Aggregate Cash Systems: A Cryptographic Investigation of Mimblewimble

Georg Fuchsbauer^{1,2}, Michele Orrù^{2,1}, and Yannick Seurin³

 ¹ Inria, Paris, France
 ² École normale supérieure, CNRS, PSL, Paris, France first.last@ens.fr
 ³ ANSSI, Paris, France first.last@m4x.org

Abstract. Mimblewimble is an electronic cash system proposed by an anonymous author in 2016. It combines several privacy-enhancing techniques initially envisioned for Bitcoin, such as Confidential Transactions (Maxwell, 2015), non-interactive merging of transactions (Saxena, Misra, Dhar, 2014), and cut-through of transaction inputs and outputs (Maxwell, 2013). As a remarkable consequence, coins can be deleted once they have been spent while maintaining public verifiability of the ledger, which is not possible in Bitcoin. This results in tremendous space savings for the ledger and efficiency gains for new users, who must verify their view of the system.

In this paper, we provide a provable-security analysis for Mimblewimble. We give a precise syntax and formal security definitions for an abstraction of Mimblewimble that we call an *aggregate cash system*. We then formally prove the security of Mimblewimble in this definitional framework. Our results imply in particular that two natural instantiations (with Pedersen commitments and Schnorr or BLS signatures) are provably secure against inflation and coin theft under standard assumptions.

Keywords: Mimblewimble, Bitcoin, commitments, aggregate signatures.

1 Introduction

Bitcoin and the UTXO model. Proposed in 2008 and launched early 2009, Bitcoin [Nak08] is a decentralized payment system in which transactions are registered in a distributed and publicly verifiable ledger called a blockchain. Bitcoin departs from traditional account-based payment systems where transactions specify an amount moving from one account to another. Instead, each transaction consists of a list of *inputs* and a list of *outputs*.

Each output contains a value (expressed as a multiple of the currency unit, 10^{-8} bitcoin) and a short script specifying how the output can be spent. The most common script is *Pay to Public Key Hash* (P2PKH) and contains the hash of an ECDSA public key, commonly called a Bitcoin address. Each input of a transaction contains a reference to an output of a previous transaction in the blockchain and a script that must match the script of that output. In the case of

P2PKH, an input must provide a public key that hashes to the address of the output it spends and a valid signature for this public key.

Each transaction spends one or more previous transaction outputs and creates one or more new outputs, with a total value not larger than the total value of coins being spent. The system is bootstrapped through special transactions called *coinbase* transactions, which have outputs but no inputs and therefore create money (and also serve to incentivize the proof-of-work consensus mechanism, which allows users to agree on the valid state of the blockchain).

To avoid double-spending attacks, each output of a transaction can only be referenced once by an input of a subsequent transaction. Note that this implies that an output must necessarily be spent entirely. As transactions can have multiple outputs, change can be realized by having the sender assign part of the outputs to an address she controls. Since all transactions that ever occurred since the inception of the system are publicly available in the blockchain, whether an output has already been spent can be publicly checked. In particular, every transaction output recorded in the blockchain can be classified either as an *unspent transaction output (UTXO)* if it has not been referenced by a subsequent transaction input so far, or a *spent transaction output (STXO)* otherwise. Hence, the UTXO set "encodes" all bitcoins available to be spent, while the STXO set only contains "consumed" bitcoins and could, in theory, be deleted.

The validation mechanics in Bitcoin requires new users to download and validate the entire blockchain in order to check that their view of the system is not compromised.⁴ Consequently, the security of the system and its ability to enroll new users relies on (a significant number of) Bitcoin clients to persistently store the entire blockchain. Once a new node has checked the entire blockchain, it is free to "prune" it⁵ and retain only the freshly computed UTXO set, but it will not be able to convince another newcomer that this set is valid.

Consider the following toy example. A coinbase transaction creates an output txo_1 for some amount v associated with a public key pk_1 . This output is spent by a transaction T_1 creating a new output txo_2 with amount v associated with a public key pk_2 . Transaction T_1 contains a valid signature σ_1 under public key pk_1 . Once a node has verified σ_1 , it is ensured that txo_2 is valid and the node can therefore delete the coinbase transaction and T_1 . By doing this, however, he cannot convince anyone else that output txo_2 is indeed valid.

At the time of writing, the size of Bitcoin's blockchain is over 200 GB.⁶ Downloading and validating the full blockchain can take up to several days on standard hardware. In contrast, the size of the UTXO set, containing around 60 millions elements, is only a couple of GB.

⁴ Simplified Verification Payment (SPV) clients only download much smaller pieces of the blockchain allowing them to verify specific transactions. However, they are less secure and do not contribute to the general security of the system [GCKG14, SZ16].

⁵ This functionality was introduced in Bitcoin Core v0.11, see https://github.com/ bitcoin/bitcoin/blob/v0.11.0/doc/release-notes.md#block-file-pruning.

⁶ See https://www.blockchain.com/charts/blocks-size.

3

Bitcoin privacy. Despite some common misconception, Bitcoin offers a very weak level of privacy. Although users can create multiple pseudonymous addresses at will, the public availability of all transaction data often allows to link them and reveals a surprisingly large amount of identifying information, as shown in many works [AKR⁺13, MPJ⁺13, RS13, KKM14].

Several protocols have been proposed with the goal of improving on Bitcoin's privacy properties, such as Cryptonote [vS13] (implemented for example by Monero), Zerocoin [MGGR13] and Zerocash [BCG⁺14]. On the other hand, there are privacy-enhancing techniques compatible with Bitcoin, for example coin mixing [BBSU12, BNM⁺14, RMK14, HAB⁺17], to ensure payer anonymity. Below we describe three specific proposals that have paved the way for Mimblewimble.

Confidential Transactions. Confidential Transactions (CT), described by Maxwell [Max15], based on an idea by Back [Bac13] and now implemented by Monero, allow to hide the *values* of transaction outputs. The idea is to replace explicit amounts in transactions by homomorphic commitments: this hides the value contained in each output, but the transaction creator cannot modify this value later on.⁷

More specifically, the amount v in an output is replaced by a Pedersen commitment C = vH + rG, where H and G are generators of an (additively denoted) discrete-log-hard group and r is a random value. Using the homomorphic property of the commitment scheme, one can prove that a transaction does not create money out of thin air, i.e., that the sum of the outputs is less than the sum of the inputs. Consider a transaction with input commitments $C_i = v_iH + r_iG$, $1 \le i \le n$, and output commitments $\hat{C}_i = \hat{v}_iH + \hat{r}_iG$, $1 \le i \le m$. The transaction does not create money iff $\sum_{i=1}^{n} v_i \ge \sum_{i=1}^{m} \hat{v}_i$. This can be proved by providing an opening (f,r) with $f \ge 0$ for $\sum_{i=1}^{n} C_i - \sum_{i=1}^{m} \hat{C}_i$, whose validity can be publicly checked. The difference f between inputs and outputs are so-called fees that reward the miner that includes the transaction in a block.

Note that arithmetic on hidden values is done modulo p, the order of the underlying group. Hence, a malicious user could spend an input worth 2 and create two outputs worth 10 and p-8, which would look the same as a transaction creating two outputs worth 1 each. To ensure that commitments do not contain large values that cause such mod-p reductions, a non-interactive zero-knowledge (NIZK) proof that the committed value is in $[0, v_{\max}]$ (a so-called *range proof*) is added to each commitment, where v_{\max} is small compared to p.

CoinJoin. When a Bitcoin transaction has multiple inputs and outputs, nothing can be inferred about "which input goes to which output" beyond what is imposed by their values (e.g., if a transaction has two inputs with values 10 BTC and 1 BTC, and two outputs with values 10 BTC and 1 BTC, all that can be said is that at least 9 BTC flowed from the first input to the first output). CoinJoin [Max13a] builds on this technical principle to let different users create a single transaction that combines all of their inputs and outputs. When all inputs and

⁷ Commitments are actually never publicly opened; however the opening information is used when spending a coin and remains privy to the participants.

outputs have the same value, this perfectly mixes the coins. Note that unlike CT, CoinJoin does not require any change to the Bitcoin protocol and is already used in practice. However, this protocol is interactive as participants need all input and output addresses to build the transaction. Saxena et al. [SMD14] proposed a modification of the Bitcoin protocol which essentially allows users to perform CoinJoin non-interactively and which relies on so-called *composite* signatures.⁸

Cut-through. A basic property of the UTXO model is that a sequence of two transactions, a first one spending an output txo_1 and creating txo_2 , followed by a second one spending txo_2 and creating txo_3 , is equivalent to a single *cut-through* transaction spending txo_1 and creating txo_3 . While such an optimization is impossible once transactions have been included in the blockchain (as mentioned before, this would violate public verifiability of the blockchain), this has been suggested [Max13b] for *unconfirmed* transactions, i.e., transactions broadcast to the Bitcoin network but not included in a block yet. As we will see, the main added benefit of Mimblewimble is to allow *post-confirmation cut-through*.

Mimblewimble. Mimblewimble was first proposed by an anonymous author in 2016 [Jed16]. The idea was then developed further by Poelstra [Poe16]. At the time of writing, there are at least two independent implementations of Mimblewimble as a cryptocurrency: one is called Grin,⁹ the other Beam.¹⁰

Mimblewimble combines in a clever way CT, a non-interactive version of CoinJoin, and cut-through of transaction inputs and outputs. As with CT, a coin is a commitment C = vH + rG to its value v using randomness r, together with a range proof π . If CT were actually employed in Bitcoin, spending a CT-protected output would require the knowledge of the opening of the commitment *and*, as for a standard output, of the secret key associated with the address controlling the coin. Mimblewimble goes one step further and completely abandons the notion of addresses or more generally scripts: spending a coin *only* requires knowledge of the opening of the commitment. As a result, ownership of a coin C = vH + rG is equivalent to the knowledge of its opening, and the randomness r of the commitment now acts as the *secret key* for the coin.

Exactly as in Bitcoin, a Mimblewimble transaction specifies a list $\mathbf{C} = (C_1, \ldots, C_n)$ of input coins (which must be coins existing in the system) and a list $\hat{\mathbf{C}} = (\hat{C}_1, \ldots, \hat{C}_m)$ of output coins, where $C_i = v_i H + r_i G$ for $1 \le i \le n$ and $\hat{C}_i = \hat{v}_i H + \hat{r}_i G$ for $1 \le i \le m$. We will detail later how exactly such a transaction is constructed. Leaving fees aside for simplicity, the transaction is balanced (i.e., does not create money) iff $\sum \hat{v}_i - \sum v_i = 0$, which, letting $\sum \mathbf{C}$ denote $\sum_{i=1}^n C_i$, is equivalent to

$$\sum \hat{\mathbf{C}} - \sum \mathbf{C} = \sum (\hat{v}_i H + \hat{r}_i G) - \sum (v_i H + r_i G) = (\sum \hat{r}_i - \sum r_i) G.$$

⁸ An earlier, anonymous version of the paper used the name *one-way aggregate signature* (OWAS), see https://bitcointalk.org/index.php?topic=290971. Composite signatures are very similar to aggregate signatures [BGLS03].

⁹ See http://grin-tech.org and https://github.com/mimblewimble/grin/blob/ master/doc/intro.md.

¹⁰ See https://www.beam-mw.com.

5

In other words, knowledge of the opening of all coins in the transaction and balancedness of the transaction implies knowledge of the discrete logarithm in base G of $E := \sum \hat{\mathbf{C}} - \sum \mathbf{C}$, called the *excess* of the transaction in Mimblewimble jargon. Revealing the opening $(0, r := \sum \hat{r}_i - \sum r_i)$ of the excess E as in CT would leak too much information (e.g., together with the openings of the input coins and of all output coins except one, this would yield the opening of the remaining output coin); however, knowledge of r can be *proved* by providing a valid signature (on the empty message) under public key E using some discrete-log-based signature scheme. Intuitively, as long as the commitment scheme is binding and the signature scheme is unforgeable, it should be infeasible to compute a valid signature for an unbalanced transaction.

Transactions (legitimately) creating money, such as coinbase transactions, can easily be incorporated by letting the *supply s* (i.e., the number of monetary units created by the transaction) be explicitly specified and redefining the excess of the transaction as $E \coloneqq \sum \hat{\mathbf{C}} - \sum \mathbf{C} - sH$. All in all, a Mimblewimble transaction is a tuple

$$\mathsf{tx} = (s, \mathbf{C}, \mathbf{C}, K) \quad \text{with} \quad K \coloneqq (\boldsymbol{\pi}, \mathbf{E}, \sigma) , \tag{1}$$

where s is the supply, **C** is the input coin list, $\hat{\mathbf{C}}$ is the output coin list, and K is the so-called *kernel*, which contains the list $\boldsymbol{\pi}$ of range proofs for output coins,¹¹ the (list of) transaction excesses **E** (as there can be several; see below), and a signature σ .¹²

Such transactions can now easily be merged non-interactively \hat{a} la CoinJoin: consider $tx_0 = (s_0, \mathbf{C}_0, \hat{\mathbf{C}}_0, (\boldsymbol{\pi}_0, E_0, \sigma_0))$ and $tx_1 = (s_1, \mathbf{C}_1, \hat{\mathbf{C}}_1, (\boldsymbol{\pi}_1, E_1, \sigma_1))$; then the aggregate transaction tx resulting from merging tx_0 and tx_1 is simply

$$\mathsf{tx} \coloneqq \left(s_0 + s_1, \mathbf{C}_0 \, \| \, \mathbf{C}_1, \hat{\mathbf{C}}_0 \, \| \, \hat{\mathbf{C}}_1, \left(\boldsymbol{\pi}_0 \, \| \, \boldsymbol{\pi}_1, (E_0, E_1), (\sigma_0, \sigma_1) \right) \right) \,. \tag{2}$$

Moreover, if the signature scheme supports aggregation, as for example the BLS scheme [BGLS03, BNN07], the pair (σ_0, σ_1) can be replaced by a compact aggregate signature σ for the public keys $\mathbf{E} := (E_0, E_1)$.

An aggregate transaction $(s, \mathbf{C}, \mathbf{C}, (\boldsymbol{\pi}, \mathbf{E}, \sigma))$ is valid if all range proofs verify, σ is a valid aggregate signature for \mathbf{E} and if

$$\sum \hat{\mathbf{C}} - \sum \mathbf{C} - sH = \sum \mathbf{E} .$$
(3)

As transactions can be recursively aggregated, the resulting kernel will contain a list \mathbf{E} of kernel excesses, one for each transaction that has been aggregated.

The main novelty of Mimblewimble, namely cut-through, naturally emerges from the way transactions are aggregated and validated. Assume that some coin C appears as an output in tx_0 and as an input in tx_1 ; then, one can erase C from the input and output lists of the aggregate transaction tx, and tx will still be valid since (3) will still hold. Hence, each time an output of a transaction tx_0 is

¹¹ Since inputs must be coins that already exist in the system, their range proofs are contained in the kernels of the transactions that created them.

¹² A transaction fee can easily be added to the picture by making its amount f explicit and adding fH to the transaction excess. For simplicity, we omit it in this paper.

spent by a subsequent transaction tx_1 , this output can be "forgotten" without losing the ability to validate the resulting aggregate transaction.

In Mimblewimble the ledger is itself a transaction of the form (1), which starts out empty, and to which transactions are recursively aggregated as they are added to the ledger. We assume that for a transaction to be allowed onto the ledger, its input list must be contained in the output list of the ledger (this corresponds to the natural requirement that only coins that exist in the ledger can be spent). Then, it is easy to see that the following holds:

- (i) the supply s of the ledger is equal to the sum of the supplies of all transactions added to the ledger so far;
- (ii) the input coin list of the ledger is always empty.

