
The Double Ratchet: Security Notions, Proofs,
and Modularization for the Signal Protocol

Joël Alwen2?, Sandro Coretti1??, and Yevgeniy Dodis1? ? ?

1 New York University
{corettis,dodis}@nyu.edu

2 Wickr Inc.
jalwen@wickr.com

Abstract. Signal is a famous secure messaging protocol used by billions
of people, by virtue of many secure text messaging applications including
Signal itself, WhatsApp, Facebook Messenger, Skype, and Google Allo. At
its core it uses the concept of “double ratcheting,” where every message
is encrypted and authenticated using a fresh symmetric key; it has many
attractive properties, such as forward security, post-compromise security,
and “immediate (no-delay) decryption,” which had never been achieved
in combination by prior messaging protocols.

While the formal analysis of the Signal protocol, and ratcheting in
general, has attracted a lot of recent attention, we argue that none of
the existing analyses is fully satisfactory. To address this problem, we
give a clean and general definition of secure messaging, which clearly
indicates the types of security we expect, including forward security,
post-compromise security, and immediate decryption. We are the first
to explicitly formalize and model the immediate decryption property,
which implies (among other things) that parties seamlessly recover if a
given message is permanently lost—a property not achieved by any of
the recent “provable alternatives to Signal.”

We build a modular “generalized Signal protocol” from the following
components: (a) continuous key agreement (CKA), a clean primitive we
introduce and which can be easily and generically built from public-
key encryption (not just Diffie-Hellman as is done in the current Signal
protocol) and roughly models “public-key ratchets;” (b) forward-secure
authenticated encryption with associated data (FS-AEAD), which roughly
captures “symmetric-key ratchets;” and (c) a two-input hash function that
is a pseudorandom function (resp. generator with input) in its first (resp.
second) input, which we term PRF-PRNG. As a result, in addition to
instantiating our framework in a way resulting in the existing, widely-used
Diffie-Hellman based Signal protocol, we can easily get post-quantum
security and not rely on random oracles in the analysis.

? Partially supported by the European Research Council under ERC Consolidator
Grant (682815 - TOCNeT)

?? Supported by NSF grants 1314568 and 1319051.
? ? ? Partially supported by gifts from VMware Labs, Facebook and Google, and NSF

grants 1314568, 1619158, 1815546.

1 Introduction

Signal [?] is a famous secure messaging protocol, which is—by virtue of many
secure text messaging applications including Signal itself, WhatsApp [?], Facebook
Messenger [?], Skype [?] and Google Allo [?]—used by billions of people. At its
core it uses the concept of double ratcheting, where every message is encrypted and
authenticated using a fresh symmetric key. Signal has many attractive properties,
such as forward security and post-compromise security, and it supports immediate
(no-delay) decryption. Prior to Signal’s deployment, these properties had never
been achieved in combination by messaging protocols.

Signal was designed by practitioners and was implemented and deployed well
before any security analysis was obtained. In fact, a clean description of Signal
has been posted by its inventors Marlinspike and Perrin [?] only recently. The
write-up does an excellent job at describing the double-ratchet protocol, gives
examples of how it is run, and provides security intuition for its building blocks.
However, it lacks a formal definition of the secure messaging problem that the
double ratchet solves, and, as a result, does not have a formal security proof.

Immediate decryption and its importance. One of the main issues any
messaging scheme must address is the fact that messages might arrive out of order
or be lost entirely. Additionally, parties can be offline for extended periods of time
and send and receive messages asynchronously. Given these inherent constraints,
immediate decryption is a very attractive feature. Informally, it ensures that
when a legitimate message is (eventually) delivered to the recipient, the recipient
can not only immediately decrypt the message but is also able to place it in
the correct spot in relation to the other messages already received. Furthermore,
immediate decryption also ensures an even more critical liveness property, termed
message-loss resilience (MLR) in this work: if a message is permanently lost by
the network, parties should still be able to communicate (perhaps realizing at
some point that a message has never been delivered). Finally, even in settings
where messages are eventually delivered (but could come out of order), giving up
on immediate decryption seems cumbersome: should out-of-order messages be
discarded or buffered by the recipient? If discarded, how will the sender (or the
network) know that it should resend the message later? If buffered, how to prevent
denial-of-service attacks and distinguish legitimate out-of-order messages (which
cannot be immediately decrypted) from fake messages? While these questions
could surely be answered (perhaps by making additional timing assumptions
about the network), it appears that the simplest answer would be to design a
secure messaging protocol which support immediate decryption. Indeed, to the
best of our knowledge, all secure messaging services deployed in practice do have
this feature (and, hence, MLR).

Additional properties. In practice, parties’ states might occasionally leak.
To address this concern, a secure messaging protocol should have the following
two properties:

2

– Forward secrecy (FS): if the state of a party is leaked, none of the previous
messages should get compromised (assuming they are erased from the state,
of course).

– Post-compromise security (PCS) (aka channel healing): once the exposure of
the party’s state ends, security is restored after a few communication rounds.

In isolation, fulfilling either of these desirable properties is well understood: FS is
achieved by using basic steam ciphers (aka pseudorandom generators (PRGs)) [?],
while PCS [?] is achieved by some form of key agreement executed after the
compromise, such as Diffie-Hellman. Unfortunately, these techniques, both of
which involve some form of key evolution, are clearly at tension with immediate
decryption when the network is fully asynchronous. Indeed, the main elegance
of Signal, achieved by its double-ratchet algorithm, comes from the fact that FS
and PCS are not only achieved together, but also without sacrificing immediate
decryption and MLR.

