle queries in all other epochs
by rotating ciphertexts back-and-forth to this “challenge” epoch.

The notion of indistinguishability of re-encryptions and fresh encryptions
(termed perfect re-encryption) that we define also has another very nice side-effect:
it implies the property of re-encryption unlinkability as introduced in [8, 17]. Both
works propose a security notion that guarantees that a re-encrypted ciphertext
can no longer be linked to its old version, which captures that the full ciphertext
must get refreshed during an update. We adapt this unlinkability notion to the
CCA and RCCA setting of our work and show that perfect re-encryption (in
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combination with CCA resp. CPA security) implies such unlinkability. Both of
our schemes satisfy this strong security notion.

Other Related Work. Recently, Jarecki et al. [14] proposed an updatable and
CCA secure encryption scheme in the context of an Oblivious Key Management
Systems (KMS). The KMS is an external service that hosts the secret key, whereas
the data owner stores all ciphertexts and adaptively decrypts them with the
help of the KMS. Thus, their setting is considerably different to our notion of
updatable encryption where the ciphertexts are outsourced, and the secret is
managed by the data owner.

Another primitive that is highly related to updatable encryption is proxy
re-encryption (PRE). In a recent work, Fuchsbauer et al. [10] show how to lift
selectively secure PRE to adaptive security without suffering from an exponential
loss when using straightforward approaches. Their overall idea is similar to
our generic transformation, as it also relies on additional properties of the
re-encryption procedure that facilitate the embedding of the static challenger.
The different overall setting makes their work rather incomparable to ours: we
exploit bi-directional behaviour of updates, whereas [10] focuses on uni-directional
schemes, and we consider a symmetric key setting whereas the PRE’s are public-
key primitives. In fact, our security proofs are much tighter (partially due to these
differences). We conjecture that our techniques can be applied to obtain adaptive
security with polynomial security loss for a class of PRE schemes, cf. [16]. This
would improve upon the superpolynomial loss in [10].

Organisation. We start our paper by recalling the necessary standard build-
ing blocks and the generic syntax of updatable encryption in Sec. 2. In Sec. 3,
we then present our formal definitions for CCA and CTXT secure updatable
encryption, tailored to our setting of schemes with deterministic re-encryption
and covering passive re-encryption attacks. This section also contains our generic
transformation for achieving these notions from the static security of the un-
derlying building blocks, and our Encrypt-and-MAC construction that utilizes
this generic approach. In Sec. 4 we then introduce RCCA and PTXT security
against active re-encryption attacks and present our Naor-Yung inspired scheme.
Since our generic transformation immediately implies the unlinkability property
UP-REENC introduced in [8, 17] we refer the formal treatment of this notion to
[16].

2 Preliminaries
In this section we introduce our notational conventions and all necessary (stan-
dard) building blocks along with their security definitions.

2.1 Notation
We denote the security parameter by κ. All schemes and building blocks in this
paper make use of some implicit PPT algorithm pp ← GenPP(1κ) which on input
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of the security parameter 1κ outputs some public parameters pp. The public
parameters, e.g., include a description of the cyclic groups and generators we
use. We assume for our security definitions that pp also contains the security
parameter. For the sake of simplicity, we omit GenPP in all definitions including
security experiments. When composing building blocks as in our Encrypt-and-
MAC construction, for example, the same GenPP algorithm is assumed for all
those building blocks and the output pp is shared between them.

By G we denote a commutative group and by (e,G1,G2,GT ) a pairing
group. All groups are of prime order p. The integers modulo p are denoted Fp.
We use additive notation for groups, in particular the well-established implicit
representation introduced in [6]. That is, we write [1] for the generator g ∈ G and
[x] = xg (in multiplicative notation, gx). For pairing groups, we write [1]1, [1]2
and [1]T and we require that e([1]1, [1]2) = [1]T . We define G× := G \ {[0]}. By
supp(X) we denote the support of a random variable X, i.e. the set of outcomes
with positive probability.

2.2 Symmetric and Tidy Encryption

We use the following definition of a symmetric encryption scheme, where the
existence of a system parameter generation algorithm GenSP reflects the fact,
that we partially rely on primitives with public parameters (like a Groth-Sahai
CRS) for our constructions.

Definition 1. A symmetric encryption scheme SKE = (GenSP,GenKey,Enc,Dec)
is defined by the following PPT algorithms

SKE.GenSP(pp) returns system parameters sp. We treat sp as implicit inputs for
the following algorithms.

SKE.GenKey(sp) returns a key k.
SKE.Enc(k,m; r) returns a ciphertext c for message m, key k and randomness r.
SKE.Dec(k, c) returns the decryption m of c. (m = ⊥ indicates failure.)

We assume that the system parameters fix not only the key space Ksp, but also
the ciphertext space Csp, message space Msp and randomness space Rsp. Also,
we assume that membership in Csp and Msp can be efficiently tested.

Tidy Encryption. Our construction of an updatable encryption scheme with
deterministic reencryption resorts to tidy encryption. For this purpose, we use the
following definition which is a slightly adapted version of the definition in [18].

Definition 2. A symmetric encryption scheme SKE is called randomness-
recoverable if there is an associated efficient deterministic algorithm RDec(k, c)
such that

∀k,m, r : RDec(k,Enc(k,m; r)) = (m, r). (1)
We call a randomness-recoverable SKE tidy if

∀k, c : RDec(k, c) = (m, r) =⇒ Enc(k,m; r) = c. (2)
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In other words, SKE is tidy if Enc and RDec are bijections (for a fixed key)
between message-randomness pairs and valid ciphertexts (i.e. ciphertexts which
do not decrypt to ⊥).3

Indistinguishability Notions. For our constructions, we consider a number
of slight variations of the standard security notions IND-CPA and IND-CCA
security.

One such variation is IND-RCCA security [3] which relaxes IND-CCA in the
sense that it is not considered an attack if a ciphertext can be transformed into a
new ciphertext of the same message. Hence, the RCCA decryption oracle refuses
to decrypt any ciphertext containing one of the challenge messages.

Furthermore, we consider CPA, CCA, and RCCA security under key-leakage.
Here the adversary is additionally given leak(k) as input, where leak is some
function on the key space. This leakage reflects the fact that in one of our
constructions (Sec. 4.2), that actually relies on public-key primitives, the cor-
responding public keys need to be leaked to the adversary. So we would have
k = (sk, pk) and leak(k) = pk in this case. For the deterministic construction in
Sec. 3.2 we do not consider key-leakage, i.e., leak(k) = ⊥.

Finally, we can define (stronger) real or random variants (IND$-CPA/CCA)
of the former notions. Here, the adversary provides a single challenge message and
the challenger responds with either an encryption of this message or a randomly
chosen ciphertext.

Def. 3 compactly formalizes the security notions sketched above.

Definition 3. Let SKE be a secret key encryption scheme. Let leak : K → L be
a leakage function. We call SKE IND-X secure, where X ∈ {CPA,CCA,RCCA},
under key-leakage leak, if for every efficient PPT adversary A, the advantage

Advind-X
SKE,A(κ) :=

∣∣∣Pr[Expind-X
SKE,A(κ, 0) = 1]− Pr[Expind-X

SKE,A(κ, 1) = 1]
∣∣∣

in the experiment described in Fig. 3 is negligible. Analogous to IND-X, we define
IND$-X security for X ∈ {CPA,CCA}, with the experiments also described in
Fig. 3. IND$-X is the strictly stronger notion, i.e., it implies IND-X.

Integrity Notions. We consider both plaintext (PTXT) and ciphertext (CTXT)
integrity. In the PTXT experiment, the adversary wins if it is able to output
a valid ciphertext for a fresh plaintext, i.e., a ciphertext that decrypts to a
plaintext for which it has not queried the encryption oracle before. In the CTXT
experiment, in order to win, the adversary just needs to output a valid and fresh
ciphertext, i.e., one not resulting from a previous call to the encryption oracle. In
both experiments, the adversary is equipped with a decryption oracle instead of
an oracle that just tests the validity of ciphertexts. For CTXT, this actually makes
no difference. For PTXT, however, there are (pathological) insecure schemes
3 Since encryption of ⊥ also yields ⊥, Eq. (2) trivially holds for invalid ciphertexts.
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Experiment Expind-X
SKE,A(κ, b)

sp ← GenSP(pp); k ← GenKey(sp);
(m∗

0 ,m∗
1 , state)← AEnc,Dec(pp, sp, leak(k));

abort if |m∗
0 | 6= |m∗

1 | or m∗
0 ,m∗

1 6∈Msp
c∗ ← Enc(k,m∗

b );
return AEnc,Dec(state, c∗) ?= b

Experiment Expind$-X
SKE,A(κ, b)

sp ← GenSP(pp); k ← GenKey(sp);
(m∗, state)← AEnc,Dec(pp, sp, leak(k));
abort if m∗ 6∈Msp
c∗

0 ← Enc(k,m∗); c∗
1 ←R C; c∗ := c∗

b

return AEnc,Dec(state, c∗) ?= b

Fig. 3. The encryption oracle Enc(m) returns c ←R Enc(k,m). The decryption oracle
Dec(m) computes m ←R Dec(k, c) but then behaves differently depending on the notion.
For CPA, Dec(c) always returns ⊥. For CCA, Dec(c) returns m except if c = c∗, in
which case it returns ⊥. For RCCA, Dec(c) returns m except if m ∈ {m∗

0 ,m∗
1} in

which case it returns invalid. Note that invalid 6= ⊥, i.e. A learns that (one of) the
challenge messages is encrypted in c. Everything else is unchanged.

which are only secure w.r.t. validity oracles. Again, we consider variants of these
integrity notions under key-leakage. Def. 4 formalizes these notions.