Property (i) follows from the definition of aggregation in (2). Property (ii) follows inductively. At the inception of the system the ledger is empty (thus the first transaction added to the ledger must be a transaction with an empty input coin list and non-zero supply, a *minting* transaction). Any transaction tx added to the ledger must have its input coins contained in the output coin list of the ledger; thus cut-through will remove all of them from the joint input list, hence the updated ledger again has no input coins (and the coins spent by tx are deleted from its outputs). The ledger in Mimblewimble is thus a single aggregate transaction whose supply s is equal to the amount of money that was created in the system and whose output coin list $\hat{\mathbf{C}}$ is the analogue of the UTXO set in Bitcoin. Its kernel K allows to cryptographically verify its validity. The history of all transactions that have occurred is not retained, and only one kernel excess per transaction (a very short piece of information) is recorded.

Our contribution. We believe it is crucial that protocols undergo a formal security assessment and that the cryptographic guarantees they provide must be well understood before deployment. To this end, we provide a provable-security treatment for Mimblewimble. A first attempt at proving its security was partly undertaken by Poelstra [Poe16]. We follow a different approach: we put forward a general syntax and a framework of game-based security definitions for an abstraction of Mimblewimble that we dub an *aggregate cash system*.

Formalizing security for a cash system requires care. For example, Zerocoin [MGGR13] was recently found to be vulnerable to *denial-of-spending* attacks [RTRS18] that were not captured by the security model in which Zerocoin was proved secure. To avoid such pitfalls, we keep the syntax simple, while allowing to express meaningful security definitions. We formulate two natural properties that define the security of a cash system: *inflation-resistance* ensures that the only way money can be created in a system is explicitly via the supply contained in transactions; *resistance to coin theft* guarantees that no one can spend a user's coins as long as she keeps her keys safe. We moreover define a privacy notion, *transaction indistinguishability*, which states that a transaction does not reveal anything about the values it transfers from its inputs to its outputs.

We then give a black-box construction of an aggregate cash system, which naturally generalizes Mimblewimble, from a homomorphic commitment scheme COM, an (aggregate) signature scheme SIG, and a NIZK range-proof system Π . We believe that such a modular treatment will ease the exploration of post-quantum instantiations of Mimblewimble or related systems.

Note that in our description of Mimblewimble, we have not yet explained how to actually create a transaction that transfers some amount ρ of money from a sender to a receiver. It turns out that this is a delicate question. The initial description of the protocol [Jed16] proposed the following one-round procedure:

- the sender selects input coins **C** of total value $v \ge \rho$; it creates *change coins* **C'** of total value $v - \rho$ and sends **C**, **C'**, range proofs for **C'** and the opening $(-\rho, k)$ of $\sum \mathbf{C'} - \sum \mathbf{C}$ to the receiver (over a secure channel);
- the receiver creates additional output coins \mathbf{C}'' (and range proofs) of total value ρ with keys (k''_i) , computes a signature σ with the secret key $k + \sum k''_i$ and defines $\mathsf{tx} = (0, \mathbf{C}, \mathbf{C}' || \mathbf{C}'', (\pi, E = \sum \mathbf{C}' + \sum \mathbf{C}'' \sum \mathbf{C}, \sigma)).$

However, a subtle problem arises with this protocol. Once the transaction has been added to the ledger, the change outputs \mathbf{C}' should only be spendable by the sender, who owns them. It turns out that the receiver is also able to spend them by "reverting" the transaction tx. Indeed, he knows the range proofs for coins in \mathbf{C} and the secret key $(-k - \sum k''_i)$ for the transaction with inputs $\mathbf{C}' \parallel \mathbf{C}''$ and outputs \mathbf{C} . Arguably, the sender is given back her initial input coins in the process, but (i) she could have deleted the secret keys for these old coins, making them unspendable, and (ii) this violates any meaningful formalization of security against coin theft.

A natural way to prevent such a malicious behavior would be to let the sender and the receiver, each holding a share of the secret key corresponding to public key $E := \sum \mathbf{C}' \parallel \mathbf{C}'' - \sum \mathbf{C}$, engage in a two-party interactive protocol to compute σ . Actually, this seems to be the path Grin is taking, although, to the best of our knowledge, the problem described above with the original protocol has never been documented.

We show that the spirit of the original *non-interactive* protocol can be salvaged, so a sender can make a payment to a receiver without the latter's active involvement. In our solution the sender first constructs a full-fledged transaction tx spending **C** and creating change coins **C'** as well as a special output coin $C = \rho H + kG$, and sends tx and the opening (ρ, k) of the special coin to the receiver. (Note that, unlike in the previous case, k is now independent from the keys of the coins in **C** and **C'**.) The receiver then creates a second transaction tx' spending the special coin C and creating its own output coins **C''** and aggregates tx and tx'. As intended, this results in a transaction with inputs **C** and outputs **C'** \parallel **C''** since C is removed by cut-through. The only drawback of this procedure is that the final transaction, being the aggregate of two transactions, has two kernel excesses instead of one for the interactive protocol mentioned above.

After specifying our protocol MW[COM, SIG, Π], we turn to proving its security in our definitional framework. To this end, we first define two security notions, EUF-NZO and EUF-CRO, tying the commitment scheme and the signature scheme together (cf. Page 12). Assuming that proof system Π is simulationextractable [DDO⁺01, Gro06], we show that EUF-NZO-security for the pair (COM, SIG) implies that MW is resistant to inflation, while EUF-CRO-security implies that MW is resistant to coin theft. Transaction indistinguishability follows from zero-knowledge of Π and COM being hiding.

Finally, we consider two natural instantiations of $\mathsf{MW}[\mathsf{COM},\mathsf{SIG},\Pi]$. For each, we let COM be the Pedersen commitment scheme [Ped92]. When SIG is instantiated with the Schnorr signature scheme [Sch91], we show that the pair ($\mathsf{COM},\mathsf{SIG}$) is EUF-NZO- and EUF-CRO-secure under the Discrete Logarithm assumption. When SIG is instantiated with the BLS signature scheme [BLS01], we show that the pair ($\mathsf{COM},\mathsf{SIG}$) is EUF-NZO- and EUF-CRO-secure under the CDH assumption. Both proofs are in the random-oracle model. BLS signatures have the additional benefit of supporting aggregation [BGLS03, BNN07], so that the ledger kernel always contains a short aggregate signature, independently of the number of transactions that have been added to the ledger. We stress that, unlike Zerocash [BCG⁺14], none of these two instantiations require a trusted setup.

2 Preliminaries

2.1 General Notation

We denote the (closed) integer interval from a to b by [a, b]. We use [b] as shorthand for [1, b]. A function $\mu \colon \mathbb{N} \to [0, 1]$ is negligible (denoted $\mu = \mathsf{negl}$) if for all $c \in \mathbb{N}$ there exists $\lambda_c \in \mathbb{N}$ such that $\mu(\lambda) \leq \lambda^{-c}$ for all $\lambda \geq \lambda_c$. A function ν is overwhelming if $1 - \nu = \mathsf{negl}$. Given a non-empty finite set S, we let $x \leftarrow S$ denote the operation of sampling an element x from S uniformly at random. By $y \coloneqq M(x_1, \ldots; r)$ we denote the operation of running algorithm M on inputs x_1, \ldots and coins r and letting y denote the output. By $y \leftarrow M(x_1, \ldots)$, we denote letting $y \coloneqq M(x_1, \ldots; r)$ for random r, and $[M(x_1, \ldots)]$ is the set of values that have positive probability of being output by M on inputs x_1, \ldots . If an algorithm calls a subroutine which returns \bot , we assume it stops and returns \bot (this does not hold for an adversary calling an *oracle* which returns \bot).

A list $\mathbf{L} = (x_1, \ldots, x_n)$, also denoted $(x_i)_{i=1}^n$, is a finite sequence. The length of a list \mathbf{L} is denoted $|\mathbf{L}|$. For $i = 1, \ldots, |\mathbf{L}|$, the *i*-th element of \mathbf{L} is denoted $\mathbf{L}[i]$, or L_i when no confusion is possible. By $\mathbf{L}_0 || \mathbf{L}_1$ we denote the list \mathbf{L}_0 followed by \mathbf{L}_1 . The empty list is denoted (). Given a list \mathbf{L} of elements of an additive group, we let $\sum \mathbf{L}$ denote the sum of all elements of \mathbf{L} . Let \mathbf{L}_0 and \mathbf{L}_1 be two lists, each without repetition. We write $\mathbf{L}_0 \subseteq \mathbf{L}_1$ *iff* each element of \mathbf{L}_0 also appears in \mathbf{L}_1 . We define $\mathbf{L}_0 \cap \mathbf{L}_1$ to be the list of all elements that simultaneously appear in both \mathbf{L}_0 and \mathbf{L}_1 , ordered as in \mathbf{L}_0 . The difference between \mathbf{L}_0 and \mathbf{L}_1 , denoted $\mathbf{L}_0 - \mathbf{L}_1$, is the list of all elements of \mathbf{L}_0 that do not appear in \mathbf{L}_1 , ordered as in \mathbf{L}_0 . So, for example (1, 2, 3) - (2, 4) = (1, 3). We define the *cut-through* of two lists \mathbf{L}_0 and \mathbf{L}_1 , denoted $\operatorname{cut}(\mathbf{L}_0, \mathbf{L}_1)$, as

$$\operatorname{cut}(\mathbf{L}_0,\mathbf{L}_1)\coloneqq (\mathbf{L}_0-\mathbf{L}_1,\mathbf{L}_1-\mathbf{L}_0)$$
.

9

Game $\operatorname{HID}_{\operatorname{COM},\mathcal{A}}(\lambda)$	Oracle COMMIT (v_0, v_1)	Game $\text{BND}_{COM,\mathcal{A}}(\lambda)$
$b \gets \$ \left\{ 0, 1 \right\}$	$r \leftarrow _{\$} \mathcal{R}_{cp}$	$mp \gets MainSetup(1^\lambda)$
$mp \gets MainSetup(1^\lambda)$	$C \coloneqq COM.Cmt(cp, v_b, r)$	$cp \gets COM.Setup(mp)$
$cp \gets COM.Setup(mp)$	return C	$(v_0, r_0, v_1, r_1) \leftarrow \mathcal{A}(cp)$
$b' \leftarrow \mathcal{A}^{ ext{Commit}}(cp)$		$C_0 \coloneqq COM.Cmt(cp, v_0, r_0)$
$\mathbf{return} \ b = b'$		$C_1 \coloneqq COM.Cmt(cp, v_1, r_1)$
		return $v_0 \neq v_1$ and $C_0 = C_1$
$\begin{split} b &\leftarrow \!$	$r \leftarrow R_{cp}$ $C := COM.Cmt(cp, v_b, r)$ return C	$\begin{array}{l} mp \leftarrow MainSetup(1^{\lambda}) \\ cp \leftarrow COM.Setup(mp) \\ (v_0, r_0, v_1, r_1) \leftarrow \mathcal{A}(cp) \\ C_0 \coloneqq COM.Cmt(cp, v_0, r_0) \\ C_1 \coloneqq COM.Cmt(cp, v_1, r_1) \\ return \ v_0 \neq v_1 \ \mathbf{and} \ C_0 = C_1 \end{array}$

Fig. 1. The games for hiding and binding of a commitment scheme COM.

2.2 Cryptographic Primitives

We introduce the three building blocks we will use to construct an aggregate cash system: a commitment scheme COM, an aggregate signature scheme SIG, and a non-interactive zero-knowledge proof system Π . For compatibility reasons, the setup algorithms for each of these schemes are split: a common algorithm MainSetup(1^{λ}) first returns *main* parameters mp (specifying e.g. an abelian group), and specific algorithms COM.Setup, SIG.Setup, and Π .Setup take as input mp and return the specific parameters cp, sp, and crs for each primitive. We assume that mp is contained in cp, sp, and crs.

Commitment scheme. A commitment scheme COM consists of the following algorithms:

- $cp \leftarrow COM.Setup(mp)$: the setup algorithm takes as input main parameters mp and outputs commitment parameters cp, which implicitly define a value space \mathcal{V}_{cp} , a randomness space \mathcal{R}_{cp} , and a commitment space \mathcal{C}_{cp} ;
- $-C \coloneqq \mathsf{COM.Cmt}(\mathsf{cp}, v, r)$: the (deterministic) commitment algorithm takes as input commitment parameters cp , a value $v \in \mathcal{V}_{\mathsf{cp}}$ and randomness $r \in \mathcal{R}_{\mathsf{cp}}$, and outputs a commitment $C \in \mathcal{C}_{\mathsf{cp}}$.

In most instantiations, given a value $v \in \mathcal{V}_{cp}$, the sender picks $r \leftarrow R_{cp}$ uniformly at random and computes the commitment C = COM.Cmt(cp, v, r). To *open* the commitment, the sender reveals (v, r) so anyone can verify that COM.Cmt(cp, v, r) = C.

We require commitment schemes to be *hiding*, meaning that commitment C reveals no information about v, and *binding*, which means that the sender cannot open the commitment in two different ways.

Definition 1 (Hiding). Let game HID be as defined Fig. 1. A commitment scheme COM is hiding if for any p.p.t. adversary A:

$$\mathsf{Adv}^{hid}_{\mathsf{COM},\mathcal{A}}(\lambda) \coloneqq 2 \cdot \big| \Pr \left[\mathrm{HID}_{\mathsf{COM},\mathcal{A}}(\lambda) = \mathbf{true} \right] - \tfrac{1}{2} \big| = \mathsf{negl}(\lambda) \ .$$

Definition 2 (Binding). Let game BND be as defined in Fig. 1. A commitment scheme COM is binding if for any p.p.t. adversary A:

$$\mathsf{Adv}^{\mathrm{bnd}}_{\mathsf{COM},\mathcal{A}}(\lambda) \coloneqq \Pr\left[\mathrm{BND}_{\mathsf{COM},\mathcal{A}}(\lambda) = \mathbf{true}\right] = \mathsf{negl}(\lambda)$$
.

Lemma 3 (Collision-resistance). Let COM be a (binding and hiding) commitment scheme. Then for any $(v_0, v_1) \in \mathcal{V}^2_{cp}$, the probability that $Cmt(cp, v_0, r_0) = Cmt(cp, v_1, r_1)$ for $r_0, r_1 \leftarrow \mathcal{R}_{cp}$ is negligible.

The proof of the lemma is straightforward: for $v_0 \neq v_1$ this would break binding and for $v_0 = v_1$ it would break hiding.

