
Aggregate Cash Systems:
A Cryptographic Investigation of Mimblewimble

Georg Fuchsbauer1,2, Michele Orrù2,1, and Yannick Seurin3

1 Inria, Paris, France
2 École normale supérieure, CNRS, PSL, Paris, France

first.last@ens.fr
3 ANSSI, Paris, France
first.last@m4x.org

Abstract. Mimblewimble is an electronic cash system proposed by an
anonymous author in 2016. It combines several privacy-enhancing tech-
niques initially envisioned for Bitcoin, such as Confidential Transactions
(Maxwell, 2015), non-interactive merging of transactions (Saxena, Misra,
Dhar, 2014), and cut-through of transaction inputs and outputs (Maxwell,
2013). As a remarkable consequence, coins can be deleted once they have
been spent while maintaining public verifiability of the ledger, which is
not possible in Bitcoin. This results in tremendous space savings for the
ledger and efficiency gains for new users, who must verify their view of
the system.
In this paper, we provide a provable-security analysis for Mimblewimble.
We give a precise syntax and formal security definitions for an abstraction
of Mimblewimble that we call an aggregate cash system. We then formally
prove the security of Mimblewimble in this definitional framework. Our
results imply in particular that two natural instantiations (with Pedersen
commitments and Schnorr or BLS signatures) are provably secure against
inflation and coin theft under standard assumptions.

Keywords: Mimblewimble, Bitcoin, commitments, aggregate signatures.

1 Introduction

Bitcoin and the UTXO model. Proposed in 2008 and launched early 2009,
Bitcoin [Nak08] is a decentralized payment system in which transactions are
registered in a distributed and publicly verifiable ledger called a blockchain. Bit-
coin departs from traditional account-based payment systems where transactions
specify an amount moving from one account to another. Instead, each transaction
consists of a list of inputs and a list of outputs.

Each output contains a value (expressed as a multiple of the currency unit,
10−8 bitcoin) and a short script specifying how the output can be spent. The
most common script is Pay to Public Key Hash (P2PKH) and contains the hash
of an ECDSA public key, commonly called a Bitcoin address. Each input of a
transaction contains a reference to an output of a previous transaction in the
blockchain and a script that must match the script of that output. In the case of

2 Georg Fuchsbauer, Michele Orrù, and Yannick Seurin

P2PKH, an input must provide a public key that hashes to the address of the
output it spends and a valid signature for this public key.

Each transaction spends one or more previous transaction outputs and creates
one or more new outputs, with a total value not larger than the total value of
coins being spent. The system is bootstrapped through special transactions called
coinbase transactions, which have outputs but no inputs and therefore create
money (and also serve to incentivize the proof-of-work consensus mechanism,
which allows users to agree on the valid state of the blockchain).

To avoid double-spending attacks, each output of a transaction can only be
referenced once by an input of a subsequent transaction. Note that this implies
that an output must necessarily be spent entirely. As transactions can have
multiple outputs, change can be realized by having the sender assign part of the
outputs to an address she controls. Since all transactions that ever occurred since
the inception of the system are publicly available in the blockchain, whether
an output has already been spent can be publicly checked. In particular, every
transaction output recorded in the blockchain can be classified either as an
unspent transaction output (UTXO) if it has not been referenced by a subsequent
transaction input so far, or a spent transaction output (STXO) otherwise. Hence,
the UTXO set “encodes” all bitcoins available to be spent, while the STXO set
only contains “consumed” bitcoins and could, in theory, be deleted.

The validation mechanics in Bitcoin requires new users to download and
validate the entire blockchain in order to check that their view of the system is
not compromised.4 Consequently, the security of the system and its ability to
enroll new users relies on (a significant number of) Bitcoin clients to persistently
store the entire blockchain. Once a new node has checked the entire blockchain,
it is free to “prune” it5 and retain only the freshly computed UTXO set, but it
will not be able to convince another newcomer that this set is valid.

Consider the following toy example. A coinbase transaction creates an output
txo1 for some amount v associated with a public key pk1. This output is spent
by a transaction T1 creating a new output txo2 with amount v associated with a
public key pk2. Transaction T1 contains a valid signature σ1 under public key
pk1. Once a node has verified σ1, it is ensured that txo2 is valid and the node
can therefore delete the coinbase transaction and T1. By doing this, however, he
cannot convince anyone else that output txo2 is indeed valid.

At the time of writing, the size of Bitcoin’s blockchain is over 200 GB.6
Downloading and validating the full blockchain can take up to several days on
standard hardware. In contrast, the size of the UTXO set, containing around 60
millions elements, is only a couple of GB.

4 Simplified Verification Payment (SPV) clients only download much smaller pieces of
the blockchain allowing them to verify specific transactions. However, they are less
secure and do not contribute to the general security of the system [GCKG14, SZ16].

5 This functionality was introduced in Bitcoin Core v0.11, see https://github.com/
bitcoin/bitcoin/blob/v0.11.0/doc/release-notes.md#block-file-pruning.

6 See https://www.blockchain.com/charts/blocks-size.

https://github.com/bitcoin/bitcoin/blob/v0.11.0/doc/release-notes.md#block-file-pruning
https://github.com/bitcoin/bitcoin/blob/v0.11.0/doc/release-notes.md#block-file-pruning
https://www.blockchain.com/charts/blocks-size

Aggregate Cash Systems 3

Bitcoin privacy. Despite some common misconception, Bitcoin offers a very
weak level of privacy. Although users can create multiple pseudonymous addresses
at will, the public availability of all transaction data often allows to link them
and reveals a surprisingly large amount of identifying information, as shown in
many works [AKR+13, MPJ+13, RS13, KKM14].

Several protocols have been proposed with the goal of improving on Bitcoin’s
privacy properties, such as Cryptonote [vS13] (implemented for example by
Monero), Zerocoin [MGGR13] and Zerocash [BCG+14]. On the other hand,
there are privacy-enhancing techniques compatible with Bitcoin, for example coin
mixing [BBSU12, BNM+14, RMK14, HAB+17], to ensure payer anonymity. Below
we describe three specific proposals that have paved the way for Mimblewimble.

Confidential Transactions. Confidential Transactions (CT), described by
Maxwell [Max15], based on an idea by Back [Bac13] and now implemented by
Monero, allow to hide the values of transaction outputs. The idea is to replace
explicit amounts in transactions by homomorphic commitments: this hides the
value contained in each output, but the transaction creator cannot modify this
value later on.7

More specifically, the amount v in an output is replaced by a Pedersen
commitment C = vH + rG, where H and G are generators of an (additively
denoted) discrete-log-hard group and r is a random value. Using the homomorphic
property of the commitment scheme, one can prove that a transaction does not
create money out of thin air, i.e., that the sum of the outputs is less than the sum
of the inputs. Consider a transaction with input commitments Ci = viH + riG,
1 ≤ i ≤ n, and output commitments Ĉi = v̂iH+ r̂iG, 1 ≤ i ≤ m. The transaction
does not create money iff

∑n
i=1 vi ≥

∑m
i=1 v̂i. This can be proved by providing an

opening (f, r) with f ≥ 0 for
∑n
i=1 Ci −

∑m
i=1 Ĉi, whose validity can be publicly

checked. The difference f between inputs and outputs are so-called fees that
reward the miner that includes the transaction in a block.

Note that arithmetic on hidden values is done modulo p, the order of the
underlying group. Hence, a malicious user could spend an input worth 2 and
create two outputs worth 10 and p−8, which would look the same as a transaction
creating two outputs worth 1 each. To ensure that commitments do not contain
large values that cause such mod-p reductions, a non-interactive zero-knowledge
(NIZK) proof that the committed value is in [0, vmax] (a so-called range proof) is
added to each commitment, where vmax is small compared to p.

CoinJoin. When a Bitcoin transaction has multiple inputs and outputs, nothing
can be inferred about “which input goes to which output” beyond what is imposed
by their values (e.g., if a transaction has two inputs with values 10 BTC and 1
BTC, and two outputs with values 10 BTC and 1 BTC, all that can be said is
that at least 9 BTC flowed from the first input to the first output). CoinJoin
[Max13a] builds on this technical principle to let different users create a single
transaction that combines all of their inputs and outputs. When all inputs and
7 Commitments are actually never publicly opened; however the opening information
is used when spending a coin and remains privy to the participants.

4 Georg Fuchsbauer, Michele Orrù, and Yannick Seurin

outputs have the same value, this perfectly mixes the coins. Note that unlike CT,
CoinJoin does not require any change to the Bitcoin protocol and is already used
in practice. However, this protocol is interactive as participants need all input
and output addresses to build the transaction. Saxena et al. [SMD14] proposed a
modification of the Bitcoin protocol which essentially allows users to perform
CoinJoin non-interactively and which relies on so-called composite signatures.8

Cut-through. A basic property of the UTXO model is that a sequence of two
transactions, a first one spending an output txo1 and creating txo2, followed by a
second one spending txo2 and creating txo3, is equivalent to a single cut-through
transaction spending txo1 and creating txo3. While such an optimization is
impossible once transactions have been included in the blockchain (as mentioned
before, this would violate public verifiability of the blockchain), this has been
suggested [Max13b] for unconfirmed transactions, i.e., transactions broadcast to
the Bitcoin network but not included in a block yet. As we will see, the main
added benefit of Mimblewimble is to allow post-confirmation cut-through.

Mimblewimble. Mimblewimble was first proposed by an anonymous author in
2016 [Jed16]. The idea was then developed further by Poelstra [Poe16]. At the time
of writing, there are at least two independent implementations of Mimblewimble
as a cryptocurrency: one is called Grin,9 the other Beam.10

Mimblewimble combines in a clever way CT, a non-interactive version of
CoinJoin, and cut-through of transaction inputs and outputs. As with CT, a coin
is a commitment C = vH+ rG to its value v using randomness r, together with a
range proof π. If CT were actually employed in Bitcoin, spending a CT-protected
output would require the knowledge of the opening of the commitment and, as
for a standard output, of the secret key associated with the address controlling
the coin. Mimblewimble goes one step further and completely abandons the
notion of addresses or more generally scripts: spending a coin only requires
knowledge of the opening of the commitment. As a result, ownership of a coin
C = vH + rG is equivalent to the knowledge of its opening, and the randomness
r of the commitment now acts as the secret key for the coin.

Exactly as in Bitcoin, a Mimblewimble transaction specifies a list C =
(C1, . . . , Cn) of input coins (which must be coins existing in the system) and
a list Ĉ = (Ĉ1, . . . , Ĉm) of output coins, where Ci = viH + riG for 1 ≤ i ≤ n
and Ĉi = v̂iH + r̂iG for 1 ≤ i ≤ m. We will detail later how exactly such a
transaction is constructed. Leaving fees aside for simplicity, the transaction is
balanced (i.e., does not create money) iff

∑
v̂i −

∑
vi = 0, which, letting

∑
C

denote
∑n
i=1 Ci, is equivalent to∑

Ĉ−
∑

C =
∑

(v̂iH + r̂iG)−
∑

(viH + riG) = (
∑
r̂i −

∑
ri)G .

8 An earlier, anonymous version of the paper used the name one-way aggregate signa-
ture (OWAS), see https://bitcointalk.org/index.php?topic=290971. Composite
signatures are very similar to aggregate signatures [BGLS03].

9 See http://grin-tech.org and https://github.com/mimblewimble/grin/blob/
master/doc/intro.md.

10 See https://www.beam-mw.com.

https://bitcointalk.org/index.php?topic=290971
http://grin-tech.org
https://github.com/mimblewimble/grin/blob/master/doc/intro.md
https://github.com/mimblewimble/grin/blob/master/doc/intro.md
https://www.beam-mw.com

Aggregate Cash Systems 5

In other words, knowledge of the opening of all coins in the transaction and
balancedness of the transaction implies knowledge of the discrete logarithm in
base G of E :=

∑
Ĉ−

∑
C, called the excess of the transaction in Mimblewimble

jargon. Revealing the opening (0, r :=
∑
r̂i −

∑
ri) of the excess E as in CT

would leak too much information (e.g., together with the openings of the input
coins and of all output coins except one, this would yield the opening of the
remaining output coin); however, knowledge of r can be proved by providing a
valid signature (on the empty message) under public key E using some discrete-
log-based signature scheme. Intuitively, as long as the commitment scheme is
binding and the signature scheme is unforgeable, it should be infeasible to compute
a valid signature for an unbalanced transaction.