Definition 4. Let SKE be a symmetric encryption scheme. Let leak : K → L be
a leakage function. The INT-CTXT as well as the INT-PTXT experiments are
defined in Fig. 4. We call SKE INT-CTXT secure under (key-)leakage leak if the
advantage Advint-ctxt

SKE,A(κ) := Pr[Expint-ctxt
SKE,A(κ) = 1] is negligible. Similarly, we call

SKE INT-PTXT secure under (key-)leakage leak if the advantage Advint-ptxt
SKE,A (κ) :=

Pr[Expint-ptxt
SKE,A (κ) = 1] is negligible.

Experiment Expint-ptxt
SKE,A(κ)

M = ∅; Q = ∅;
sp ← GenSP(pp); k ← GenKey(sp);
c ← AEnc,Dec(pp, sp, leak(k));
m ← Dec(k, c);
return 0 iff m ∈M or m = ⊥

Experiment Expint-ctxt
SKE,A(κ)

M = ∅; Q = ∅;
sp ← GenSP(pp); k ← GenKey(sp);
c ← AEnc,Dec(pp, sp, leak(k));
m ← Dec(k, c);
return 0 iff c ∈ Q or m = ⊥

Fig. 4. The INT-PTXT (left) and INT-CTXT (right) games. The encryption oracle
Enc(m) returns c ← Enc(k,m) and adds m to the list of queried messages M and adds
c to the list of queried ciphertexts Q. The oracle Dec(c) returns Dec(k, c).

2.3 Updatable Encryption

Roughly, an updatable encryption scheme is a symmetric encryption scheme
which offers an additional re-encryption functionality that moves ciphertexts
from an old to a new key.

The encryption key evolves with epochs, and the data is encrypted with
respect to a specific epoch e, starting with e = 0. When moving from epoch e to
epoch e+ 1, one first creates a new key ke+1 via the UE.GenKey algorithm and
then invokes the token generation algorithm UE.GenTok on the old and new key,
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ke and ke+1, to obtain the update token ∆e+1. The update token ∆e+1 allows
to update all previously received ciphertexts from epoch e to e + 1 using the
re-encryption algorithm UE.ReEnc.

Definition 5 (Updatable Encryption). An updatable encryption scheme
UE is a tuple (GenSP,GenKey,GenTok,Enc,Dec,ReEnc) of PPT algorithms de-
fined as:

UE.GenSP(pp) is given the public parameters and returns some system parameters
sp. We treat the system parameters as implicit input to all other algorithms.

UE.GenKey(sp) is the key generation algorithm which on input of the system
parameters outputs a key k ∈ Ksp.

UE.GenTok(ke, ke+1) is given two keys ke and ke+1 and outputs some update
token ∆e+1.

UE.Enc(ke,m) is given a key ke and a message m ∈ Msp and outputs some
ciphertext ce ∈ Csp.

UE.Dec(ke, ce) is given a key ke and a ciphertext ce and outputs some message
m ∈Msp or ⊥.

UE.ReEnc(∆e, ce−1) is given an update token ∆e and a ciphertext ce−1 and
returns an updated ciphertext ce.

Given UE, we call SKE = (GenSP,GenKey,Enc,Dec) the underlying (standard)
encryption scheme.
UE is called correct if SKE is correct and ∀sp ← GenSP(pp),∀kold, knew ←
GenKey(sp),∀∆← GenTok(kold, knew),∀c ∈ C : Dec(knew,ReEnc(∆, c)) = Dec(kold, c).

We will use both notations, i.e., ke, ke+1 and kold, knew synonymous throughout
the paper, where the latter omits the explicit epochs e whenever they are not
strictly necessary and we simply want to refer to keys for two consecutive epochs.

In our first construction, the re-encryption algorithm UE.ReEnc will be a
deterministic algorithm, whereas for our second scheme the ciphertexts are
updated in a probabilistic manner. We define the desired security properties
(UP-IND-CCA,UP-INT-CTXT) for updatable encryption schemes with deter-
ministic re-encryption and (UP-IND-RCCA,UP-INT-PTXT) for schemes with
a probabilistic UE.ReEnc algorithm in the following sections.

RISE. In [17], Lehmann and Tackmann proposed an updatable encryption scheme
called RISE which is essentially (symmetric) ElGamal encryption with added
update functionality. We use RISE as a building block in our RCCA and PTXT
secure scheme. Please refer to [16] for a description of RISE in our setting.

3 CCA and CTXT Secure Updatable Encryption

In this section, we first introduce the considered confidentiality and integrity
definitions for updatable encryption with deterministic re-encryption (Sec. 3.1).
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CCA CTXT RCCA PTXT

Next() moves to the next epoch e+ 1 by generating new key and update token

Enc(m) returns encryption c of message m under current epoch key ke

stores ciphertext (e, c) in Q stores (e,m, c) in Q stores (e,m) in Q

Dec(c) returns decryption m of ciphertext c under current epoch key ke

ignores c if it is the
challenge c∗ or a
re-encryption of c∗

— ignores c if it
decrypts to m0 or m1

—

ReEnc(i, c) returns re-encryption ce of ciphertext c from epoch i into current epoch e

allows only
ciphertexts in Q and
derivations of c∗

allows only
ciphertexts in Q

allows arbitrary ciphertexts

if c is c∗ or a
re-encryption of c∗ it
adds epoch e to C∗

— if c decrypts to m0 or
m1 and (i, ∗, c) /∈ Q
it adds epoch e to C∗

—

Corrupt(x, i) returns either ki (if x = key) or ∆i (if x = token) for 0 ≤ i ≤ e

Fig. 5. Overview of oracles and their restrictions in our different security games. C∗ is
the set of challenge-equal epochs used in the CCA and RCCA games, c∗ denotes the
challenge ciphertext in the CCA game, and m0,m1 are the two challenge plaintexts
chosen by A in the RCCA game. Q is the set of queried (re)encryptions.

This is followed by a generic transformation that allows to realize these no-
tions from simple, static security properties (Sec. 3.2). Finally, we describe a
Encrypt-and-MAC construction that can be used in this transformation and give
instantiations of its building blocks (Sec. 3.3).

3.1 Security Model
We follow the previous work on updatable encryption and require confidentiality
of ciphertexts in the presence of temporary key and token corruption, covering
both forward and post-compromise security. This is formalized through the
indistinguishability-based security notion UP-IND-CCA which can be seen as
the extension of the standard CCA game to the context of updatable encryption.
In addition to confidentiality, we also require integrity of ciphertexts, which we
formulate via our UP-INT-CTXT definition.

Both security notions are defined through experiments run between a chal-
lenger and an adversary A. Depending on the notion, the adversary may issue
queries to different oracles. At a high level, A is allowed to adaptively corrupt
arbitrary choices of secret keys and update tokens, as long as they do not allow
him to trivially win the respective security game.

Oracles and CCA Security. Our UP-IND-CCA notion is essentially the
regular IND-CCA definition where the adversary is given additional oracles that
capture the functionality inherent to an updatable encryption scheme.
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These oracles are defined below and are roughly the same in all our security
definitions. We describe the oracles in the context of our UP-IND-CCA security
game, which needs some extra restrictions and care in order to prevent a decryp-
tion of the challenge ciphertext. When introducing our other security notions,
we explain the differences w.r.t. the oracles presented here. An overview of all
oracles and their differences in our security games is given in Figure 5.

The oracles may access the global state (sp, ke, ∆e,Q,K,T,C∗) which is
initialized via Init(pp) as follows:

Init(pp): This initializes the state of the challenger as (sp, k0, ∆0,Q,K,T,C∗)
where e ← 0, sp ←R UE.GenSP(pp) k0 ←R UE.GenKey(sp), ∆0 ← ⊥, Q ←
∅,K← ∅, T← ∅ and C∗ ← ∅.
The current epoch is denoted as e, and the list Q contains “honest” ciphertexts

which the adversary has obtained entirely through the Enc or ReEnc oracles. The
challenger also keeps sets K,T and C∗ (all initially set to ∅) that are used to
keep track of the epochs in which A corrupted a secret key (K), token (T), or
obtained a re-encryption of the challenge-ciphertext (C∗). These will later be
used to check whether the adversary has made a combination of queries that
trivially allow him to decrypt the challenge ciphertext. For our integrity notions
UP-INT-CTXT and UP-INT-PTXT we will omit the set C∗ that is related to
the challenge ciphertext. Moreover, the predicate isChallenge, which identifies
challenge-related ciphertexts, unnecessary for integrity notions. We implicitly
assume that the oracles only proceed when the input is valid, e.g,. for the epoch i
it must hold that 0 ≤ i < e for re-encryption queries, and 0 ≤ i ≤ e for corruption
queries. The decryption or re-encryption oracle will only proceed when the input
ciphertext is “valid” (which will become clear in the oracle definitions given
below). For incorrect inputs, the oracles return invalid.