A commitment scheme is (additively) homomorphic if the value, randomness, and commitment spaces are groups (denoted additively) and for any commitment parameters cp, any $v_0, v_1 \in \mathcal{V}_{cp}$, and any $r_0, r_1 \in \mathcal{R}_{cp}$, we have:

 $\mathsf{COM.Cmt}(\mathsf{cp}, v_0, r_0) + \mathsf{COM.Cmt}(\mathsf{cp}, v_1, r_1) = \mathsf{COM.Cmt}(\mathsf{cp}, v_0 + v_1, r_0 + r_1) \; .$

Recursive aggregate signature scheme. An aggregate signature scheme allows to (publicly) combine an arbitrary number n of signatures (from potentially distinct users and on potentially distinct messages) into a single (ideally short) signature [BGLS03, LMRS04, BNN07]. Traditionally, the syntax of an aggregate signature scheme only allows the aggregation algorithm to take as input individual signatures. We consider aggregate signature schemes supporting *recursive* aggregation, where the aggregation algorithm can take as input aggregate signatures (supported for example by the schemes based on BLS signatures [BGLS03, BNN07]). A recursive aggregate signature scheme SIG consists of the following algorithms:

- sp ← SIG.Setup(mp): the setup algorithm takes as input main parameters mp and outputs signature parameters sp, which implicitly define a secret-key space S_{sp} and a public-key space \mathcal{P}_{sp} (we let the message space be $\{0,1\}^*$);
- $-(sk, pk) \leftarrow SIG.KeyGen(sp)$: the key generation algorithm takes signature parameters sp and outputs a secret key $sk \in S_{sp}$ and a public key $pk \in P_{sp}$;
- $\sigma \leftarrow \mathsf{SIG.Sign}(\mathsf{sp}, \mathsf{sk}, m)$: the signing algorithm takes as input parameters sp , a secret key $\mathsf{sk} \in \mathcal{S}_{\mathsf{sp}}$, and a message $m \in \{0, 1\}^*$ and outputs a signature σ ;
- $\sigma \leftarrow \mathsf{SIG.Agg}(\mathsf{sp}, (\mathbf{L}_0, \sigma_0), (\mathbf{L}_1, \sigma_1))$: the aggregation algorithm takes parameters sp and two pairs of public-key/message lists $\mathbf{L}_i = ((\mathsf{pk}_{i,j}, m_{i,j}))_{j=1}^{|\mathbf{L}_i|}$ and (aggregate) signatures σ_i , i = 0, 1; it returns an aggregate signature σ ;
- bool \leftarrow SIG.Ver(sp, L, σ): the (deterministic) verification algorithm takes parameters sp, a list $\mathbf{L} = ((\mathsf{pk}_i, m_i))_{i=1}^{|\mathbf{L}|}$ of public-key/message pairs, and an aggregate signature σ ; it returns **true** or **false**, indicating validity of σ .

Correctness of a recursive aggregate signature scheme is defined recursively. An aggregate signature scheme is *correct* if for every λ , every message $m \in \{0, 1\}^*$, every mp \in [MainSetup (1^{λ})], sp \in [SIG.Setup(mp)], $(sk, pk) \in$ [SIG.KeyGen(sp)] and every $(\mathbf{L}_0, \sigma_0), (\mathbf{L}_1, \sigma_1)$ with SIG.Ver $(sp, \mathbf{L}_i, \sigma_i) = \mathbf{true}$ for i = 0, 1 we have

$$\begin{split} &\Pr\left[\mathsf{SIG}.\mathsf{Ver}\big(\mathsf{sp},((\mathsf{pk},m))\,,\mathsf{SIG}.\mathsf{Sign}(\mathsf{sp},\mathsf{sk},m)\big)=\mathbf{true}\right]=1 \ \text{ and} \\ &\Pr\left[\mathsf{SIG}.\mathsf{Ver}\big(\mathsf{sp},\mathbf{L}_0\,\|\,\mathbf{L}_1,\mathsf{SIG}.\mathsf{Agg}\big(\mathsf{sp},(\mathbf{L}_0,\sigma_0),(\mathbf{L}_1,\sigma_1)\big)\big)=\mathbf{true}\right]=1 \ . \end{split}$$

Game EUF-CMA _{SIG,\mathcal{A}} (λ)	Oracle $SIGN(m)$
$Q \coloneqq (); \ mp \gets MainSetup(1^{\lambda})$	$\sigma \gets SIG.Sign(sk,m)$
$sp \gets SIG.Setup(mp);\;(sk,pk) \gets SIG.KeyGen(sp)$	$Q\coloneqqQ \ (m)$
$(\mathbf{L},\sigma) \leftarrow \mathcal{A}^{ ext{Sign}}(pk)$	return σ
$\mathbf{return} \ \left(\exists \ m : (pk, m) \in \mathbf{L} \ \land \ m \notin Q \right) \ \mathbf{and} \ SIG.Ver(sp, \mathbf{L}, \sigma)$	

Fig. 2. The EUF-CMA security game for an aggregate signature scheme SIG.

Note that for any recursive aggregate signature scheme, one can define an aggregation algorithm SIG.Agg' that takes as input a list of triples $((\mathsf{pk}_i, m_i, \sigma_i))_{i=1}^n$ and returns an aggregate signature σ for $((\mathsf{pk}_i, m_i))_{i=1}^n$, which is the standard syntax for an aggregate signature scheme. Algorithm SIG.Agg' calls SIG.Agg recursively n-1 times, aggregating one signature at a time.

The standard security notion for aggregate signature schemes is *existential* unforgeability under chosen-message attack (EUF-CMA) [BGLS03, BNN07].

Definition 4 (EUF-CMA). Let game EUF-CMA be as defined in Fig. 2. An aggregate signature scheme SIG is existentially unforgeable under chosen-message attack if for any p.p.t. adversary A,

 $\mathsf{Adv}^{\operatorname{euf-cma}}_{\mathsf{SIG},\mathcal{A}}(\lambda) \coloneqq \Pr\left[\operatorname{EUF-CMA}_{\mathsf{SIG},\mathcal{A}}(\lambda) = \mathbf{true}\right] = \mathsf{negl}(\lambda) \ .$

Note that any standard signature scheme can be turned into an aggregate signature scheme by letting the aggregation algorithm simply concatenate signatures, i.e., SIG.Agg(sp, (\mathbf{L}_0, σ_0), (\mathbf{L}_1, σ_1)) returns (σ_0, σ_1), but this is not compact. Standard EUF-CMA-security of the original scheme implies EUF-CMA-security in the sense of Definition 4 for this construction. This allows us to capture standard and (compact) aggregate signature schemes, such as the ones proposed in [BGLS03, BNN07], in a single framework.

Compatibility. For our aggregate cash system, we require the commitment scheme COM and the aggregate signature scheme SIG to satisfy some "combined" security notions. We say that COM and SIG are *compatible* if they use the same MainSetup and if for any λ , any mp \in [MainSetup(1^{λ})], cp \in [COM.Setup(mp)] and sp \in [SIG.Setup(mp)], the following holds:

- $-S_{sp} = \mathcal{R}_{cp}$, i.e., the secret-key space of SIG is the same as the randomness space of COM;
- $\begin{array}{l} \ \bar{\mathcal{P}}_{sp} = \mathcal{C}_{cp}, \ \mathrm{i.e., the \ public-key \ space \ of \ SIG \ is \ the \ commitment \ space \ of \ COM;} \\ \ SIG.KeyGen \ draws \ sk \leftarrow \ \mathcal{R}_{cp} \ \mathrm{and \ sets \ } pk \coloneqq COM.Cmt(cp, 0, sk). \end{array}$

We define two security notions for compatible commitment and aggregate signature schemes. The first one roughly states that only commitments to zero can serve as signature-verification keys; more precisely, a p.p.t. adversary cannot simultaneously produce a signature for a (set of) freely chosen public key(s) *and* a non-zero opening of (the sum of) the public key(s). Game EUF-NZO_{COM,SIG, $\mathcal{A}(\lambda)$}

$$\begin{split} &\mathsf{mp} \leftarrow \mathsf{MainSetup}(1^{\lambda})\,;\,\,\mathsf{cp} \leftarrow \mathsf{COM}.\mathsf{Setup}(\mathsf{mp})\,;\,\,\mathsf{sp} \leftarrow \mathsf{SIG}.\mathsf{Setup}(\mathsf{mp})\\ &(\mathbf{L},\sigma,(v,r)) \leftarrow \mathcal{A}(\mathsf{cp},\mathsf{sp})\\ &((X_i,m_i))_{i=1}^n \coloneqq \mathbf{L}\\ &\mathbf{return}\,\,\mathsf{SIG}.\mathsf{Ver}(\mathsf{sp},\mathbf{L},\sigma)\,\,\mathbf{and}\,\,\sum_{i=1}^n X_i = \mathsf{COM}.\mathsf{Cmt}(\mathsf{cp},v,r)\,\,\mathbf{and}\,\,v \neq 0 \end{split}$$

Fig. 3. The EUF-NZO security game for a pair of compatible additively homomorphic commitment and aggregate signature schemes (COM, SIG).

Definition 5 (EUF-NZO). Let game EUF-NZO be as defined in Fig. 3. A pair of compatible homomorphic commitment and aggregate signature schemes (COM, SIG) is existentially unforgeable with non-zero opening if for any p.p.t. adversary A,

$$\mathsf{Adv}_{\mathsf{COM},\mathsf{SIG},\mathcal{A}}^{\mathrm{eut-nzo}}(\lambda) \coloneqq \Pr \left| \mathrm{EUF}-\mathrm{NZO}_{\mathsf{COM},\mathsf{SIG},\mathcal{A}}(\lambda) = \mathbf{true} \right| = \mathsf{negl}(\lambda)$$

EUF-NZO-security of the pair (COM, SIG) implies that COM is binding, as shown in the full version [FOS18].

The second security definition is more involved. It roughly states that, given a challenge public key C^* , no adversary can produce a signature under $-C^*$. Moreover, we only require the adversary to make a signature under keys X_1, \ldots, X_n of its choice, as long as it knows an opening to the difference between their sum and $-C^*$. This must even hold if the adversary is given a signing oracle for keys related to C^* . Informally, the adversary is faced with the following dilemma: either it picks public keys X_1, \ldots, X_n honestly, so it can produce a signature but it cannot open $\sum X_i + C^*$; or it includes $-C^*$ within the public keys, allowing it to open $\sum X_i + C^*$, but then it cannot produce a signature.

Definition 6 (EUF-CRO). Let game EUF-CRO be as defined in Fig. 4. A pair of compatible homomorphic commitment and aggregate signature schemes (COM, SIG) is existentially unforgeable with challenge-related opening if for any p.p.t. adversary A,

 $\mathsf{Adv}^{\mathrm{euf-cro}}_{\mathsf{COM},\mathsf{SIG},\mathcal{A}}(\lambda) \coloneqq \Pr\left[\mathrm{EUF}\text{-}\mathrm{CRO}_{\mathsf{COM},\mathsf{SIG},\mathcal{A}}(\lambda) = \mathbf{true}\right] = \mathsf{negl}(\lambda) \ .$

NIZK. Let R be an efficiently computable ternary relation. For triplets $(mp, u, w) \in R$ we call u the statement and w the witness. A non-interactive proof system Π for R consists of the following three algorithms:

- $crs \leftarrow \Pi.Setup(mp)$: the setup algorithm takes as input main parameters mp and outputs a common reference string (CRS) crs;
- $-\pi \leftarrow \Pi.\mathsf{Prv}(\mathsf{crs}, u, w)$: the prover algorithm takes as input a CRS crs and a pair (u, w) and outputs a proof π ;
- $bool \leftarrow \Pi$.Ver(crs, u, π): the verifier algorithm takes a CRS crs, a statement u, and a proof π and outputs **true** or **false**, indicating acceptance of the proof.

Game EUF-CRO _{COM,SIG,$\mathcal{A}(\lambda)$}	Oracle $\operatorname{Sign}'(a,m)$
$mp \gets MainSetup(1^\lambda);\ cp \gets COM.Setup(mp)$	$sk'\coloneqq a+r^*$
$sp \gets SIG.Setup(mp);\;(r^*,C^*) \gets SIG.KeyGen(sp)$	$\mathbf{return} \; SIG.Sign(sp,sk',m)$
$(\mathbf{L}, \sigma, (v, r)) \leftarrow \mathcal{A}^{\mathrm{Sign}'}(cp, sp, C^*); \ ((X_i, m_i))_{i=1}^n := \mathbf{L}$	
return SIG.Ver(sp, L, σ) and $\sum_{i=1}^{n} X_i = -C^* + \text{COM.Cmt}(\text{cp}, v, r)$	

Fig. 4. The EUF-CRO security game for a pair of compatible additively homomorphic commitment and aggregate signature schemes (COM, SIG).

Proof system Π is *complete* if for every λ and every adversary \mathcal{A} ,

$$\Pr\left[\begin{array}{c} \mathsf{mp} \leftarrow \mathsf{MainSetup}(1^{\lambda}) ; \mathsf{crs} \leftarrow \mathsf{\Pi}.\mathsf{Setup}(\mathsf{mp}) \\ (u,w) \leftarrow \mathcal{A}(\mathsf{crs}) ; \pi \leftarrow \mathsf{\Pi}.\mathsf{Prv}(\mathsf{crs}, u, w) \end{array} : \begin{array}{c} (\mathsf{mp}, u, w) \in \mathsf{R} \Rightarrow \\ \mathsf{\Pi}.\mathsf{Ver}(\mathsf{crs}, u, \pi) = \mathbf{true} \end{array} \right] = 1 .$$

A proof system Π is *zero-knowledge* if proofs leak no information about the witness. We define a *simulator* Π .Sim for a proof system Π as a pair of algorithms:

- $(crs, \tau) \leftarrow \Pi.SimSetup(mp)$: the simulated setup algorithm takes main parameters mp and outputs a CRS together with a trapdoor τ ;
- $-\pi^* \leftarrow \Pi.SimPrv(crs, \tau, u)$: the simulated prover algorithm takes as input a CRS, a trapdoor τ , and a statement u and outputs a simulated proof π^* .

Definition 7 (Zero-knowledge). Let game ZK be as defined in Fig. 5. A proof system Π for relation R is zero-knowledge if there exists a simulator Π .Sim such that for any p.p.t. adversary A,

$$\mathsf{Adv}^{\mathrm{zk}}_{\mathsf{\Pi},\mathsf{R},\mathcal{A}}(\lambda) \coloneqq 2 \cdot \left| \Pr\left[\mathrm{ZK}_{\mathsf{\Pi},\mathsf{R},\mathcal{A}}(\lambda) = \mathbf{true} \right] - \frac{1}{2} \right| = \mathsf{negl}(\lambda)$$
.

Note that the zero-knowledge advantage can equivalently be defined as

$$\mathsf{Adv}_{\mathsf{\Pi},\mathsf{R},\mathcal{A}}^{\mathrm{zk}}(\lambda) = \left| \Pr\left[\mathrm{ZK}_{\mathsf{\Pi},\mathsf{R},\mathcal{A}}^{0}(\lambda) = 1 \right] - \Pr\left[\mathrm{ZK}_{\mathsf{\Pi},\mathsf{R},\mathcal{A}}^{1}(\lambda) = 1 \right] \right|,$$

Game $\operatorname{ZK}_{\Pi,R,\mathcal{A}}(\lambda)$	Oracle SIMPROVE (u, w)
$b \leftarrow \{0,1\}; \ mp \leftarrow MainSetup(1^{\lambda})$	$\mathbf{if} \neg R(mp, u, w) \mathbf{ then \ return} \perp$
$crs_0 \gets \Pi.Setup(mp)$	$\pi_0 \leftarrow \Pi.Prv(crs_0, u, w)$
$(crs_1, \tau) \leftarrow \Pi.SimSetup(mp)$	$\pi_1 \leftarrow \Pi.SimPrv(crs_1, \tau, u)$
$b' \leftarrow \mathcal{A}^{ ext{SIMPROVE}}(crs_b)$	$\mathbf{return} \ \pi_b$
$\mathbf{return} b = b'$	

Fig. 5. The non-interactive zero-knowledge game for a proof system Π .

