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Abstract. Distributional collision resistance is a relaxation of collision
resistance that only requires that it is hard to sample a collision (x, y)
where x is uniformly random and y is uniformly random conditioned on
colliding with x. The notion lies between one-wayness and collision re-
sistance, but its exact power is still not well-understood. On one hand,
distributional collision resistant hash functions cannot be built from one-
way functions in a black-box way, which may suggest that they are
stronger. On the other hand, so far, they have not yielded any appli-
cations beyond one-way functions.
Assuming distributional collision resistant hash functions, we construct
constant-round statistically hiding commitment scheme. Such commit-
ments are not known based on one-way functions, and are impossible to
obtain from one-way functions in a black-box way. Our construction re-
lies on the reduction from inaccessible entropy generators to statistically
hiding commitments by Haitner et al. (STOC ’09). In the converse direc-
tion, we show that two-message statistically hiding commitments imply
distributional collision resistance, thereby establishing a loose equiva-
lence between the two notions.
A corollary of the first result is that constant-round statistically hid-
ing commitments are implied by average-case hardness in the class SZK
(which is known to imply distributional collision resistance). This impli-
cation seems to be folklore, but to the best of our knowledge has not
been proven explicitly. We provide yet another proof of this implication,
which is arguably more direct than the one going through distributional
collision resistance.

1 Introduction

Distributional collision resistant hashing (dCRH), introduced by Dubrov and
Ishai [9], is a relaxation of the notion of collision resistance. In (plain) collision
resistance, it is guaranteed that no efficient adversary can find any collision given
a random hash function in the family. In dCRH, it is only guaranteed that no
efficient adversary can sample a random collision given a random hash function
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in the family. More precisely, given a random hash function h from the family,
it is computationally hard to sample a pair (x, y) such that x is uniform and
y is uniform in the preimage set h−1(x) = {z : h(x) = h(z)}. This hardness is
captured by requiring that the adversary cannot get statistically-close to this
distribution over collisions.4

The power of dCRH. Intuitively, the notion of dCRH seems quite weak. The
adversary may even be able to sample collisions from the set of all collisions, but
only from a skewed distribution, far from the random one. Komargodski and
Yogev [26] show that dCRH can be constructed assuming average-case hardness
in the complexity class statistical zero-knowledge (SZK), whereas a similar im-
plication is not known for multi-collision resistance.5 (let alone plain collision
resistance). This can be seen as evidence suggesting that dCRH may be weaker
than collision resistance, or even multi-collision resistance [24,4,6,25].

Furthermore, dCRH has not led to the same cryptographic applications as
collision resistance, or even multi-collision resistance. In fact, dCRH has no
known applications beyond those implied by one-way functions.

At the same time, dCRH is not known to follow from one-way functions, and
actually, cannot follow based on black-box reductions [34]. In fact, it can even
be separated from indistinguishability obfuscation (and one-way functions) [2].
Overall, we are left with a significant gap in our understanding of the power of
dCRH:

Does the power of dCRH go beyond one-way functions?

1.1 Our Results

We present the first application of dCRH that is not known from one-way func-
tions and is provably unachievable from one-way functions in a black-box way.

Theorem 1. dCRH implies constant-round statistically hiding commitment scheme.

Such commitment schemes cannot be constructed from one-way functions (or
even permutations) in a black-box way due to a result of Haitner, Hoch, Reingold
and Segev [15]. They show that the number of rounds in such commitments must
grow quasi-linearly in the security parameter.

The heart of Theorem 1 is a construction of an inaccessible-entropy genera-
tor [18,17] from dCRH.

An implication of the above result is that constant-round statistically hiding
commitments can be constructed from average-case hardness in SZK. Indeed, it
is known that such hardness implies the existence of a dCRH [26].

4 There are some subtleties in defining this precisely. The definition we use differs from
previous ones [9,21,26]. We elaborate on the exact definition and the difference in
the technical overview below and in Section 3.4.

5 Multi-collision resistance is another relaxation of collision resistance, where it is
only hard to find multiple elements that all map to the same image. Multi-collision
resistance does not imply dCRH in a black-box way [25], but Komargodski and
Yogev [26] give a non-black-box construction.
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Corollary 1. A Hard-on-average problem in SZK implies a constant-round sta-
tistically hiding commitment scheme.

The statement of Corollary 1 has been treated as known in several previous
works (c.f. [18,10,5]), but a proof of this statement has so far not been published
or (to the best of our knowledge) been publicly available. We also provide an
alternative proof of this statement (and in particular, a different commitment
scheme) that does not go through a construction of a dCRH, and is arguably
more direct.

A limit on the power of dCRH. We also show a converse connection between
dCRH and statistically hiding commitments. Specifically, we show that any two-
message statistically hiding commitment implies a dCRH function family.

Theorem 2. Any two-message statistically hiding commitment scheme implies
dCRH.

This establishes a loose equivalence between dCRH and statistically hiding
commitments. Indeed, the commitments we construct from dCRH require more
than two messages. Interestingly, we can even show that such commitments imply
a stronger notion of dCRH where the adversary’s output distribution is not only
noticeably far from the random collision distribution, but is (1− negl(n))-far.

1.2 Related Work on Statistically Hiding Commitments

Commitment schemes, the digital analog of sealed envelopes, are central to cryp-
tography. More precisely, a commitment scheme is a two-stage interactive proto-
col between a sender S and a receiver R. After the commit stage, S is bound to
(at most) one value, which stays hidden from R, and in the reveal stage R learns
this value. The immediate question arising is what it means to be “bound to”
and to be “hidden”. Each of these security properties can come in two main fla-
vors, either computational security, where a polynomial-time adversary cannot
violate the property except with negligible probability, or the stronger notion
of statistical security, where even an unbounded adversary cannot violate the
property except with negligible probability. However, it is known that there do
not exist commitment schemes that are simultaneously statistically hiding and
statistically binding.

There exists a one-message (i.e., non-interactive) statistically binding com-
mitment schemes assuming one-way permutations (Blum [7]). From one-way
functions, such commitments can be achieved by a two-message protocol (Naor [28]
and H̊astad, Impagliazzo, Levin and Luby [22]).

Statistically hiding commitments schemes have proven to be somewhat more
difficult to construct. Naor, Ostrovsky, Venkatesan and Yung [29] gave a sta-
tistically hiding commitment scheme protocol based on one-way permutations,
whose linear number of rounds matched the lower bound of [15] mentioned above.
After many years, this result was improved by Haitner, Nguyen, Ong, Reingold
and Vadhan [16] constructing such commitment based on the minimal hardness
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assumption that one-way functions exist. The reduction of [16] was later simpli-
fied and made more efficient by Haitner, Reingold, Vadhan and Wee [18,17] to
match, in some settings, the round complexity lower bound of [15]. Constant-
round statistically hiding commitment protocols are known to exist based on
families of collision resistant hash functions [30,8,20]. Recently, Berman, Deg-
wekar, Rothblum and Vasudevan [4] and Komargodski, Naor and Yogev [25]
constructed constant-round statistically hiding commitment protocols assuming
the existence of multi -collision resistant hash functions.

Constant-round statistically hiding commitments are a basic building block
in many fundamental applications. Two prominent examples are constructions of
constant-round zero-knowledge proofs for all NP (Goldreich and Kahan [12]) and
constant-round public-coin statistical zero-knowledge arguments for NP (Barak [3],
Pass and Rosen [33]).