Next(): Runs ke+1 ←R UE.GenKey(sp), ∆e+1 ←R UE.GenTok(ke, ke+1), adds
(ke+1, ∆e+1) to the global state and updates the current epoch to e← e+ 1.

Enc(m): Returns c ←R UE.Enc(ke,m) and sets Q← Q ∪ {(e, c)}.
Dec(c): If isChallenge(ke, c) = false, it returns m← UE.Dec(ke, c).
ReEnc(i, c): The oracle returns the re-encryption of c from the i-th into the

current epoch e. That is, it returns ce that is computed iteratively through
c` ← UE.ReEnc(∆`, c`−1) for ` = i+ 1, . . . , e and ci ← c. The oracle accepts
only ciphertexts c that are honestly generated, i.e., either (i, c) ∈ Q or
isChallenge(ki, c) = true. It also updates the global state depending on
whether the query is a challenge ciphertext or not:
– If (i, c) ∈ Q, set Q← Q ∪ {(e, ce)}.
– If isChallenge(ki, c) = true, set C∗ ← C∗ ∪ {e}.

Corrupt({key, token}, i): This oracle models adaptive and retroactive corruption
of keys and tokens, respectively:
– Upon input (key, i), the oracle sets K← K ∪ {i} and returns ki.
– Upon input (token, i), the oracle sets T← T ∪ {i} and returns ∆i.

Finally, we define UP-IND-CCA security as follows, requesting the adversary
after engaging with the oracles defined above, to detect whether the challenge
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ciphertext c∗ ←R UE.Enc(ke,mb) is an encryption of m0 or m1. The adversary
wins if he correctly guesses the challenge bit b and has not corrupted the secret
key in any challenge-equal epoch. In the following we explain how we define the
set of challenge-equal epochs Ĉ∗ and prevent trivial wins.

Definition 6. An updatable encryption scheme UE (with deterministic re-encryp-
tion) is called UP-IND-CCA secure if for any PPT adversary A the advantage

Advup-ind-cca
UE,A (pp) :=

∣∣∣Pr[Expup-ind-cca
UE,A (pp, 0) = 1]− Pr[Expup-ind-cca

UE,A (pp, 1) = 1]
∣∣∣

is negligible in κ.

Experiment Expup-ind-cca
UE,A (pp, b)

(sp, k0, ∆0,Q,K,T,C∗)← Init(pp)
(m0,m1, state)←R AEnc,Dec,Next,ReEnc,Corrupt(sp)
proceed only if |m0| = |m1| and m0,m1 ∈Msp
c∗ ←R UE.Enc(ke,mb), C∗ ← {e}, e∗ ← e
b′ ←R AEnc,Dec,Next,ReEnc,Corrupt(c∗, state)
return b′ if K ∩ Ĉ∗ = ∅, i.e. A did not trivially win. (Else abort.)

Preventing decryption of an updated challenge ciphertext. We use a predicate
isChallenge(ki, c) to detect attempts of decrypting the challenge ciphertext c∗
or a re-encryption thereof. Whether a given ciphertext is a re-encryption of the
challenge c∗ can be tested efficiently by exploiting the deterministic behaviour of
the re-encryption algorithm, and the fact that all secret keys and token are known
to the challenger. This approach has also been used to define CCA-security for
ciphertext-dependent schemes by Everspaugh et al. [8].

For the following definition, recall that c∗ is the challenge ciphertext obtained
in epoch e∗, or c∗ = ⊥ if the adversary has not made the challenge query yet.
isChallenge(ki, c) :
– If i = e∗ and c∗ = c, return true.
– If i > e∗ and c∗ 6= ⊥, return true if c∗i = c where c∗i for epoch i is computed

iteratively as c∗` ← UE.ReEnc(∆`+1, c∗` ) for ` = e∗, . . . , i.
– Else return false.

Defining trivial wins. A crucial part of the definition is to capture the information
the adversary has learned through his oracle queries. In particular, any corruption
of the token ∆e+1 in an epoch after where the adversary has learned the challenge
ciphertext c∗e (directly or via a re-encryption) will enable to adversary to further
update the challenge ciphertext into the next epoch e+ 1. The goal of capturing
this inferable information, is to exclude adversaries following a trivial winning
strategy such as, e.g., corrupting a key under which a given challenge ciphertext
has been (re-)encrypted.

We use the notation from [17] to define the information the adversary may
trivially derive. We focus on schemes that are bi-directional, i.e., we assume up
and downgrades of ciphertexts. That is, we assume that a token ∆e may enable
downgrades of ciphertexts from epoch e into epoch e− 1. While bi-directional
security and schemes are not preferable from a security point of view, all currently
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e0 e1 e2 e3 e4 e5 e6 e7 e8
∆1 ∆2 ∆7

Fig. 6. Example of corrupted tokens, keys (boxed) and challenge-equal epochs (circled)
in a UP-IND-CCA game. Corrupting ∆3 and ∆8 is forbidden, as they would allow to
re-encrypt the challenge ciphertext into an epoch where A knows the secret key.

known (efficient) solutions exhibit this additional property.4 Thus, for the sake
of simplicity we state all our definitions for this setting. As a consequence, it is
sufficient to consider only the inferable information w.r.t. ciphertexts: [17] also
formulate inference of keys, which in the case of bi-directional schemes has no
effect on the security notions though.

For the (R)CCA game, we need to capture all the epochs in which the
adversary knows a version of the challenge ciphertext, which we define through
the set Ĉ∗ containing all challenge-equal epochs. Recall that C∗ denotes the
set of epochs in which the adversary has obtained an updated version of the
ciphertext via the challenge query or by updating the challenge ciphertext via the
ReEnc oracle. The set T contains all epochs in which the adversary has corrupted
the update tokens, and eend denotes the last epoch of the game. The set Ĉ∗ of all
challenge-equal ciphertexts is defined via the recursive predicate challenge-equal:

Ĉ∗ ← {e ∈ {0, . . . , eend} | challenge-equal(e) = true}
and true← challenge-equal(e) iff: (e ∈ C∗) ∨

(challenge-equal(e− 1) ∧ e ∈ T) ∨ (challenge-equal(e+ 1) ∧ e+ 1 ∈ T)

Note that Ĉ∗ is efficiently computable (e.g. via fixpoint iteration).

Re-encryptions of the challenge ciphertext. Note that we allow ReEnc to skip keys,
as we let A give the starting epoch i as an additional parameter and return the
re-encryption from any old key ki to the current one. This is crucial for obtaining
a meaningful security model: any ReEnc query where the input ciphertext is a
derivation of the challenge ciphertext (that the adversary will receive in the CCA
game), marks the current target epoch e as challenge-equal by adding e to C∗. In
our UP-IND-CCA security game defined below we disallow the adversary from
corrupting the key of any challenge-equal epoch to prevent trivial wins. Calling
the ReEnc oracle for a re-encryption of the challenge ciphertext from some epoch
i to e will still allow A to corrupt keys between i and e.

Ciphertext Integrity. Updatable encryption should also protect the integrity
of ciphertexts. That is, an adversary should not be able to produce a ciphertext
himself that correctly decrypts to a message m 6= ⊥. Our definition adapts he
classic INT-CTXT notion to the setting of updatable encryption. We use the
same oracles as in the UP-IND-CCA game defined above, but where isChallenge
4 Note that bi-directionality is a property of the security model, not the scheme per se.
That is, uni-directional schemes are evidently also bi-directional secure, even though
they do not allow ciphertext downgrades.
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always returns false (as there is no challenge ciphertext). Again, the tricky part
of the definition is to capture the set of trivial wins – in this case trivial forgeries –
that the adversary can make given the secret keys and update tokens he corrupts.
For simplicity, we only consider forgeries that the adversary makes in the current
and final epoch eend, but not in the past. This matches the idea of updatable
encryption where the secret keys and update tokens of old epochs will (ideally)
be deleted, and thus a forgery for an old key is meaningless anyway.

Clearly, when the adversary corrupted the secret key at some previous epoch
and since then learned all update tokens until the final epoch eend, then all
ciphertexts in this last epoch can easily be forged. This is captured by the first
case in the definition of UP-INT-CTXT security.

Definition 7. An updatable encryption scheme UE is called UP-INT-CTXT
secure if for any PPT adversary A the following advantage is negligible in κ:
Advup-int-ctxt

UE,A (pp) := Pr[Expup-int-ctxt
UE,A (pp) = 1].

Experiment Expup-int-ctxt
UE,A (pp)

(sp, k0, ∆0,Q,K,T)← Init(pp)
c∗ ←R ANext,Enc,Dec,ReEnc,Corrupt(sp)
return 1 if UE.Dec(keend , c

∗) 6= ⊥ and (eend, c
∗) /∈ Q∗ and

@e ∈ K where i ∈ T for i = e to eend; i.e. A did not trivially win.