Game S-EXT _{Π, R, \mathcal{A}} (λ)	Oracle $SIMPROVE(u)$
$Q\coloneqq();mp\leftarrowMainSetup(1^{\lambda})$	$\pi \gets \Pi.SimPrv(crs,\tau,u)$
$(crs,\tau) \gets \Pi.SimSetup(mp)$	$Q \coloneqq Q \parallel ((u, \pi))$
$(\mathbf{u}, oldsymbol{\pi}) \leftarrow \mathcal{A}^{ ext{SimProve}}(crs)$	$\mathbf{return} \ \pi$
for $i = 1 \dots \mathbf{u} $ do	
$w_i \coloneqq \Pi.Ext(crs, au, u_i, \pi_i)$	
return $\bigvee_{i=1}^{ \mathbf{u} } \left(\Pi.Ver(crs, u_i, \pi_i) \land (u_i, \pi_i) \notin Q \land \neg R(mp, u_i, w_i) \right)$	

Fig. 6. The (multi-statement) simulation-extractability game for a proof system $\Pi.$

where the game $\operatorname{ZK}^{i}_{\Pi,\mathsf{R},\mathcal{A}}(\lambda)$ is defined as $\operatorname{ZK}_{\Pi,\mathsf{R},\mathcal{A}}(\lambda)$ except $b \leftarrow \{0,1\}$ is replaced by b := i and the game returns b'.

The central security property of a proof system is *soundness*, that is, no adversary can produce a proof for a false statement. A stronger notion is *knowledge-soundness*, meaning that an adversary must know a witness in order to make a proof. This is formalized via an extraction algorithm defined as follows:

 $-w \coloneqq \Pi.\mathsf{Ext}(\mathsf{crs}, \tau, u, \pi)$: the (deterministic) extraction algorithm takes a CRS, a trapdoor τ , a statement u, and a proof π and returns a witness w.

Knowledge-soundness states that from a valid proof for a statement u output by an adversary, Π .Ext can extract a witness for u. In security proofs where the reduction simulates certain proofs knowledge-soundness is not sufficient. The stronger notion *simulation-extractability* guarantees that even then, from every proof output by the adversary, Π .Ext can extract a witness. Note that we define a multi-statement variant of simulation extractability: the adversary returns a list of statements and proofs and wins if there is a least one statement such that the corresponding proof is valid and the extractor fails to extract a witness.

Definition 8 (Simulation-Extractability). Let game S-EXT be as defined in Fig. 6. A non-interactive proof system Π for R with simulator Π .Sim is (multistatement) simulation-extractable if there exists an extractor Π .Ext such that for any p.p.t. adversary A,

$$\operatorname{\mathsf{Adv}}_{\Pi,\mathsf{R},\mathcal{A}}^{\operatorname{s-ext}}(\lambda) \coloneqq \Pr\left[\operatorname{S-EXT}_{\Pi,\mathsf{R},\mathcal{A}}(\lambda) = \operatorname{true}\right] = \operatorname{\mathsf{negl}}(\lambda)$$
.

In the instantiation of our cash system, we will deal with *families* of relations, i.e. relations R_{δ} parametrized by some $\delta \in \mathbb{N}$. For those, we assume that the proof system Π is defined over the family of relations $\mathsf{R} = \{\mathsf{R}_{\delta}\}_{\delta}$ and that the setup algorithm Π .Setup takes an additional parameter δ which specifies the particular relation used during the protocol (and which is included in the returned CRS). For instance, in the case of proofs for a certain range $[0, v_{\max}]$, the proof system will be defined over a relation $\mathsf{R}_{v_{\max}}$, where v_{\max} is the maximum integer allowed.

3 Aggregate Cash System

3.1 Syntax

Coins. The public parameters **pp** set up by the cash system specify a coin space C_{pp} and a key space \mathcal{K}_{pp} . A *coin* is an element $C \in C_{pp}$; to each coin is associated a *coin key* $k \in \mathcal{K}_{pp}$, which allows spending the coin. The *value* v of a coin is an integer in $[0, v_{max}]$, where v_{max} is a system parameter. We assume that there exists a function mapping pairs $(v, k) \in [0, v_{max}] \times \mathcal{K}_{pp}$ to coins in C_{pp} ; we do not assume this mapping to be invertible or even injective.

Ledger. Similarly to any ledger-based currency such as Bitcoin, an aggregate cash system keeps track of available coins in the system via a ledger. We assume the ledger to be unique and available at any time to all users. How users are kept in consensus on the ledger is outside the scope of this paper. In our abstraction, a ledger Λ simply provides two attributes: a list of all coins available in the system Λ .out, and the total value Λ .sply those coins add up to. We say that a coin C exists in the ledger Λ if $C \in \Lambda$.out.

Transactions. Transactions allow to modify the state of the ledger. Formally, a *transaction* tx provides three attributes: a *coin input list* tx.in, a *coin output list* tx.out, and a *supply* tx.sply $\in \mathbb{N}$ specifying the amount of money created by tx. We classify transactions into three types. A transaction tx is said to be:

- a mining transaction if tx.sply > 0 and tx.in = (); such a transaction creates new coins of total value tx.sply in the ledger;
- a transfer transaction if tx.sply = 0 and $tx.in \neq ()$; such a transaction transfers coins (by spending previous transaction outputs and creating new ones) but does not increase the overall value of coins in the ledger;
- a mixed transaction if tx.sply > 0 and $tx.in \neq ()$.

Pre-transactions. Pre-transactions allow users to transfer money to each other. Formally, a *pre-transaction* provides three attributes: a *coin input list* ptx.in, a *list of change coins* ptx.chg, and a *remainder* ptx.rmdr. When Alice wants to send money worth ρ to Bob, she selects coins of hers of total value $v \ge \rho$ and specifies the desired values for her change coins when $v > \rho$. The resulting pre-transaction ptx has therefore some input coin list ptx.in with total amount v, a change coin list ptx.chg, and some remainder $\rho = \text{ptx.rmdr}$. Alice sends this pre-transaction (via a secure channel) to Bob, who, in turn, finalizes it into a valid transaction and adds it to the ledger.

Aggregate cash system. An aggregate cash system CASH consists of the following algorithms:

- $(pp, \Lambda) \leftarrow Setup(1^{\lambda}, v_{max})$: the setup algorithm takes as input the security parameter λ in unary and a maximal coin value v_{max} and returns public parameters pp and an initial (empty) ledger Λ .
- (tx, k) \leftarrow Mint(pp, v): the mint algorithm takes as input a list of values v and returns a minting transaction tx and a list of coin keys k for the coins in tx.out, such that the supply of tx is the sum of the values v.

- $(ptx, k') \leftarrow Send(pp, (C, v, k), v')$: the sending algorithm takes as input a list of coins C together with the associated lists of values v and secret keys k and a list of *change values* v' whose sum is at most the sum of the input values v; it returns a pre-transaction ptx and a list of keys k' for the change coins of ptx, such that the remainder of ptx is the sum of the values v minus the sum of the values v'.
- (tx, k'') $\leftarrow \mathsf{Rcv}(\mathsf{pp},\mathsf{ptx},\mathbf{v}'')$: the receiving algorithm takes as input a pretransaction ptx and a list of values \mathbf{v}'' whose sum equals the remainder of ptx; it returns a transfer transaction tx and a list of secret keys k'' for the fresh coins in the output of tx, one for each value in \mathbf{v}'' .
- $-\Lambda' \leftarrow \mathsf{Ldgr}(\mathsf{pp}, \Lambda, \mathsf{tx})$: the ledger algorithm takes as input the ledger Λ and a transaction tx to be included in Λ ; it returns an updated ledger Λ' or \bot .
- $tx \leftarrow Agg(pp, tx_0, tx_1)$: the transaction aggregation algorithm takes as input two transactions tx_0 and tx_1 whose input coin lists are disjoint and whose output coin lists are disjoint; it returns a transaction tx whose supply is the sum of the supplies of tx_0 and tx_1 and whose input and output coin list is the cut-through of $tx_0.in || tx_1.in$ and $tx_0.out || tx_1.out$.

We say that an aggregate cash system CASH is correct if its procedures Setup, Mint, Send, Rcv, Ldgr, and Agg behave as expected with overwhelming probability (that is, we allow that with negligible probability things can go wrong, typically, because an algorithm could generate the same coin twice). We give a formal definition that uses two auxiliary procedures: Cons, which checks if a list of coins C is consistent with respect to values v and keys k; and Ver, which given as input a ledger or a (pre-)transaction determines if they respect some notion of cryptographic validity.

Definition 9 (Correctness). An aggregate cash system CASH is correct if there exist procedures $Ver(\cdot, \cdot)$ and $Cons(\cdot, \cdot, \cdot, \cdot)$ such that for any $v_{max} \in \mathbb{N}$ and (not necessarily p.p.t.) $\mathcal{A}_{Mint}, \mathcal{A}_{Send}, \mathcal{A}_{Rcv}, \mathcal{A}_{Agg}$ and \mathcal{A}_{Ldgr} the following functions are overwhelming in λ : $\Pr\left[(pp, \Lambda) \leftarrow Setup(1^{\lambda}, v_{max}) : Ver(pp, \Lambda)\right]$

$$\begin{split} \Pr \begin{bmatrix} (\mathsf{pp}, \Lambda) \leftarrow \mathsf{Setup}(1^{\lambda}, v_{\max}) & \\ \mathbf{v} \leftarrow \mathcal{A}_{\mathsf{Mint}}(\mathsf{pp}, \Lambda) & : & \mathbf{v} \in [0, v_{\max}]^* \\ (\mathsf{tx}, \mathbf{k}) \leftarrow \mathsf{Mint}(\mathsf{pp}, \mathbf{v}) & \\ \end{bmatrix} \\ \Pr \begin{bmatrix} (\mathsf{pp}, \Lambda) \leftarrow \mathsf{Setup}(1^{\lambda}, v_{\max}) & \\ (\mathbf{C}, \mathbf{v}, \mathbf{k}, \mathbf{v}') \leftarrow \mathcal{A}_{\mathsf{Send}}(\mathsf{pp}, \Lambda) & \\ (\mathsf{pt}, \mathbf{k}') \leftarrow \mathsf{Setup}(1^{\lambda}, v_{\max}) & \\ (\mathsf{pp}, \Lambda) \leftarrow \mathsf{Setup}(1^{\lambda}, v_{\max}) & \\ (\mathsf{ver}(\mathsf{pp}, \mathsf{ptx}) \wedge \mathsf{v}'' \in [0, v_{\max}] & \\ \mathsf{ptx}.\mathsf{rmdr} = \sum \mathbf{v} - \sum \mathbf{v}' \wedge \\ \mathsf{Cons}(\mathsf{pp}, \mathsf{ptx}.\mathsf{chg}, \mathbf{v}', \mathbf{k}') & \\ \mathsf{ptx}.\mathsf{rmdr} = \sum \mathbf{v} - \sum \mathbf{v}' \wedge \\ \mathsf{Cons}(\mathsf{pp}, \mathsf{ptx}.\mathsf{chg}, \mathbf{v}', \mathbf{k}') & \\ \mathsf{ptx}.\mathsf{rmdr} = \sum \mathsf{v}'' \wedge \\ \mathsf{Cons}(\mathsf{pp}, \mathsf{ptx}.\mathsf{rmdr} = \sum \mathsf{v}'') \\ (\mathsf{ptx}, \mathsf{v}'') \leftarrow \mathcal{A}_{\mathsf{Rev}}(\mathsf{pp}, \Lambda) & \\ (\mathsf{tx}, \mathsf{k}'') \leftarrow \mathsf{Rev}(\mathsf{pp}, \mathsf{ptx}, \mathsf{v}'') & \\ \end{aligned} \right) \\ \end{array}$$

16

Game $\text{INFL}_{\mathsf{CASH},\mathcal{A}}(\lambda, v_{\max})$

$$\begin{split} (\mathsf{pp}, \Lambda_0) &\leftarrow \mathsf{CASH}.\mathsf{Setup}(1^\lambda, v_{\max}) \\ (\Lambda, \mathsf{ptx}, \mathbf{v}) &\leftarrow \mathcal{A}(\mathsf{pp}, \Lambda_0) \\ (\mathsf{tx}, \mathbf{k}) &\leftarrow \mathsf{CASH}.\mathsf{Rcv}(\mathsf{pp}, \mathsf{ptx}, \mathbf{v}) \\ \mathbf{return} \perp &\not\leftarrow \mathsf{CASH}.\mathsf{Ldgr}(\mathsf{pp}, \Lambda, \mathsf{tx}) \text{ and } \Lambda.\mathsf{sply} < \sum \mathbf{v} \end{split}$$

$$\Pr \begin{bmatrix} (\mathsf{pp}, \Lambda) \leftarrow \mathsf{Setup}(1^{\lambda}, v_{\max}) & \left(\mathsf{Ver}(\mathsf{pp}, \mathsf{tx}_0) \land \mathsf{tx}_0.\mathsf{in} \cap \mathsf{tx}_1.\mathsf{in} = () \land \\ \mathsf{Ver}(\mathsf{pp}, \mathsf{tx}_1) \land \mathsf{tx}_0.\mathsf{out} \cap \mathsf{tx}_1.\mathsf{out} = () \\ \mathsf{Ver}(\mathsf{pp}, \mathsf{tx}_1) \land \mathsf{tx}_0.\mathsf{out} \cap \mathsf{tx}_1.\mathsf{out} = () \\ \mathsf{tx} \leftarrow \mathsf{Agg}(\mathsf{pp}, \mathsf{tx}_0, \mathsf{tx}_1) & : \\ & \Rightarrow \begin{pmatrix} \mathsf{Ver}(\mathsf{pp}, \mathsf{tx}) \land \mathsf{tx}.\mathsf{sply} = \mathsf{tx}_0.\mathsf{sply} + \mathsf{tx}_1.\mathsf{sply} \land \\ \mathsf{tx}.\mathsf{in} = (\mathsf{tx}_0.\mathsf{in} \parallel \mathsf{tx}_1.\mathsf{in}) - (\mathsf{tx}_0.\mathsf{out} \parallel \mathsf{tx}_1.\mathsf{out}) \land \\ \mathsf{tx}.\mathsf{out} = (\mathsf{tx}_0.\mathsf{out} \parallel \mathsf{tx}_1.\mathsf{out}) - (\mathsf{tx}_0.\mathsf{in} \parallel \mathsf{tx}_1.\mathsf{in}) \end{pmatrix} \end{bmatrix} \\ \Pr \begin{bmatrix} (\mathsf{pp}, \Lambda) \leftarrow \mathsf{Setup}(1^{\lambda}, v_{\max}) \\ (\Lambda, \mathsf{tx}) \leftarrow \mathcal{A}_{\mathsf{Ldgr}}(\mathsf{pp}, \Lambda) \\ (\Lambda, \mathsf{tx}) \leftarrow \mathcal{A}_{\mathsf{Ldgr}}(\mathsf{pp}, \Lambda) \\ \Lambda' \leftarrow \mathsf{Ldgr}(\mathsf{pp}, \Lambda, \mathsf{tx}) & : \\ & \Rightarrow \begin{pmatrix} \Lambda' \neq \bot \land \mathsf{Ver}(\mathsf{pp}, \mathsf{tx}) \land \\ \Lambda'.\mathsf{out} = (\Lambda.\mathsf{out} - \mathsf{tx}.\mathsf{in}) \parallel \mathsf{tx}.\mathsf{out} \land \\ \Lambda'.\mathsf{sply} = \Lambda.\mathsf{sply} + \mathsf{tx}.\mathsf{sply} \end{pmatrix} \end{bmatrix}$$

3.2 Security Definitions

Security against inflation. A sound payment system must ensure that the only way money can be created is via the supply of transactions, typically minting transactions. This means that for any tx the total value of the output coins should be equal to the sum of the total value of the input coins plus the supply tx.sply of the transaction. Since coin values are not deducible from a transaction (this is one of the privacy features of such a system), we define the property at the level of the ledger Λ .

We say that a cash system is resistant to inflation if no adversary can spend coins from Λ .out worth more than Λ .sply. The adversary's task is thus to create a pre-transaction whose remainder is strictly greater than Λ .sply; validity of the pre-transaction is checked by completing it to a transaction via Rcv and adding it to the ledger via Ldgr. This is captured by the definition below.