Transactions (legitimately) creating money, such as coinbase transactions, can
easily be incorporated by letting the supply s (i.e., the number of monetary units
created by the transaction) be explicitly specified and redefining the excess of the
transaction as E :=

∑
Ĉ−

∑
C− sH. All in all, a Mimblewimble transaction is

a tuple
tx = (s,C, Ĉ,K) with K := (π,E, σ) , (1)

where s is the supply, C is the input coin list, Ĉ is the output coin list, and K is
the so-called kernel, which contains the list π of range proofs for output coins,11

the (list of) transaction excesses E (as there can be several; see below), and a
signature σ.12

Such transactions can now easily be merged non-interactively à la CoinJoin:
consider tx0 = (s0,C0, Ĉ0, (π0, E0, σ0)) and tx1 = (s1,C1, Ĉ1, (π1, E1, σ1)); then
the aggregate transaction tx resulting from merging tx0 and tx1 is simply

tx :=
(
s0 + s1,C0 ‖C1, Ĉ0 ‖ Ĉ1,

(
π0 ‖π1, (E0, E1), (σ0, σ1)

))
. (2)

Moreover, if the signature scheme supports aggregation, as for example the
BLS scheme [BGLS03, BNN07], the pair (σ0, σ1) can be replaced by a compact
aggregate signature σ for the public keys E := (E0, E1).

An aggregate transaction (s,C, Ĉ, (π,E, σ)) is valid if all range proofs verify,
σ is a valid aggregate signature for E and if∑

Ĉ−
∑

C− sH =
∑

E . (3)

As transactions can be recursively aggregated, the resulting kernel will contain a
list E of kernel excesses, one for each transaction that has been aggregated.

The main novelty of Mimblewimble, namely cut-through, naturally emerges
from the way transactions are aggregated and validated. Assume that some coin
C appears as an output in tx0 and as an input in tx1; then, one can erase C from
the input and output lists of the aggregate transaction tx, and tx will still be
valid since (3) will still hold. Hence, each time an output of a transaction tx0 is
11 Since inputs must be coins that already exist in the system, their range proofs are

contained in the kernels of the transactions that created them.
12 A transaction fee can easily be added to the picture by making its amount f explicit

and adding fH to the transaction excess. For simplicity, we omit it in this paper.

6 Georg Fuchsbauer, Michele Orrù, and Yannick Seurin

spent by a subsequent transaction tx1, this output can be “forgotten” without
losing the ability to validate the resulting aggregate transaction.

In Mimblewimble the ledger is itself a transaction of the form (1), which
starts out empty, and to which transactions are recursively aggregated as they
are added to the ledger. We assume that for a transaction to be allowed onto
the ledger, its input list must be contained in the output list of the ledger (this
corresponds to the natural requirement that only coins that exist in the ledger
can be spent). Then, it is easy to see that the following holds:

(i) the supply s of the ledger is equal to the sum of the supplies of all transactions
added to the ledger so far;

(ii) the input coin list of the ledger is always empty.

Property (i) follows from the definition of aggregation in (2). Property (ii) follows
inductively. At the inception of the system the ledger is empty (thus the first
transaction added to the ledger must be a transaction with an empty input coin
list and non-zero supply, a minting transaction). Any transaction tx added to
the ledger must have its input coins contained in the output coin list of the
ledger; thus cut-through will remove all of them from the joint input list, hence
the updated ledger again has no input coins (and the coins spent by tx are
deleted from its outputs). The ledger in Mimblewimble is thus a single aggregate
transaction whose supply s is equal to the amount of money that was created
in the system and whose output coin list Ĉ is the analogue of the UTXO set in
Bitcoin. Its kernel K allows to cryptographically verify its validity. The history
of all transactions that have occurred is not retained, and only one kernel excess
per transaction (a very short piece of information) is recorded.

Our contribution. We believe it is crucial that protocols undergo a formal
security assessment and that the cryptographic guarantees they provide must be
well understood before deployment. To this end, we provide a provable-security
treatment for Mimblewimble. A first attempt at proving its security was partly
undertaken by Poelstra [Poe16]. We follow a different approach: we put forward
a general syntax and a framework of game-based security definitions for an
abstraction of Mimblewimble that we dub an aggregate cash system.

Formalizing security for a cash system requires care. For example, Zerocoin
[MGGR13] was recently found to be vulnerable to denial-of-spending attacks
[RTRS18] that were not captured by the security model in which Zerocoin was
proved secure. To avoid such pitfalls, we keep the syntax simple, while allowing
to express meaningful security definitions. We formulate two natural properties
that define the security of a cash system: inflation-resistance ensures that the
only way money can be created in a system is explicitly via the supply contained
in transactions; resistance to coin theft guarantees that no one can spend a user’s
coins as long as she keeps her keys safe. We moreover define a privacy notion,
transaction indistinguishability, which states that a transaction does not reveal
anything about the values it transfers from its inputs to its outputs.

We then give a black-box construction of an aggregate cash system, which
naturally generalizes Mimblewimble, from a homomorphic commitment scheme

Aggregate Cash Systems 7

COM, an (aggregate) signature scheme SIG, and a NIZK range-proof system Π. We
believe that such a modular treatment will ease the exploration of post-quantum
instantiations of Mimblewimble or related systems.

Note that in our description of Mimblewimble, we have not yet explained how
to actually create a transaction that transfers some amount ρ of money from
a sender to a receiver. It turns out that this is a delicate question. The initial
description of the protocol [Jed16] proposed the following one-round procedure:

– the sender selects input coins C of total value v ≥ ρ; it creates change coins
C′ of total value v− ρ and sends C, C′, range proofs for C′ and the opening
(−ρ, k) of

∑
C′ −

∑
C to the receiver (over a secure channel);

– the receiver creates additional output coins C′′ (and range proofs) of total
value ρ with keys (k′′i), computes a signature σ with the secret key k +

∑
k′′i

and defines tx =
(
0,C,C′ ‖C′′,

(
π, E =

∑
C′ +

∑
C′′ −

∑
C, σ

))
.

However, a subtle problem arises with this protocol. Once the transaction has
been added to the ledger, the change outputs C′ should only be spendable by the
sender, who owns them. It turns out that the receiver is also able to spend them
by “reverting” the transaction tx. Indeed, he knows the range proofs for coins
in C and the secret key (−k −

∑
k′′i) for the transaction with inputs C′ ‖C′′

and outputs C. Arguably, the sender is given back her initial input coins in the
process, but (i) she could have deleted the secret keys for these old coins, making
them unspendable, and (ii) this violates any meaningful formalization of security
against coin theft.

A natural way to prevent such a malicious behavior would be to let the
sender and the receiver, each holding a share of the secret key corresponding to
public key E :=

∑
C′ ‖C′′ −

∑
C, engage in a two-party interactive protocol to

compute σ. Actually, this seems to be the path Grin is taking, although, to the
best of our knowledge, the problem described above with the original protocol
has never been documented.

We show that the spirit of the original non-interactive protocol can be
salvaged, so a sender can make a payment to a receiver without the latter’s active
involvement. In our solution the sender first constructs a full-fledged transaction
tx spending C and creating change coins C′ as well as a special output coin
C = ρH + kG, and sends tx and the opening (ρ, k) of the special coin to the
receiver. (Note that, unlike in the previous case, k is now independent from the
keys of the coins in C and C′.) The receiver then creates a second transaction tx′
spending the special coin C and creating its own output coins C′′ and aggregates
tx and tx′. As intended, this results in a transaction with inputs C and outputs
C′ ‖C′′ since C is removed by cut-through. The only drawback of this procedure
is that the final transaction, being the aggregate of two transactions, has two
kernel excesses instead of one for the interactive protocol mentioned above.

After specifying our protocol MW[COM,SIG,Π], we turn to proving its security
in our definitional framework. To this end, we first define two security notions,
EUF-NZO and EUF-CRO, tying the commitment scheme and the signature
scheme together (cf. Page 12). Assuming that proof system Π is simulation-
extractable [DDO+01, Gro06], we show that EUF-NZO-security for the pair

8 Georg Fuchsbauer, Michele Orrù, and Yannick Seurin

(COM,SIG) implies that MW is resistant to inflation, while EUF-CRO-security
implies that MW is resistant to coin theft. Transaction indistinguishability follows
from zero-knowledge of Π and COM being hiding.

Finally, we consider two natural instantiations of MW[COM,SIG,Π]. For
each, we let COM be the Pedersen commitment scheme [Ped92]. When SIG is
instantiated with the Schnorr signature scheme [Sch91], we show that the pair
(COM,SIG) is EUF-NZO- and EUF-CRO-secure under the Discrete Logarithm
assumption. When SIG is instantiated with the BLS signature scheme [BLS01],
we show that the pair (COM,SIG) is EUF-NZO- and EUF-CRO-secure under the
CDH assumption. Both proofs are in the random-oracle model. BLS signatures
have the additional benefit of supporting aggregation [BGLS03, BNN07], so that
the ledger kernel always contains a short aggregate signature, independently of
the number of transactions that have been added to the ledger. We stress that,
unlike Zerocash [BCG+14], none of these two instantiations require a trusted
setup.

2 Preliminaries

2.1 General Notation

We denote the (closed) integer interval from a to b by [a, b]. We use [b] as
shorthand for [1, b]. A function µ : N→ [0, 1] is negligible (denoted µ = negl) if
for all c ∈ N there exists λc ∈ N such that µ(λ) ≤ λ−c for all λ ≥ λc. A function
ν is overwhelming if 1− ν = negl. Given a non-empty finite set S, we let x←$S
denote the operation of sampling an element x from S uniformly at random. By
y := M(x1, . . . ; r) we denote the operation of running algorithm M on inputs
x1, . . . and coins r and letting y denote the output. By y ←M(x1, . . .), we denote
letting y := M(x1, . . . ; r) for random r, and [M(x1, . . .)] is the set of values that
have positive probability of being output by M on inputs x1, . . . If an algorithm
calls a subroutine which returns ⊥, we assume it stops and returns ⊥ (this does
not hold for an adversary calling an oracle which returns ⊥).

A list L = (x1, . . . , xn), also denoted (xi)ni=1, is a finite sequence. The length
of a list L is denoted |L|. For i = 1, . . . , |L|, the i-th element of L is denoted L[i],
or Li when no confusion is possible. By L0 ‖L1 we denote the list L0 followed by
L1. The empty list is denoted (). Given a list L of elements of an additive group,
we let

∑
L denote the sum of all elements of L. Let L0 and L1 be two lists, each

without repetition. We write L0 ⊆ L1 iff each element of L0 also appears in L1.
We define L0 ∩ L1 to be the list of all elements that simultaneously appear in
both L0 and L1, ordered as in L0. The difference between L0 and L1, denoted
L0 − L1, is the list of all elements of L0 that do not appear in L1, ordered as in
L0. So, for example (1, 2, 3)− (2, 4) = (1, 3). We define the cut-through of two
lists L0 and L1, denoted cut(L0,L1), as

cut(L0,L1) := (L0 − L1,L1 − L0) .

Aggregate Cash Systems 9

Game HIDCOM,A(λ)

b←$ {0, 1}
mp← MainSetup(1λ)
cp← COM.Setup(mp)
b′ ← ACommit(cp)
return b = b′

Oracle Commit(v0, v1)

r←$Rcp

C := COM.Cmt(cp, vb, r)
return C

Game BNDCOM,A(λ)

mp← MainSetup(1λ)
cp← COM.Setup(mp)
(v0, r0, v1, r1)← A(cp)
C0 := COM.Cmt(cp, v0, r0)
C1 := COM.Cmt(cp, v1, r1)
return v0 6= v1 and C0 = C1

Fig. 1. The games for hiding and binding of a commitment scheme COM.