Statistically hiding commitment are also known to be tightly related to the
hardness of the class of problems that posses a statistical zero-knowledge pro-
tocol, i.e., the class SZK. Ong and Vadhan [31] showed that a language in NP
has a zero-knowledge protocol if and only if the language has an “instance-
dependent” commitment scheme. An instance-dependent commitment scheme
for a given language is a commitment scheme that can depend on an instance of
the language, and where the hiding and binding properties are required to hold
only on the YES and NO instances of the language, respectively.

1.3 Directions for Future Work

The security notions of variants of collision resistance, including plain collision
resistance and multi-collision resistance, can be phrased in the language of en-
tropy. For example, plain collision resistance requires that once a hash value y
is fixed the (max) entropy of preimages that any efficient adversary can find is
zero. In multi-collision resistance, it may be larger than zero, even for every y,
but still bounded by the size of allowed multi collisions. In distributional collision
resistance, the (Shannon) entropy is close to maximal.

Yet, the range of applications of collision resistance (or even multi-collision
resistance) is significantly larger than those of distributional collision resistance.
Perhaps the most basic such application is succinct commitment protocols which
are known from plain/multi-collision resistance but not from distributional col-
lision resistance (by succinct we mean that the total communication is shorter
than the string being committed to). Thus, with the above entropy perspective
in mind, a natural question is to characterize the full range or parameters be-
tween distributional and plain collision resistance and understand for each of
them what are the applications implied. A more concrete question is to find the
minimal notion of security for collision resistance that implies succinct commit-
ments.

A different line of questions concerns understanding better the notion of dis-
tributional collision resistance and constructing it from more assumptions. Ko-
margodski and Yogev constructed it from multi-collision resistance and from the
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average-case hardness of SZK. Can we construct it, for example, from the mul-
tivariate quadratic (MQ) assumption [27] or can we show an attack for random
degree 2 mappings? Indeed, we know that random degree 2 mappings cannot be
used for plain collision resistant hashing [1, Theorem 5.3].

2 Technical Overview

In this section, we give an overview of our techniques. We start with a more
precise statement of the definition of dCRH and a comparison with previous
versions of its definition.

A dCRH is a family of functions Hn = {h : {0, 1}n → {0, 1}m}. (The func-
tions are not necessarily compressing.) The security guarantee is that there exists
a universal polynomial p(·) such that for every efficient adversary A it holds that

∆ ((h,A(1n, h)), (h,Col(h)) ≥ 1

p(n)
,

where ∆ denotes statistical distance, h ← Hn is chosen uniformly at random,
and Col is a random variable that is sampled in the following way: Given h,
first sample x1 ← {0, 1}n uniformly at random and then sample x2 uniformly
at random from the set of all preimages of x1 relative to h (namely, from the
set {x : h(x) = h(x1)}). Note that Col may not be efficiently samplable and
intuitively, the hardness of dCRH says that there is no efficient way to sample
from Col, even approximately.

Our definition is stronger than previous definitions of dCRH [9,21,26] by
that we require the existence of a universal polynomial p(·), whereas previous
definitions allow a different polynomial per adversary. Our modification seems
necessary to get non-trivial applications of dCRH, as the previous definitions are
not known to imply one-way functions. In contrast, our notion of dCRH implies
distributional one-way functions which, in turn, imply one-way functions [23]
(indeed, the definition of distributional one-way functions requires a universal
polynomial rather than one per adversary).6 We note that previous constructions
of dCRH (from multi-collision resistance and SZK-hardness) [26] apply to our
stronger notion as well.

2.1 Commitments from dCRH and Back

We now describe our construction of constant-round statistically hiding com-
mitments from dCRH. To understand the difficulty, let us recall the standard
approach to constructing statistically hiding commitments from (fully) collision
resistant hash functions [30,8,20]. Here to commit to a bit b, we hash a random
string x, and output (h(x), s, b⊕Exts(x)), where s is a seed for a strong random-
ness extractor Ext and b is padded with a (close to) random bit extracted from

6 The previous definition is known to imply a weaker notion of distributional one-way
functions (with a different polynomial bound per each adversary) [21], which is not
known to imply one-way functions.
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x. When h is collision resistant, x is computationally fixed and thus so is the bit
b. However, for a dCRH h, this is far from being the case: for any y, the sender
might potentially be able to sample preimages from the set of all preimages.

The hash h(x), however, does yield a weak binding guarantee. For simplicity
of exposition, let us assume that any y ∈ {0, 1}m has exactly 2k preimages under
h in {0, 1}n. Then, for a noticeable fraction of commitments y, the adversary
cannot open y to a uniform x in the preimage set h−1(y). In particular, the
adversary must choose between two types of entropy losses: it either outputs a
commitment y of entropy m′ noticeably smaller than m, or after the commit-
ment, it can only open to a value x of entropy k′ noticeably smaller than k. One
way or the other, in total m′ + k′ must be noticeably smaller than n = m + k.
This naturally leads us to the notion of inaccessible entropy defined by Haitner,
Reingold, Vadhan and Wee [18,17].

Let us briefly recall what inaccessible entropy is (see Section 4.1 for a precise
definition). The entropy of a random variable X is a measure of “the amount
of randomness” that X contains. The notion of (in)accessible entropy measures
the feasibility of sampling high-entropy strings that are consistent with a given
random process. Consider the two-block generator (algorithm) G that samples
x← {0, 1}n, and then outputs y = h(x) and x. The real entropy of G is defined
as the entropy of the generator’s (total) output in a random execution, and
is clearly equal to n, the length of x. The accessible entropy of G measures the
entropy of these output blocks from the point of view of an efficient G-consistent
generator, which might act arbitrarily, but still outputs a value in the support
of G.

Assume for instance that h had been (fully) collision resistant. Then from the

point of view of any efficient G-consistent generator G̃, conditioned on its first
block y, and its internal randomness, its second output block is fixed (otherwise,
G can be used for finding a collision). In other words, while the value of x given
y may have entropy k = n −m, this entropy is completely inaccessible for an
efficient G-consistent generator. (Note that we do not measure here the entropy

of the output blocks of G̃, which clearly can be as high as the real entropy of G
by taking G̃ = G. Rather, we measure the entropy of the block from G̃’s point
of view, and in particular, the entropy of its second block given the randomness
used for generating the first block.). Haitner et al. show that any noticeable
gap between the real entropy and the inaccessible entropy of such an efficient
generator can be leveraged for constructing statistically hiding commitments,
with a number of rounds that is linear in the number of blocks.

Going back to dCRH, we have already argued that in the simple case that
h is regular and onto {0, 1}m, we get a noticeable gap between the real entropy
n = m + k and the accessible entropy m′ + k′ ≤ m + k − 1/poly(n). We prove
that this is, in fact, true for any dCRH:

Lemma 1. dCRH implies a two-block inaccessible entropy generator.

The block generator itself is the simple generator described above:

output h(x) and then x, for x← {0, 1}n .
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The proof, however, is more involved than in the case of collision resistance.
In particular, it is sensitive to the exact notion of entropy used. Collision resis-
tant hash functions satisfy a very clean and simple guarantee — the maximum
entropy, capturing the support size, is always at most m < n. In contrast, for
dCRH (compressing or not), the maximum entropy could be as large as n, which
goes back to the fact that the adversary may be able to sample from the set of all
collisions (albeit from a skewed distribution). Still, we show a gap with respect
to average (a.k.a Shannon) accessible entropy, which suffices for constructing
statistically hiding commitments [17].

From commitments back to dCRH. We show that any two-message statistically
hiding commitment implies a dCRH function family. Let (S,R) be the sender
and receiver of a statistically hiding bit commitment. The first message sent by
the receiver is the description of the hash function: h ← R(1n). The sender’s
commitment to a bit b, using randomness r, is the hash of x = (b, r). That is,
h(x) = S(h, b; r).