Definition 10 (Inflation-resistance). We say that an aggregate cash system CASH is secure against inflation if for any v_{max} and any p.p.t. adversary A,

 $\mathsf{Adv}^{\mathrm{infl}}_{\mathsf{CASH},\mathcal{A}}(\lambda, v_{\max}) \coloneqq \Pr\left[\mathrm{INFL}_{\mathsf{CASH},\mathcal{A}}(\lambda, v_{\max}) = \mathbf{true}\right] = \mathsf{negl}(\lambda) \ ,$

where $\text{INFL}_{\mathsf{CASH},\mathcal{A}}(\lambda, v_{\max})$ is defined in Fig. 7.

Security against coin theft. Besides inflation, which protects the soundness of the system as a whole, the second security notion protects individual users. It requires that only a user can spend coins belonging to him, where ownership

Game $\text{STEAL}_{CASH,\mathcal{A}}(\lambda, v_{\max})$	Oracle Receive(ptx, v)
$\begin{array}{l} (pp, \Lambda) \leftarrow CASH.Setup(1^{\lambda}, v_{\max}) \\ Hon, Val, Key, Ptx := () \\ \mathcal{A}^{MINT, Send, Receive, Ledger}(pp, \Lambda) \\ \mathbf{return} \ (Hon \not\subseteq \Lambda.out) \\ \\ \hline \\ \\ \hline \\ \\ \hline Aux \ \mathrm{function} \ Store(\mathbf{C}, \mathbf{v}, \mathbf{k}) \\ \hline \\ \\ \hline \\ \\ \hline Val(\mathbf{C}) \coloneqq \mathbf{v}; \ Key(\mathbf{C}) \coloneqq \mathbf{k} \end{array}$	$(tx, k) \leftarrow CASH.Rcv(pp, ptx, v)$ $\Lambda' \leftarrow LEDGER(tx) \not // updates Hon$ if $\Lambda' = \bot$ then return \bot Hon := Hon (tx.out - ptx.chg) Store(tx.out - ptx.chg, v, k); return tx Oracle LEDGER(tx)
$\frac{\text{Oracle MINT}(\mathbf{v})}{(tx, \mathbf{k}) \leftarrow CASH.Mint(pp, \mathbf{v})}$ $\Lambda \leftarrow CASH.Ldgr(pp, \Lambda, tx)$ $Hon \coloneqq Hon \parallel tx.out$ $Store(tx.out, \mathbf{v}, \mathbf{k})$ $return tx$	$\begin{array}{l} \Lambda' \leftarrow CASH.Ldgr(pp, \Lambda, tx) \\ \mathbf{if} \ \Lambda' = \bot \ \mathbf{then} \ \mathbf{return} \perp \mathbf{else} \ \Lambda \coloneqq \Lambda' \\ \mathbf{for} \ \mathbf{all} \ ptx \in Ptx \ \mathbf{do} \\ \mathbf{if} \ ptx.chg \subseteq tx.out \\ \# \ \mathbf{if} \ \mathbf{all} \ \mathbf{change} \ \mathbf{of} \ ptx \ \mathbf{now} \ \mathbf{in} \ \mathbf{ledger} \\ Ptx \coloneqq Ptx - (ptx) \\ Hon \coloneqq (Hon - ptx.in) \ \ \ ptx.chg \end{array}$
Oracle Send(\mathbf{C}, \mathbf{v}')	// consider input of ptx consumed return Λ
$\label{eq:constraint} \hline \mathbf{f} \ \mathbf{C} \nsubseteq Hon \ \mathbf{or} \ \bigcup_{ptx \in Ptx} ptx.in \ \cap \ \mathbf{C} \neq () \\ \mathbf{return} \perp /\!\!/ \ \mathrm{only \ honest \ coins \ never \ sent \ can \ be \ queried} \\ (ptx, \mathbf{k}') \gets CASH.Send \big(pp, (\mathbf{C}, Val(\mathbf{C}), Key(\mathbf{C})), \mathbf{v}' \big) \\ Store (ptx.chg, \mathbf{v}', \mathbf{k}') \ ; \ Ptx := Ptx \parallel (ptx) \\ \mathbf{return \ ptx} \end{aligned}$	

Fig. 8. Game formalizing resistance to coin theft of a cash system CASH.

of a coin amounts to knowledge of the coin secret key. This is formalized by the experiment in Fig. 8, which proceeds as follows. The challenger sets up the system and maintains the ledger Λ throughout the game (we assume that the consensus protocol provides this). The adversary can add any valid transaction to the ledger through an oracle LEDGER.

The challenger also simulates an honest user and manages her coins; in particular, it maintains a list Hon, which represents the coins that the honest user expects to own in the ledger. The game also maintains two hash tables Val and Key that map coins produced by the game to their values and keys. We write e.g. $Val(C) \coloneqq v$ to mean that the pair (C, v) is added to Val and let Val(C) denote the value v for which (C, v) is in Val. This naturally generalizes to lists letting Val(C) be the list \mathbf{v} such that (C_i, v_i) is in Val for all i.

The adversary can interact with the honest user and the ledger using the following oracles:

- MINT is an oracle that mints coins for the honest user. It takes as input a vector of values v, creates a minting transaction tx together with the secret keys of the output coins, adds tx to the ledger and appends the newly created coins to Hon.
- RECEIVE lets the adversary send coins to the honest user. The oracle takes as input a pre-transaction ptx and output values v; it completes ptx to a transaction tx creating output coins with values v, adds tx to the ledger, and appends the newly created coins to Hon.
- SEND lets the adversary make an honest user send coins to it. It takes as input a list \mathbf{C} of coins contained in Hon and a list of change values \mathbf{v}' ; it also checks that none of the coins in \mathbf{C} has been queried to SEND before (an honest user does not double-spend). It returns a pre-transaction ptx spending the coins from \mathbf{C} and creating change output coins with values \mathbf{v}' . The oracle only produces a pre-transaction and returns it to the adversary, but it does not alter the ledger. This is why the list Hon of honest coins is not altered either; in particular, the sent coins \mathbf{C} still remain in Hon.
- LEDGER lets the adversary commit a transaction tx to the ledger. If the transaction output contains the (complete) set of change coins of a pretransaction ptx previously sent to the adversary, then these change coins are added to Hon, while the input coins of ptx are removed from Hon.

Note that the list **Hon** represents the coins that the honest user should consider hers, given the system changes induced by the oracle calls: coins received directly from the adversary via RECEIVE or as fresh coins via MINT are added to **Hon**. Coins sent to the adversary in a pre-transaction **ptx** via SEND are only removed *once all change coins of* **ptx** *have been added* to the ledger via LEDGER. Note also that, given these oracles, the adversary can simulate transfers between honest users. It can simply call SEND to receive an honest pre-transaction **ptx** and then call RECEIVE to have the honest user receive **ptx**.

The winning condition of the game is now simply that Hon does not reflect what the honest user would expect, namely Hon is not fully contained in the ledger (because the adversary managed to spend a coin that is still in Hon, which amounts to stealing it from the honest user).

Definition 11 (Theft-resistance). We say that an aggregate cash system CASH is secure against coin theft if for any v_{max} and any p.p.t. adversary A,

 $\mathsf{Adv}^{\text{steal}}_{\mathsf{CASH},\mathcal{A}}(\lambda, v_{\max}) \coloneqq \Pr\left[\text{STEAL}_{\mathsf{CASH},\mathcal{A}}(\lambda, v_{\max}) = \mathbf{true}\right] = \mathsf{negl}(\lambda) \ ,$

where $\text{STEAL}_{\mathsf{CASH},\mathcal{A}}(\lambda, v_{\max})$ is defined in Fig. 8.

Transaction indistinguishability. An important security feature that Mimble inherits from Confidential Transactions [Max15] is that the amounts involved in a transaction are hidden so that only the sender and the receiver know how much money is involved. In addition, a transaction completely hides which inputs paid which outputs and which coins were change and which were added by the receiver.

$\underline{\text{Game IND-TX}_{CASH,\mathcal{A}}(\lambda, v_{\max})}$	$\underline{\text{Oracle } \operatorname{Tx}((\mathbf{v}_0,\mathbf{v}_0',\mathbf{v}_0''),(\mathbf{v}_1,\mathbf{v}_1',\mathbf{v}_1''))}$
$b \leftarrow \!$	$ {\bf if \ not} \ ({\bf v}_0, {\bf v}_0', {\bf v}_0'', {\bf v}_1, {\bf v}_1', {\bf v}_1'' \in [0, v_{\max}]^*) \\$
$(pp, \Lambda) \leftarrow Setup(1^{\lambda}, v_{\max})$	$\mathbf{return} \perp$
$b' \leftarrow \mathcal{A}^{\mathrm{Tx}}(pp, \Lambda)$	$\mathbf{if} \ \mathbf{v}_0 \neq \mathbf{v}_1 \ \mathbf{or} \ \mathbf{v}_0' + \mathbf{v}_0'' \neq \mathbf{v}_1' + \mathbf{v}_1'' $
$\mathbf{return} \ b = b'$	${f return} \perp /\!\!/$ as number of coins is not hidden
	if $\sum \mathbf{v}_0 \neq \sum (\mathbf{v}_0' \parallel \mathbf{v}_0'')$ or $\sum \mathbf{v}_1 \neq \sum (\mathbf{v}_1' \parallel \mathbf{v}_1'')$
	${f return} \perp {/\!\!/}$ as transactions must be balanced
	$(tx,\mathbf{k}) \gets Mint(pp,\mathbf{v}_b)$
	$(ptx,\mathbf{k}') \gets Send(pp,(tx.out,\mathbf{v}_b,\mathbf{k}),\mathbf{v}_b')$
	$(tx^*, \mathbf{k}'') \gets Rcv(pp, ptx, \mathbf{v}_b'')$
	$\mathbf{return} \ tx^*$

Fig. 9. Game formalizing transaction indistinguishability of a cash system CASH.

We formalize this via the following game, specified in Fig. 9. The adversary submits two sets of values $(\mathbf{v}_0, \mathbf{v}'_0, \mathbf{v}''_0)$ and $(\mathbf{v}_1, \mathbf{v}'_1, \mathbf{v}''_1)$ representing possibles values for input coins, change coins and receiver's coins of a transaction. The game creates a transaction with values either from the first or the second set and the adversary must guess which. For the transaction to be valid, we must have $\sum \mathbf{v}_b = \sum \mathbf{v}'_b + \sum \mathbf{v}''_b$ for both b = 0, 1. Moreover, transactions do not hide the number of input and output coins. We therefore also require that $|\mathbf{v}_0| = |\mathbf{v}_1|$ and $|\mathbf{v}'_0| + |\mathbf{v}''_0| = |\mathbf{v}'_1| + |\mathbf{v}''_1|$ (note that e.g. the number of change coins can differ).

Definition 12 (Transaction indistinguishability). We say that an aggregate cash system CASH is transaction-indistinguishable if for any v_{max} and any p.p.t. adversary \mathcal{A} ,

$$\begin{split} \mathsf{Adv}^{\mathrm{tx-ind}}_{\mathsf{CASH},\mathcal{A}}(\lambda, v_{\max}) &\coloneqq 2 \cdot \big| \Pr\left[\mathrm{TX-IND}_{\mathsf{CASH},\mathcal{A}}(\lambda, v_{\max}) = \mathbf{true} \right] - \tfrac{1}{2} \big| = \mathsf{negl}(\lambda) \ , \\ where \ \mathrm{TX-IND}_{\mathsf{CASH},\mathcal{A}}(\lambda, v_{\max}) \ is \ defined \ in \ Fig. \ 9. \end{split}$$

4 Construction of an Aggregate Cash System

4.1 Description

Let COM be an additively homomorphic commitment scheme such that for $cp \leftarrow COM.Setup(MainSetup(1^{\lambda}))$ we have value space $\mathcal{V}_{cp} = \mathbb{Z}_p$ with p of length λ (such as the Pedersen scheme). Let SIG be an aggregate signature scheme that is compatible with COM. For $v_{max} \in \mathbb{N}$, let $R_{v_{max}}$ be the (efficiently computable) relation on commitments with values at most v_{max} , i.e.,

$$\mathsf{R}_{v_{\max}} \coloneqq \left\{ \left(\mathsf{mp}, (\mathsf{cp}, C), (v, r) \right) \middle| \mathsf{mp} = \mathsf{mp}_{\mathsf{cp}} \land C = \mathsf{COM.Cmt}(\mathsf{cp}, v, r) \land v \in [0, v_{\max}] \right\}$$

where $\mathsf{mp}_{\mathsf{cp}}$ are the main parameters contained in cp (recall that we assume that for $\mathsf{cp} \in [\mathsf{COM}.\mathsf{Setup}(\mathsf{mp})]$, mp is contained in cp). Let Π be a simulation-extractable NIZK proof system for the family of relations $\mathsf{R} = \{\mathsf{R}_{v_{\max}}\}_{v_{\max}}$. For notational simplicity, we will use the following vectorial notation for COM,

For notational simplicity, we will use the following vectorial notation for COM, R, and Π : given C, v, and r with $|\mathbf{C}| = |\mathbf{v}| = |\mathbf{r}|$, we let

$$\begin{split} \mathsf{COM.Cmt}(\mathsf{cp},\mathbf{v},\mathbf{r}) &\coloneqq \left(\mathsf{COM.Cmt}(\mathsf{cp},v_i,r_i)\right)_{i=1}^{|\mathbf{v}|}, \\ \mathsf{R}_{v_{\max}}((\mathsf{cp},\mathbf{C}),(\mathbf{v},\mathbf{r})) &\coloneqq \bigwedge_{i=1}^{|\mathbf{C}|} \mathsf{R}_{v_{\max}}(\mathsf{mp}_{\mathsf{cp}},(\mathsf{cp},C_i),(v_i,r_i)), \\ \mathsf{\Pi.Prv}(\mathsf{crs},(\mathsf{cp},\mathbf{C}),(\mathbf{v},\mathbf{r})) &\coloneqq \left(\mathsf{\Pi.Prv}(\mathsf{crs},(\mathsf{cp},C_i),(v_i,r_i))\right)_{i=1}^{|\mathbf{C}|}, \\ \mathsf{\Pi.Ver}(\mathsf{crs},(\mathsf{cp},\mathbf{C}),\pi) &\coloneqq \bigwedge_{i=1}^{|\mathbf{C}|} \mathsf{\Pi.Ver}(\mathsf{crs},(\mathsf{cp},C_i),\pi_i), \end{split}$$

and likewise for Π .SimPrv. We also assume that messages are the empty string ε if they are omitted from SIG.Ver and SIG.Agg; that is, we overload notation and let

SIG.Ver(sp,
$$(X_i)_{i=1}^n, \sigma) \coloneqq$$
 SIG.Ver(sp, $((X_i, \varepsilon))_{i=1}^n, \sigma)$

and likewise for SIG.Agg(sp, $((X_{0,i})_{i=1}^{n_0}, \sigma_0), ((X_{1,i})_{i=1}^{n_1}, \sigma_1))$.

From COM, SIG and Π we construct an aggregate cash system MW[COM, SIG, Π] as follows. The public parameters **pp** consist of commitment and signature parameters **cp**, **sp**, and a CRS for Π . A *coin key* $k \in \mathcal{K}_{pp}$ is an element of the randomness space \mathcal{R}_{cp} of the commitment scheme, i.e., $\mathcal{K}_{pp} = \mathcal{R}_{cp}$. A *coin* C = COM.Cmt(cp, v, k) is a commitment to the value v of the coin using the coin key k as randomness. Hence, $\mathcal{C}_{pp} = \mathcal{C}_{cp}$.