2.2 Cryptographic Primitives

We introduce the three building blocks we will use to construct an aggregate
cash system: a commitment scheme COM, an aggregate signature scheme SIG,
and a non-interactive zero-knowledge proof system Π. For compatibility reasons,
the setup algorithms for each of these schemes are split: a common algorithm
MainSetup(1λ) first returns main parameters mp (specifying e.g. an abelian
group), and specific algorithms COM.Setup, SIG.Setup, and Π.Setup take as input
mp and return the specific parameters cp, sp, and crs for each primitive. We
assume that mp is contained in cp, sp, and crs.

Commitment scheme. A commitment scheme COM consists of the following
algorithms:

– cp← COM.Setup(mp): the setup algorithm takes as input main parameters
mp and outputs commitment parameters cp, which implicitly define a value
space Vcp, a randomness space Rcp, and a commitment space Ccp;

– C := COM.Cmt(cp, v, r): the (deterministic) commitment algorithm takes as
input commitment parameters cp, a value v ∈ Vcp and randomness r ∈ Rcp,
and outputs a commitment C ∈ Ccp.

In most instantiations, given a value v ∈ Vcp, the sender picks r←$Rcp uni-
formly at random and computes the commitment C = COM.Cmt(cp, v, r).
To open the commitment, the sender reveals (v, r) so anyone can verify that
COM.Cmt(cp, v, r) = C.

We require commitment schemes to be hiding, meaning that commitment C
reveals no information about v, and binding, which means that the sender cannot
open the commitment in two different ways.

Definition 1 (Hiding). Let game HID be as defined Fig. 1. A commitment
scheme COM is hiding if for any p.p.t. adversary A:

Advhid
COM,A(λ) := 2 ·

∣∣Pr
[
HIDCOM,A(λ) = true

]
− 1

2
∣∣ = negl(λ) .

10 Georg Fuchsbauer, Michele Orrù, and Yannick Seurin

Definition 2 (Binding). Let game BND be as defined in Fig. 1. A commitment
scheme COM is binding if for any p.p.t. adversary A:

Advbnd
COM,A(λ) := Pr

[
BNDCOM,A(λ) = true

]
= negl(λ) .

Lemma 3 (Collision-resistance). Let COM be a (binding and hiding) commit-
ment scheme. Then for any (v0, v1) ∈ V 2

cp, the probability that Cmt(cp, v0, r0) =
Cmt(cp, v1, r1) for r0, r1←$Rcp is negligible.

The proof of the lemma is straightforward: for v0 6= v1 this would break binding
and for v0 = v1 it would break hiding.

A commitment scheme is (additively) homomorphic if the value, randomness,
and commitment spaces are groups (denoted additively) and for any commitment
parameters cp, any v0, v1 ∈ Vcp, and any r0, r1 ∈ Rcp, we have:

COM.Cmt(cp, v0, r0) + COM.Cmt(cp, v1, r1) = COM.Cmt(cp, v0 + v1, r0 + r1) .

Recursive aggregate signature scheme. An aggregate signature scheme
allows to (publicly) combine an arbitrary number n of signatures (from poten-
tially distinct users and on potentially distinct messages) into a single (ideally
short) signature [BGLS03, LMRS04, BNN07]. Traditionally, the syntax of an
aggregate signature scheme only allows the aggregation algorithm to take as
input individual signatures. We consider aggregate signature schemes supporting
recursive aggregation, where the aggregation algorithm can take as input aggre-
gate signatures (supported for example by the schemes based on BLS signatures
[BGLS03, BNN07]). A recursive aggregate signature scheme SIG consists of the
following algorithms:
– sp← SIG.Setup(mp): the setup algorithm takes as input main parameters mp

and outputs signature parameters sp, which implicitly define a secret-key
space Ssp and a public-key space Psp (we let the message space be {0, 1}∗);

– (sk, pk) ← SIG.KeyGen(sp): the key generation algorithm takes signature
parameters sp and outputs a secret key sk ∈ Ssp and a public key pk ∈ Psp;

– σ ← SIG.Sign(sp, sk,m): the signing algorithm takes as input parameters sp,
a secret key sk ∈ Ssp, and a message m ∈ {0, 1}∗ and outputs a signature σ;

– σ ← SIG.Agg
(
sp, (L0, σ0), (L1, σ1)

)
: the aggregation algorithm takes parame-

ters sp and two pairs of public-key/message lists Li =
(
(pki,j ,mi,j)

)|Li|
j=1 and

(aggregate) signatures σi, i = 0, 1; it returns an aggregate signature σ;
– bool ← SIG.Ver(sp,L, σ): the (deterministic) verification algorithm takes

parameters sp, a list L =
(
(pki,mi)

)|L|
i=1 of public-key/message pairs, and an

aggregate signature σ; it returns true or false, indicating validity of σ.

Correctness of a recursive aggregate signature scheme is defined recursively.
An aggregate signature scheme is correct if for every λ, every message m ∈ {0, 1}∗,
every mp ∈ [MainSetup(1λ)], sp ∈ [SIG.Setup(mp)], (sk, pk) ∈ [SIG.KeyGen(sp)]
and every (L0, σ0), (L1, σ1) with SIG.Ver(sp,Li, σi) = true for i = 0, 1 we have

Pr
[
SIG.Ver

(
sp, ((pk,m)) ,SIG.Sign(sp, sk,m)

)
= true

]
= 1 and

Pr
[
SIG.Ver

(
sp,L0 ‖L1,SIG.Agg

(
sp, (L0, σ0), (L1, σ1)

))
= true

]
= 1 .

Aggregate Cash Systems 11

Game EUF-CMASIG,A(λ)

Q := (); mp← MainSetup(1λ)
sp← SIG.Setup(mp) ; (sk, pk)← SIG.KeyGen(sp)

(L, σ)← ASign(pk)

return
(
∃m : (pk,m) ∈ L ∧ m /∈ Q

)
and SIG.Ver(sp,L, σ)

Oracle Sign(m)

σ ← SIG.Sign(sk,m)
Q := Q ‖ (m)
return σ

Fig. 2. The EUF-CMA security game for an aggregate signature scheme SIG.

Note that for any recursive aggregate signature scheme, one can define an ag-
gregation algorithm SIG.Agg′ that takes as input a list of triples

(
(pki,mi, σi)

)
n
i=1

and returns an aggregate signature σ for
(
(pki,mi)

)
n
i=1, which is the standard

syntax for an aggregate signature scheme. Algorithm SIG.Agg′ calls SIG.Agg
recursively n− 1 times, aggregating one signature at a time.

The standard security notion for aggregate signature schemes is existential
unforgeability under chosen-message attack (EUF-CMA) [BGLS03, BNN07].

Definition 4 (EUF-CMA). Let game EUF-CMA be as defined in Fig. 2. An
aggregate signature scheme SIG is existentially unforgeable under chosen-message
attack if for any p.p.t. adversary A,

Adveuf-cma
SIG,A (λ) := Pr

[
EUF-CMASIG,A(λ) = true

]
= negl(λ) .

Note that any standard signature scheme can be turned into an aggregate
signature scheme by letting the aggregation algorithm simply concatenate signa-
tures, i.e., SIG.Agg(sp, (L0, σ0), (L1, σ1)) returns (σ0, σ1), but this is not compact.
Standard EUF-CMA-security of the original scheme implies EUF-CMA-security
in the sense of Definition 4 for this construction. This allows us to capture
standard and (compact) aggregate signature schemes, such as the ones proposed
in [BGLS03, BNN07], in a single framework.

Compatibility. For our aggregate cash system, we require the commitment
scheme COM and the aggregate signature scheme SIG to satisfy some “combined”
security notions. We say that COM and SIG are compatible if they use the same
MainSetup and if for any λ, any mp ∈ [MainSetup(1λ)], cp ∈ [COM.Setup(mp)]
and sp ∈ [SIG.Setup(mp)], the following holds:
– Ssp = Rcp, i.e., the secret-key space of SIG is the same as the randomness

space of COM;
– Psp = Ccp, i.e., the public-key space of SIG is the commitment space of COM;
– SIG.KeyGen draws sk←$Rcp and sets pk := COM.Cmt(cp, 0, sk).

We define two security notions for compatible commitment and aggregate signa-
ture schemes. The first one roughly states that only commitments to zero can
serve as signature-verification keys; more precisely, a p.p.t. adversary cannot
simultaneously produce a signature for a (set of) freely chosen public key(s) and
a non-zero opening of (the sum of) the public key(s).

12 Georg Fuchsbauer, Michele Orrù, and Yannick Seurin

Game EUF-NZOCOM,SIG,A(λ)

mp← MainSetup(1λ) ; cp← COM.Setup(mp) ; sp← SIG.Setup(mp)
(L, σ, (v, r))← A(cp, sp)
((Xi,mi))ni=1 := L
return SIG.Ver(sp,L, σ) and

∑n

i=1 Xi = COM.Cmt(cp, v, r) and v 6= 0

Fig. 3. The EUF-NZO security game for a pair of compatible additively homomorphic
commitment and aggregate signature schemes (COM, SIG).

Definition 5 (EUF-NZO). Let game EUF-NZO be as defined in Fig. 3. A
pair of compatible homomorphic commitment and aggregate signature schemes
(COM,SIG) is existentially unforgeable with non-zero opening if for any p.p.t.
adversary A,

Adveuf-nzo
COM,SIG,A(λ) := Pr

[
EUF-NZOCOM,SIG,A(λ) = true

]
= negl(λ) .

EUF-NZO-security of the pair (COM,SIG) implies that COM is binding, as shown
in the full version [FOS18].

The second security definition is more involved. It roughly states that, given a
challenge public key C∗, no adversary can produce a signature under −C∗. More-
over, we only require the adversary to make a signature under keys X1, . . . , Xn

of its choice, as long as it knows an opening to the difference between their sum
and −C∗. This must even hold if the adversary is given a signing oracle for keys
related to C∗. Informally, the adversary is faced with the following dilemma:
either it picks public keys X1, . . . , Xn honestly, so it can produce a signature but
it cannot open

∑
Xi +C∗; or it includes −C∗ within the public keys, allowing it

to open
∑
Xi + C∗, but then it cannot produce a signature.

Definition 6 (EUF-CRO). Let game EUF-CRO be as defined in Fig. 4. A
pair of compatible homomorphic commitment and aggregate signature schemes
(COM,SIG) is existentially unforgeable with challenge-related opening if for any
p.p.t. adversary A,

Adveuf-cro
COM,SIG,A(λ) := Pr

[
EUF-CROCOM,SIG,A(λ) = true

]
= negl(λ) .

NIZK. Let R be an efficiently computable ternary relation. For triplets (mp, u, w)
∈ R we call u the statement and w the witness. A non-interactive proof system
Π for R consists of the following three algorithms:

– crs← Π.Setup(mp): the setup algorithm takes as input main parameters mp
and outputs a common reference string (CRS) crs;

– π ← Π.Prv(crs, u, w): the prover algorithm takes as input a CRS crs and a
pair (u,w) and outputs a proof π;

– bool ← Π.Ver(crs, u, π): the verifier algorithm takes a CRS crs, a statement u,
and a proof π and outputs true or false, indicating acceptance of the proof.

Aggregate Cash Systems 13

Game EUF-CROCOM,SIG,A(λ)

mp← MainSetup(1λ) ; cp← COM.Setup(mp)
sp← SIG.Setup(mp) ; (r∗, C∗)← SIG.KeyGen(sp)

(L, σ, (v, r))← ASign′(cp, sp, C∗) ; ((Xi,mi))ni=1 := L
return SIG.Ver(sp,L, σ) and

∑n

i=1 Xi = −C∗ + COM.Cmt(cp, v, r)

Oracle Sign′(a,m)

sk′ := a+ r∗

return SIG.Sign(sp, sk′,m)

Fig. 4. The EUF-CRO security game for a pair of compatible additively homomorphic
commitment and aggregate signature schemes (COM, SIG).