To argue that this is a dCRH, we show that any attacker that can sample col-
lisions that are close to the random collision distribution Col can also break the
binding of the commitment scheme. For this, it suffices to show that a collision
(b, r), (b′, r′) sampled from Col, translates to equivocation — the correspond-
ing commitment can be opened to two distinct bits b 6= b′. Roughly speaking,
this is because statistical hiding implies that a random collision to a random
bit b (corresponding to a random hash value) is statistically independent of the
underlying committed bit. In particular, a random preimage of such a commit-
ment will consist of a different bit b′ with probability roughly 1/2. See details in
Section 4.3.

2.2 Commitments from SZK Hardness

We now give an overview of our construction of statistically hiding commitments
directly from average-case hardness in SZK. Our starting point is a result of Ong
and Vadhan [31] showing that any promise problem in SZK has an instance-
dependent commitment. These are commitments that are also parameterized by
an instance x, such that if x is a yes instance, they are statistically hiding and if
x is a no instance, they are statistically binding. We construct statistically hid-
ing commitments from instance-dependent commitments for a hard-on-average
problem Π = (ΠN , ΠY ) in SZK.

A first attempt: using zero-knowledge proofs. To convey the basic idea behind
the construction, let us first assume that Π satisfies a strong form of average-case
hardness where we can efficiently sample no-instances from ΠN and yes-instances
from ΠY so that the two distributions are computationally indistinguishable.
Then a natural protocol for committing to a message m is the following: The
receiver R would sample a yes-instance x ← ΠY , and send it to the sender S
along with zero-knowledge proof [14] that x is indeed a yes-instance. The sender
S would then commit to m using an x-dependent commitment.
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To see that the scheme is statistically hiding, we rely on the soundness of
the proof which guarantees that x is indeed a yes-instance, and then on the
hiding of the instance-dependent scheme. To prove (computational) binding,
we rely on zero knowledge property and the hardness of Π. Specifically, by
zero knowledge, instead of sampling x from ΠY , we can sample it from any
computationally indistinguishable distribution, without changing the probability
that an efficient malicious sender breaks binding. In particular, by the assumed
hardness of Π, we can sample x from ΠN . Now, however, the instance-dependent
commitment guarantees binding, implying that the malicious sender will not be
able to equivocate.

The main problem with this construction is that constant-round zero-knowledge
proofs (with a negligible soundness error) are only known assuming constant-
round statistically hiding commitments [12], which is exactly what we are trying
to construct.

A second attempt: using witness-indistinguishable proofs. Instead of relying on
zero-knowledge proofs, we rely on the weaker notion of witness-indistinguishable
proofs and use the independent-witnesses paradigm of Feige and Shamir [11].
(Indeed such proofs are known for all of NP, based average-case hardness in
SZK [13,28,32], see Section 5 for details.) We change the previous scheme as
follows: the receiver R will now sample two instances x0 and x1 and provide a
witness-indistinguishable proof that at least one of them is a yes-instance. The
sender, will secret share the message m into two random messages m0,m1 such
that m = m0⊕m1, and return two instance-dependent commitments to m0 and
m1 relative to x0 and x1, respectively.

Statistical hiding follows quite similarly to the previous protocol — by the
soundness of the proof one of the instances xb is a yes-instance, and by the
hiding of the xb-dependent commitment, the corresponding share mb is statisti-
cally hidden, and thus so is m. To prove binding, we first note that by witness
indistinguishability, to prove its statement, the receiver could use xb for either
b ∈ {0, 1}. Then, relying on the hardness of Π, we can sample x1−b to be a no-
instance instead of a yes-instance. If b is chosen at random, the sender cannot
predict b better than guessing. At the same time, in order to break binding, the
sender must equivocate with respect to at least one of the instance-dependent
commitments, and since it cannot equivocate with respect to the no-instance
x1−b, it cannot break binding unless it can get an advantage in predicting b.

Our actual scheme. The only gap remaining between the scheme just described
and our actual scheme is our assumption regarding the strong form of average-
case hardness of Π. In contrast, the standard form of average-case hardness only
implies a single samplable distribution D, such that given a sample x from D it
is hard to tell whether x is a yes-instance or a no-instance better than guessing.

This requires the following changes to the protocol. First, lacking a samplable
distribution on yes-instances, we consider instead the product distribution Dn,
as a way to sample weak yes instances — n-tuples of instances where at least
one is a yes-instance in ΠY . Unlike before, where everything in the support
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of the yes-instance sampler was guaranteed to be a yes-instance, now we are
only guaranteed that a random tuple is a weak yes instance with overwhelming
probability. To deal with this weak guarantee, we add a coin-tossing into the well
phase [13], where the randomness for sampling an instance from Dn is chosen
together by the receiver and sender. We refer the reader to Section 5 for more
details.

3 Preliminaries

Unless stated otherwise, the logarithms in this paper are base 2. For a distribu-
tion D we denote by x ← D an element chosen from D uniformly at random.
For an integer n ∈ N we denote by [n] the set {1, . . . , n}. We denote by Un the
uniform distribution over n-bit strings. We denote by ◦ the string concatenation
operation. A function negl : N → R+ is negligible if for every constant c > 0,
there exists an integer Nc such that negl(n) < n−c for all n > Nc.

3.1 Cryptographic Primitives

A function f , with input length m1(n) and outputs length m2(n), specifies for
every n ∈ N a function fn : {0, 1}m1(n) → {0, 1}m2(n). We only consider functions
with polynomial input lengths (in n) and occasionally abuse notation and write
f(x) rather than fn(x) for simplicity. The function f is computable in polynomial
time (efficiently computable) if there exists a probabilistic machine that for any
x ∈ {0, 1}m1(n) outputs fn(x) and runs in time polynomial in n.

A function family ensemble is an infinite set of function families, whose ele-
ments (families) are indexed by the set of integers. Let F = {Fn : Dn → Rn}n∈N
stand for an ensemble of function families, where each f ∈ Fn has domain Dn
and range Rn. An efficient function family ensemble is one that has an efficient
sampling and evaluation algorithms.

Definition 1 (Efficient function family ensemble). A function family en-
semble F = {Fn : Dn → Rn}n∈N is efficient if:

– F is samplable in polynomial time: there exists a probabilistic polynomial-
time machine that given 1n, outputs (the description of) a uniform element
in Fn.

– There exists a deterministic algorithm that given x ∈ Dn and (a description
of) f ∈ Fn, runs in time poly(n, |x|) and outputs f(x).

3.2 Distance and Entropy Measures

Definition 2 (Statistical distance). The statistical distance between two ran-
dom variables X,Y over a finite domain Ω, is defined by

∆(X,Y ) ,
1

2
·
∑
x∈Ω
|Pr[X = x]−Pr[Y = x]| .

We say that X and Y are δ-close (resp. -far) if ∆(X,Y ) ≤ δ (resp. ∆(X,Y ) ≥
δ).
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Entropy. Let X be a random variable. For any x ∈ supp(X), the sample-entropy
of x with respect to X is

HX(x) = log

(
1

Pr[X = x]

)
.

The Shannon entropy of X is defined as:

H(X) = E
x←X

[HX(x)] .

Conditional entropy. Let (X,Y ) be a jointly distributed random variable.

– For any (x, y) ∈ supp(X,Y ), the conditional sample-entropy to be

HX|Y (x | y) = log

(
1

Pr[X = x | Y = y]

)
.