Defining trivial ciphertext updates. When defining the set of trivial ciphertexts
Q∗ for the UP-INT-CTXT game defined above, we now move from general epochs
to concrete ciphertexts, i.e., we capture all ciphertexts that the adversary could
know, either through queries to the Enc or ReEnc oracle or through updating
such ciphertexts himself. We exploit that ReEnc is deterministic to define the
set of trivial forgeries Q∗ as narrow as possible. More precisely, Q∗ is defined
by going through the ciphertexts (e, c) ∈ Q the adversary has received through
oracle queries and iteratively update them into the next epoch e+ 1 whenever
the adversary has corrupted ∆e+1. The latter information is captured in the set
T that contains all epochs in which the adversary learned the update token. We
start with Q∗ ← ∅ and amend the set as follows:
for each (e, c) ∈ Q:
set Q∗ ← Q∗ ∪ (e, c), and i← e+ 1, ci−1 ← c
while i ∈ T:
set Q∗ ← Q∗ ∪ (i, ci) where ci ← UE.ReEnc(∆i, ci−1), and i← i+ 1

On the Necessity of the “Queried Restriction”. Restricting ReEnc queries
to honestly generated ciphertexts seems somewhat unavoidable, as the ability of
ciphertext-independent key-rotation seems to require homomorphic properties
on the encryption. In our construction, an adversary could exploit this homomor-
phism to “blind” the challenge ciphertext before sending it to the ReEnc oracle,
and later “unblind” the re-encrypted ciphertext. This blinding would prevent us
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from recognizing that the challenge ciphertext was re-encrypted, and thus the tar-
get epoch would no longer be marked as challenge-equal, allowing the adversary
to corrupt the secret key in the new epoch and trivially win by decrypting the
re-encrypted challenge. A similar restriction is used in the CTXT definition for
ciphertext-dependent schemes in [8] as well.5 In Sec. 4 we overcome this challenge
by making ciphertexts publicly verifiable. The above “blinding” trick then no
longer works as it would invalidate the proof of ciphertext correctness.

3.2 Generic Transformation for Secure Updatable Encryption

In the following we prove UP-IND-CCA and UP-INT-CTXT security for a class of
updatable encryption schemes satisfying some mild requirements. The goal is that
given an updatable encryption scheme UE = (Gen,GenKey,GenTok,Enc,Dec,ReEnc),
we can prove the security of UE based only on classical security of the underlying
encryption scheme SKE = (Gen,GenKey,Enc,Dec) and simple properties satisfied
by GenTok and ReEnc.

Properties of the (Re-)Encryption and Token Generation. Now we
define the additional properties that are needed to lift static IND-CCA and
INT-CTXT security to their updatable version with adaptive key and token
corruptions as just defined.

Tidy Encryption & Strong CCA/CTXT. When re-encryptions are determinis-
tic, we need the underlying standard encryption scheme SKE of an updatable
scheme to be tidy (cf. Def. 2), so there is a one-to-one correspondence between
ciphertexts and message-randomness pairs. Further, we need slightly stronger
variants of the standard security definitions IND-CCA and INT-CTXT in the
deterministic setting where the encryption oracle additionally reveals the used
encryption randomness. We denote these stronger experiments by S-IND-CCA
and S-INT-CTXT, or simply by saying strong IND-CCA/INT-CTXT.

Definition 8. Strong IND-X, IND$-X and INT-Y notions are defined as
sketched above. (See also [16].)

Simulatable & Reverse Tokens. We need further properties (Definitions 9 and 10)
that are concerned with the token generation of an updatable encryption scheme.
It should be possible to simulate perfectly indistinguishable tokens as well as
reverse tokens, inverting the effect of the former ones, without knowing any key.

Definition 9. We call a token ∆′ a reverse token of a token ∆ if for every
pair of keys kold, knew ∈ K with ∆ ∈ supp(UE.GenTok(kold, knew)) we have
∆′ ∈ supp(UE.GenTok(knew, kold)).
5 The CTXT definition in the proceedings version of their paper did not have such
a restriction, however the revised ePrint version [7] later showed that the original
notion is not achievable and a weaker CTXT definition is introduced instead.
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Definition 10. Let UE be an updatable encryption scheme. We say that UE has
simulatable token generation if it has the following property: There is a PPT
algorithm SimTok(sp) which samples a pair (∆,∆′) of token and reverse token.
Furthermore, for arbitrary (fixed) kold ← UE.GenKey(sp) following distributions
of ∆ are identical: The distribution of ∆

– induced by (∆,_)←R SimTok(sp).
– induced by ∆←R UE.GenTok(kold, knew) where knew ←R UE.GenKey(sp).

In other words, honest token generation and token simulation are perfectly indis-
tinguishable.

Re-encryption = decrypt-then-encrypt. The final requirement states that the
re-encryption of a ciphertext c = UE.Enc(kold,m; r) looks like a fresh encryption
of m under knew where UE.Enc uses the same randomness r. To formalize this, we
make use of UE.RDec, the randomness-recoverable decryption algorithm of the
underlying encryption scheme (Def. 2), where we have (m, r)← UE.RDec(k, c)
for c ← UE.Enc(k,m; r).

Definition 11. Let UE be an updatable encryption scheme with deterministic
re-encryption. We say that re-encryption (for UE) is randomness-preserving
if the following holds: First, as usually assumed, UE encrypts with uniformly
chosen randomness (i.e., UE.Enc(k,m) and UE.Enc(k,m; r) for uniformly chosen
r are identically distributed). Second, for all sp ←R UE.GenSP(pp), all keys
kold, knew ←R UE.GenKey(sp), tokens ∆←R UE.GenTok(kold, knew), and all valid
ciphertexts c under kold, we have

UE.Enc(knew,UE.RDec(kold, c)) = UE.ReEnc(∆, c).

More precisely, UE.Enc(knew,UE.RDec(kold, c)) is defined as UE.Enc(knew,m; r)
where (m, r)← UE.RDec(kold, c).

In [16], we argue that this randomness-preserving property additionally guaran-
tees unlinkability of re-encrypted ciphertexts (UP-REENC security) as considered
by prior work [17, 8].

UP-IND-CCA and UP-INT-CTXT Security. We are now ready to state
our generic transformation for achieving security of the updatable encryption
scheme. The proofs for both properties are very similar, and below we describe
the core ideas of our proof strategy. The detailed proofs are given in [16].

Theorem 1. Let UE = (Gen,GenKey,GenTok,Enc,Dec,ReEnc) be an updat-
able encryption scheme with deterministic re-encryption. Suppose that UE has
randomness-preserving re-encryption and simulatable token generation and the
underlying encryption scheme SKE = (Gen,GenKey,Enc,Dec) is tidy.

– If SKE is S-IND-CCA-secure, then UE is UP-IND-CCA-secure.
– If SKE is S-INT-CTXT-secure, then UE is UP-INT-CTXT-secure.
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Proof (sketch). In the following, we illustrate the main challenges occurring in
our security proofs as well as how we can cope with these using the properties
we just introduced. Let us consider the problems that arise when we embed a
static challenge, say an IND-CCA challenge, into an UP-IND-CCA game. Let us
assume the UP-IND-CCA adversary A asks for its challenge under key ke∗ and
we want to embed our IND-CCA challenge there. Then ke∗ is unknown to us but
we can answer A’s encryption and decryption queries under ke∗ using our own
IND-CCA oracles.

However, the token ∆e∗+1 might be corrupted by A. Note that in this case,
ke∗+1 cannot be corrupted, since A could trivially win. Now, the question is how
∆e∗+1 can be generated without knowing ke∗ . For this purpose, we make use
of the simulatable token generation property (Def. 10) that ensures that well-
distributed tokens can be generated even without knowing keys. So we can hand
over a simulated ∆e∗+1 to A if it asks for it. But when simulating tokens in this
way, we do not know the corresponding keys. This is a potential problem as we
need to be able to answer encryption and decryption queries under the unknown
key ke∗+1. To cope with this problem, we use the corresponding IND-CCA oracle
for ke∗ and update or downgrade the ciphertexts from/to epoch e∗. That means,
if we are asked to encrypt under ke∗+1, we actually encrypt under ke∗ and update
the resulting ciphertext to epoch e∗ + 1 using ∆e∗+1. Now, we need to ensure
that ciphertexts created in this way look like freshly encrypted ciphertexts under
key ke∗+1. This is what Def. 11 requires. Similarly, if we are asked to decrypt
under ke∗+1, we downgrade the ciphertext using the reverse token ∆′e∗+1 (Def. 9)
that was generated along with ∆e∗+1 (Def. 10). Note that in this case, we do
not need the downgraded ciphertext to look like a fresh one as A never sees
it. Assuming the next token ∆e∗+2 gets also corrupted we can do the same to
handle encryption and decryption queries for epoch e∗ + 2.

Now let us assume that not the token ∆e∗+1 but the key ke∗+1 gets corrupted.
In this case we can neither generate ∆e∗+1 regularly as we do not know ke∗ nor
simulate it as ke∗+1 is known to the adversary. As we know ke∗+1, we have no
problems in handling encryption and decryption queries for epoch e∗+1. But it is
not clear how we can re-encrypt a (non-challenge) ciphertext c freshly generated
in epoch e∗ to e∗ + 1 without knowing ∆e∗+1. As we called our IND-CCA
encryption oracle to generate c, we certainly know the contained message m.
So we could just encrypt m under key ke∗+1 yielding ciphertext c′. However,
now the freshly encrypted ciphertext c′ and a ciphertext c′′ resulting from
regularly updating c′ to epoch e∗ + 1 may look different as they involve different
randomness. To circumvent this problem, we require the IND-CCA encryption
oracle to additionally output the randomness r which has been used to generate
c. Computing c′ using randomness r then yields perfect indistinguishability
assuming Def. 11. Hence, we need SKE to be S-IND-CCA (and S-INT-CTXT)
and not only IND-CCA (and INT-CTXT) secure.