Proof system Π is complete if for every λ and every adversary A,

Pr
[

mp← MainSetup(1λ) ; crs← Π.Setup(mp)
(u,w)← A(crs) ;π ← Π.Prv(crs, u, w) : (mp, u, w) ∈ R⇒

Π.Ver(crs, u, π) = true

]
= 1 .

A proof system Π is zero-knowledge if proofs leak no information about the
witness. We define a simulator Π.Sim for a proof system Π as a pair of algorithms:

– (crs, τ)← Π.SimSetup(mp): the simulated setup algorithm takes main param-
eters mp and outputs a CRS together with a trapdoor τ ;

– π∗ ← Π.SimPrv(crs, τ, u): the simulated prover algorithm takes as input a
CRS, a trapdoor τ , and a statement u and outputs a simulated proof π∗.

Definition 7 (Zero-knowledge). Let game ZK be as defined in Fig. 5. A proof
system Π for relation R is zero-knowledge if there exists a simulator Π.Sim such
that for any p.p.t. adversary A,

Advzk
Π,R,A(λ) := 2 ·

∣∣Pr
[
ZKΠ,R,A(λ) = true

]
− 1

2
∣∣ = negl(λ) .

Note that the zero-knowledge advantage can equivalently be defined as

Advzk
Π,R,A(λ) =

∣∣Pr
[
ZK0

Π,R,A(λ) = 1
]
− Pr

[
ZK1

Π,R,A(λ) = 1
]∣∣ ,

Game ZKΠ,R,A(λ)

b←$ {0, 1} ; mp← MainSetup(1λ)
crs0 ← Π.Setup(mp)
(crs1, τ)← Π.SimSetup(mp)
b′ ← ASimProve(crsb)
return b = b′

Oracle SimProve(u,w)

if ¬R(mp, u, w) then return ⊥
π0 ← Π.Prv(crs0, u, w)
π1 ← Π.SimPrv(crs1, τ, u)
return πb

Fig. 5. The non-interactive zero-knowledge game for a proof system Π.

14 Georg Fuchsbauer, Michele Orrù, and Yannick Seurin

Game S-EXTΠ,R,A(λ)

Q := () ; mp← MainSetup(1λ)
(crs, τ)← Π.SimSetup(mp)

(u,π)← ASimProve(crs)
for i = 1 . . . |u| do
wi := Π.Ext(crs, τ, ui, πi)

return
∨|u|
i=1

(
Π.Ver(crs, ui, πi) ∧ (ui, πi) /∈ Q ∧ ¬R(mp, ui, wi)

)

Oracle SimProve(u)

π ← Π.SimPrv(crs, τ, u)
Q := Q ‖ ((u, π))
return π

Fig. 6. The (multi-statement) simulation-extractability game for a proof system Π.

where the game ZKi
Π,R,A(λ) is defined as ZKΠ,R,A(λ) except b←$ {0, 1} is replaced

by b := i and the game returns b′.
The central security property of a proof system is soundness, that is, no ad-

versary can produce a proof for a false statement. A stronger notion is knowledge-
soundness, meaning that an adversary must know a witness in order to make a
proof. This is formalized via an extraction algorithm defined as follows:

– w := Π.Ext(crs, τ, u, π): the (deterministic) extraction algorithm takes a CRS,
a trapdoor τ , a statement u, and a proof π and returns a witness w.

Knowledge-soundness states that from a valid proof for a statement u output
by an adversary, Π.Ext can extract a witness for u. In security proofs where the
reduction simulates certain proofs knowledge-soundness is not sufficient. The
stronger notion simulation-extractability guarantees that even then, from every
proof output by the adversary, Π.Ext can extract a witness. Note that we define
a multi-statement variant of simulation extractability: the adversary returns a
list of statements and proofs and wins if there is a least one statement such that
the corresponding proof is valid and the extractor fails to extract a witness.

Definition 8 (Simulation-Extractability). Let game S-EXT be as defined
in Fig. 6. A non-interactive proof system Π for R with simulator Π.Sim is (multi-
statement) simulation-extractable if there exists an extractor Π.Ext such that for
any p.p.t. adversary A,

Advs-ext
Π,R,A(λ) := Pr

[
S-EXTΠ,R,A(λ) = true

]
= negl(λ) .

In the instantiation of our cash system, we will deal with families of relations,
i.e. relations Rδ parametrized by some δ ∈ N. For those, we assume that the proof
system Π is defined over the family of relations R = {Rδ }δ and that the setup
algorithm Π.Setup takes an additional parameter δ which specifies the particular
relation used during the protocol (and which is included in the returned CRS).
For instance, in the case of proofs for a certain range [0, vmax], the proof system
will be defined over a relation Rvmax , where vmax is the maximum integer allowed.

Aggregate Cash Systems 15

3 Aggregate Cash System

3.1 Syntax

Coins. The public parameters pp set up by the cash system specify a coin space
Cpp and a key space Kpp. A coin is an element C ∈ Cpp; to each coin is associated
a coin key k ∈ Kpp, which allows spending the coin. The value v of a coin is an
integer in [0, vmax], where vmax is a system parameter. We assume that there
exists a function mapping pairs (v, k) ∈ [0, vmax]×Kpp to coins in Cpp; we do not
assume this mapping to be invertible or even injective.
Ledger. Similarly to any ledger-based currency such as Bitcoin, an aggregate
cash system keeps track of available coins in the system via a ledger. We assume
the ledger to be unique and available at any time to all users. How users are kept
in consensus on the ledger is outside the scope of this paper. In our abstraction, a
ledger Λ simply provides two attributes: a list of all coins available in the system
Λ.out, and the total value Λ.sply those coins add up to. We say that a coin C
exists in the ledger Λ if C ∈ Λ.out.
Transactions. Transactions allow to modify the state of the ledger. Formally, a
transaction tx provides three attributes: a coin input list tx.in, a coin output list
tx.out, and a supply tx.sply ∈ N specifying the amount of money created by tx.
We classify transactions into three types. A transaction tx is said to be:

– a minting transaction if tx.sply > 0 and tx.in = (); such a transaction creates
new coins of total value tx.sply in the ledger;

– a transfer transaction if tx.sply = 0 and tx.in 6= (); such a transaction transfers
coins (by spending previous transaction outputs and creating new ones) but
does not increase the overall value of coins in the ledger;

– a mixed transaction if tx.sply > 0 and tx.in 6= ().

Pre-transactions. Pre-transactions allow users to transfer money to each other.
Formally, a pre-transaction provides three attributes: a coin input list ptx.in, a
list of change coins ptx.chg, and a remainder ptx.rmdr. When Alice wants to send
money worth ρ to Bob, she selects coins of hers of total value v ≥ ρ and specifies
the desired values for her change coins when v > ρ. The resulting pre-transaction
ptx has therefore some input coin list ptx.in with total amount v, a change coin
list ptx.chg, and some remainder ρ = ptx.rmdr. Alice sends this pre-transaction
(via a secure channel) to Bob, who, in turn, finalizes it into a valid transaction
and adds it to the ledger.
Aggregate cash system. An aggregate cash system CASH consists of the
following algorithms:

– (pp, Λ) ← Setup(1λ, vmax): the setup algorithm takes as input the security
parameter λ in unary and a maximal coin value vmax and returns public
parameters pp and an initial (empty) ledger Λ.

– (tx,k) ← Mint(pp,v): the mint algorithm takes as input a list of values v
and returns a minting transaction tx and a list of coin keys k for the coins in
tx.out, such that the supply of tx is the sum of the values v.

16 Georg Fuchsbauer, Michele Orrù, and Yannick Seurin

– (ptx,k′)← Send(pp, (C,v,k),v′): the sending algorithm takes as input a list
of coins C together with the associated lists of values v and secret keys k
and a list of change values v′ whose sum is at most the sum of the input
values v; it returns a pre-transaction ptx and a list of keys k′ for the change
coins of ptx, such that the remainder of ptx is the sum of the values v minus
the sum of the values v′.

– (tx,k′′) ← Rcv(pp, ptx,v′′): the receiving algorithm takes as input a pre-
transaction ptx and a list of values v′′ whose sum equals the remainder of
ptx; it returns a transfer transaction tx and a list of secret keys k′′ for the
fresh coins in the output of tx, one for each value in v′′.

– Λ′ ← Ldgr(pp, Λ, tx): the ledger algorithm takes as input the ledger Λ and a
transaction tx to be included in Λ; it returns an updated ledger Λ′ or ⊥.

– tx ← Agg(pp, tx0, tx1): the transaction aggregation algorithm takes as input
two transactions tx0 and tx1 whose input coin lists are disjoint and whose
output coin lists are disjoint; it returns a transaction tx whose supply is the
sum of the supplies of tx0 and tx1 and whose input and output coin list is
the cut-through of tx0.in ‖ tx1.in and tx0.out ‖ tx1.out.

We say that an aggregate cash system CASH is correct if its procedures Setup,
Mint, Send, Rcv, Ldgr, and Agg behave as expected with overwhelming probability
(that is, we allow that with negligible probability things can go wrong, typically,
because an algorithm could generate the same coin twice). We give a formal
definition that uses two auxiliary procedures: Cons, which checks if a list of coins
C is consistent with respect to values v and keys k; and Ver, which given as
input a ledger or a (pre-)transaction determines if they respect some notion of
cryptographic validity.

Definition 9 (Correctness). An aggregate cash system CASH is correct if
there exist procedures Ver(·, ·) and Cons(·, ·, ·, ·) such that for any vmax ∈ N and
(not necessarily p.p.t.) AMint,ASend,ARcv,AAgg and ALdgr the following functions
are overwhelming in λ: Pr

[
(pp, Λ)← Setup(1λ, vmax) : Ver(pp, Λ)

]

Pr

[(pp, Λ)← Setup(1λ, vmax)
v← AMint(pp, Λ)
(tx,k)← Mint(pp,v)

: v ∈ [0, vmax]∗ ⇒

(Ver(pp, tx) ∧ tx.in = () ∧
tx.sply =

∑
v ∧

Cons(pp, tx.out,v,k)

)]

Pr

(pp, Λ)← Setup(1λ, vmax)
(C,v,k,v′)← ASend(pp, Λ)
(ptx,k′)← Send(pp, (C,v,k),v′) :

(
Cons(pp,C,v,k) ∧ v ‖v′ ∈ [0, vmax]∗
∧
∑

v−
∑

v′ ∈ [0, vmax]

)
⇒

(Ver(pp, ptx) ∧ ptx.in = C ∧
ptx.rmdr =

∑
v−

∑
v′ ∧

Cons(pp, ptx.chg,v′,k′)

)

Pr

 (pp, Λ)← Setup(1λ, vmax)
(ptx,v′′)← ARcv(pp, Λ)
(tx,k′′)← Rcv(pp, ptx,v′′) :

(
Ver(pp, ptx) ∧ v′′∈ [0, vmax]∗ ∧ ptx.rmdr =

∑
v′′
)

⇒

(Ver(pp, tx) ∧ tx.sply = 0 ∧
tx.in = ptx.in ∧ ptx.chg ⊆ tx.out ∧
Cons(pp, tx.out− ptx.chg,v′′,k′′)

)

Aggregate Cash Systems 17

Game INFLCASH,A(λ, vmax)

(pp, Λ0)← CASH.Setup(1λ, vmax)
(Λ, ptx,v)← A(pp, Λ0)
(tx,k)← CASH.Rcv(pp, ptx,v)
return ⊥ 6← CASH.Ldgr(pp, Λ, tx) and Λ.sply <

∑
v

Fig. 7. Game formalizing resistance to inflation of a cash system CASH.