– The conditional Shannon entropy is

H(X | Y ) = E
(x,y)←(X,Y )

[
HX|Y (x | y)

]
= E
y←Y

[H(X|Y=y)] = H(X,Y )− H(Y ).

Relative entropy. We also use basic facts about relative entropy (also known as
, Kullback-Leibler divergence).

Definition 3 (Relative entropy). Let X and Y be two random variables over
a finite domain Ω. The relative entropy is

DKL(X‖Y ) =
∑
x∈Ω

Pr[X = x] · log

(
Pr[X = x]

Pr[Y = x]

)
.

Proposition 1 (Chain rule). Let (X1, X2) and (Y1, Y2) be random variables.
It holds that

DKL((X1, X2)‖(Y1, Y2)) = DKL(X1‖Y1) + E
x←X1

[DKL(X2|X1=x‖Y2|Y1=x)] .

A well-known relation between statistical distance and relative entropy is
given by Pinsker’s inequality.

Proposition 2 (Pinsker’s inequality). For any two random variables X and
Y over a finite domain it holds that

∆(X,Y ) ≤
√

ln 2

2
·DKL(X‖Y ).

Another useful inequality is Jensen’s inequality.

Proposition 3 (Jensen’s inequality). If X is a random variable and f is
concave, then

E[f(X)] ≤ f(E[X]).
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3.3 Commitment Schemes

A commitment scheme is a two-stage interactive protocol between a sender S
and a receiver R. The goal of such a scheme is that after the first stage of
the protocol, called the commit protocol, the sender is bound to at most one
value. In the second stage, called the opening protocol, the sender opens its
committed value to the receiver. Here, we are interested in statistically hiding
and computationally binding commitments. Also, for simplicity, we restrict our
attention to protocols that can be used to commit to bits (i.e., strings of length
1).

In more detail, a commitment scheme is defined via a pair of probabilistic
polynomial-time algorithms (S,R,V) such that:

– The commit protocol: S receives as input the security parameter 1n and a
bit b ∈ {0, 1}. R receives as input the security parameter 1n. At the end of
this stage, S outputs decom (the decommitment) and R outputs com (the
commitment).

– The verification: V receives as input the security parameter 1n, a commit-
ment com, a decommitment decom, and outputs either a bit b or ⊥.

A commitment scheme is public coin if all messages sent by the receiver are
independent random coins.

Denote by (decom, com) ← 〈S(1n, b),R〉 the experiment in which S and R
interact with the given inputs and uniformly random coins, and eventually S
outputs a decommitment string and R outputs a commitment. The complete-
ness of the protocol says that for all n ∈ N, every b ∈ {0, 1}, and every tuple
(decom, com) in the support of 〈S(1n, b),R〉, it holds that V(decom, com) = b.
Unless otherwise stated, V is the canonical verifier that receives the sender’s coins
as part of the decommitment and checks their consistency with the transcript.

Below we define two security properties one can require from a commitment
scheme. The properties we list are statistical-hiding and computational-binding.
These roughly say that after the commit stage, the sender is bound to a specific
value but the receiver cannot know this value.

Definition 4 (binding). A commitment scheme (S,R,V) is binding if for ev-
ery probabilistic polynomial-time adversary S∗ there exits a negligible function
negl(n) such that

Pr

[
V(decom, com) = 0 and

V(decom′, com) = 1
: (decom, decom′, com)← 〈S∗(1n),R〉

]
≤ negl(n)

for all n ∈ N, where the probability is taken over the random coins of both S∗
and R.

Given a commitment scheme (S,R,V) and an adversary R∗, we denote
by view〈S(b),R∗〉(n) the distribution on the view of R∗ when interacting with
S(1n, b). The view consists of R∗’s random coins and the sequence of messages
it received from S. The distribution is taken over the random coins of both S and
R. Without loss of generality, whenever R∗ has no computational restrictions,
we can assume it is deterministic.
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Definition 5 (hiding). A commitment scheme (S,R,V) is statistically hiding
if there exists a negligible function negl(n) such that for every (deterministic)
adversary R∗ it holds that

∆
(
{view〈S(0),R∗〉(n)}, {view〈S(1),R∗〉(n)}

)
≤ negl(n)

for all n ∈ N.

3.4 Distributional Collision Resistant Hash Functions

Roughly speaking, a distributional collision resistant hash function [9] guarantees
that no efficient adversary can sample a uniformly random collision. We start
by defining more precisely what we mean by a random collision throughout the
paper, and then move to the actual definition.

Definition 6 (Ideal collision finder). Let Col be the random function that
given a (description) of a function h : {0, 1}n → {0, 1}m as input, returns a
collision (x1, x2) with respect to h as follows: it samples a uniformly random
element, x1 ← {0, 1}n, and then samples a uniformly random element that col-
lides with x1 under h, x2 ← {x ∈ {0, 1}n : h(x) = h(x1)}. (Note that possibly,
x1 = x2.)

Definition 7 (Distributional collision resistant hashing). Let H = {Hn :
{0, 1}n → {0, 1}m(n)}n∈N be an efficient function family ensemble. We say that
H is a secure distributional collision resistant hash (dCRH) function family
if there exists a polynomial p(·) such that for any probabilistic polynomial-time
algorithm A, it holds that

∆ ((h,A(1n, h)), (h,Col(h))) ≥ 1

p(n)
,

for h← Hn and large enough n ∈ N.

Comparison with the previous definition. Our definition deviates from the pre-
vious definition of distributional collision resistance considered in [9,21,26]. The
definition in the above-mentioned works is equivalent to requiring that for any
efficient adversary A, there exists a polynomial pA, such that the collision out-
put by A is 1

pA(n)
-far from a random collision on average (over h). Our definition

switches the order of quantifiers, requiring that there is one such polynomial p(·)
for all adversaries A.

We note that the previous definition is, in fact, not even known to im-
ply one-way functions. In contrast, the definition presented here strengthens
that of distributional one-way functions, which in turn implies one-way func-
tions [23]. Additionally, note that both constructions of distributional collision
resistance in [26] (from multi-collision resistance and from SZK hardness) satisfy
our stronger notion of security (with a similar proof).



Distributional Collision Resistance Beyond One-Way Functions 13

On compression. As opposed to classical notions of collision resistance (such as
plain collision resistance or multi-collision resistance), it makes sense to require
distributional collision resistance even for non-compressing functions. So we do
not put a restriction on the order between n and m(n). As a matter of fact, by
padding, the input, arbitrary polynomial compression can be assumed without
loss of generality.

4 From dCRH to Statistically Hiding Commitments and
Back

We show distributional collision resistant hash functions imply constant-round
statistically hiding commitments.

Theorem 3. Assume the existence of a distributional collision resistant hash
function family. Then, there exists a constant-round statistically hiding and com-
putationally binding commitment scheme.

Our proof relies on the transformation of Haitner et al. [18,17], translating
inaccessible-entropy generators to statistically hiding commitments. Concretely,
we construct appropriate inaccessible-entropy generators from distributional col-
lision resistant hash functions. In Section 4.1, we recall the necessary definitions
and the result of [17], and then in Section 4.2, we prove Theorem 3.

We complement the above result by showing a loose converse to Theorem 3,
namely that two message statistically hiding commitments (with possibly large
communication) imply the existence of distributional collision resistance hashing.

Theorem 4. Assume the existence of a binding and statistically hiding two-
message commitment scheme. Then, there exists a dCRH function family.

This proof of Theorem 4 appears in Section 4.3.

4.1 Preliminaries on Inaccessible Entropy Generators

The following definitions of real and accessible entropy of protocols are taken
from [17].