Finally, let us consider how to handle queries to the left of the challenge
epoch. For this, let us assume that ke∗−1 gets corrupted and ∆e∗ is uncorrupted
but unknown to us. Then again we can easily handle encrypt/decrypt queries
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k0 . . . k`−1 k`
. . . kj . . . kr kr+1 . . . kemax

(c`, r)←R C.Enc(m)

Re-encrypt c` to kj

cj

m ← C.Dec(c`)
Re-encrypt cj to k`

cj

Fig. 7. Encryption and decryption in the insulated region. The keys in the grey area
(k` to kr) are not known in the reduction. Encryption and decryption for other keys is
unchanged. The S-INT-CTXT resp. S-IND-CCA challenger C is embedded in epoch `.

for epoch e∗ − 1 but cannot re-encrypt a ciphertext c from epoch e∗ − 1 to e∗ in
a straightforward manner. Now, as c needs to result from a previous query the
corresponding message-randomness pair (m, r) (due to tidyness there is only one
such pair) is known. So, as before, we would like to replace the re-encryption by a
fresh encryption under key ke∗ . Unfortunately, the S-IND-CCA encryption oracle
we would use for this purpose only accepts the message but not the randomness
as input. We cope with this as follows: when we are asked to encrypt a message
m under key ke∗−1 (or prior keys), we will always first call the S-IND-CCA oracle
to encrypt m yielding a ciphertext c′ and randomness r. Then we would encrypt
(m, r) under key ke∗−1 yielding c. The ciphertext c′ can then be stored until a
re-encryption of c is needed. Again Def. 11 ensures perfect indistinguishability
from a real re-encryption. (Here, we use that encryption randomness is chosen
uniformly, independent of the key.)

Note that the case that ∆e∗ is corrupted could actually be handled analogous
to the case that ∆e∗+1 is corrupted by additionally demanding randomness-
preserving re-encryption for reverse tokens but we can get around this.

Overall, this solves the main challenges when embedding an S-IND-CCA
challenge into an UP-IND-CCA game.

Key Insulation. Our key insulation technique aims at coping with the problems
when embedding challenges and follows the ideas just described. However, instead
of guessing the challenge epoch and the region to the left and to the right in
which the adversary corrupted all of the tokens (and none of keys) and embed our
S-IND-CCA/S-INT-CTXT challenge there, we rather do the following: we only
guess the boundaries of this region {`, . . . , r} (containing the challenge epoch)
and embed the S-IND-CCA/S-INT-CTXT challenge at epoch `. Note that the
tokens ∆` and ∆r entering and leaving the boundaries of this “insulated” region
are not corrupted.

Now we change the inner workings in this region and the way it can be
entered from the left using the ideas described before. Namely, only key k` in the
region is generated. Recall, in the reduction we have S-IND-CCA/S-INT-CTXT
oracles at our disposal to replace this key. The tokens ∆`+1, . . . ,∆r+1 along
with corresponding reverse tokens are generated using SimTok (cf. Def. 10). For
encryption in the region, we encrypt under k` and update the ciphertext to



20 Michael Klooß, Anja Lehmann, and Andy Rupp

k0 . . . k`−1 k`
. . . ke∗ . . . kr kr+1 . . . kemax

Dec-then-Enc Dec-then-Enc

ReEnc(∆i, c) ReEnc(∆i, c) ReEnc(∆i, c)

Fig. 8. Entering and leaving the insulated region. Re-encryption in the underbraced
regions is done using the known tokens. The two missing tokens are “emulated” by
decrypt-then-encrypt.

the desired epoch. For decryption, we the use reverse tokens to downgrade the
ciphertext to k` and decrypt with this key. This is illustrated in Fig. 7. Leaving
and entering the region which was originally done by re-encryption, is now
essentially done by retrieving the plaintext and randomness of the ciphertext
that should be reencrypted (so we sort of decrypt the queried ciphertext) and
use it to generate a fresh ciphertext inside or outside the region by encryption.
This is depicted in Fig. 8.

3.3 An Encrypt-and-MAC Construction

We construct an UE scheme with deterministic re-encryption that achieves
UP-IND-CCA, UP-REENC, and UP-INT-CTXT security. For this, we use generic
building blocks which can be securely instantiated from the DDH assumption.

High-Level Idea. Our idea is to do a Encrypt-and-MAC (E&M) construction
with primitives which are key-rotatable. Using Encrypt-and-MAC instead of the
more standard Encrypt-then-MAC approach is crucial for the updatability as we
need “direct access” to both the ciphertext and the MAC.

It is well-known that, in general, E&M is not a secure transformation for
authenticated encryption, as the MAC could leak information about the plaintext
and does not authenticate the ciphertext. However, when using a tidy encryption
scheme SKE (cf. Def. 2) and a pseudorandom function PRF as MAC, then E&M
does provide (static) CCA and CTXT security. Recall that tidy encryption means
that decryption is randomness-recoverable, i.e., it also outputs the randomness r
used in the encryption. This allows to apply the PRF on both, the message and
the randomness r, which then guarantees the integrity of ciphertexts.

We start with such tidy E&M for static primitives but also require that SKE
and PRF support key-rotation and updates of ciphertexts and PRF values. Then,
for yielding the updatable version of the E&M transform, one simply relies on
the key-rotation capabilities of SKE and PRF and updates the individual parts
of the authenticated ciphertext. Security of the UE scheme obtained in this way
follows since the properties from Sec. 3.2 are satisfied.

Encrypt-and-MAC. First we recall the E&M transformation and its security
for tidy (randomness recoverable) encryption. To make it clear that decryp-
tion recovers the encryption randomness we write RDec for decryption and
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make the randomness chosen in the encryption explicit as Enc(k,m; r). Let
SKE = (GenSP,GenKey,Enc,RDec) be a tidy encryption scheme and PRF =
(GenSP,GenKey,Eval) be a pseudorandom function, then the E&M transform of
SKE and PRF is defined as follows:

– AE.GenSP(pp) returns sp = (spSKE, spPRF) where spSKE ←R SKE.GenSP(pp)
and spPRF ←R PRF.GenSP(pp).

– AE.GenKey(sp) returns k = (kSKE, kPRF), where kSKE ←R SKE.GenKey(spSKE)
and kPRF ←R PRF.GenKey(spPRF).

– AE.Enc(k,m; r) returns (c, τ) where c ← SKE.Enc(kSKE,m; r) and τ ←
PRF.Eval(kPRF, (m, r)).

– AE.RDec(k, (c, τ)) computes (m, r)← SKE.RDec(kSKE, c). It returns (m, r) if
PRF.Eval(kPRF, (m, r)) = τ , and ⊥ otherwise.

Lemma 1 essentially follows from [18] where, however, a slightly different
definition of tidy was used. But the adaption to our setting is straightforward.

Lemma 1. If SKE is a tidy encryption scheme satisfying S-IND-CPA security,
and PRF is a secure pseudorandom function (with domain M ×R), then AE as
defined above is a S-IND-CCA and S-INT-CTXT secure tidy encryption scheme.
The same holds for IND$ instead of IND.

Updatable Encrypt-and-MAC. To make this E&M construction a secure up-
datable encryption scheme, we need that both underlying primitives support
key-rotation satisfying certain properties. That means, for SKE we assume that
additional algorithms GenTok(kold, knew) and ReEnc(∆, c) as in Def. 5 are given
satisfying simulatable token generation ([16]) and randomness-preserving re-
encryption (Def. 11). Likewise, we need similar algorithms GenTok(kold, knew)
and Upd(∆, τ) for the PRF satisfying similar properties, i.e., a straightforward
adaption of simulatable token generation (see [16]) and correctness in the sense
that Upd(∆,Eval(kold, (m, r))) = Eval(knew, (m, r)).

We now obtain our secure UE scheme by extending the AE scheme defined
above with the following GenTok and ReEnc algorithms:

– AE.GenTok(kold, knew) computes∆SKE ←R SKE.GenTok(kold
SKE, knew

SKE) and∆PRF ←R

PRF.GenTok(kold
PRF, knew

PRF) and returns ∆ := (∆SKE, ∆PRF).
– AE.ReEnc(∆, (c, τ)) computes c′ ← SKE.ReEnc(∆SKE, c) and τ ′ ← PRF.Upd(∆PRF, τ)

and returns (c′, τ ′).

UP-IND-CCA and UP-INT-CTXT security directly follows from Thm. 1
and UP-REENC-CCA follows from [16] (where we also state the definition for
UP-REENC security adapted to the CCA setting).

Corollary 1. Suppose AE is the E&M construction as in Lemma 1, in partic-
ular S-IND-CCA and S-INT-CTXT secure. Suppose AE supports randomness-
preserving reencryption and simulatable token generation as described above, i.e.
AE constitutes an updatable encryption scheme. Then AE is UP-IND-CCA and
UP-INT-CTXT secure. Moreover, if AE is S-IND$-CCA secure, then it is also
UP-REENC-CCA secure.
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Instantiating the key-rotatable building blocks. We now show how the
key-rotatable building blocks SKE and PRF can be securely instantiated. First we
construct the encryption scheme which is S-IND$-CPA secure under the DDH
assumption and also tidy. Then we present the key-rotatable PRF that is secure
under the DDH assumption in the random oracle model.