Pr

(pp, Λ)← Setup(1λ, vmax)
(tx0, tx1)← AAgg(pp, Λ)
tx ← Agg(pp, tx0, tx1) :

(
Ver(pp, tx0) ∧ tx0.in ∩ tx1.in = () ∧
Ver(pp, tx1) ∧ tx0.out ∩ tx1.out = ()

)
⇒

(Ver(pp, tx) ∧ tx.sply = tx0.sply + tx1.sply ∧
tx.in = (tx0.in ‖ tx1.in)− (tx0.out ‖ tx1.out) ∧
tx.out = (tx0.out ‖ tx1.out)− (tx0.in ‖ tx1.in)

)

Pr

(pp, Λ)← Setup(1λ, vmax)
(Λ, tx)← ALdgr(pp, Λ)
Λ′ ← Ldgr(pp, Λ, tx) :

(
Ver(pp, Λ) ∧ Ver(pp, tx) ∧
tx.in ⊆ Λ.out ∧ tx.out ∩ Λ.out = ()

)
⇒

(
Λ′ 6= ⊥ ∧ Ver(pp, Λ′) ∧
Λ′.out = (Λ.out− tx.in) ‖ tx.out ∧
Λ′.sply = Λ.sply + tx.sply

)

3.2 Security Definitions

Security against inflation. A sound payment system must ensure that the
only way money can be created is via the supply of transactions, typically minting
transactions. This means that for any tx the total value of the output coins should
be equal to the sum of the total value of the input coins plus the supply tx.sply
of the transaction. Since coin values are not deducible from a transaction (this is
one of the privacy features of such a system), we define the property at the level
of the ledger Λ.

We say that a cash system is resistant to inflation if no adversary can spend
coins from Λ.out worth more than Λ.sply. The adversary’s task is thus to create
a pre-transaction whose remainder is strictly greater than Λ.sply; validity of the
pre-transaction is checked by completing it to a transaction via Rcv and adding
it to the ledger via Ldgr. This is captured by the definition below.

Definition 10 (Inflation-resistance). We say that an aggregate cash system
CASH is secure against inflation if for any vmax and any p.p.t. adversary A,

Advinfl
CASH,A(λ, vmax) := Pr

[
INFLCASH,A(λ, vmax) = true

]
= negl(λ) ,

where INFLCASH,A(λ, vmax) is defined in Fig. 7.

Security against coin theft. Besides inflation, which protects the soundness
of the system as a whole, the second security notion protects individual users.
It requires that only a user can spend coins belonging to him, where ownership

18 Georg Fuchsbauer, Michele Orrù, and Yannick Seurin

Game STEALCASH,A(λ, vmax)

(pp, Λ)← CASH.Setup(1λ, vmax)
Hon,Val,Key,Ptx := ()

AMint,Send,Receive,Ledger(pp, Λ)
return (Hon * Λ.out)

Aux function Store(C,v,k)

Val(C) := v ; Key(C) := k

Oracle Mint(v)

(tx,k)← CASH.Mint(pp,v)
Λ← CASH.Ldgr(pp, Λ, tx)
Hon := Hon ‖ tx.out
Store(tx.out,v,k)
return tx

Oracle Send(C,v′)

if C * Hon or
⋃

ptx∈Ptx ptx.in ∩ C 6= ()

return ⊥ // only honest coins never sent can be queried

(ptx,k′)← CASH.Send
(

pp, (C,Val(C),Key(C)),v′
)

Store(ptx.chg,v′,k′) ; Ptx := Ptx ‖ (ptx)
return ptx

Oracle Receive(ptx,v)

(tx,k)← CASH.Rcv(pp, ptx,v)
Λ′ ← Ledger(tx) // updates Hon

if Λ′ = ⊥ then return ⊥
Hon := Hon ‖ (tx.out− ptx.chg)
Store(tx.out− ptx.chg,v,k) ; return tx

Oracle Ledger(tx)

Λ′ ← CASH.Ldgr(pp, Λ, tx)
if Λ′ = ⊥ then return ⊥ else Λ := Λ′

for all ptx ∈ Ptx do
if ptx.chg ⊆ tx.out
// if all change of ptx now in ledger

Ptx := Ptx − (ptx)
Hon := (Hon− ptx.in) ‖ ptx.chg
// consider input of ptx consumed

return Λ

Fig. 8. Game formalizing resistance to coin theft of a cash system CASH.

of a coin amounts to knowledge of the coin secret key. This is formalized by
the experiment in Fig. 8, which proceeds as follows. The challenger sets up the
system and maintains the ledger Λ throughout the game (we assume that the
consensus protocol provides this). The adversary can add any valid transaction
to the ledger through an oracle Ledger.

The challenger also simulates an honest user and manages her coins; in
particular, it maintains a list Hon, which represents the coins that the honest
user expects to own in the ledger. The game also maintains two hash tables Val
and Key that map coins produced by the game to their values and keys. We
write e.g. Val(C) := v to mean that the pair (C, v) is added to Val and let Val(C)
denote the value v for which (C, v) is in Val. This naturally generalizes to lists
letting Val(C) be the list v such that (Ci, vi) is in Val for all i.

The adversary can interact with the honest user and the ledger using the
following oracles:

Aggregate Cash Systems 19

– Mint is an oracle that mints coins for the honest user. It takes as input a
vector of values v, creates a minting transaction tx together with the secret
keys of the output coins, adds tx to the ledger and appends the newly created
coins to Hon.

– Receive lets the adversary send coins to the honest user. The oracle takes
as input a pre-transaction ptx and output values v; it completes ptx to a
transaction tx creating output coins with values v, adds tx to the ledger, and
appends the newly created coins to Hon.

– Send lets the adversary make an honest user send coins to it. It takes as
input a list C of coins contained in Hon and a list of change values v′; it
also checks that none of the coins in C has been queried to Send before (an
honest user does not double-spend). It returns a pre-transaction ptx spending
the coins from C and creating change output coins with values v′. The oracle
only produces a pre-transaction and returns it to the adversary, but it does
not alter the ledger. This is why the list Hon of honest coins is not altered
either; in particular, the sent coins C still remain in Hon.

– Ledger lets the adversary commit a transaction tx to the ledger. If the
transaction output contains the (complete) set of change coins of a pre-
transaction ptx previously sent to the adversary, then these change coins are
added to Hon, while the input coins of ptx are removed from Hon.

Note that the list Hon represents the coins that the honest user should consider
hers, given the system changes induced by the oracle calls: coins received directly
from the adversary via Receive or as fresh coins via Mint are added to Hon.
Coins sent to the adversary in a pre-transaction ptx via Send are only removed
once all change coins of ptx have been added to the ledger via Ledger. Note also
that, given these oracles, the adversary can simulate transfers between honest
users. It can simply call Send to receive an honest pre-transaction ptx and then
call Receive to have the honest user receive ptx.

The winning condition of the game is now simply that Hon does not reflect
what the honest user would expect, namely Hon is not fully contained in the
ledger (because the adversary managed to spend a coin that is still in Hon, which
amounts to stealing it from the honest user).

Definition 11 (Theft-resistance). We say that an aggregate cash system
CASH is secure against coin theft if for any vmax and any p.p.t. adversary A,

Advsteal
CASH,A(λ, vmax) := Pr

[
STEALCASH,A(λ, vmax) = true

]
= negl(λ) ,

where STEALCASH,A(λ, vmax) is defined in Fig. 8.

Transaction indistinguishability. An important security feature that Mim-
blewimble inherits from Confidential Transactions [Max15] is that the amounts
involved in a transaction are hidden so that only the sender and the receiver
know how much money is involved. In addition, a transaction completely hides
which inputs paid which outputs and which coins were change and which were
added by the receiver.

20 Georg Fuchsbauer, Michele Orrù, and Yannick Seurin

Game IND-TXCASH,A(λ, vmax)

b←$ {0, 1}
(pp, Λ)← Setup(1λ, vmax)
b′ ← ATx(pp, Λ)
return b = b′

Oracle Tx((v0,v′0,v′′0), (v1,v′1,v′′1))

if not (v0,v′0,v′′0 ,v1,v′1,v′′1 ∈ [0, vmax]∗)
return ⊥

if |v0| 6= |v1| or |v′0|+ |v′′0 | 6= |v′1|+ |v′′1 |
return ⊥ // as number of coins is not hidden

if
∑

v0 6=
∑

(v′0 ‖v′′0) or
∑

v1 6=
∑

(v′1 ‖v′′1)
return ⊥ // as transactions must be balanced

(tx,k)← Mint(pp,vb)
(ptx,k′)← Send(pp, (tx.out,vb,k),v′b)
(tx∗,k′′)← Rcv(pp, ptx,v′′b)
return tx∗

Fig. 9. Game formalizing transaction indistinguishability of a cash system CASH.

We formalize this via the following game, specified in Fig. 9. The adversary
submits two sets of values (v0,v′0,v′′0) and (v1,v′1,v′′1) representing possibles
values for input coins, change coins and receiver’s coins of a transaction. The
game creates a transaction with values either from the first or the second set and
the adversary must guess which. For the transaction to be valid, we must have∑

vb =
∑

v′b +
∑

v′′b for both b = 0, 1. Moreover, transactions do not hide the
number of input and output coins. We therefore also require that |v0| = |v1| and
|v′0|+ |v′′0 | = |v′1|+ |v′′1 | (note that e.g. the number of change coins can differ).

Definition 12 (Transaction indistinguishability). We say that an aggregate
cash system CASH is transaction-indistinguishable if for any vmax and any p.p.t.
adversary A,

Advtx-ind
CASH,A(λ, vmax) := 2 ·

∣∣Pr
[
TX-INDCASH,A(λ, vmax) = true

]
− 1

2
∣∣ = negl(λ) ,

where TX-INDCASH,A(λ, vmax) is defined in Fig. 9.

4 Construction of an Aggregate Cash System

4.1 Description

Let COM be an additively homomorphic commitment scheme such that for
cp← COM.Setup(MainSetup(1λ)) we have value space Vcp = Zp with p of length λ
(such as the Pedersen scheme). Let SIG be an aggregate signature scheme that is
compatible with COM. For vmax ∈ N, let Rvmax be the (efficiently computable)
relation on commitments with values at most vmax, i.e.,

Rvmax:=
{(

mp, (cp, C), (v, r)
)∣∣mp=mpcp ∧C=COM.Cmt(cp, v, r)∧ v ∈ [0, vmax]

}

Aggregate Cash Systems 21

where mpcp are the main parameters contained in cp (recall that we assume
that for cp ∈ [COM.Setup(mp)], mp is contained in cp). Let Π be a simulation-
extractable NIZK proof system for the family of relations R = {Rvmax }vmax

.
For notational simplicity, we will use the following vectorial notation for COM,

R, and Π: given C, v, and r with |C| = |v| = |r|, we let

COM.Cmt(cp,v, r) :=
(
COM.Cmt(cp, vi, ri)

)|v|
i=1 ,

Rvmax((cp,C), (v, r)) :=
∧|C|
i=1 Rvmax(mpcp, (cp, Ci), (vi, ri)) ,

Π.Prv(crs, (cp,C), (v, r)) :=
(
Π.Prv(crs, (cp, Ci), (vi, ri))

)|C|
i=1 ,

Π.Ver(crs, (cp,C),π) :=
∧|C|
i=1 Π.Ver(crs, (cp, Ci), πi) ,

and likewise for Π.SimPrv. We also assume that messages are the empty string ε
if they are omitted from SIG.Ver and SIG.Agg; that is, we overload notation and
let

SIG.Ver(sp, (Xi)ni=1, σ) := SIG.Ver(sp, ((Xi, ε))ni=1, σ)

and likewise for SIG.Agg
(
sp, ((X0,i)n0

i=1, σ0), ((X1,i)n1
i=1, σ1)

)
.

From COM, SIG and Π we construct an aggregate cash system MW[COM,
SIG,Π] as follows. The public parameters pp consist of commitment and signature
parameters cp, sp, and a CRS for Π. A coin key k ∈ Kpp is an element of the
randomness space Rcp of the commitment scheme, i.e., Kpp = Rcp. A coin
C = COM.Cmt(cp, v, k) is a commitment to the value v of the coin using the coin
key k as randomness. Hence, Cpp = Ccp.