Definition 8 (Block generators). Let n be a security parameter, and let c =
c(n), s = s(n) and m = m(n). An m-block generator is a function G : {0, 1}c ×
{0, 1}s 7→ ({0, 1}∗)m. It is efficient if its running time on input of length c(n) +
s(n) is polynomial in n.

We call parameter n the security parameter, c the public parameter length, s the
seed length, m the number of blocks, and `(n) = max(z,x)∈{0,1}c(n)×{0,1}s(n),i∈[m(n)] |G(z, x)i|
the maximal block length of G.

Definition 9 (Real sample-entropy). Let G be an m-block generator over
{0, 1}c×{0, 1}s, let n ∈ N, let Zn and Xn be uniformly distributed over {0, 1}c(n)
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and {0, 1}s(n), respectively, and let Yn = (Y1, . . . , Ym) = G(Zn, Xn). For n ∈ N
and i ∈ [m(n)], define the real sample-entropy of y ∈ Supp(Y1, . . . , Yi) given
z ∈ Supp(Zn) as

RealHG,n(y|z) =

i∑
j=1

HYj |Zn,Y<j
(yj |z,y<j).

We omit the security parameter from the above notation when clear from the
context.

Definition 10 (Real entropy). Let G be an m-block generator, and let Zn
and Yn be as in Definition 9. Generator G has real entropy at least k = k(n), if

E
(z,y)←(Zn,Yn)

[RealHG,n(y|z)] ≥ k(n)

for every n ∈ N.
The generator G has real min-entropy at least k(n) in its i’th block for some

i = i(n) ∈ [m(n)], if

Pr
(z,y)←(Zn,Yn)

[
HYi|Zn,Y<i

(yi|z,y<i) < k(n)
]

= negl(n).

We say the above bounds are invariant to the public parameter if they hold for
any fixing of the public parameter Zn.7

It is known that the real Shannon entropy amounts to measuring the standard
conditional Shannon entropy of G’s output blocks.

Lemma 2 ([17, Lemma 3.4]). Let G, Zn and Yn be as in definition 9 for
some n ∈ N, then

E
(z,y)←(Zn,Yn)

[RealHG,n(y|z)] = H(Yn|Zn).

Toward the definition of inaccessible entropy, we first define online block-
generators which are a special type of block generators that toss fresh random
coins before outputting each new block.

Definition 11 (Online block generator). Let n be a security parameter,
and let c = c(n) and m = m(n). An m-block online generator is a function

G̃ : {0, 1}c×({0, 1}v)m 7→ ({0, 1}∗)m for some v = v(n), such that the i’th output

block of G̃ is a function of (only) its first i input blocks. We denote the transcript

of G̃ over random input by TG̃(1n) = (Z,R1, Y1, . . . , Rm, Ym), for Z ← {0, 1}c,
(R1, . . . , Rm)← ({0, 1}v)m and (Y1, . . . , Ym) = G̃(Z,R1, . . . , Ri).

That is, an online block generator is a special type of block generator that
tosses fresh random coins before outputting each new block. In the following, we
let G̃(z, r1, . . . , ri)i stand for G̃(z, r1, . . . , ri, x

∗)i for arbitrary x∗ ∈ ({0, 1}v)m−i
(note that the choice of x∗ has no effect on the value of G̃(z, r1, . . . , ri, x

∗)i).

7 In particular, this is the case when there is no public parameter, i.e., c = 0.
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Definition 12 (Accessible sample-entropy). Let n be a security parameter,

and let G̃ be an online m = m(n)-block online generator. The accessible sample-
entropy of t = (z, r1, y1, . . . , rm, ym) ∈ Supp(Z,R1, Y1 . . . , Rm, Ym) = TG̃(1n) is
defined by

AccHG̃,n(t) =

m∑
i=1

HYi|Z,R<i
(yi|z, r<i).

Again, we omit the security parameter from the above notation when clear from
the context.

As in the case of real entropy, the expected accessible entropy of a random
transcript can be expressed in terms of the standard conditional Shannon en-
tropy.

Lemma 3 ([17, Lemma 3.7]). Let G̃ be an online m-block generator and let
(Z,R1, Y1, . . . , Rm, Ym) = TG̃(1n) be its transcript. Then,

E
t←TG̃(Z,1n)

[
AccHG̃(t)

]
=
∑
i∈[m]

H(Yi|Z,R<i).

We focus on efficient generators that are consistent with respect to G. That
is, the support of their output is contained in that of G.

Definition 13 (Consistent generators). Let G be a block generator over
{0, 1}c(n) × {0, 1}s(n). A block (possibly online) generator G′ over {0, 1}c(n) ×
{0, 1}s′(n) is G consistent if, for every n ∈ N, it holds that Supp(G′(Uc(n), Us′(n))) ⊆
Supp(G(Uc(n), Us(n))).

Definition 14 (Accessible entropy). A block generator G has accessible en-

tropy at most k = k(n) if, for every efficient G-consistent, online generator G̃
and all large enough n,

E
t←TG̃(1n)

[
AccHG̃(t)

]
≤ k.

We call a generator whose real entropy is noticeably higher than it accessible
entropy an inaccessible entropy generator.

We use the following reduction from inaccessible entropy generators to con-
stant round statistically hiding commitment.

Theorem 5 ([17, Thm. 6.24]). Let G be an efficient block generator with con-
stant number of blocks. Assume G’s real Shannon entropy is at least k(n) for
some efficiently computable function k, and that its accessible entropy is bounded
by k(n) − 1/p(n) for some p ∈ poly. Then there exists a constant-round statis-
tically hiding and computationally binding commitment scheme. Furthermore,
if the bound on the real entropy is invariant to the public parameter, then the
commitment is receiver public-coin.
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Remark 1 (Inaccessible max/average entropy). Our result relies on the reduc-
tion from inaccessible Shannon entropy generators to statistically hiding com-
mitments, given in [17]. The proof of this reduction follows closely the proof
in previous versions [19,18], where the reduction was from inaccessible max en-
tropy generators. The extension to Shannon entropy generators is essential for
our result.

4.2 From dCRH to Inaccessible Entropy Generators – Proof of
Theorem 3

In this section we show that there is a block generator with two blocks in which
there is a gap between the real entropy and the accessible entropy. LetH = {Hn :
{0, 1}n → {0, 1}m}n∈N be a dCRH for m = m(n) and assume that each h ∈ Hn
requires c = c(n) bits to describe. By Definition 7, there exists a polynomial p(·)
such that for any probabilistic polynomial-time algorithm A, it holds that

∆ ((h,A(1n, h)), (h,Col(h))) = E
h←Hn

[∆ (A(1n, h),Col(h))] ≥ 1

p(n)

for large enough n ∈ N, where h← Hn.
The generator G : {0, 1}c × {0, 1}n → {0, 1}m × {0, 1}n is defined by

G(h, x) = (h(x), x).

The public parameter length is c (this is the description size of h), the gen-
erator consists of two blocks, and the maximal block length is max{n,m}. Since
the random coins of G define x and x is completely revealed, the real Shannon
entropy of G is n. That is,

E
y←G(Uc,Un)

[RealHG(y)] = n.

Our goal in the remaining of this section is to show a non-trivial upper bound
on the accessible entropy of G. We prove the following lemma.

Lemma 4. There exists a polynomial q(·) such that for every G-consistent on-

line generator G̃, it holds that

E
t←TG̃(Z,1n)

[
AccHG̃(t)

]
≤ n− 1

q(n)

for all large enough n ∈ N.