A transaction $tx = (s, C, \hat{C}, K)$ consists of a supply tx.sply = s, an input coin list tx.in = C, an output coin list $tx.out = \hat{C}$, and a kernel K. The kernel Kis a triple (π, E, σ) where π is a list of range proofs for the output coins, E is a non-empty list of signature-verification keys (which are of the same form as commitments) called *kernel excesses*, and σ is an (aggregate) signature. We define the *excess of the transaction* tx, denoted Exc(tx), as the sum of outputs minus the sum of inputs, with the supply s converted to an input coin with k = 0:

$$\mathsf{Exc}(\mathsf{tx}) \coloneqq \sum \hat{\mathbf{C}} - \sum \mathbf{C} - \mathsf{COM.Cmt}(\mathsf{cp}, s, 0) .$$
(4)

Intuitively, Exc(tx) should be a commitment to 0, as the committed input and output values of the transaction should cancel out; this is evidenced by giving a signature under key Exc(tx) (which could be represented as the sum of elements (E_i) due to aggregation; see below).

A transaction $tx = (s, \mathbf{C}, \hat{\mathbf{C}}, K)$ with $K = (\pi, \mathbf{E}, \sigma)$ is said to be valid if all range proofs are valid, $\mathsf{Exc}(\mathsf{tx}) = \sum \mathbf{E}$, and σ is a valid signature for \mathbf{E} (with all messages ε).¹³

When a user wants to make a payment of an amount ρ , she creates a transaction tx with input coins **C** of values **v** with $\sum \mathbf{v} \ge \rho$ and with output coins a

¹³ If **E** in a transaction tx consists of a single element, it must be E = Exc(tx), so E could be omitted from the transaction; we keep it for consistency.

$MW.Coin((cp,sp,crs),\mathbf{v})$	$MW.Cons((cp,sp,crs),\mathbf{C},\mathbf{v},\mathbf{k})$
	$ \begin{array}{c} \textbf{return} \ \mathbf{C} = \mathbf{v} = \mathbf{k} \ \textbf{and} \ \mathbf{v} \in [0, v_{\max}]^* \\ \textbf{and} \ \left(\forall i \neq j : C_i \neq C_j\right) \\ \textbf{and} \ \mathbf{C} = \texttt{COM.Cmt}(\texttt{cp}, \mathbf{v}, \mathbf{k}) \\ \\ // \ \texttt{Cons}(\texttt{pp}, (), (), ()) \ \text{returns true} \end{array} $
$MW.MkTx((cp,sp,crs),(\mathbf{C},\mathbf{v},\mathbf{k}),\hat{\mathbf{v}})$	MW.Ver((cp,sp,crs),tx)
if $\neg \operatorname{Cons}(\operatorname{pp}, \mathbf{C}, \mathbf{v}, \mathbf{k})$ return \bot $s := \sum \hat{\mathbf{v}} - \sum \mathbf{v}$ if $\mathbf{v} \parallel \hat{\mathbf{v}} \not\subseteq [0, v_{\max}]^*$ or $s < 0$ then return \bot $(\hat{\mathbf{C}}, \hat{\mathbf{k}}, \hat{\pi}) \leftarrow \operatorname{MW.Coin}(\operatorname{pp}, \hat{\mathbf{v}})$ $E := \sum \hat{\mathbf{C}} - \sum \mathbf{C} - \sum_{\operatorname{COM.Cmt}} (\operatorname{cp}, s, 0)$ $\sigma \leftarrow \operatorname{SIG.Sign}(\operatorname{sp}, \sum \hat{\mathbf{k}} - \sum \mathbf{k}, \varepsilon)$	if $tx = (0, (), (), ((), (), \varepsilon))$ then return true $(s, \mathbf{C}, \hat{\mathbf{C}}, K) := tx; (\pi, \mathbf{E}, \sigma) := K$ Exc $:= \sum \hat{\mathbf{C}} - \sum \mathbf{C} - \text{COM.Cmt}(cp, s, 0)$ return $(\forall i \neq j : C_i \neq C_j \land \hat{C}_i \neq \hat{C}_j)$ and $\mathbf{C} \cap \hat{\mathbf{C}} = ()$ and $s \ge 0$ and $\Pi.\text{Ver}(crs, \hat{\mathbf{C}}, \pi)$ and $\sum \mathbf{E} = \text{Exc}$ and SIG.Ver(sp, $\mathbf{E}, \sigma)$ MW.Ver(pp, ptx)
$tx := (s, C, \hat{C}, K)$ return (tx, \hat{k})	$\begin{aligned} (tx,\rho,k') &:= ptx \\ \mathbf{return} \ MW.Ver(pp,tx) \ \mathbf{and} \ tx.sply = 0 \ \mathbf{and} \\ MW.Cons(pp,tx.out[tx.out],\rho,k') \end{aligned}$
	$\frac{MW.Ver(pp,\Lambda)}{tx := \Lambda /\!\!/ \text{ interpret } \Lambda \text{ as transaction}}$ return $MW.Ver(pp,tx)$ and $tx.in = ()$

Fig. 10. Auxiliary algorithms for the MW aggregate cash system.

list of fresh change coins of values \mathbf{v}' so that $\sum \mathbf{v}' = \sum \mathbf{v} - \rho$. She also appends one more special coin of value ρ to the output. The pre-transaction ptx is then defined as this transaction tx, the remainder ptx.rmdr := ρ and the key for the special coin.

When receiving a pre-transaction $ptx = (tx, \rho, k)$, the receiver first checks that tx is valid and that k is a key for the special coin C' := tx.out[|tx.out|] of value ρ . He then creates a transaction tx' that spends C' (using its key k) and creates coins of combined value ρ . Aggregating tx and tx' yields a transaction tx" with tx".sply = 0, tx".in = ptx.in and tx".out containing ptx.chg and the freshly created coins. The receiver then submits tx" to the ledger.

The ledger accepts a transaction if it is valid (as defined above) and if its input coins are contained in the output coin list of the ledger (which corresponds to the UTXO set in other systems). We do not consider any other conditions

$MW.Setup(1^\lambda, v_{\max})$	$MW.Mint(pp, \hat{\mathbf{v}})$
$mp \leftarrow MainSetup(1^{\lambda})$	$\overline{(tx, \hat{\mathbf{k}}) \leftarrow MW.MkTx(pp, ((\), (\), (\)), \hat{\mathbf{v}})}$
$cp \leftarrow COM.Setup(mp)$	return (tx, \hat{k})
$sp \gets SIG.Setup(mp)$	// If $\perp \leftarrow MkTx$, Mint returns \perp
$crs \gets \Pi.Setup(mp, v_{\max})$	
$\Lambda \coloneqq \big(0, (), (), (), (), \varepsilon)\big)$	$\frac{MW.Send(pp,(\mathbf{C},\mathbf{v},\mathbf{k}),\mathbf{v}')}{}$
return (pp := (cp, sp, crs), Λ)	$ ho \coloneqq \sum \mathbf{v} - \sum \mathbf{v}'$
	$(tx, \hat{\mathbf{k}}) \gets MW.MkTx(pp, (\mathbf{C}, \mathbf{v}, \mathbf{k}), \mathbf{v}' \ \rho)$
$\frac{MW.Agg(pp,tx_0,tx_1)}{WW}$	$ptx \coloneqq (tx, \rho, \hat{k}_{ \mathbf{v}' +1})$
$\mathbf{if} \neg MW.Ver(pp,tx_0) \ \mathbf{or}$	return (ptx, $(\hat{k}_i)_{i=1}^{ \mathbf{v}' }$)
$\neg MW.Ver(pp,tx_1) \ \mathbf{or}$	
$tx_0.in \cap tx_1.in \neq () \mathbf{or}$	$MW.Rcv(pp,ptx,\mathbf{v}'')$
$tx_0.out\captx_1.out\neq()$	$(tx, \rho, k') \coloneqq ptx$
$\mathbf{return} \perp$	if $\neg MW$.Ver(pp. ptx) or $\rho \neq \sum \mathbf{v}''$
$ig(s_0, \mathbf{C}_0, \hat{\mathbf{C}}_0, (oldsymbol{\pi}_0, \mathbf{E}_0, \sigma_0)ig)\coloneqq tx_0$	return \perp
$ig(s_1, \mathbf{C}_1, \hat{\mathbf{C}}_1, (\boldsymbol{\pi}_1, \mathbf{E}_1, \sigma_1)ig) \coloneqq tx_1$	$C' \coloneqq tx.out[tx.out]$
$\mathbf{C}\coloneqq\mathbf{C}_{0}\parallel\mathbf{C}_{1}-\hat{\mathbf{C}}_{0}\parallel\hat{\mathbf{C}}_{1}$	$(tx',\mathbf{k}'') \gets MW.MkTx(pp,(C',\rho,k'),\mathbf{v}'')$
$\hat{\mathbf{C}}\coloneqq\hat{\mathbf{C}}_{0}\parallel\hat{\mathbf{C}}_{1}-\mathbf{C}_{0}\parallel\mathbf{C}_{1}$	$tx'' \gets MW.Agg(pp,tx,tx')$
$\boldsymbol{\pi} \coloneqq \left(\pi_{0,i}\right)_{i \in I_0} \ \left(\pi_{1,i}\right)_{i \in I_1}$	$\mathbf{return}~(tx'',\mathbf{k}'')$
where $I_j \coloneqq \{i : \hat{C}_{j,i} \notin \mathbf{C}_{1-j}\}$	
$/\!\!/ \pi$ contains the proofs for coins in $\hat{\mathbf{C}}$	
$\sigma \leftarrow SIG.Agg\big(sp, (\mathbf{E}_0, \sigma_0), (\mathbf{E}_1, \sigma_1)\big)$	if Λ .in \neq () or tx.in $\not\subseteq$ Λ .out
$K \coloneqq (\boldsymbol{\pi}, \mathbf{E}_0 \ \mathbf{E}_1, \sigma)$	$\mathbf{return} \perp$
return $(s_0 + s_1, \mathbf{C}, \hat{\mathbf{C}}, K)$	return MW.Agg(pp, Λ , tx) $/\!\!/$ returns \perp if Λ or tx invalid

Fig. 11. The MW aggregate cash system. (Recall that algorithms return \perp when one of their subroutines returns \perp .)

related to the consensus mechanism, such as fees being included in a transaction to incentivize its inclusion in the ledger or a proof-of-work being included in a minting transaction.

In Fig. 10 we first define auxiliary algorithms that create coins and transactions and verify their validity by instantiating the procedures Ver and Cons from Definition 9. Using these we then formally define $MW[COM, SIG, \Pi]$ in Fig. 11.

Correctness. We start with showing some properties of the auxiliary algorithms in Fig. 10. For any $\mathbf{v} \in [0, v_{\max}]^*$ and $(\mathbf{C}, \mathbf{k}, \pi) \leftarrow \mathsf{Coin}(\mathsf{pp}, \mathbf{v})$, we have $\mathsf{Cons}(\mathsf{pp}, \mathbf{C}, \mathbf{v}, \mathbf{k})$ with overwhelming probability due to Lemma 3. Moreover, correctness of SIG and Π implies that MkTx run on consistent $(\mathbf{C}, \mathbf{v}, \mathbf{k})$ and values

 $\hat{\mathbf{v}} \in [0, v_{\max}]^*$ with $\sum \hat{\mathbf{v}} \geq \sum \mathbf{v}$ produces a tx which is accepted by Ver with overwhelming probability and whose supply is the difference $\sum \mathbf{v} - \sum \hat{\mathbf{v}}$.

We now show that the protocol MW[COM, SIG, Π] described in Fig. 11 satisfies Definition 9. It is immediate that an empty ledger output by $\mathsf{Setup}(1^{\lambda}, v_{\max})$ verifies. As Mint invokes MkTx on empty inputs and output values \mathbf{v} , correctness of Mint follows from correctness of MkTx. Correctness of Send also follows from correctness of MkTx when the preconditions on the values, consistency of the coins and the supply, and $\sum \mathbf{v} - \sum \mathbf{v}' = \rho \in [0, v_{\max}]$ hold (note that $\mathsf{ptx.rmdr} = \rho$). Therefore, with overwhelming probability the pre-transaction is valid, and the change coins are consistent. Correctness of Agg is straightforward: it returns a transaction with the desired supply, input, and output coin list whose validity follows from correctness of SIG.Agg and Π .Ver and $\sum \mathbf{E}_0 + \sum \mathbf{E}_1 = \hat{\mathbf{C}}_0 - \sum \mathbf{C}_0 - \mathbb{C}\mathsf{mt}(\mathsf{cp}, s_0, 0) + \hat{\mathbf{C}}_1 - \sum \mathbf{C}_1 - \mathsf{Cmt}(\mathsf{cp}, s_1, 0) = \sum \hat{\mathbf{C}} - \sum \mathbf{C} - \mathsf{Cmt}(\mathsf{cp}, s_0 + s_1, 0)$, where the first equation follows from Ver(pp, tx_0) and Ver(pp, tx_0) and the second from the properties of cut-through.

For any adversary $\mathcal{A}_{\mathsf{Ldgr}}$ returning (Λ, tx) , if $\mathsf{Ver}(\mathsf{pp}, \Lambda) = \mathsf{true}$, then $\Lambda.\mathsf{in} = ()$ and Λ is valid when interpreted as a transaction. Since the input list of Λ is empty, $\mathsf{Ldgr}(\mathsf{pp}, \Lambda, \mathsf{tx}) = \mathsf{Agg}(\mathsf{pp}, \Lambda, \mathsf{tx})$ and so Ldgr is correct because Agg is.

Finally, we consider Rcv, which is slightly more involved. Consider an adversary $\mathcal{A}_{\mathsf{Rcv}}$ returning $(\mathsf{ptx}, \mathbf{v}'')$ with $\mathsf{ptx} = (\mathsf{tx}, \rho, k')$ and let $(\mathsf{tx}'', \mathbf{k}'') \leftarrow \mathsf{MW}.\mathsf{Rcv}(\mathsf{pp}, \mathsf{ptx}, \mathbf{v}'')$. First, the preconditions trivially guarantee that the output is not \bot . Consider the call $(\mathsf{tx}', \mathbf{k}'') \leftarrow \mathsf{MW}.\mathsf{MkTx}(\mathsf{pp}, (C', \rho, k'), \mathbf{v}'')$ inside MW.Rcv. We claim that with overwhelming probability, $(\mathsf{tx.in} || \mathsf{tx}'.\mathsf{in}) \cap (\mathsf{tx.out} || \mathsf{tx}'.\mathsf{out}) = (C')$. First, $\mathsf{tx.in} \cap \mathsf{tx.out} = ()$, as otherwise $\mathsf{Ver}(\mathsf{pp}, \mathsf{tx}) = \mathsf{false}$ and $\mathsf{Ver}(\mathsf{pp}, \mathsf{ptx}) = \mathsf{false}$. By definition of $\mathsf{MkTx}, \mathsf{tx}'.\mathsf{in} = (C')$ and by Lemma 3, $\mathsf{tx}'.\mathsf{out} \cap (\mathsf{tx.in} || (C')) = ()$ with overwhelming probability. Hence,

 $(\mathsf{tx.in} \parallel \mathsf{tx}'.\mathsf{in}) \cap (\mathsf{tx.out} \parallel \mathsf{tx}'.\mathsf{out}) = (C') \cap \mathsf{tx.out} = (C')$

and by correctness of Agg, C' is the only coin removed by cut-through during the call $tx'' \leftarrow MW.Agg(pp, tx, tx')$. Thus, the input coin list of tx'' is the same as that of ptx and the change is contained in the output coin list of tx''. The pre-conditions Ver(pp, ptx) and $\sum v'' = \rho$ imply that tx.sply = 0 and tx'.sply = 0, respectively. Hence, tx''.sply = 0 by correctness of Agg. Validity of tx'' and consistency of the new coins follow from correctness of Agg (and validity of the output of MkTx).