A transaction tx = (s,C, Ĉ,K) consists of a supply tx.sply = s, an input coin
list tx.in = C, an output coin list tx.out = Ĉ, and a kernel K. The kernel K
is a triple (π,E, σ) where π is a list of range proofs for the output coins, E is
a non-empty list of signature-verification keys (which are of the same form as
commitments) called kernel excesses, and σ is an (aggregate) signature. We define
the excess of the transaction tx, denoted Exc(tx), as the sum of outputs minus
the sum of inputs, with the supply s converted to an input coin with k = 0:

Exc(tx) :=
∑

Ĉ−
∑

C− COM.Cmt(cp, s, 0) . (4)

Intuitively, Exc(tx) should be a commitment to 0, as the committed input and
output values of the transaction should cancel out; this is evidenced by giving a
signature under key Exc(tx) (which could be represented as the sum of elements
(Ei) due to aggregation; see below).

A transaction tx = (s,C, Ĉ,K) with K = (π,E, σ) is said to be valid if all
range proofs are valid, Exc(tx) =

∑
E, and σ is a valid signature for E (with all

messages ε).13

When a user wants to make a payment of an amount ρ, she creates a trans-
action tx with input coins C of values v with

∑
v ≥ ρ and with output coins a

13 If E in a transaction tx consists of a single element, it must be E = Exc(tx), so E
could be omitted from the transaction; we keep it for consistency.

22 Georg Fuchsbauer, Michele Orrù, and Yannick Seurin

MW.Coin((cp, sp, crs),v)

k←$R|v|cp

C := COM.Cmt(cp,v,k)
π ← Π.Prv(crs, (cp,C), (v,k))
return (C,v,π)

MW.MkTx((cp, sp, crs), (C,v,k), v̂)

if ¬Cons(pp,C,v,k)
return ⊥

s :=
∑

v̂−
∑

v
if v ‖ v̂ 6⊆ [0, vmax]∗ or s < 0

then return ⊥

(Ĉ, k̂, π̂)← MW.Coin(pp, v̂)

E :=
∑

Ĉ−
∑

C−
COM.Cmt(cp, s, 0)

σ ← SIG.Sign(sp,
∑

k̂−
∑

k, ε)
K := (π̂, E, σ)

tx := (s,C, Ĉ,K)

return (tx, k̂)

MW.Cons((cp, sp, crs),C,v,k)

return |C| = |v| = |k| and v ∈ [0, vmax]∗

and
(
∀ i 6= j : Ci 6= Cj

)
and C = COM.Cmt(cp,v,k)

// Cons(pp, (), (), ()) returns true

MW.Ver((cp, sp, crs), tx)

if tx =(0, (), (), ((), (), ε)) then return true

(s,C, Ĉ,K) := tx; (π,E, σ) := K

Exc :=
∑

Ĉ−
∑

C− COM.Cmt(cp, s, 0)

return
(
∀ i 6= j : Ci 6= Cj ∧ Ĉi 6= Ĉj

)
and C ∩ Ĉ = () and s ≥ 0

and Π.Ver(crs, Ĉ,π) and∑
E = Exc and SIG.Ver(sp,E, σ)

MW.Ver(pp, ptx)

(tx, ρ, k′) := ptx
return MW.Ver(pp, tx) and tx.sply = 0 and

MW.Cons(pp, tx.out[|tx.out|], ρ, k′)

MW.Ver(pp, Λ)

tx := Λ // interpret Λ as transaction

return MW.Ver(pp, tx) and tx.in = ()

Fig. 10. Auxiliary algorithms for the MW aggregate cash system.

list of fresh change coins of values v′ so that
∑

v′ =
∑

v− ρ. She also appends
one more special coin of value ρ to the output. The pre-transaction ptx is then
defined as this transaction tx, the remainder ptx.rmdr := ρ and the key for the
special coin.

When receiving a pre-transaction ptx = (tx, ρ, k), the receiver first checks
that tx is valid and that k is a key for the special coin C ′ := tx.out[|tx.out|] of
value ρ. He then creates a transaction tx′ that spends C ′ (using its key k) and
creates coins of combined value ρ. Aggregating tx and tx′ yields a transaction tx′′
with tx′′.sply = 0, tx′′.in = ptx.in and tx′′.out containing ptx.chg and the freshly
created coins. The receiver then submits tx′′ to the ledger.

The ledger accepts a transaction if it is valid (as defined above) and if its
input coins are contained in the output coin list of the ledger (which corresponds
to the UTXO set in other systems). We do not consider any other conditions

Aggregate Cash Systems 23

MW.Setup(1λ, vmax)

mp← MainSetup(1λ)
cp← COM.Setup(mp)
sp← SIG.Setup(mp)
crs← Π.Setup(mp, vmax)

Λ :=
(
0, (), (), ((), (), ε)

)
return

(
pp := (cp, sp, crs), Λ

)
MW.Agg(pp, tx0, tx1)

if ¬MW.Ver(pp, tx0) or
¬MW.Ver(pp, tx1) or
tx0.in ∩ tx1.in 6= () or
tx0.out ∩ tx1.out 6= ()

return ⊥(
s0,C0, Ĉ0, (π0,E0, σ0)

)
:= tx0(

s1,C1, Ĉ1, (π1,E1, σ1)
)

:= tx1

C := C0 ‖C1 − Ĉ0 ‖ Ĉ1

Ĉ := Ĉ0 ‖ Ĉ1 −C0 ‖C1

π := (π0,i)i∈I0
‖ (π1,i)i∈I1

where Ij := {i : Ĉj,i /∈ C1−j}
// π contains the proofs for coins in Ĉ

σ ← SIG.Agg
(

sp, (E0, σ0), (E1, σ1)
)

K := (π,E0 ‖E1, σ)
return (s0 + s1,C, Ĉ,K)

MW.Mint(pp, v̂)

(tx, k̂)← MW.MkTx(pp, ((), (), ()), v̂)
return (tx, k̂)

// If ⊥ ← MkTx, Mint returns ⊥

MW.Send(pp, (C,v,k),v′)

ρ :=
∑

v−
∑

v′

(tx, k̂)← MW.MkTx(pp, (C,v,k),v′ ‖ ρ)

ptx := (tx, ρ, k̂|v′|+1)

return (ptx, (k̂i)|v
′|

i=1)

MW.Rcv(pp, ptx,v′′)

(tx, ρ, k′) := ptx
if ¬MW.Ver(pp, ptx) or ρ 6=

∑
v′′

return ⊥
C′ := tx.out[|tx.out|]
(tx′,k′′)← MW.MkTx(pp, (C′, ρ, k′),v′′)
tx′′ ← MW.Agg(pp, tx, tx′)
return (tx′′,k′′)

MW.Ldgr(pp, Λ, tx)

if Λ.in 6= () or tx.in 6⊆ Λ.out
return ⊥

return MW.Agg(pp, Λ, tx) // returns ⊥ if
Λ or tx invalid

Fig. 11. The MW aggregate cash system. (Recall that algorithms return ⊥ when one
of their subroutines returns ⊥.)

related to the consensus mechanism, such as fees being included in a transaction
to incentivize its inclusion in the ledger or a proof-of-work being included in a
minting transaction.

In Fig. 10 we first define auxiliary algorithms that create coins and transactions
and verify their validity by instantiating the procedures Ver and Cons from
Definition 9. Using these we then formally define MW[COM,SIG,Π] in Fig. 11.

Correctness. We start with showing some properties of the auxiliary algo-
rithms in Fig. 10. For any v ∈ [0, vmax]∗ and (C,k,π) ← Coin(pp,v), we have
Cons(pp,C,v,k) with overwhelming probability due to Lemma 3. Moreover, cor-
rectness of SIG and Π implies that MkTx run on consistent (C,v,k) and values

24 Georg Fuchsbauer, Michele Orrù, and Yannick Seurin

v̂ ∈ [0, vmax]∗ with
∑

v̂ ≥
∑

v produces a tx which is accepted by Ver with
overwhelming probability and whose supply is the difference

∑
v−

∑
v̂.

We now show that the protocol MW[COM,SIG,Π] described in Fig. 11 satisfies
Definition 9. It is immediate that an empty ledger output by Setup(1λ, vmax)
verifies. As Mint invokes MkTx on empty inputs and output values v, correctness
of Mint follows from correctness of MkTx. Correctness of Send also follows from
correctness of MkTx when the preconditions on the values, consistency of the coins
and the supply, and

∑
v −

∑
v′ = ρ ∈ [0, vmax] hold (note that ptx.rmdr = ρ).

Therefore, with overwhelming probability the pre-transaction is valid, and the
change coins are consistent. Correctness of Agg is straightforward: it returns a
transaction with the desired supply, input, and output coin list whose validity
follows from correctness of SIG.Agg and Π.Ver and

∑
E0 +

∑
E1 = Ĉ0−

∑
C0−

Cmt(cp, s0, 0) + Ĉ1 −
∑

C1 − Cmt(cp, s1, 0) =
∑

Ĉ−
∑

C− Cmt(cp, s0 + s1, 0),
where the first equation follows from Ver(pp, tx0) and Ver(pp, tx0) and the second
from the properties of cut-through.

For any adversary ALdgr returning (Λ, tx), if Ver(pp, Λ) = true, then Λ.in = ()
and Λ is valid when interpreted as a transaction. Since the input list of Λ is
empty, Ldgr(pp, Λ, tx) = Agg(pp, Λ, tx) and so Ldgr is correct because Agg is.

Finally, we consider Rcv, which is slightly more involved. Consider an ad-
versary ARcv returning (ptx,v′′) with ptx = (tx, ρ, k′) and let (tx′′,k′′) ←
MW.Rcv(pp, ptx,v′′). First, the preconditions trivially guarantee that the out-
put is not ⊥. Consider the call (tx′,k′′) ← MW.MkTx(pp, (C ′, ρ, k′),v′′) in-
side MW.Rcv. We claim that with overwhelming probability, (tx.in ‖ tx′.in) ∩
(tx.out ‖ tx′.out) = (C ′). First, tx.in∩ tx.out = (), as otherwise Ver(pp, tx) = false
and Ver(pp, ptx) = false. By definition of MkTx, tx′.in = (C ′) and by Lemma 3,
tx′.out ∩ (tx.in ‖ (C ′)) = () with overwhelming probability. Hence,

(tx.in ‖ tx′.in) ∩ (tx.out ‖ tx′.out) = (C ′) ∩ tx.out = (C ′)

and by correctness of Agg, C ′ is the only coin removed by cut-through during
the call tx′′ ← MW.Agg(pp, tx, tx′). Thus, the input coin list of tx′′ is the same
as that of ptx and the change is contained in the output coin list of tx′′. The
pre-conditions Ver(pp, ptx) and

∑
v′′ = ρ imply that tx.sply = 0 and tx′.sply = 0,

respectively. Hence, tx′′.sply = 0 by correctness of Agg. Validity of tx′′ and
consistency of the new coins follow from correctness of Agg (and validity of the
output of MkTx).

4.2 Security

We show that MW[COM,SIG,Π] is inflation-resistant, resistant to coin theft and
that it satisfies transaction indistinguishability.

Theorem 13 (Inflation-resistance (Def. 10)). Assume that (COM,SIG) is
EUF-NZO-secure and that Π is zero-knowledge and simulation-extractable. Then
the aggregate cash system MW[COM,SIG,Π] is secure against inflation. More
precisely, for any vmax and any p.p.t. adversary A, there exists a negligible
function νA and p.p.t. adversaries B, Bzk and Bse such that

Aggregate Cash Systems 25

Advinfl
MW,A(λ, vmax)
≤ Adveuf-nzo

COM,SIG,B(λ) + Advzk
Π,Rvmax ,Bzk

(λ) + Advs-ext
Π,Rvmax ,Bse

(λ) + νA(λ) .

The full proof can be found in the full version [FOS18]; we give a sketch here.
Inflation-resistance follows from EUF-NZO security and extractability of Π (we
do not actually require simulation-extractability, but instead of formally defining
extractability we simply relied on Definitions 7 and 8 implying it).