Proof. Fix a G-consistent online generator G̃. Let us denote by Y a random
variable that corresponds to the first part of G’s output (i.e., the first m bits)
and by X the second part (i.e., the last n bits). Denote by R the randomness used
by the adversary to sample Y . Denote by Z the random variable that corresponds
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to the description of the hash function h. Fix q(n) , 4 · p(n)2 Assume towards
contradiction that for infinitely many n’s it holds that

E
t←TG̃(Z,1n)

[
AccHG̃(t)

]
> n− 1

q(n)
.

By Lemma 3, this means that

H(Y | Z) + H(X | Y, Z,R) > n− 1

q(n)
(1)

We show how to construct an adversary A that can break the security of the
dCRH. The algorithm A, given a hash function h← H, does the following:

1. Sample r and let y = G̃(h, r)1
2. Sample r1, r2 and output x1 = G̃(h, r, r1)2 and x2 = G̃(h, r, r2)2.

In other words, A tries to create a collision by running G to get the first
block, y, and then running it twice (by rewinding) to get two inputs x1, x2 that

are mapped to y. Indeed, A runs in polynomial-time and if G̃ is G-consistent,
then x1 and x2 collide relative to h. Denote by Y A, XA

1 , and XA
2 be random

variables that correspond to the output of the emulated G̃. Furthermore, denote
by (XCol

1 , XCol
2 ) a random collision that Col(h) samples. To finish the proof it

remains to show that

E
h←Hn

[
∆((XA

1 , X
A
2 ), (XCol

1 , XCol
2 ))

]
≤ 1

p(n)

which is a contradiction.
By Pinsker’s inequality (Proposition 2) and the chain rule from Proposition 1,

it holds that

∆
((
XA

1 , X
A
2

)
,
(
XCol

1 , XCol
2

))
≤
√

ln(2)

2
·DKL(XA

1 , X
A
2 ‖XCol

1 , XCol
2 )

=

√
DKL

(
XA

1 ‖XCol
1

)
+ E
x1←XA

1

[
DKL(XA

2 |XA
1=x1
‖XCol

2 |XCol
1 =x1

)
]

≤
√

DKL

(
XA

1 ‖XCol
1

)
+

√
E

x1←XA
1

[
DKL(XA

2 |XA
1=x1
‖XCol

2 |XCol
1 =x1

)
]
.

Hence, by Jensen’s inequality (Proposition 3), it holds that

E
h←Hn

[
∆((XA

1 , X
A
2 ), (XCol

1 , XCol
2 ))

]
≤
√

E
h←Hn

[
DKL(XA

1 ‖XCol
1 )
]
+√√√√ E

h←Hn

x1←XA
1

[
DKL(XA

2 |XA
1=x1
‖XCol

2 |XCol
1 =x1

)
]
.

We complete the proof using the following claims.
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Claim 1 It holds that

E
h←Hn

[
DKL(XA

1 ‖XCol
1 )
]
≤ 1

p(n)2
.

Claim 2 It holds that

E
h←Hn

x1←XA
1

[
DKL(XA

2 |XA
1=x1
‖XCol

2 |XCol
1 =x1

)
]
≤ 1

p(n)2
.

Proof (Proof of Claim 1). Recall that XCol
1 is the uniform distribution over the

inputs of the hash function and thus

DKL(XA
1 ‖XCol

1 ) =
∑
x

Pr
[
XA

1 = x
]
· log

Pr
[
XA

1 = x
]

2−n
= n− H(XA

1 ).

To sample XA
1 , the algorithm A first runs G̃(r)1 to get y and then runs

G(r, r1) to get x1. Thus, by Equation (1), it holds that

E
h←Hn

[
H(XA

1 )
]

= E
h←Hn

[H(X)] = H(X,Y | Z) = H(Y | Z) + H(X | Y,Z,R) ≥ n− 1

q(n)
,

where the second equality follows since G̃ is G-consistent and thus X fully de-
termines Y . This implies that

E
h←Hn

[
DKL(XA

1 ‖XCol
1 )
]
≤ 1

q(n)
=

1

p(n)2
,

as required.

Proof (Proof of Claim 2).

For x1 ∈ supp(XA
1 ), it holds that

DKL(XA
2 |XA

1=x1
‖XCol

2 |XCol
1 =x1

) =
∑
x

Pr
[
XA

2 = x|XA
1=x1

]
· log

Pr
[
XA

2 = x|XA
1=x1

]
|h−1(h(x1))|−1

= log |h−1(h(x1))| − H(XA
2 |XA

1=x1
).

Hence,

E
h←Hn

x1←XA
1

[
DKL(XA

2 |XA
1=x1
‖XCol

2 |XCol
1 =x1

)
]

= E
h←Hn

x1←XA
1

[
log |h−1(h(x1))| − H(XA

2 |XA
1=x1

)
]
.

Notice that the distribution of XA
2 only depends on y = h(x1), that is,

XA
2 |XA

1=x1
is distributed exactly as XA

2 |XA
1=x

′
1

for every x1 and x′1 that such
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that y = h(x1) = h(x′1). Thus, we have that XA
2 |XA

1=x1
is distributed exactly as

X|Y=y and the distribution of h(X1) is distributed as Y . Namely,

E
h←Hn

x1←XA
1

[
DKL(XA

2 |XA
1=x1
‖XCol

2 |XCol
1 =x1

)
]

= E
h←Hn

x1←XA
1

[
log |h−1(y)|

]
− E
h←Hn

[H(X | Y,R)]

= E
h←Hn

x1←XA
1

[
log |h−1(y)|

]
− H(X | Y,Z,R)

≤ E
h←Hn

x1←XA
1

[
log |h−1(y)|

]
+ H(Y | Z)− n+

1

q(n)

=
1

q(n)
,

where the first inequality follows by Equation (1) and the second follows since

E
h←Hn
y←Y

[
log |h−1(y)|

]
+ H(Y | Z) = E

h←Hn
y←Y

[
log |h−1(y)|+ HY (y)

]
= E
h←Hn
y←Y

[
log

|h−1(y)|
Pr[Y = y]

]

≤ log E
h←Hn
y←Y

[
|h−1(y)|

Pr[Y = y]

]
= n,

where the inequality is by Jensen’s inequality (Proposition 3). Thus, overall

E
h←Hn

x1←XA
1

[
DKL(XA

2 |XA
1=x1
‖XCol

2 |XCol
1 =x1

)
]
≤ 1

q(n)
=

1

p(n)2
,

as required.

4.3 From Statistically Hiding Commitments to dCRH– Proof of
Theorem 4

Let π = (S,R,V) be a binding and statistically hiding two-message commitment
scheme. We show that there exists a dCRH family H.

To sample a hash function in the family with security parameter n, we use
the receiver’s first message of the protocol. Namely, we set the hash function as
h← R(1n). Then, to evaluate h on input x we first parse x as x = (b, r), where b
is a bit, and output a commitment to the bit b using randomness r, with respect
to the receiver message h. That is, we set

h(x) = S(h, b; r).

Since π is efficient, then sampling and evaluating h are polynomial-time pro-
cedures. This concludes the definition of our family H of hash functions. (Note
that the functions in the family are not necessarily compressing.)
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We next argue security. Suppose toward contradiction that H is not a dCRH
according to Definition 7. Then, for any δ(n) = n−O(1) there exists an adversary
A, such that

∆ ((h,A(1n, h)), (h,Col(h))) ≤ δ, (2)

for infinitely many n’s. From hereon, we fix δ to be any function such that
n−O(1) < δ < 1

2 − n
−O(1).