4.2 Security

We show that $MW[COM, SIG, \Pi]$ is inflation-resistant, resistant to coin theft and that it satisfies transaction indistinguishability.

Theorem 13 (Inflation-resistance (Def. 10)). Assume that (COM, SIG) is EUF-NZO-secure and that Π is zero-knowledge and simulation-extractable. Then the aggregate cash system MW[COM, SIG, Π] is secure against inflation. More precisely, for any v_{\max} and any p.p.t. adversary A, there exists a negligible function ν_A and p.p.t. adversaries \mathcal{B} , \mathcal{B}_{zk} and \mathcal{B}_{se} such that

$$\begin{split} \mathsf{Adv}^{\mathrm{infl}}_{\mathsf{MW},\mathcal{A}}(\lambda, v_{\max}) \\ &\leq \mathsf{Adv}^{\mathrm{euf-nzo}}_{\mathsf{COM},\mathsf{SIG},\mathcal{B}}(\lambda) + \mathsf{Adv}^{\mathrm{zk}}_{\mathsf{\Pi},\mathsf{R}_{v_{\max}},\mathcal{B}_{\mathrm{zk}}}(\lambda) + \mathsf{Adv}^{\mathrm{s-ext}}_{\mathsf{\Pi},\mathsf{R}_{v_{\max}},\mathcal{B}_{\mathrm{se}}}(\lambda) + \nu_{\mathcal{A}}(\lambda) \; . \end{split}$$

The full proof can be found in the full version [FOS18]; we give a sketch here. Inflation-resistance follows from EUF-NZO security and *extractability* of Π (we do not actually require *simulation*-extractability, but instead of formally defining extractability we simply relied on Definitions 7 and 8 implying it).

Consider an adversary \mathcal{A} in game INFL_{MW} in Fig. 7. To win the game, \mathcal{A} must return a valid ledger Λ , a valid ptx and **v** with

(i)
$$ptx.in \subseteq A.out$$
 and (ii) $\sum v = ptx.rmdr$

(otherwise Rcv and/or Ldgr return \perp). All coins in A.out, ptx.in and ptx.chg have valid range proofs: the former two in the ledger's kernel $K_A = (\pi_A, \mathbf{E}_A, \sigma_A)$ (by (i)), and ptx.chg in the kernel of \mathbf{tx}_{ptx} contained in ptx. From these proofs the reduction extracts the values $\mathbf{v}_{A.out}, \mathbf{v}_{ptx.in}, \mathbf{v}_{ptx.chg} \in [0, v_{max}]^*$ and keys $\mathbf{k}_{A.out}, \mathbf{k}_{ptx.in}, \mathbf{k}_{ptx.chg} \in \mathcal{K}_{pp}^*$ of every coin. We first argue that

(iii)
$$\sum \mathbf{v}_{\Lambda,\mathsf{out}} - \Lambda.\mathsf{sply} = 0$$
 and (iv) $\sum \mathbf{v}_{\mathsf{ptx.chg}} + \mathsf{ptx.rmdr} - \sum \mathbf{v}_{\mathsf{ptx.in}} = 0$.

If (iii) was not the case then $(v^* \coloneqq \sum \mathbf{v}_{A.out} - A.sply, k^* \coloneqq \sum \mathbf{k}_{A.out})$ would be a non-zero opening of the excess Exc of A. Since furthermore $\mathsf{Exc} = \sum \mathbf{E}_A$ and σ_A is valid for \mathbf{E}_A , the tuple $(\mathbf{E}_A, \sigma_A, (v^*, k^*))$ would be an EUF-NZO solution.

Likewise, a non-zero left-hand side of (iv) can be used together with the kernel of tx_{ptx} to break EUF-NZO. From (i)–(iv) we now get

$$\sum \mathbf{v} \stackrel{(ii)}{=} \mathsf{ptx.rmdr} \stackrel{(iv)}{=} \sum \mathbf{v}_{\mathsf{ptx.in}} - \sum \mathbf{v}_{\mathsf{ptx.chg}} \leq \sum \mathbf{v}_{\mathsf{ptx.in}} \stackrel{(i)}{\leq} \sum \mathbf{v}_{\Lambda.\mathsf{out}} \stackrel{(iii)}{=} \Lambda.\mathsf{sply} \;,$$

which contradicts the fact that \mathcal{A} won INFL_{MW}, as this requires $\sum \mathbf{v} > \Lambda$.sply. (The function $\nu_{\mathcal{A}}$ accounts for (iii) (or (iv)) only holding over \mathbb{Z}_p but not over \mathbb{Z} ; this would imply $|\Lambda.\text{out}| \geq p/v_{\text{max}}$, which can only happen with negligible probability $\nu_{\mathcal{A}}$ for a p.p.t. \mathcal{A} .)

Theorem 14 (Theft-resistance (Def. 11)). Assume that the pair (COM, SIG) is EUF-CRO-secure and that Π is zero-knowledge and simulation-extractable. Then the aggregate cash system MW[COM, SIG, Π] is secure against coin theft. More precisely, for any v_{\max} and any p.p.t. adversary \mathcal{A} , which, via its oracle calls, makes the challenger create at most $h_{\mathcal{A}}$ coins and whose queries (\mathbf{C}, \mathbf{v}') to SEND satisfy $|\mathbf{v}'| \leq n_{\mathcal{A}}$, there exists a negligible function ν , a p.p.t. adversary \mathcal{B} making a single signing query, and p.p.t. adversaries \mathcal{B}_{zk} and \mathcal{B}_{se} such that

$$\begin{split} &\mathsf{Adv}^{\mathrm{steal}}_{\mathsf{MW},\mathcal{A}}(\lambda, v_{\max}) \\ &\leq h_{\mathcal{A}}(\lambda) \cdot (\mathsf{Adv}^{\mathrm{euf-cro}}_{\mathsf{COM},\mathsf{SIG},\mathcal{B}}(\lambda) + \mathsf{Adv}^{\mathrm{zk}}_{\mathsf{\Pi},\mathsf{R}_{v_{\max}},\mathcal{B}_{\mathrm{zk}}}(\lambda) + \mathsf{Adv}^{\mathrm{s-ext}}_{\mathsf{\Pi},\mathsf{R}_{v_{\max}},\mathcal{B}_{\mathrm{se}}}(\lambda)) + \nu(\lambda) \;. \end{split}$$

The proof can be found in the full version [FOS18]. Here we give some proof intuition. We first assume that all coins created by the challenger are different. By Lemma 3 the probability $\nu(\lambda)$ that two coins collide is negligible.

Since in game STEAL the ledger is maintained by the challenger we have:

In order to win the game, the adversary must at some point *steal* some coin C from the challenger, by creating a transaction tx^* with \widetilde{C} among its inputs, that is, $tx^* = (s, \mathbf{C}, \widehat{\mathbf{C}}, (\pi, \mathbf{E}, \sigma))$ with $\widetilde{C} \in \mathbf{C}$. For tx^* to be accepted to the ledger, we must have:

- (ii) $\mathbf{C} \subseteq \Lambda$.out;
- (iii) tx^* is valid, meaning
 - (a) the signature σ verifies under key list **E**;
 - (b) $\sum \mathbf{E} = \sum \hat{\mathbf{C}} \sum \mathbf{C} \mathsf{Cmt}(\mathsf{cp}, s, 0);$
 - (c) all proofs π for coins $\hat{\mathbf{C}}$ are valid.

From (i), (ii) and (iii)(c) we have that all coins in **C** and $\hat{\mathbf{C}}$ have valid proofs, which means we can extract (except for \tilde{C} , as we will see later) their values **v** and $\hat{\mathbf{v}}$ and keys **k** and $\hat{\mathbf{k}}$. This means, we can write (iii)(b) as:

$$\sum \mathbf{E} = -\widetilde{C} + \operatorname{Cmt}(\operatorname{cp}, \underbrace{\sum \hat{\mathbf{v}} - \sum \mathbf{v} - s}_{=:v^*}, \underbrace{\sum \hat{\mathbf{k}} - \sum \mathbf{k}}_{=:k^*}).$$
(5)

Now, if we had set $\tilde{C} = C^*$ with C^* a challenge for EUF-CRO then (iii)(a) and Eq. (5) together would imply that $(\mathbf{E}, \sigma, (v^*, k^*))$ is a solution for C^* in EUF-CRO. So the basic proof idea is to embed a challenge C^* as one of the honest coins \tilde{C} created in the system and hope that the adversary will steal \tilde{C} . When \tilde{C} is first created, it can be during a call to MINT, SEND or RECEIVE, each of which will create a transaction tx using MW.MkTx; we thus set tx.out $[j] = \tilde{C}$ for some j. Now tx must contain a range proof for \tilde{C} , which we produce using the zero-knowledge simulator, and a signature under verification key

$$\sum \text{tx.out} - \sum \text{tx.in} = \left(\sum_{i \neq j} \text{tx.out}[i] - \sum \text{tx.in}\right) + \widetilde{C} .$$
(6)

The coin keys of tx.in are input to MW.MkTx and those of $(tx.out[i])_{i\neq j}$ are created by it. So we know the secret key a for the expression in parentheses in (6) and can therefore make a query SIGN'(a) to the related-key signing oracle to obtain the signature.

While this shows that simulating the creation of coin \widehat{C} is easily dealt with, what complicates the proof is when the adversary queries $\text{SEND}(\mathbf{C}, \mathbf{v}')$ with $\widetilde{C} \in \mathbf{C}$, which should produce a pre-transaction $\widetilde{\text{ptx}}$. Since \widetilde{C} is a (say the *j*-th) input of $\widetilde{\text{ptx}}$, this would require a signature related to $-C^*$ for which we cannot use the SIGN' oracle. Instead, we pick one random, say the *i*-th, change coin \overline{C} and embed the challenge C^* in \overline{C} as well. (If there are no change coins, we abort; we justify this below.) To complete $\widetilde{\text{ptx}}$, we now need a signature for key

$$\sum_{i\neq \tilde{i}} \operatorname{tx.out}[i] + \overline{C} - \sum_{i\neq \tilde{i}} \operatorname{tx.in}[i] - \widetilde{C}$$
,

and since the two occurrences of C^* cancel out, the simulation knows the signing key of the above expression. (The way the reduction actually embeds C^* in

26

a coin \widetilde{C} which in the game is supposed to have value v is by setting $\widetilde{C} \coloneqq$ $C^* + \mathsf{Cmt}(\mathsf{cp}, v, k).)$

Let's look again at the transaction tx^* with which the adversary steals \widetilde{C} : for tx^* to actually steal \widetilde{C} , we must have $\widetilde{\mathsf{ptx}}.\mathsf{chg} \not\subseteq \mathsf{tx}^*.\mathsf{out}$ (where $\widetilde{\mathsf{ptx}}$ was the pre-transaction sending \widetilde{C}) as otherwise tx^* could simply be a transaction that completes $\widetilde{\mathsf{ptx}}$. If we were lucky when choosing \overline{C} and \overline{C} is one of the coins that the adversary did not include in tx*.out, then tx* satisfies all the properties in (iii) above, in particular (5), meaning we have a solution to EUF-CRO.

Unfortunately, there is one more complication: the adversary could have included \overline{C} as one of the *inputs* of tx^{*}, in which case we cannot solve EUF-CRO, since (5) would be of the form

$$\sum \mathbf{E} = -2 \cdot \hat{C} + \mathsf{Cmt}(\mathsf{cp}, v^*, k^*) .$$
⁽⁷⁾

But intuitively, in this case the adversary has also "stolen" \overline{C} and if we had randomly picked \overline{C} when first embedding C^* then we could also solve EUF-CRO.

Unfortunately, "stealing" a change output that has not been added to Hon yet does not constitute a win according to game STEAL. To illustrate the issue, consider an adversary making the following queries (where all coins C_1 through C_5 have value 1), which the sketched reduction cannot use to break EUF-CRO:

- LEDGER(tx) with $tx = (2, (), (C_1, C_2), K) \rightarrow A.out = (C_1, C_2), Hon = ()$
- MINT((1)), creating coin C_3 $\rightarrow \Lambda$.out = (C_1, C_2, C_3) , Hon = (C_3) - SEND $((C_3), (1, 1))$, creating C_4, C_5 $\rightarrow \Lambda$.out = (C_1, C_2, C_3) , Hon = (C_3) - LEDGER $((0, (C_1), (C_4), K'))$
- LEDGER $((0, (C_2), (C_5), K''))$
- LEDGER $((0, (C_3, C_4, C_5), (C_6), K^*) =: tx^*) \rightarrow \Lambda.out = (C_6), Hon = (C_3)$

Note that all calls $LEDGER(tx_i)$ leave Hon unchanged, since for ptx created during the SEND call we have $(C_4, C_5) = \mathsf{ptx.chg} \not\subseteq \mathsf{tx}_i.\mathsf{out}$. The adversary wins the game since it stole C_3 , so the reduction must have set $\widetilde{C} = C_3$; moreover, in order to simulate the SEND query, it must set \overline{C} to C_4 or C_5 . But now tx^* is of the form as in (7), which the reduction cannot use to break EUF-CRO.

The solution to making the reduction always work is to actually prove a stronger security notion, where the adversary not only wins when it spends a coin from Hon (in a way that is not simply a completion of a pre-transaction obtained from SEND), but also if the adversary spends a change output which has not been included in Hon yet. Let us denote the set of all such coins by Chg and stress that if the adversary steals a coin from Chg, which the reduction guessed correctly, then there exists only one coin with the challenge embedded in it and so the situation as in (7) cannot arise.

In the proof of this strengthened notion the reduction now guesses the first coin that was stolen from Chg or Hon and if both happen in the same transaction it only accepts a coin from Chg as the right guess. (In the example above, the guesses $\widetilde{C} = C_4$ or $\widetilde{C} = C_5$ would be correct.)

It remains to argue that the reduction can abort when the adversary makes a query $SEND(\mathbf{C}, ())$ with $C \in \mathbf{C}$: in this case its guess C must have been wrong: for ptx returned by this oracle call we have $ptx.chg \subseteq tx.out$ for any tx, so ptx.inand thus \widetilde{C} is removed from Hon whenever \mathcal{A} makes a LEDGER call (which it must make in order to steal a coin), assuming w.l.o.g. that the adversary stops as soon as it has made its stealing transaction.

Finally, what happens if the adversary makes a query $\text{SEND}(\mathbf{C}, \mathbf{v}')$ with $\overline{C} \in \mathbf{C}$? We could embed the challenge a *third* time, in one of the change coins of the pre-transaction we need to simulate. Instead of complicating the analysis, the reduction can actually safely abort if such a query is made, since its guess must have been wrong: SEND must be queried on honest coins, so we must have $\overline{C} \in \text{Hon}$. As only the LEDGER oracle can add existing coins to Hon, it must have been queried with some tx such that $\widetilde{\text{ptx.chg}} \subseteq \text{tx.out}$, as then $\widetilde{\text{ptx.chg}} \ni \overline{C}$ would be added to Hon; however at the same time this removes $\widetilde{\text{ptx.in}} \ni \overline{C}$ from Hon, which means that \widetilde{C} cannot be the coin the adversary steals, because \widetilde{C} cannot be included in Hon a second time. (As just analyzed for \overline{C} above, the only way to add an existing coin \widetilde{C} to Hon is if \widetilde{C} was created as change during a query $\text{ptx} \leftarrow \text{SEND}(\mathbf{C}, \mathbf{v})$. But since \widetilde{C} had already been in Hon, there must have been a call LEDGER(tx) with tx completing ptx, after which ptx is discarded from the list Ptx of pre-transactions awaiting inclusion in the ledger; see Fig. 8).