SKEDDH. Since we need a tidy, and hence randomness recoverable encryption
scheme, we must pick the encryption randomness [r] ←R G from G if discrete
logarithms are hard. A straightforward choice is to use [r]sk instead of r[pk]
in RISE/ElGamal. However, our result which gives UP-REENC security (i.e.,
the unlinkability of re-encryptions) for free, c.f. [16], requires strong IND$-CCA
security. Thus, we instead use following variation of the mentioned approach:

SKEDDH.GenSP(pp) does nothing. That is, it returns sp = pp.
SKEDDH.GenKey(sp) returns k = (k1, k2)←R F∗p × Fp = K.
SKEDDH.GenTok(kold, knew) returns ∆ = (∆1, ∆2) = ( knew

1
kold

1
,

knew
2 −kold

2
kold

1
) ∈ D = K.

SKEDDH.Enc(k, [m]; [r]) returns [c], encryption of a message [m] ∈ G with ran-
domness [r]←R G as [c] = (k1[r], k2[r] + [m]) ∈ G2 = C.

SKEDDH.RDec(k, [c]) returns ([r], [m])> via [r] = 1
k1

[c1], [m] = [c2]− k2[r].
SKEDDH.ReEnc(∆, [cold]) returns [cnew] = [∆1cold

1 , ∆2cold
1 + cold

2 ].

It is easy to see that the scheme is correct with deterministic re-encryption.

Lemma 2. The scheme SKEDDH is tidy, has simulatable token generation, and
randomness-preserving deterministic re-encryption. The underlying encryption
of SKEDDH is strong IND$-CPA secure under the DDH assumption over G.

It is evident, that the scheme is tidy. Randomness-preserving re-encryption
follows from straightforward calculations. For simulatable token generation, note
that any two of kold, ∆, knew, determine the third uniquely (and it is efficiently
computable). Moreover, if we define invert((∆1, ∆2)) = ( 1

∆1
,−∆2

∆1
) then invert(∆)

is a token which downgrades ciphertexts from knew to kold With this, token
simulation is easy to see. S-IND$-CPA security follows from a straightforward
adaptation of the standard ElGamal security proof. Note that we do not allow
key-leakage, i.e. leak(k) = ⊥.

PRFDDH. Using a hash function H : {0, 1}∗ → G, we instantiate the key-rotatable
PRF as PRFDDH : F×p × {0, 1}∗ → G. The core part of the PRF is the classical
DDH-based construction from [19, 2]. We show that it can also be extended to
allow for key-rotation for which it enjoys token simulation.

PRFDDH.GenSP(pp) does nothing, i.e. returns sp = pp.
PRFDDH.GenKey(sp) returns k ←R Fp = K.
PRFDDH.GenTok(kold, knew) returns ∆ = knew

kold .
PRFDDH.Eval(k, x) returns [τ ] = k H(x) ∈ G.
PRFDDH.Upd(∆, [τ ]) returns ∆[τ ].



(R)CCA Secure Updatable Encryption with Integrity Protection 23

Lemma 3. The PRFDDH = (GenSP,GenKey,Eval) scheme defined above (with-
out GenTok and Upd) is secure under the DDH assumption on G if H is a
(programmable) random oracle. PRFDDH has simulatable token generation.

The security of PRFDDH was shown in [19], and the simulatable properties of
the token generation follow from the same observations as for SKEDDH.

4 RCCA and PTXT Secure Updatable Encryption

In this section, we first define RCCA and PTXT security for updatable encryption
under active re-encryption attacks (Sec. 4.1). In Sec. 4.2 we then present our
Naor-Yung inspired scheme that satisfies these strong security notions.

4.1 Security Model

We now present our definitions for updatable encryption with Replayable CCA
(RCCA) security and plaintext integrity (PTXT). The oracles used in these
definitions are mostly equivalent to the ones introduced for CCA security in
Section 3.1, and thus we focus on the parts that have changed.

The most important difference is that the ReEnc oracle can be invoked on
arbitrary ciphertexts in both definitions, whereas our CCA and CTXT definitions
only allowed re-encryptions of ciphertexts that had been obtained through oracle
queries themselves. This strengthening to arbitrary inputs is much closer to the
reality of updatable encryption, where ciphertexts and the update procedure are
outsourced to potentially untrusted data hosts. All previous definitions cover
only passive corruptions of such a host, whereas our notions in this section even
guarantee security against active adversaries.

RCCA Security. Standard RCCA is a relaxed variant of CCA security which is
identical to CCA with the exception that the decryption oracle will not respond
with invalid whenever a ciphertext decrypts to either of the challenge messages
m0 or m1. This includes ciphertexts that are different from the challenge cipher-
text c∗ the adversary has obtained. RCCA is a suitable definition in particular
for schemes where ciphertexts can be re-randomized, and thus cannot achieve
the standard CCA notion. Our setting allows similar public re-randomization
as ciphertext updates are now probabilistic instead of deterministic. Thus, as
soon as the adversary has corrupted an update token we can no longer trace
re-encryptions of the challenge ciphertexts (as we did in the UP-IND-CCA defini-
tion for deterministic schemes) in order to prevent the adversary from decrypting
the challenge ciphertext.

Thus, instead of tracing the challenge ciphertext we now follow the RCCA
approach. Our definition of UP-IND-RCCA security is essentially the standard
RCCA definition adapted for updatable encryption by giving the adversary access
to a re-encryption oracle and allowing him to adaptively corrupt secret keys and
tokens in the current or any past epoch.
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In Enc and ReEnc described below we still keep track of honestly generated
ciphertexts (and their plaintexts) which allows us to be less restrictive when a
ciphertext-query can be traced down to a non-challenge ciphertext. We explain
this modelling choice in more detail below.
Next(), Corrupt({key, token}, i): as in CCA game
Enc(m): Returns c ←R UE.Enc(ke,m) and sets Q← Q ∪ {(e,m, c)}.
Dec(c): If isChallenge(ke, c) = false, the oracle returns m← UE.Dec(ke, c).
ReEnc(c, i): The oracle returns ce which it iteratively computes as c` ←R

UE.ReEnc(∆`, c`−1) for ` = i + 1, . . . , e and ci ← c. It also updates the
global state depending on whether the queried ciphertext is the challenge
ciphertext or not:
– If (i,m, c) ∈ Q (for some m), then set Q← Q ∪ {(e,m, ce)}.
– Else, if isChallenge(ki, c) = true, then set C∗ ← C∗ ∪ {e}.

As for UP-IND-CCA security, the challenge is to prevent trivial wins where an
adversary tries to exploit the update capabilities of such schemes. We again achieve
this by capturing the indirect knowledge of the adversary through the recursive
predicate that defines all challenge-equal epochs Ĉ∗. This set (which is as defined
in Section 3.1) contains all epochs in which the adversary trivially knows a version
of the challenge ciphertext, either through oracle queries or by up/downgrading
the challenge ciphertext himself. The adversary wins UP-IND-RCCA if he can
determine the challenge bit b used to compute c∗ ←R UE.Enc(ke,mb) and does
not corrupt the secret key in any challenge-equal epoch.

Definition 12. An updatable encryption scheme UE is called UP-IND-RCCA
secure if for any PPT adversary A the following advantage is negligible in κ:
Advup-ind-rcca

UE,A (pp) :=
∣∣∣Pr[Expup-ind-rcca

UE,A (pp, 0) = 1]− Pr[Expup-ind-rcca
UE,A (pp, 1) = 1]

∣∣∣ .
Experiment Expup-ind-rcca

UE,A (pp, b)
(sp, k0, ∆0,Q,K,T,C∗)← Init(pp)
(m0,m1, state)←R AEnc,Dec,Next,ReEnc,Corrupt(sp)
proceed only if |m0| = |m1| and m0,m1 ∈Msp
c∗ ←R UE.Enc(ke,mb), M∗ ← (m0,m1), C∗ ← {e}, e∗ ← e
b′ ←R AEnc,Dec,Next,ReEnc,Corrupt(c∗, state)
return b′ if K ∩ Ĉ∗ = ∅, i.e. A did not trivially win. (Else abort.)

Handling queries of (potential) challenge ciphertexts. As in the standard RCCA
definition, we do not allow any decryption of ciphertexts that decrypts to either
of the two challenge plaintexts m0, or m1. This is expressed via the isChallenge
predicate that is checked for every Dec and ReEnc query and is defined as follows:

isChallenge(ki, c) :
– If UE.Dec(ki, c) = mb where mb ∈ M∗, return true. Else, return false.

Whereas the decryption oracle will ignore any query where isChallenge(ke, c) =
true, the re-encryption oracle is more generous: When ReEnc is invoked on (i, c)
where isChallenge(ki, c) = true, it will still update the ciphertext into the current
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epoch e. The oracle might mark the epoch e as challenge-equal though, preventing
the adversary from corrupting the secret key of epoch e. However, this is only
done when c is not a previous oracle response from an encryption query (or
re-encryption of such a response). That is, the re-encryption oracle will treat
ciphertexts normally when they can be traced down to a honest encryption query,
even when they encrypt one of the challenge messages. This added “generosity” is
crucial for re-encryptions, as otherwise an adversary would not be able to see any
re-encryption from a ciphertext that encrypts the same message as the challenge
and corrupt the secret key in such an epoch.