We show how to use A to break the binding property of the commitment
scheme. Our cheating receiver R∗ is defined as follows: On input h, R∗ runs
A(h) to get x and x′, interprets x = (b, r) and x′ = (b′, r′) and outputs b and
b′ along with their openings r and r′, respectively. Our goal is to show that
x = (b, r) and x′ = (b′, r′) are two valid distinct openings to the commitment
scheme.

By Equation (2), it suffices to analyze the success probability when the pair
(x, x′) is sampled according to the distribution Colh, and show that it is at least
1/2 − negl(n). From the definition of Colh, we have that h(x) = h(x′) and thus
S(h, b; r) = S(h, b′; r′) := y. In other words, the second message of the protocol
for b with randomness r and b′ with randomness r′ are the same, and thus both
pass as valid openings in the reveal stage of the protocol: V(h, y, b, r) = 1 and
V(h, y, b′, r′) = 1.

We are left to show that these are two distinct openings for the commitment,
namely, b 6= b′. To show this, we use the statistically hiding property of the
commitment scheme. The following claim concludes the proof.

Claim. Fix any h. Then for ((b, r), (b′, r′)) ← Col(h) it holds that Pr[b 6= b′] ≥
1/2− negl(n) .

Proof. Let B be the uniform distribution on bits and R the uniform distribution
on commitment randomness. For every commitment c, let Bc be the distribution
on bits given by sampling (b, r) ← (B,R) conditioned on S(h, b; r) = c. Let C
be the distribution on random commitments to a random bit.

By the statistical hiding property of the commitment scheme,

∆((S(h,B,R), B), (S(h,B′, R), B)) ≤ ε ,

where B′ is an independent copy of B, and ε = negl(n) is a negligible function.
Furthermore,

∆((S(h,B,R), B), (S(h,B′, R), B)) = ∆((C,BC), (C,B)) = E
c←C

[∆(Bc, B)] .

By Markov’s inequality, it holds that

Pr
c←C

[
∆(Bc, B) ≥

√
ε
]
≤
√
ε .
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To conclude the proof note that

Pr[b = b′ : (b, r), (b′, r′)← Colh] = Pr

b = b′ :
(b, r)← (B,R)
c = S(h, b; r)
b′ ← Bc

 ≤
Pr

b = b′ :

(b, r)← (B,R)
c = S(h, b; r)
b′ ← Bc
∆(Bc, B) ≤

√
ε

+ Pr
c←C

[
∆(Bc, B) ≥

√
ε
]
≤

(
1

2
+
√
ε

)
+
√
ε =

1

2
+ negl(n) .

Overall, the success probability of A is at least 1/2− negl(n)− δ ≥ n−O(1).

Using string commitments. The above proof constructs dCRH from statisti-
cally hiding bit commitment schemes. For schemes that support commitments
to strings, following the above proof gives a stronger notion of dCRH, where
the adversary’s output distribution is (1 − negl(n))-far from a random collision
distribution.

Technically, the change in the proof is to interpret b in x = (b, r) as a string of
length n, rather than as a single bit. The proof remains the same except that the
probability that b = b′ is (negligibly close to) 2−n instead of 1/2. Thus, overall
the success probability of A is at least 1 − negl(n) − δ. To ensure a polynomial
success probability we can allow any δ = 1− n−O(1).

5 From SZK-Hardness to Statistically Hiding
Commitments

In this section, we give a direct construction of a constant-round statistically
hiding commitment from average-case hardness in SZK. This gives an alternative
proof to Corollary 1.

5.1 Hard on Average Promise Problems

Definition 15. A promise problem (ΠY , ΠN ) consists of two disjoint sets of
yes instances ΠY and no instances ΠN .

Definition 16. A promise problem (ΠY , ΠN ) is hard on average if there exists
a probabilistic polynomial-time sampler Π with support ΠY ∪ΠN , such that for
any probabilistic polynomial-time decider D, there exists a negligible function
negl(n), such that

Pr
r←{0,1}n

[
x ∈ ΠD(x) | x← Π(r)

]
≤ 1

2
+ negl(n) .
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5.2 Instance-Dependent Commitments

Definition 17 ([31]). An instance-dependent commitment scheme IDC for a
promise problem (ΠY , ΠN ) is a commitment scheme where all algorithms get
as auxiliary input an instance x ∈ {0, 1}∗. The induced family of schemes
{IDCx}x∈{0,1}∗ is

– statistically binding when x ∈ ΠN ,
– statistically hiding when x ∈ ΠY .

Theorem 6 ([31]). Any promise problem (ΠY , ΠN ) ∈ SZK has a constant-
round instance-dependent commitment.

5.3 Witness-Indistinguishable Proofs

Definition 18. A proof system WI for an NP relation R is witness indistin-
guishable if for any x,w0, w1 such that (x,w0), (x,w1) ∈ R, the verifier’s view
given a proof using w0 is computationally indistinguishable from its view given
a proof using w1.

Constant-round WI proofs systems are known from any constant-round
statistically-binding commitments [13]. Statistically-binding commitments can
be constructed from one-way functions [28], and thus can also be obtained from
average-case hardness in SZK [32].

Theorem 7 ([13,28,32]). Assuming hard-on-average problems in SZK, there
exist constant-round witness-indistinguishable proof systems.

5.4 The Commitment Protocol

Here, we give the details of our protocol. Our protocol uses the following ingre-
dients and notation:

– A WI proof for NP.
– A hard-on average SZK problem (ΠY , ΠN ) with sampler Π.
– An instance-dependent commitment scheme IDC for Π.

We describe the commitment scheme in Figure 1.

5.5 Analysis

Proposition 4. Protocol 1 is computationally binding.

Proof. Let S∗ be any probabilistic polynomial-time sender that breaks binding in
Protocol 1 with probability ε. We use S∗ to construct a probabilistic polynomial-
time decider D for the SZK problem Π with advantage ε/4n− negl(n).

Given an instance x← Π, the decider D proceeds as follows:

– It samples at random i∗ ∈ [n] and b∗ ∈ {0, 1}.
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Protocol 1

Sender input: a bit m ∈ {0, 1}.
Common input: security parameter 1n.

Coin tossing into the well

– R samples 2n independent random strings ρi,b ← {0, 1}n, for i ∈ [n], b ∈ {0, 1}.
– The parties then execute (in parallel) 2n statistically-binding commitment

protocols SBC in which R commits to each of the strings ρi,b. We denote the
transcript of each such commitment by Ci,b.

– S samples 2n independent random strings σi,b ← {0, 1}n, and sends them to
R.

– R sets ri,b = ρi,b ⊕ σi,b.

Generating hard instances

– R generates 2n instances xi,b ← Π(ri,b), using the strings ri,b as randomness,
and sends the instances to S.

– The parties then execute a WI protocol in which R proves to S that there
exists a b ∈ {0, 1} such that for all i ∈ [n], xi,b was generated consistently.
That is, there exist strings {ρi,b}i∈[n] that are consistent with the receiver’s
commitments {Ci,b}i∈[n], and xi,b = Π(ρi,b ⊕ σi,b).
As the witness, R uses b = 0 and the strings {ρi,0}i∈[n] sampled earlier in the
protocol.

Instance-binding commitment

– The sender samples 2n random bits mi,b subject to m =
⊕

i,bmi,b.
– The parties then execute (in parallel) 2n instance-dependent commitment pro-

tocols IDCxi,b in which S commits to each bit mi,b using the instance xi,b.

Fig. 1. A constant round statistically hiding commitment from SZK hardness.