Theorem 15 (Transaction indistinguishability (Def. 12)). Assume that COM is a homomorphic hiding commitment scheme, SIG a compatible signature scheme, and Π is a zero-knowledge proof system. Then the aggregate cash system MW[COM, SIG, Π] is transaction-indistinguishable. More precisely, for any v_{max} and any p.p.t. adversary \mathcal{A} which makes at most $q_{\mathcal{A}}$ queries to its oracle TX, there exist p.p.t. adversaries \mathcal{B}_{zk} and \mathcal{B}_{hid} such that

$$\mathsf{Adv}^{\mathrm{tx-ind}}_{\mathsf{MW},\mathcal{A}}(\lambda, v_{\max}) \leq \mathsf{Adv}^{\mathrm{zk}}_{\mathsf{\Pi},\mathsf{R}_{v_{\max}},\mathcal{B}_{\mathrm{zk}}}(\lambda) + q_{\mathcal{A}} \cdot \mathsf{Adv}^{\mathrm{hid}}_{\mathsf{COM},\mathcal{B}_{\mathrm{hid}}}(\lambda) \ .$$

The proof can be found in the full version [FOS18] and intuitively follows from commitments being hiding and proofs zero-knowledge, and that the coin $C^* = \text{Cmt}(\text{cp}, \rho, k^*)$ that is contained in a pre-transaction together with its key k^* (C^* is then spent by Rcv and eliminated from the final transaction by cut-through) acts as a randomizer between E' and E''. We moreover use the fact that because COM is homomorphic, for any values with $\sum \mathbf{v}'_0 + \sum \mathbf{v}''_0 - \sum \mathbf{v}_0 =$ $\sum \mathbf{v}'_1 + \sum \mathbf{v}''_1 - \sum \mathbf{v}_1$, the tuple

$$\left(\mathbf{C} \coloneqq \mathsf{Cmt}(\mathsf{cp}, \mathbf{v}_b, \mathbf{k}), \mathbf{C}' \coloneqq \mathsf{Cmt}(\mathsf{cp}, \mathbf{v}_b', \mathbf{k}') \,\|\, \mathbf{C}'' \coloneqq \mathsf{Cmt}(\mathsf{cp}, \mathbf{v}_b'', \mathbf{k}''), \overline{k}\right)$$
(8)

hides the bit b even though $\overline{k} \coloneqq \sum \mathbf{k}' + \sum \mathbf{k}'' - \sum \mathbf{k}$ is revealed.

We prove Theorem 15 by showing that transactions returned by oracle Tx when b = 0 are indistinguishable from transactions returned when b = 1. These are of the form

$$\mathsf{tx}^* = \left(0, \mathbf{C}, \mathbf{C}' \| \mathbf{C}'', (\boldsymbol{\pi}' \| \boldsymbol{\pi}'', (E', E''), \sigma^*)\right), \tag{9}$$

where $E' = \sum \mathbf{C}' + C^* - \sum \mathbf{C}$ and $E'' = \sum \mathbf{C}'' - C^*$, and σ^* is an aggregation of signatures σ' and σ'' under keys $r' \coloneqq \sum \mathbf{k}' + k^* - \sum \mathbf{k}$ and $r'' \coloneqq \sum \mathbf{k}'' - k^*$, respectively. We thus have $E' = \mathsf{Cmt}(\mathsf{cp}, 0, r')$ and $E'' = \mathsf{Cmt}(\mathsf{cp}, 0, r'')$.

Together with the fact that k^* is uniform and never revealed, indistinguishability of (8) implies indistinguishability of tx^{*}, as we can create a tuple as in (9) from a tuple as in (8): simulate the proofs $\pi' \parallel \pi''$, choose a random r^* and set $E' = \text{Cmt}(\text{cp}, 0, r^*)$, $E'' = \text{Cmt}(\text{cp}, 0, \overline{k} - r^*)$, $\sigma' \leftarrow \text{Sign}(\text{sp}, r^*, \varepsilon)$ and $\sigma'' \leftarrow \text{Sign}(\text{sp}, r^*, \varepsilon)$ and aggregate σ' and σ'' .

5 Instantiations

We consider two instantiations of our system MW. In both of them the commitment scheme is instantiated by the Pedersen scheme PDS. The signature scheme is instantiated either by the Schnorr signature scheme SCH or by the BLS signature scheme BLS. We recall these three schemes, as well as the Discrete Logarithm and the CDH assumptions, on which they rely, in the full version [FOS18]. In contrast to COM and SIG, there are no compatibility or joint security requirements for the proof system. In practice, the Bulletproofs scheme [BBB⁺18] could be used, although under which assumptions it satisfies Definition 8 remains to be studied.

Security of Pedersen-Schnorr. Our security proofs for the combination Pedersen-Schnorr are in the random oracle model and make use of the standard rewinding technique of Pointcheval and Stern [PS96] for extracting discrete logarithms from a successful adversary. This requires some particular care since in both the EUF-NZO and the EUF-CRO games, the adversary can output multiple signatures for distinct public keys for which the reduction must extract discrete logarithms. Fortunately, a generalized forking lemma by Bagherzandi, Cheon, and Jarecki [BCJ08] shows that for Schnorr signatures, one can perform multiple extractions efficiently. From this, we can prove the following two lemmas, whose proofs can be found in the full version [FOS18].

Lemma 16. The pair (PDS, SCH) is EUF-NZO-secure in the random oracle model under the DL assumption. More precisely, for any p.p.t. adversary \mathcal{A} making at most q_h random oracle queries and returning a forgery for a list of size at most N, there exists a p.p.t. adversary \mathcal{B} running in time at most $8N^2q_h/\delta_{\mathcal{A}} \cdot \ln(8N/\delta_{\mathcal{A}}) \cdot t_{\mathcal{A}}$, where $\delta_{\mathcal{A}} = \operatorname{Adv}_{\mathsf{PDS},\mathsf{SCH},\mathcal{A}}(\lambda)$ and $t_{\mathcal{A}}$ is the running time of \mathcal{A} , such that

 $\mathsf{Adv}^{\mathrm{euf-nzo}}_{\mathsf{PDS},\mathsf{SCH},\mathcal{A}}(\lambda) \leq 8 \cdot \mathsf{Adv}^{\mathrm{dl}}_{\mathsf{GrGen},\mathcal{B}}(\lambda) \;.$

Lemma 17. The pair (PDS, SCH) is EUF-CRO-secure in the random oracle model under the DL assumption. More precisely, for any p.p.t. adversary \mathcal{A} making at most q_h random oracle queries and q_s signature queries, returning a forgery for a list of size at most N, and such that $\delta_{\mathcal{A}} = \operatorname{Adv}_{\mathsf{PDS},\mathsf{SCH},\mathcal{A}}^{\operatorname{euf-cro}}(\lambda) \geq 2q_s/p$, there exists a p.p.t. adversary \mathcal{B} running in time at most $16N^2(q_h + q_s)/\delta_{\mathcal{A}} \cdot \ln(16N/\delta_{\mathcal{A}}) \cdot t_{\mathcal{A}}$, where $t_{\mathcal{A}}$ is the running time of \mathcal{A} , such that

$$\mathsf{Adv}_{\mathsf{PDS},\mathsf{SCH},\mathcal{A}}^{\mathrm{euf-cro}}(\lambda) \leq 8 \cdot \mathsf{Adv}_{\mathsf{GrGen},\mathcal{B}}^{\mathrm{dl}}(\lambda) + \frac{q_s + 8}{p} \; .$$

Corollary 18. $MW[PDS, SCH, \Pi]$ with Π zero-knowledge and simulation-extractable is inflation-resistant and theft-resistant in the random oracle model under the DL assumption.

Security of Pedersen-BLS. The security proofs for the Pedersen-BLS pair are also in the random oracle model but do not use rewinding. They are reminiscent of the proof of [BGLS03, Theorem 3.2] and can be found in the full version [FOS18]. Note that EUF-CRO-security is only proved for adversaries making a constant number of signing queries. Fortunately, adversary \mathcal{B} constructed in Theorem 14 makes a single signing query.

Lemma 19. The pair (PDS, BLS) is EUF-NZO-secure in the random oracle model under the CDH assumption. More precisely, for any p.p.t. adversary \mathcal{A} making at most q_h random oracle queries and returning a forgery for a list of size at most N, there exists a p.p.t. adversary \mathcal{B} running in time at most $t_{\mathcal{A}} + (q_h + N + 2)t_M$, where $t_{\mathcal{A}}$ is the running time of \mathcal{A} and t_M is the time of a scalar multiplication in \mathbb{G} , such that

$$\operatorname{\mathsf{Adv}}_{\operatorname{\mathsf{GrGen}},\mathcal{B}}^{\operatorname{cdh}}(\lambda) = \operatorname{\mathsf{Adv}}_{\operatorname{\mathsf{PDS}},\operatorname{\mathsf{BLS}},\mathcal{A}}^{\operatorname{euf-nzo}}(\lambda)$$
.

Lemma 20. The pair (PDS, BLS) is EUF-CRO-secure in the random oracle model under the CDH assumption. More precisely, for any p.p.t. adversary \mathcal{A} making at most q_h random oracle queries and $q_s = O(1)$ signature queries and returning a forgery for a list of size at most N, there exists a p.p.t. adversary \mathcal{B} running in time at most $t_{\mathcal{A}} + (2q_h + 3q_s + N + 2)t_M$, where $t_{\mathcal{A}}$ is the running time of \mathcal{A} and t_M is the time of a scalar multiplication in \mathbb{G} , such that

$$\mathsf{Adv}^{\mathrm{cdh}}_{\mathsf{GrGen},\mathcal{B}}(\lambda) \geq \frac{1}{4 \cdot (2N)^{q_s}} \cdot \mathsf{Adv}^{\mathrm{euf-cro}}_{\mathsf{PDS},\mathsf{BLS},\mathcal{A}}(\lambda) \ .$$

Corollary 21. MW[PDS, BLS, Π] with Π zero-knowledge and simulation-extractable is inflation-resistant and theft-resistant in the random oracle model under the CDH assumption.

Acknowledgements. The first author is supported by the French ANR *EfTrEC* project (ANR-16-CE39-0002) and the *MSR-Inria Joint Centre*. The second author is supported by ERC grant 639554 (project *aSCEND*).

References

- [AKR⁺13] Elli Androulaki, Ghassan Karame, Marc Roeschlin, Tobias Scherer, and Srdjan Capkun. Evaluating user privacy in Bitcoin. In FC 2013, pp. 34–51.
- [Bac13] Adam Back. Bitcoins with homomorphic value (validatable but encrypted), October 2013. BitcoinTalk post, https://bitcointalk.org/index.php? topic=305791.0.

30

- [BBB⁺18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In S&P 2018, pp. 315–334.
- [BBSU12] Simon Barber, Xavier Boyen, Elaine Shi, and Ersin Uzun. Bitter to Better
 How to Make Bitcoin a Better Currency In FC 2012, pp. 399–414.
- [BCG⁺14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In S&P 2014, pp. 459–474.
- [BCJ08] Ali Bagherzandi, Jung Hee Cheon, and Stanislaw Jarecki. Multisignatures secure under the discrete logarithm assumption and a generalized forking lemma. In ACM CCS 08, pp. 449–458.
- [BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted signatures from bilinear maps. In *EUROCRYPT 2003*, pp. 416–432.
- [BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In ASIACRYPT 2001, pp. 514–532.
- [BNM⁺14] Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy Clark, Joshua A. Kroll, and Edward W. Felten. Mixcoin: Anonymity for bitcoin with accountable mixes. In FC 2014, pp. 486–504.
- [BNN07] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted aggregate signatures. In *ICALP 2007*, pp. 411–422.
- [BPW12] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove yourself: Pitfalls of the Fiat-Shamir heuristic and applications to Helios. In ASIACRYPT 2012, pp. 626–643.
- [BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In *ACM CCS 93*, pp. 62–73.
- [DDO⁺01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit Sahai. Robust non-interactive zero knowledge. In *CRYPTO 2001*, pp. 566–598.
- [FOS18] Georg Fuchsbauer, Michele Orrù, and Yannick Seurin. Aggregate cash systems: A cryptographic investigation of Mimblewimble. Cryptology ePrint Archive, Report 2018/1039, 2018. https://eprint.iacr.org/2018/1039.
- [GCKG14] Arthur Gervais, Srdjan Capkun, Ghassan O. Karame, and Damian Gruber. On the privacy provisions of bloom filters in lightweight bitcoin clients. In ACSAC 2014, pp. 326–335.
- [Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures. In ASIACRYPT 2006, pp. 444–459.
- [HAB⁺17] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and Sharon Goldberg. TumbleBit: An untrusted bitcoin-compatible anonymous payment hub. In NDSS 2017.
- [Jed16] Tom Elvis Jedusor. Mimblewimble, 2016. Available at https://download. wpsoftware.net/bitcoin/wizardry/mimblewimble.txt.
- [KKM14] Philip Koshy, Diana Koshy, and Patrick McDaniel. An analysis of anonymity in bitcoin using P2P network traffic. In FC 2014, pp. 469–485.
- [LMRS04] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequential aggregate signatures from trapdoor permutations. In *EURO-CRYPT 2004*, pp. 74–90.
- [Max13a] Gregory Maxwell. CoinJoin: Bitcoin privacy for the real world, August 2013. BitcoinTalk post, https://bitcointalk.org/index.php?topic=279249.0.
- [Max13b] Gregory Maxwell. Transaction cut-through, August 2013. BitcoinTalk post, https://bitcointalk.org/index.php?topic=281848.0.

- [Max15] Gregory Maxwell. Confidential Transactions, 2015. Available at https: //people.xiph.org/~greg/confidential_values.txt.
- [MGGR13] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin: Anonymous distributed E-cash from Bitcoin. In S&P 2013, pp. 397–411.
- [MPJ⁺13] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy, Geoffrey M. Voelker, and Stefan Savage. A fistful of bitcoins: characterizing payments among men with no names. In *Internet Measure*ment Conference, IMC 2013, pp. 127–140.
- [Nak08] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008. Available at http://bitcoin.org/bitcoin.pdf.
- [Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In *CRYPTO'91*, pp. 129–140.
- [Poe16] Andrew Poelstra. Mimblewimble, 2016. Available at https://download. wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf.
- [PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In EUROCRYPT'96, pp. 387–398.
- [RMK14] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. CoinShuffle: Practical decentralized coin mixing for bitcoin. In *ESORICS 2014*, pp. 345–364.
- [RS13] Dorit Ron and Adi Shamir. Quantitative analysis of the full Bitcoin transaction graph. In *FC 2013*, pp. 6–24.
- [RTRS18] Tim Ruffing, Sri Aravinda Thyagarajan, Viktoria Ronge, and Dominique Schröder. Burning Zerocoins for Fun and for Profit: A Cryptographic Denial-of-Spending Attack on the Zerocoin Protocol. IACR Cryptology ePrint Archive, Report 2018/612, 2018.
- [Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–174, 1991.
- [SMD14] Amitabh Saxena, Janardan Misra, and Aritra Dhar. Increasing Anonymity in Bitcoin. In 1st Workshop on Bitcoin Research - Bitcoin 2014, pp. 122–139.
 [SZ16] Yonatan Sompolinsky and Aviv Zohar. Bitcoin's Security Model Revisited, 2016. Manuscript available at http://arxiv.org/abs/1605.09193.
- [vS13] Nicolas van Saberhagen. CryptoNote v 2.0, 2013. Manuscript available at https://cryptonote.org/whitepaper.pdf.