Plaintext Integrity. Another impact of having a probabilistic instead of a
deterministic ReEnc algorithm is that ciphertext integrity can no longer be
guaranteed: When the adversary has corrupted an update token it can create
various valid ciphertexts by updating an old ciphertext into the new epoch. Thus,
instead we aim for the notion of plaintext integrity and request the adversary to
produce a ciphertext that decrypts to a message for which he does not trivially
know an encryption of.

The oracles used in this game are as in the UP-IND-RCCA definition above,
except that we no longer need the isChallenge predicate and the set of honest
queries Q only records the plaintexts but not the ciphertexts.
Next(), Corrupt({key, token}, i): as in CCA game
Enc(m): Returns c ←R UE.Enc(ke,m) and sets Q← Q ∪ {(e,m)}.
Dec(c): Returns m← UE.Dec(ke, c) and sets Q← Q ∪ {(e,m)}.
ReEnc(c, i): Returns ce, the re-encryption of c from epoch i to the current epoch e.

It also sets Q← Q ∪ {(e,m)} where m ← UE.Dec(ke, ce).

As in our definition of UP-INT-CTXT, we have to capture all plaintexts for
which the adversary can easily create ciphertexts, based on the information he
learned through the oracles and by exploiting his knowledge of some of the secret
keys and update tokens. Again, the first case in our definition of UP-INT-PTXT
security excludes adversaries that have corrupted a secret key and all tokens
from then on, as this allows to create valid ciphertexts for all plaintexts

Definition 13. An updatable encryption scheme UE is called UP-INT-PTXT
secure if for any PPT adversary A the following advantage is negligible in κ:
Advup-int-ptxt

UE,A (pp) := Pr[Expup-int-ptxt
UE,A (pp) = 1].

Experiment Expup-int-ptxt
UE,A (pp)

(sp, k0, ∆0,Q,K,T)← Init(pp)
c∗ ←R AEnc,Dec,Next,ReEnc,Corrupt(sp)
return 1 if UE.Dec(keend , c

∗) = m∗ 6= ⊥ and (eend,m
∗) /∈ Q∗,

and @e ∈ K where i ∈ T for i = e to eend; i.e. if A does not trivially win.

Our definition of trivial plaintext forgeries Q∗ is to the one for CTXT security.
That is, when the adversary has received a ciphertext for a message m in epoch
e (which is recorded in Q) and the update token ∆e+1 (which is recorded in T)
for the following epoch, then we (iteratively) declare m to be a trivial forgery for
epoch e+ 1 as well. We start with Q∗ ← ∅ and amend the set as follows:
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for each (e,m) ∈ Q:
set Q∗ ← Q∗ ∪ (e,m), and i← e+ 1
while i ∈ T: set Q∗ ← Q∗ ∪ (i,m) and i← i+ 1

4.2 RCCA and PTXT Secure Construction

We now present our construction with probabilistic re-encryption that achieves
our definition of RCCA and PTXT security (under leakage). The main idea is
to use the Naor-Yung (NY) CCA-transform [20] (for public-key schemes). That
is, a message is encrypted under two (public) keys of a CPA-secure encryption
scheme and accompanied with a NIZK proof that both ciphertexts indeed encrypt
the same message. By relying on building blocks that support key-rotation, we
then lift this approach into the setting of updatable encryption. For the key-
rotatable CPA-secure encryption we use the RISE scheme as presented in [17], and
NIZKs are realized with Groth–Sahai (GS) proofs which provide the malleability
capabilities that are necessary for key rotation. As in the case of our deterministic
scheme presented in Sec. 3, we prove the full security of the updatable scheme
based on static properties of the underlying building blocks and simulation-based
properties of their token generation and update procedures.

A downside of this NY approach is that it yields a public key encryption
scheme in disguise. That is, we expose the resulting public key scheme in a
symmetric key style and only use the “public key” for key rotation. However,
the corruption of an update token then allows the adversary to create valid
ciphertexts for messages of his choice. Thus, this scheme would not achieve the
desirable PTXT security yet. We therefore extend the NY approach and let each
encryption also contain a proof that one knows a valid signature on the underlying
plaintext. This combined scheme then satisfies both RCCA and PTXT security.

The crucial feature of this overall approach is that it allows for public verifia-
bility of well-formedness of ciphertexts, and thus provides security under arbitrary
(as opposed to queried) re-encryption attacks.

Structure of the rest of this section. We start with an overview of GS proofs
systems and their essential properties. We continue with perfect re-encryption, a
stronger definition than randomness-preserving. Then, we give give the intuition
and definition of the basic NY-based RCCA-secure updatable encryption scheme.
Finally we describe how to add plaintext integrity.

Linearly malleable proofs. As our proof system, we use Groth–Sahai proofs
which is a so-called commit-and-prove system [12, 5]. That is, one (first) commits
to a witness w (with randomness r) and then proves statement(s) stmt about the
committed witness by running π ← Prove(crs, stmt, w, r). The statement(s) stmt
are “quadratic” equations, e.g. pairing product equations. See [16] for details.

Groth–Sahai proofs are a so-called dual-mode proof system, which has two
setups: GS.SetupH(pp) (resp. GS.SetupB(pp)) generates a hiding (resp. binding)
crs for which commitments are perfectly hiding (resp. perfectly binding) and the
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proof π is perfectly zero-knowledge (resp. perfectly sound). Moreover, binding
commitments to groups are extractable.

Groth–Sahai proofs offer extra-functionality. They are perfectly rerandomis-
able, i.e. the commitments and proofs can be re-randomised. Also, they are
linearly malleable. Roughly, given a set of “quadratic” equations, one can apply
(certain) linear transformations to the witness and statement (i.e. the constants
in the equation), which map satisfying assignments to satisfying assignments,
and compute adapted commitments and proofs. In particular, the commitments
are homomorphic. See [16] or [4, 9] for more.

Perfect re-encryption. Perfect re-encryption is a strengthening of randomness-
preserving re-encryption. It assures that decrypt-then-encrypt has the same
distribution as re-encryption, without any exceptions. In particular, it does neither
require the encryption randomness, nor is it restricted to valid ciphertexts.

Definition 14. Let UE be an updatable encryption scheme where UE.ReEnc
is probabilistic. We say that re-encryption (of UE) is perfect, if for all sp ←R

UE.GenSP(pp), all keys kold, knew ←R UE.GenKey(sp), token ∆←R UE.GenTok(kold,
knew), and all ciphertexts c, we have

UE.Enc(knew,UE.Dec(kold, c)) dist≡ UE.ReEnc(∆, c).

Note that Enc(k,⊥) = ⊥ by definition.

The General Idea: RCCA Security via NY Transform. Our first goal
is to build a UP-IND-RCCA-secure updatable encryption scheme. which we
achieve via the double-encryption technique of Naor-Yung[20] using key-rotatable
building blocks: we use a linear encryption with a linearly malleable NIZK, namely
RISE (i.e. ElGamal-based updatable encryption) with Groth–Sahai proofs[12].
The malleability and re-randomizability of GS proofs allow for key rotation and
ciphertext re-randomisation (as part of the re-encryption procedure).

A double-encryption with a simulation sound consistency proof (as formal-
ized in [22, 11]) is too rigid and yields CCA security. We must allow certain
transformations of the ciphertext, namely re-randomisation and re-encryption.
Thus, we weaken our security to RCCA and rely on a relaxation of simulation
soundness, which still ensures that the adversary cannot maul the message, but
allows re-randomisation and re-encryption.

We achieve this property by the following variation of a standard technique,
which was previously used in conjunction with Groth–Sahai proofs, e.g. in [13].
Our NIZK proves that either the NY statement holds, i.e., two ciphertexts
c1 = Enc(pk1,m1) and c2 = Enc(pk2,m2) encrypt the same message m1 = m2,
or m1,m2 (possibly being different) are signed under a signature verification key
which is part of the system parameters. In the security proof the simulator will be
privy of the signing key and thus can produce valid NIZK proofs for inconsistent
ciphertexts. Further, the signature scheme is structure-preserving, which allows to
hide the signature σ and its verification Verify(vk,m1,m2, σ) in the NIZK proof.
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Note that the signature scheme does not have to be key-rotatable as the key is
fixed throughout all epochs.

Definition 15 (NYUE). Our Naor–Yung-like transformation NYUE of the key-
rotatable encryption RISE, using GS proofs and a structure-preserving signature
SIG, is defined as:

NYUE.GenSP(pp): Run crsGS ←R GS.SetupH(pp), spEnc ←R RISE.GenSP(pp),
spSIG ←R SIG.GenSP(pp) and (_, vkSIG)←R SIG.GenKey(spSIG). Return sp =
(crsGS, spEnc, (spSIG, vkSIG)).

NYUE.GenKey(sp): Run ki ←R RISE.GenKey(spEnc) for i = 1, 2 and parse ki =
(ski, pki). Let sk = (sk1, sk2) and pk = (pk1, pk2). Return k = (sk, pk).