– It executes the protocol (S∗,R) with the following exceptions:
• The instance xi∗,b∗ , generated by R, is replaced with the instance x,

given to D as input.
• In theWI protocol, as the witness we use 1⊕b∗ and the strings {ρi,1⊕b∗}i∈[n]

(instead of 0 and the strings {ρi,0}i∈[n].
– Then, at the opening phase, if S∗ equivocally opens the (i∗, b∗)-th instance-

dependent commitment, D declares that x ∈ ΠY . Otherwise, it declares that
x ∈ Πβ for a random β ∈ {Y,N}.

Analyzing D’s advantage. Denote by E the event that in the above experiment
S∗ equivocally opens the (i∗, b∗)-th instance-dependent commitment. We first
observe that the advantage of D in deciding Π is at least as large as the proba-
bility that E occurs.
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Claim 3 Pr
[
x ∈ ΠD(x)

]
≥ 1+Pr[E]

2 − negl(n).

Proof. By the definition of D,

Pr
[
x ∈ ΠD(x) | E

]
= Pr[x ∈ ΠY | E] = 1−Pr[x ∈ ΠN | E] ≥ 1− Pr[E | x ∈ ΠN ]

Pr[E]
,

Pr
[
x ∈ ΠD(x) | E

]
=

1

2
.

Furthermore, if x ∈ ΠN (namely, it is a no instance), then IDCx is binding, and
thus

Pr[E | x ∈ ΠN ] = negl(n) .

Claim 3 now follows by the law of total probability.

From hereon, we focus on showing that E occurs with high probability.

Claim 4 Pr[E] ≥ ε
2n − negl(n).

Proof. To prove the claim, we consider hybrid experimentsH0, . . . ,H4, and show
that that the view of the sender S∗ changes in a computationally indistinguish-
able manner throughout the hybrids. We then bound the probability that E
occurs in the last hybrid experiment.

H0: In this experiment, we consider an execution of D(x) as specified above.
H1: Here x is not sampled ahead of time, but rather first the value σi∗,b∗ is

obtained from S∗, then a random value ρ′ ← {0, 1}n is sampled, and x is
sampled using randomness ri∗,b∗ = σi∗,b∗ ⊕ ρ′. Since ρ′ is sampled indepen-
dently of the rest of the experiment, the sender’s view in H1 is identically
distributed to its view in H0.

H2: Here the (i∗, b∗)-th commitment to ρi∗,b∗ is replaced with a commitment
to ρ′. By the (computational) hiding of the commitment SBC, the sender’s
view in H2 is computationally indistinguishable from its view in H1.

H3: Here, in the WI protocol, instead of using as the witness 1 ⊕ b∗ and the
strings {ρi,1⊕b∗}i, we use 0 and the strings {ρi,0}i. By the (computational)
witness-indistinguishability of the protocol, the sender’s view in H3 is com-
putationally indistinguishable from its view in H2.

H4: In this experiment, we consider a standard execution of the protocol be-
tween S∗ and R (without any exceptions). The sender’s view in this hybrid
is identical to its view in H3 (by renaming ρ′ = ρi∗,b∗ and x = xi∗,b∗).

It is left to bound from below the probability that E occurs in H4. That is, when
we consider a standard execution of (S∗,R) and sample (i∗, b∗) independently
at random.

Indeed, note that since the plaintext bit m is uniquely determined by the
bits {mi,b}i,b. Whenever S∗ equivocally opens the commitment to two distinct
bits, there exists (at least one) (i, b) such that S∗ equivocally opens the (i, b)-th
instance-dependent commitment. Since in a standard execution S∗ equivocally
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opens the commitment with probability at least ε, and (i∗, b∗) is sampled inde-
pendently, E occurs in this experiment with probability at least ε

2n .
Claim 4 follows.

This completes the proof that the scheme is binding.

Proposition 5. Protocol 1 is statistically hiding.

Proof. Let R∗ be any (computationally unbounded) receiver. We show that the
view of R∗ given a commitment to m = 0 is statistically indistinguishable from
its view given a commitment to m = 1.

For this purpose, consider the view of the receiver R∗ after the coin tossing
and instance-generation phase (and before the instance-dependent commitment
phase). We shall refer to this as the preamble view. We say that the preamble
view is admissible, if either of the following occurs:

– Let {xi,b}i,b be the instances sent by R∗. Then there exists i∗, b∗ such that
xi∗,b∗ ∈ ΠY .

– The sender S rejects the WI proof that {xi,b}i,b were properly generated.

To complete the proof, we show that the preamble view is admissible with over-
whelming probability, and that conditioned on any admissible preamble view,
the view of R∗ given a commitment to m = 0 is statistically indistinguishable
from its view given a commitment to m = 1. Since the preamble view is com-
pletely independent of m, the above two conditions are sufficient to establish
statistical indistinguishability of the total views.

Claim 5 The probability that the preamble view is not admissible is negligible.

Proof. Let A be the event that the WI proof is accepted and let Y be the event
that for some (i, b), xi,b is a yes instance. To show that the preamble view is not
admissible with negligible probability, we would like to prove that

Pr
[
A ∧ Y

]
≤ negl(n) .

Let T be the event that the statement proven by R∗ in the WI protocol
is true. Namely, there exists b ∈ {0, 1} such that all {xi,b}i are generated con-
sistently with the coin-tossing phase (and in particular where the coin-tossing
phase consists of valid commitments {Ci,b}i).

First, note that by the soundness of the WI system, the probability that
the preamble is admissible, and in particular the proof is accepted, when the
statement is false, is negligible:

Pr
[
A ∧ T

]
≤ negl(n) .

We now show:
Pr
[
Y ∧ T

]
≤ negl(n) .

For this purpose, fix any SBC commitments {Ci,b}i,b. Let F = F [{Ci,b}i,b]
be the event, over the sender randomness {σi,b}i,b, that there exists β ∈ {0, 1}
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such that {Ci,β}i are valid commitments to strings {ρi,β}i and for all i, Π(ρi,β⊕
σi,β) = xi,β ∈ ΠN . We show

Pr[F ] ≤ 2−Ω(n) .

This is sufficient since

Pr
[
Y ∧ T

]
≤ max
C1,0...Cn,0

C1,1...Cn,1

Pr[F ] ≤ 2−Ω(n) .

To bound the probability that F occurs, fix any β and commitments {Ci,β}i
to strings {ρi,β}i. Then the strings ρi,β ⊕ σi,β are distributed uniformly and
independently at random. Since Π ∈ ΠY with probability at least 0.49, and
taking a union bound over both β ∈ {0, 1}, the bound follows.

This concludes the proof of Claim 5.

Claim 6 Fix any admissible preamble view V . Then, conditioned on V the view
of R∗ when given a commitment to m = 0 is statistically indistinguishable from
its view when given a commitment to m = 1.

Proof. If V is such that the WI proof is rejected then S aborts and the view
of R∗ remains independent of m. Thus, from hereon, we assume that the in-
stances corresponding to V include an instance xi∗,b∗ ∈ ΠY . In particular, the
corresponding instance-dependent commitment IDCxi∗,b∗ is statistically hiding.

It is left to note that in any execution (S,R∗), with either m ∈ {0, 1}, the
bits M−i := {mi,b}(i,b)6=(i∗,b∗) are distributed uniformly and independently at
random. Conditioned on V and M−i, only the bit

mi∗,b∗ = m
⊕

m′∈M−i

m′

depends onm. By the statistical hiding of IDCxi∗,b∗ a commitment to 0
⊕

m′∈M−i
m′

is statistically indistinguishable from a commitment to 1
⊕

m′∈M−i
m′.

This concludes the proof of Claim 6.
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