Consider an adversary A in game INFLMW in Fig. 7. To win the game, A
must return a valid ledger Λ, a valid ptx and v with

(i) ptx.in ⊆ Λ.out and (ii)
∑

v = ptx.rmdr

(otherwise Rcv and/or Ldgr return ⊥). All coins in Λ.out, ptx.in and ptx.chg
have valid range proofs: the former two in the ledger’s kernel KΛ = (πΛ,EΛ, σΛ)
(by (i)), and ptx.chg in the kernel of txptx contained in ptx. From these proofs
the reduction extracts the values vΛ.out,vptx.in,vptx.chg ∈ [0, vmax]∗ and keys
kΛ.out,kptx.in,kptx.chg ∈ K∗pp of every coin. We first argue that

(iii)
∑

vΛ.out − Λ.sply = 0 and (iv)
∑

vptx.chg +ptx.rmdr−
∑

vptx.in = 0 .

If (iii) was not the case then (v∗ :=
∑

vΛ.out − Λ.sply, k∗ :=
∑

kΛ.out) would be
a non-zero opening of the excess Exc of Λ. Since furthermore Exc =

∑
EΛ and

σΛ is valid for EΛ, the tuple (EΛ, σΛ, (v∗, k∗)) would be an EUF-NZO solution.
Likewise, a non-zero left-hand side of (iv) can be used together with the kernel

of txptx to break EUF-NZO. From (i)–(iv) we now get∑
v (ii)= ptx.rmdr (iv)=

∑
vptx.in −

∑
vptx.chg ≤

∑
vptx.in

(i)
≤
∑

vΛ.out
(iii)= Λ.sply ,

which contradicts the fact that A won INFLMW, as this requires
∑

v > Λ.sply.
(The function νA accounts for (iii) (or (iv)) only holding over Zp but not over Z;
this would imply |Λ.out| ≥ p/vmax, which can only happen with negligible
probability νA for a p.p.t. A.)

Theorem 14 (Theft-resistance (Def. 11)). Assume that the pair (COM,SIG)
is EUF-CRO-secure and that Π is zero-knowledge and simulation-extractable.
Then the aggregate cash system MW[COM,SIG,Π] is secure against coin theft.
More precisely, for any vmax and any p.p.t. adversary A, which, via its oracle
calls, makes the challenger create at most hA coins and whose queries (C,v′) to
Send satisfy |v′| ≤ nA, there exists a negligible function ν, a p.p.t. adversary B
making a single signing query, and p.p.t. adversaries Bzk and Bse such that

Advsteal
MW,A(λ, vmax)

≤ hA(λ)·nA(λ)·
(
Adveuf-cro

COM,SIG,B(λ)+Advzk
Π,Rvmax ,Bzk

(λ)+Advs-ext
Π,Rvmax ,Bse

(λ)
)
+ν(λ) .

The proof can be found in the full version [FOS18]. Here we give some proof
intuition. We first assume that all coins created by the challenger are different.
By Lemma 3 the probability ν(λ) that two coins collide is negligible.

Since in game STEAL the ledger is maintained by the challenger we have:

26 Georg Fuchsbauer, Michele Orrù, and Yannick Seurin

(i) the kernel of Λ contains a valid range proof for each coin in Λ.out.

In order to win the game, the adversary must at some point steal some coin C̃
from the challenger, by creating a transaction tx∗ with C̃ among its inputs, that
is, tx∗ = (s,C, Ĉ, (π,E, σ)) with C̃ ∈ C. For tx∗ to be accepted to the ledger, we
must have:

(ii) C ⊆ Λ.out;
(iii) tx∗ is valid, meaning

(a) the signature σ verifies under key list E;
(b)

∑
E =

∑
Ĉ−

∑
C− Cmt(cp, s, 0);

(c) all proofs π for coins Ĉ are valid.

From (i), (ii) and (iii)(c) we have that all coins in C and Ĉ have valid proofs,
which means we can extract (except for C̃, as we will see later) their values v
and v̂ and keys k and k̂. This means, we can write (iii)(b) as:∑

E = −C̃ + Cmt(cp,
∑

v̂−
∑

v− s︸ ︷︷ ︸
=:v∗

,
∑

k̂−
∑

k︸ ︷︷ ︸
=:k∗

) . (5)

Now, if we had set C̃ = C∗ with C∗ a challenge for EUF-CRO then (iii)(a)
and Eq. (5) together would imply that (E, σ, (v∗, k∗)) is a solution for C∗ in
EUF-CRO. So the basic proof idea is to embed a challenge C∗ as one of the
honest coins C̃ created in the system and hope that the adversary will steal C̃.
When C̃ is first created, it can be during a call to Mint, Send or Receive, each
of which will create a transaction tx using MW.MkTx; we thus set tx.out[j] = C̃

for some j. Now tx must contain a range proof for C̃, which we produce using
the zero-knowledge simulator, and a signature under verification key∑

tx.out−
∑

tx.in =
(∑

i 6=j tx.out[i]−
∑

tx.in
)

+ C̃ . (6)

The coin keys of tx.in are input to MW.MkTx and those of (tx.out[i])i6=j are
created by it. So we know the secret key a for the expression in parentheses in
(6) and can therefore make a query Sign′(a) to the related-key signing oracle to
obtain the signature.

While this shows that simulating the creation of coin C̃ is easily dealt with,
what complicates the proof is when the adversary queries Send(C,v′) with
C̃ ∈ C, which should produce a pre-transaction p̃tx. Since C̃ is a (say the j-th)
input of p̃tx, this would require a signature related to −C∗ for which we cannot
use the Sign′ oracle. Instead, we pick one random, say the ı̃-th, change coin C
and embed the challenge C∗ in C as well. (If there are no change coins, we abort;
we justify this below.) To complete p̃tx, we now need a signature for key∑

i 6=ı̃ tx.out[i] + C −
∑
i6=j tx.in[i]− C̃ ,

and since the two occurrences of C∗ cancel out, the simulation knows the signing
key of the above expression. (The way the reduction actually embeds C∗ in

Aggregate Cash Systems 27

a coin C̃ which in the game is supposed to have value v is by setting C̃ :=
C∗ + Cmt(cp, v, k).)

Let’s look again at the transaction tx∗ with which the adversary steals C̃:
for tx∗ to actually steal C̃, we must have p̃tx.chg 6⊆ tx∗.out (where p̃tx was the
pre-transaction sending C̃) as otherwise tx∗ could simply be a transaction that
completes p̃tx. If we were lucky when choosing C and C is one of the coins that
the adversary did not include in tx∗.out, then tx∗ satisfies all the properties in
(iii) above, in particular (5), meaning we have a solution to EUF-CRO.

Unfortunately, there is one more complication: the adversary could have
included C as one of the inputs of tx∗, in which case we cannot solve EUF-CRO,
since (5) would be of the form∑

E = −2 · C̃ + Cmt(cp, v∗, k∗) . (7)

But intuitively, in this case the adversary has also “stolen” C and if we had
randomly picked C when first embedding C∗ then we could also solve EUF-CRO.

Unfortunately, “stealing” a change output that has not been added to Hon
yet does not constitute a win according to game STEAL. To illustrate the issue,
consider an adversary making the following queries (where all coins C1 through
C5 have value 1), which the sketched reduction cannot use to break EUF-CRO:

– Ledger(tx) with tx = (2, (), (C1, C2),K) → Λ.out = (C1, C2), Hon = ()
– Mint((1)), creating coin C3 → Λ.out = (C1, C2, C3), Hon = (C3)
– Send((C3), (1, 1)), creating C4, C5 → Λ.out = (C1, C2, C3), Hon = (C3)
– Ledger((0, (C1), (C4),K ′)) → Λ.out = (C2, C3, C4), Hon = (C3)
– Ledger((0, (C2), (C5),K ′′)) → Λ.out = (C3, C4, C5), Hon = (C3)
– Ledger((0, (C3, C4, C5), (C6),K∗) =: tx∗) → Λ.out = (C6), Hon = (C3)

Note that all calls Ledger(txi) leave Hon unchanged, since for ptx created during
the Send call we have (C4, C5) = ptx.chg 6⊆ txi.out. The adversary wins the
game since it stole C3, so the reduction must have set C̃ = C3; moreover, in
order to simulate the Send query, it must set C to C4 or C5. But now tx∗ is of
the form as in (7), which the reduction cannot use to break EUF-CRO.

The solution to making the reduction always work is to actually prove a
stronger security notion, where the adversary not only wins when it spends a
coin from Hon (in a way that is not simply a completion of a pre-transaction
obtained from Send), but also if the adversary spends a change output which has
not been included in Hon yet. Let us denote the set of all such coins by Chg and
stress that if the adversary steals a coin from Chg, which the reduction guessed
correctly, then there exists only one coin with the challenge embedded in it and
so the situation as in (7) cannot arise.

In the proof of this strengthened notion the reduction now guesses the first
coin that was stolen from Chg or Hon and if both happen in the same transaction
it only accepts a coin from Chg as the right guess. (In the example above, the
guesses C̃ = C4 or C̃ = C5 would be correct.)

It remains to argue that the reduction can abort when the adversary makes a
query Send(C, ()) with C̃ ∈ C: in this case its guess C̃ must have been wrong:

28 Georg Fuchsbauer, Michele Orrù, and Yannick Seurin

for ptx returned by this oracle call we have ptx.chg ⊆ tx.out for any tx, so ptx.in
and thus C̃ is removed from Hon whenever A makes a Ledger call (which it
must make in order to steal a coin), assuming w.l.o.g. that the adversary stops
as soon as it has made its stealing transaction.

Finally, what happens if the adversary makes a query Send(C,v′) with
C ∈ C? We could embed the challenge a third time, in one of the change coins
of the pre-transaction we need to simulate. Instead of complicating the analysis,
the reduction can actually safely abort if such a query is made, since its guess
must have been wrong: Send must be queried on honest coins, so we must have
C ∈ Hon. As only the Ledger oracle can add existing coins to Hon, it must have
been queried with some tx such that p̃tx.chg ⊆ tx.out, as then p̃tx.chg 3 C would
be added to Hon; however at the same time this removes p̃tx.in 3 C̃ from Hon,
which means that C̃ cannot be the coin the adversary steals, because C̃ cannot
be included in Hon a second time. (As just analyzed for C above, the only way
to add an existing coin C̃ to Hon is if C̃ was created as change during a query
ptx ← Send(C,v). But since C̃ had already been in Hon, there must have been
a call Ledger(tx) with tx completing ptx, after which ptx is discarded from the
list Ptx of pre-transactions awaiting inclusion in the ledger; see Fig. 8).

Theorem 15 (Transaction indistinguishability (Def. 12)). Assume that
COM is a homomorphic hiding commitment scheme, SIG a compatible signature
scheme, and Π is a zero-knowledge proof system. Then the aggregate cash system
MW[COM,SIG,Π] is transaction-indistinguishable. More precisely, for any vmax
and any p.p.t. adversary A which makes at most qA queries to its oracle Tx,
there exist p.p.t. adversaries Bzk and Bhid such that

Advtx-ind
MW,A(λ, vmax) ≤ Advzk

Π,Rvmax ,Bzk
(λ) + qA · Advhid

COM,Bhid
(λ) .

The proof can be found in the full version [FOS18] and intuitively follows
from commitments being hiding and proofs zero-knowledge, and that the coin
C∗ = Cmt(cp, ρ, k∗) that is contained in a pre-transaction together with its
key k∗ (C∗ is then spent by Rcv and eliminated from the final transaction by
cut-through) acts as a randomizer between E′ and E′′. We moreover use the fact
that because COM is homomorphic, for any values with

∑
v′0 +

∑
v′′0 −

∑
v0 =∑

v′1 +
∑

v′′1 −
∑

v1, the tuple(
C := Cmt(cp,vb,k),C′ := Cmt(cp,v′b,k′) ‖C′′ := Cmt(cp,v′′b , k′′), k

)
(8)

hides the bit b even though k :=
∑

k′ +
∑

k′′ −
∑

k is revealed.
We prove Theorem 15 by showing that transactions returned by oracle Tx

when b = 0 are indistinguishable from transactions returned when b = 1. These
are of the form

tx∗ =
(
0,C,C′ ‖C′′, (π′ ‖π′′, (E′, E′′), σ∗)

)
, (9)

where E′ =
∑

C′ + C∗ −
∑

C and E′′ =
∑

C′′ − C∗, and σ∗ is an aggregation
of signatures σ′ and σ′′ under keys r′ :=

∑
k′ + k∗ −

∑
k and r′′ :=

∑
k′′ − k∗,

respectively. We thus have E′ = Cmt(cp, 0, r′) and E′′ = Cmt(cp, 0, r′′).