NYUE.Enc(k,m; r1, r2): Parse k = (sk, pk). Compute ci = RISE.Enc(pki,m; ri)
for i = 1, 2 and the following proof π ←R NIZK(OR(SNY,SSIG)) with common
input sp, pk1, pk2, c1, c2 where6

– SNY: ∃m̂, r̂1, r̂2 : RISE.Enc(pk1, m̂; r̂1) = c1, ∧ RISE.Enc(pk2, m̂; r̂2) = c2
– SSIG: ∃m̂1, m̂2, r̂1, r̂2, σ̂ : RISE.Enc(pk1, m̂1; r̂2) = c1 ∧ RISE.Enc(pk2, m̂2; r̂2) =

c2 ∧ SIG.Verify(vkSIG, (m̂1, m̂2), σ̂) = 1
Return (c1, c2, π).

NYUE.Dec(k, (c1, c2, π)): Parse k = (sk, pk) and verify the proof π w.r.t. pk =
(pk1, pk2). If π is valid, return RISE.Dec(sk1, c1), and ⊥ otherwise.

NYUE.GenTok(kold, knew): Compute ∆i ←R RISE.GenTok(kold
i , knew

i ) for i = 1, 2
where kold and knew is parsed as in NYUE.GenKey. Return ∆ = (∆1, ∆2).

NYUE.ReEnc(∆, c): is sketched below.

We use a hiding crsGS in the above construction to attain perfect re-encryption.
just like RISE, c.f. [16].

For the ease of exposition, we use RISE for both encryptions in the NY
transform. If one follows the classical NY approach that immediately deletes sk2
(in epoch 0), it would be sufficient to require key-rotatable encryption only for c1,
whereas encryption for c2 merely needs to be re-randomizable (as we also aim
for UP-REENC security).

Re-encryption for NYUE. The high-level idea of the re-encryption is us-
ing the linear malleability, and re-randomisability of RISE and GS proofs. For
NYUE.ReEnc(∆, c) with c = (c1, c2, π) we proceed in four steps. Steps 2 and 3
constitute a computation of RISE.ReEnc, separated into key-rotation and re-
randomisation, c.f. [16].

(1) Verify ciphertext. Note that the re-encryption tokens of RISE (and there-
fore NYUE) contain essentially the old and new public keys. We use this to
let NYUE.ReEnc first verify the consistency proof of a ciphertext before start-
ing the update procedure. Thus, re-encryption only works for well-formed,
decryptable ciphertexts.

6 Here we exploit the public key nature of the construction, i.e., we only need pki (not
ski) for verifying consistency proofs.
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(2) Key rotation. We use the key rotation of RISE on the ciphertexts parts c1
and c2 of c = (c1, c2, π), but without the implicit re-randomisation. Addition-
ally, we use malleability of GS proofs to adapt the proof π.

(3) Re-randomise c1, c2. We re-randomise the RISE (i.e. ElGamal) ciphertexts
c1, c2, thus completing the computation of RISE.ReEnc(∆i, ci) for i = 1, 2.
Additionally, we use malleability of GS proofs to adapt the proof π.

(4) Re-randomise π. We re-randomise the proof π using re-randomisability of
GS proofs.

Thus, we first switch to the new key, and then ensure that the ciphertext is dis-
tributed identically to a fresh encryption by re-randomising the RISE ciphertexts
and the GS proofs (both of which are perfectly re-randomisable).

UP-IND-RCCA Security of NYUE. We now argue how NYUE achieves our
notion of UP-IND-RCCA security that captures arbitrary re-encryption attacks.
First, we observe that NYUE has perfect re-encryption, i.e., a re-encrypted
ciphertext (c′1, c′2, π′) has the same distribution as a fresh encryption (Def. 14).
This follows because RISE has perfect re-encryption and GS proofs with hiding
CRS have perfect re-randomisation. Furthermore, NYUE satisfies simulatable
token generation under (key-)leakage, see [16].

Lemma 4. The updatable encryption scheme NYUE has perfect re-encryption
and simulatable token generation under leakage leak(k) = pk, c.f. [16].

Lemma 4 follows easily from token simulation for RISE, see [16]. The UP-IND-RCCA
security of NYUE is shown analogous to UP-IND-CCA security in Thm. 1. That
is, we bootstrap the UP-IND-RCCA security from the (static) IND-RCCA se-
curity of NYUE, perfect re-encryption and token simulation. By a standard
reduction, the underlying encryption of NYUE is IND-RCCA secure (under
leakage leak(k) = pk), see [16]. There are three major differences compared to
UP-IND-CCA:

First, NYUE.ReEnc uses the public verifiability of ciphertexts to reject invalid
inputs, i.e., it updates only ciphertexts for which NYUE.Dec will not return ⊥.
Hence, the decrypt-then-encrypt strategy (used in the proof of Thm. 1) is not
impacted by allowing arbitrary requests in the ReEnc oracle. Consequently, the
queried restriction is not giving the adversary any additional advantage.

Second, re-encryption is perfect, which is stronger than randomness-preserving
re-encryption. This simplifies the proof strategy slightly. Third, leak(k) = pk is
non-trivial, unlike for the deterministic schemes. All in all, we obtain:

Proposition 1 ([16]). Suppose the SXDH assumption holds in (e,G1,G2,GT ),
and SIG is (one-time) EUF-CMA secure. Then the updatable encryption scheme
NYUE from Def. 15 is UP-IND-RCCA secure.

The SXDH assumption guarantees the security of RISE and GS proofs.
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NYUAE Construction: Adding PTXT Security. As discussed, NYUE is a
public key encryption scheme in disguise (with the public key “hidden” in the
update token). Thus, a (corrupt) data host can trivially create new ciphertext to
chosen messages, and thus we do not achieve the desired PTXT security yet.

To obtain such plaintext integrity, using a structure-preserving key-rotatable
MAC [15] on the plaintext seems a straightforward solution. However, for proving
security against arbitrary re-encryption attacks, we need that ciphertext validity
is publicly verifiable. Thus, we use the signature from [15] instead (which is con-
structed from the MAC). Furthermore, we hide the signature (and its verification)
behind a GS proof, to ensure confidentiality.

Updatable Signatures. Opposed to the signature SIG used in NYUE for the
simulatability of the main GS proof, we need the signature scheme which ensures
integrity of the plaintext to be key-rotatable and updatable as well. The definition
of an updatable signature scheme USIG is straightforward and given in [16]. We
stress that we will not require USIG to be secure in the updatable setting, but
only need standard static (one-time) EUF-CMA security in combination with
generic properties of the token generation (c.f. Def. 10).

We now incorporate plaintext integrity into the NYUE construction using such
a key-rotatable signature USIG. For encryption, we additionally sign the plaintext
with USIG and include this signature in the main NY statement of the GS proof π.
That is, SNY+I now asserts that c1 and c2 encrypt the same USIG-signed message.
As before, we use concrete instantiations of all key-rotatable building blocks to
avoid a cumbersome abstraction of malleability properties. We use the one-time
signature OTS from [15, Fig. 2] for USIG with simulatable token generation
and malleable signature verification. In [16] we recall their scheme, define its
key-rotation capabilities, and show that it satisfies all required properties (OTS
is one-time EUF-CMA secure under the SXDH assumption).

In the following we describe our final construction NYUAE. For the sake of
brevity, we refer to the NYUE scheme whenever we use it in an unchanged way.

Definition 16 (NYUAE). The Naor-Yung transformation with plaintext in-
tegrity from key-rotatable encryption RISE, GS proofs and structure-preserving
signature SIG (with RISE and SIG being abstracted away in the NYUE scheme),
and a key-rotatable structure-preserving signature OTS (c.f. [16]) is defined as
follows:

NYUAE.GenSP(pp): Run spNYUE ←R NYUE.GenSP(pp), and spOTS ←R OTS.GenSP(pp).
Return sp = (spNYUE, spOTS).

NYUAE.GenKey(sp): Run kNYUE ←R NYUE.GenKey(spNYUE), and (skOTS, vk)←R

OTS.GenKey(spOTS). Let sk = (skNYUE, skOTS), pk = (pkNYUE, vk). Return
k = (sk, pk).

NYUAE.Enc(k,m; r1, r2): Parse k = ((skNYUE, skOTS), (pkNYUE, vk)) compute c1, c2
as in NYUE, σ ← OTS.Sign(skOTS,m) and a proof π ←R NIZK(OR(SNY+I,SSIG))
where
– SNY+I: ∃ m̂, r̂1, r̂2, σ̂ : OTS.Verify(pkOTS, m̂, σ̂) = 1 ∧ SNY
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and with SNY,SSIG defined as in NYUE (Def. 15). Return (c1, c2, π).
NYUAE.Dec(k, (c1, c2, π)): If π is valid, return RISE.Dec(k1, c1), and ⊥ else.
NYUAE.GenTok(kold, knew): Run ∆NYUE ←R NYUE.GenTok(kold

NYUE, knew
NYUE) and

∆OTS ←R OTS.GenTok(kold
OTS, knew

OTS). Return ∆ = (∆NYUE, ∆OTS).
NYUAE.ReEnc(∆, c): is as NYUE.ReEnc (Def. 15), but also adapts the proof of

knowledge of an OTS-signature.

The details for generating, verifying and updating the proof π are given in
[16]. The proof of security as an updatable encryption scheme follows the usual
blueprint. As for NYUE, UP-REENC security follows from [16].

Theorem 2. Suppose SIG is unbounded EUF-CMA secure, and SXDH holds in
(G1,G2,GT , e). Then NYUAE is UP-IND-RCCA and UP-INT-PTXT secure.
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