Aggregate Cash Systems 29

Together with the fact that k∗ is uniform and never revealed, indistinguisha-
bility of (8) implies indistinguishability of tx∗, as we can create a tuple as in
(9) from a tuple as in (8): simulate the proofs π′ ‖π′′, choose a random r∗

and set E′ = Cmt(cp, 0, r∗), E′′ = Cmt(cp, 0, k − r∗), σ′ ← Sign(sp, r∗, ε) and
σ′′ ← Sign(sp, k − r∗, ε) and aggregate σ′ and σ′′.

5 Instantiations

We consider two instantiations of our system MW. In both of them the com-
mitment scheme is instantiated by the Pedersen scheme PDS. The signature
scheme is instantiated either by the Schnorr signature scheme SCH or by the
BLS signature scheme BLS. We recall these three schemes, as well as the Discrete
Logarithm and the CDH assumptions, on which they rely, in the full version
[FOS18]. In contrast to COM and SIG, there are no compatibility or joint security
requirements for the proof system. In practice, the Bulletproofs scheme [BBB+18]
could be used, although under which assumptions it satisfies Definition 8 remains
to be studied.

Security of Pedersen-Schnorr. Our security proofs for the combination
Pedersen-Schnorr are in the random oracle model and make use of the standard
rewinding technique of Pointcheval and Stern [PS96] for extracting discrete loga-
rithms from a successful adversary. This requires some particular care since in
both the EUF-NZO and the EUF-CRO games, the adversary can output multiple
signatures for distinct public keys for which the reduction must extract discrete
logarithms. Fortunately, a generalized forking lemma by Bagherzandi, Cheon,
and Jarecki [BCJ08] shows that for Schnorr signatures, one can perform multiple
extractions efficiently. From this, we can prove the following two lemmas, whose
proofs can be found in the full version [FOS18].

Lemma 16. The pair (PDS,SCH) is EUF-NZO-secure in the random oracle
model under the DL assumption. More precisely, for any p.p.t. adversary A
making at most qh random oracle queries and returning a forgery for a list
of size at most N , there exists a p.p.t. adversary B running in time at most
8N2qh/δA · ln(8N/δA) · tA, where δA = Adveuf-nzo

PDS,SCH,A(λ) and tA is the running
time of A, such that

Adveuf-nzo
PDS,SCH,A(λ) ≤ 8 · Advdl

GrGen,B(λ) .

Lemma 17. The pair (PDS,SCH) is EUF-CRO-secure in the random oracle
model under the DL assumption. More precisely, for any p.p.t. adversary A making
at most qh random oracle queries and qs signature queries, returning a forgery for
a list of size at most N , and such that δA = Adveuf-cro

PDS,SCH,A(λ) ≥ 2qs/p, there exists
a p.p.t. adversary B running in time at most 16N2(qh + qs)/δA · ln(16N/δA) · tA,
where tA is the running time of A, such that

Adveuf-cro
PDS,SCH,A(λ) ≤ 8 · Advdl

GrGen,B(λ) + qs + 8
p

.

30 Georg Fuchsbauer, Michele Orrù, and Yannick Seurin

Corollary 18. MW[PDS,SCH,Π] with Π zero-knowledge and simulation-extrac-
table is inflation-resistant and theft-resistant in the random oracle model under
the DL assumption.

Security of Pedersen-BLS. The security proofs for the Pedersen-BLS pair are
also in the random oracle model but do not use rewinding. They are reminiscent
of the proof of [BGLS03, Theorem 3.2] and can be found in the full version
[FOS18]. Note that EUF-CRO-security is only proved for adversaries making
a constant number of signing queries. Fortunately, adversary B constructed in
Theorem 14 makes a single signing query.

Lemma 19. The pair (PDS,BLS) is EUF-NZO-secure in the random oracle
model under the CDH assumption. More precisely, for any p.p.t. adversary A
making at most qh random oracle queries and returning a forgery for a list
of size at most N , there exists a p.p.t. adversary B running in time at most
tA + (qh +N + 2)tM , where tA is the running time of A and tM is the time of a
scalar multiplication in G, such that

Advcdh
GrGen,B(λ) = Adveuf-nzo

PDS,BLS,A(λ) .

Lemma 20. The pair (PDS,BLS) is EUF-CRO-secure in the random oracle
model under the CDH assumption. More precisely, for any p.p.t. adversary A
making at most qh random oracle queries and qs = O(1) signature queries and
returning a forgery for a list of size at most N , there exists a p.p.t. adversary B
running in time at most tA + (2qh + 3qs +N + 2)tM , where tA is the running
time of A and tM is the time of a scalar multiplication in G, such that

Advcdh
GrGen,B(λ) ≥ 1

4 · (2N)qs
· Adveuf-cro

PDS,BLS,A(λ) .

Corollary 21. MW[PDS,BLS,Π] with Π zero-knowledge and simulation-extrac-
table is inflation-resistant and theft-resistant in the random oracle model under
the CDH assumption.

Acknowledgements. The first author is supported by the French ANR EfTrEC
project (ANR-16-CE39-0002) and theMSR-Inria Joint Centre. The second author
is supported by ERC grant 639554 (project aSCEND).

References

[AKR+13] Elli Androulaki, Ghassan Karame, Marc Roeschlin, Tobias Scherer, and
Srdjan Capkun. Evaluating user privacy in Bitcoin. In FC 2013, pp. 34–51.

[Bac13] Adam Back. Bitcoins with homomorphic value (validatable but encrypted),
October 2013. BitcoinTalk post, https://bitcointalk.org/index.php?
topic=305791.0.

https://bitcointalk.org/index.php?topic=305791.0
https://bitcointalk.org/index.php?topic=305791.0

Aggregate Cash Systems 31

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In S&P 2018, pp. 315–334.

[BBSU12] Simon Barber, Xavier Boyen, Elaine Shi, and Ersin Uzun. Bitter to Better
- How to Make Bitcoin a Better Currency In FC 2012, pp. 399–414.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous
payments from bitcoin. In S&P 2014, pp. 459–474.

[BCJ08] Ali Bagherzandi, Jung Hee Cheon, and Stanislaw Jarecki. Multisignatures
secure under the discrete logarithm assumption and a generalized forking
lemma. In ACM CCS 08, pp. 449–458.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and
verifiably encrypted signatures from bilinear maps. In EUROCRYPT 2003,
pp. 416–432.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
Weil pairing. In ASIACRYPT 2001, pp. 514–532.

[BNM+14] Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy Clark,
Joshua A. Kroll, and Edward W. Felten. Mixcoin: Anonymity for bit-
coin with accountable mixes. In FC 2014, pp. 486–504.

[BNN07] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted
aggregate signatures. In ICALP 2007, pp. 411–422.

[BPW12] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove
yourself: Pitfalls of the Fiat-Shamir heuristic and applications to Helios. In
ASIACRYPT 2012, pp. 626–643.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In ACM CCS 93, pp. 62–73.

[DDO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe
Persiano, and Amit Sahai. Robust non-interactive zero knowledge. In
CRYPTO 2001, pp. 566–598.

[FOS18] Georg Fuchsbauer, Michele Orrù, and Yannick Seurin. Aggregate cash
systems: A cryptographic investigation of Mimblewimble. Cryptology ePrint
Archive, Report 2018/1039, 2018. https://eprint.iacr.org/2018/1039.

[GCKG14] Arthur Gervais, Srdjan Capkun, Ghassan O. Karame, and Damian Gruber.
On the privacy provisions of bloom filters in lightweight bitcoin clients. In
ACSAC 2014, pp. 326–335.

[Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In ASIACRYPT 2006, pp. 444–459.

[HAB+17] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and
Sharon Goldberg. TumbleBit: An untrusted bitcoin-compatible anonymous
payment hub. In NDSS 2017.

[Jed16] Tom Elvis Jedusor. Mimblewimble, 2016. Available at https://download.
wpsoftware.net/bitcoin/wizardry/mimblewimble.txt.

[KKM14] Philip Koshy, Diana Koshy, and Patrick McDaniel. An analysis of anonymity
in bitcoin using P2P network traffic. In FC 2014, pp. 469–485.

[LMRS04] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham.
Sequential aggregate signatures from trapdoor permutations. In EURO-
CRYPT 2004, pp. 74–90.

[Max13a] Gregory Maxwell. CoinJoin: Bitcoin privacy for the real world, August 2013.
BitcoinTalk post, https://bitcointalk.org/index.php?topic=279249.0.

[Max13b] Gregory Maxwell. Transaction cut-through, August 2013. BitcoinTalk post,
https://bitcointalk.org/index.php?topic=281848.0.

https://eprint.iacr.org/2018/1039
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://bitcointalk.org/index.php?topic=279249.0
https://bitcointalk.org/index.php?topic=281848.0

32 Georg Fuchsbauer, Michele Orrù, and Yannick Seurin

[Max15] Gregory Maxwell. Confidential Transactions, 2015. Available at https:
//people.xiph.org/~greg/confidential_values.txt.

[MGGR13] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin:
Anonymous distributed E-cash from Bitcoin. In S&P 2013, pp. 397–411.

[MPJ+13] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Da-
mon McCoy, Geoffrey M. Voelker, and Stefan Savage. A fistful of bitcoins:
characterizing payments among men with no names. In Internet Measure-
ment Conference, IMC 2013, pp. 127–140.

[Nak08] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.
Available at http://bitcoin.org/bitcoin.pdf.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In CRYPTO’91, pp. 129–140.

[Poe16] Andrew Poelstra. Mimblewimble, 2016. Available at https://download.
wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes.
In EUROCRYPT’96, pp. 387–398.

[RMK14] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. CoinShuffle: Practi-
cal decentralized coin mixing for bitcoin. In ESORICS 2014, pp. 345–364.

[RS13] Dorit Ron and Adi Shamir. Quantitative analysis of the full Bitcoin
transaction graph. In FC 2013, pp. 6–24.

[RTRS18] Tim Ruffing, Sri Aravinda Thyagarajan, Viktoria Ronge, and Dominique
Schröder. Burning Zerocoins for Fun and for Profit: A Cryptographic
Denial-of-Spending Attack on the Zerocoin Protocol. IACR Cryptology
ePrint Archive, Report 2018/612, 2018.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal
of Cryptology, 4(3):161–174, 1991.

[SMD14] Amitabh Saxena, Janardan Misra, and Aritra Dhar. Increasing Anonymity
in Bitcoin. In 1st Workshop on Bitcoin Research - Bitcoin 2014, pp. 122–139.

[SZ16] Yonatan Sompolinsky and Aviv Zohar. Bitcoin’s Security Model Revisited,
2016. Manuscript available at http://arxiv.org/abs/1605.09193.

[vS13] Nicolas van Saberhagen. CryptoNote v 2.0, 2013. Manuscript available at
https://cryptonote.org/whitepaper.pdf.

https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
http://bitcoin.org/bitcoin.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
http://arxiv.org/abs/1605.09193
https://cryptonote.org/whitepaper.pdf

	 Aggregate Cash Systems: A Cryptographic Investigation of Mimblewimble
	Introduction
	Preliminaries
	General Notation
	Cryptographic Primitives

	Aggregate Cash System
	Syntax
	Security Definitions

	Construction of an Aggregate Cash System
	Description
	Security

	Instantiations
	References