Goals of this work. One of the main drawbacks of all formal Signal-related
papers [?,?,?,?], following the initial work of [?], is the fact that they all achieve
FS and PCS by explicitly giving up not only on immediate decryption, but also
MLR. (This is not merely a definitional issue as their constructions indeed cease
any and all further functionality when, say, a single message is dropped in transit.)
While such a drastic weakening of the liveness/correctness property considerably
simplifies the algorithmic design for these provably secure alternatives to Signal, it
also made them insufficient for settings where message loss is indeed possible. This
can occur, in practice, due to a variety of reasons. For example, the protocol may
be using an unreliable transport mechanism such as SMS or UDP. Alternatively,
traffic may be routed (via more reliable TCP) through a central back-end server
so as to facilitate asynchronous communication between end-points (as is very
common for secure messaging deployments in practice). Yet, even in this setting,
packet losses can still occur as the server itself may end up dropping messages
due to a variety of unintended events such as due to outages or being subject to
a heavy work/network load (say, because of an ongoing (D)DOS attack, partial
outages, or worse yet, an emergency event generating sudden high volumes of
traffic). With the goal of providing resilient communication even under these and
similar realistic conditions, the main objectives of this work are to:

(a) propose formal definitions of secure messaging as a cryptographic primitive
that explicitly mandates immediate decryption and MLR; and

(b) to provide an analysis of Signal itself in a well-defined general model for
secure messaging.

Our work is the first to address either of these natural goals. Moreover, in order to
improve the general understanding of secure messaging and to develop alternative
(e.g., post-quantum secure) solutions, this paper aims at

(c) generalizing and abstracting out the reliance on the specific Diffie-Hellman
key exchange (making the current protocol insecure in the post-quantum
world) as well as clarifying the role of various cryptographic hash functions

3

used inside the current Signal instantiation. That is, the idea is to build a
“generalized Signal” protocol of which the current instantiation is a special
case, but where other instantiations are possible, including those which are
post-quantum secure and/or do not require random oracles.

1.1 Our Results

Addressing the points (a)-(c) above, this paper’s main contributions are the
following:

– Providing a clean definition of secure messaging that clearly indicates the
expected types of security, including FS, PCS, and—for the first time—
immediate decryption.

– Putting forth a modular generalized Signal protocol from several simpler
building blocks:

(1) forward-secure authenticated encryption with associated data (FS-AEAD),
which can be easily built from a regular PRG and AEAD and roughly
models the so-called symmetric-key ratchet of Signal;

(2) continuous key agreement (CKA), which is a clean primitive that can
easily be built generically from public-key encryption and roughly models
the so-called public-key ratchet of Signal;

(3) a two-input hash function, called PRF-PRNG, which is a pseudorandom
function (resp. generator) in its first (resp. second) input and helps to
“connect” the two ratchet types.

– Instantiating the framework such that we obtain the existing Diffie-Hellman-
based protocol and observing that one can easily achieve post-quantum
security (by using post-quantum-secure public-key encryption, such as [?,?,?])
and/or not rely on random oracles in the analysis.

– Extending the design to include other forms of “fine-grained state compromise”
recently studied by Poettering and Rösler [?] and Jaeger and Stepanovs [?]
but, once more, without sacrificing the immediate decryption property.

The secure messaging definition. The proposed secure messaging (SM) defi-
nition encompasses, in one clean game, (Figure 1) all desired properties, including
FS as well as PCS and immediate decryption. The attacker in the definition is
very powerful, has full control of the order of sending and receiving messages, can
corrupt parties’ state multiple times, and even controls the randomness used for
encryption.3 In order to avoid trivial and unpreventable attacks, a few restrictions
need to be placed on an attacker A. In broad strokes, the definition requires the
following properties:

3 Namely, good randomness is only needed to achieve PCS, while all other security
properties hold even with the adversarially controlled randomness (when parties are
not compromised).

4

– When parties are uncompromised, i.e., when their respective states are
unknown to A, the protocol is secure against active attacks. In particular,
the protocol must detect injected ciphertexts (not legitimately sent by one of
the parties) and properly handle legitimate ciphertexts delivered in arbitrary
order (capturing correctness and immediate decryption).

– When parties are uncompromised, messages are protected even against future
compromise of either the sender or the receiver, modeling forward security.

– When one or both parties are compromised and the attacker remains passive,
security is restored “quickly,” i.e., within a few rounds of back-and-forth,
which models PCS.

While the proposed definition is still rather complex, we believe it to be intuitive
and considerably shorter and easier to understand compared to the recent works
of [?,?], which are discussed in more detail in Section 1.2.

It should be stressed that the basic SM security in this paper only requires
PCS against a passive attacker. Indeed, when an active attacker compromises the
state of, say, party A, it can always send ciphertexts to the partner B in A’s name
(thereby even potentially hijacking A’s communication with B and removing
A from the channel altogether) or decrypt ciphertexts sent by B immediately
following state compromise. As was observed by [?,?] at CRYPTO’18, one might
achieve certain limited forms of fine-grained security against active attacks. For
example, it is not a priori clear if the attacker should be able to decrypt ciphertexts
sent by A to B (if A uses good randomness) or forge legitimate messages from B
to A (when A’s state is exposed). We comment on these possible extensions in the
full version of this paper [?] but notice that they are still rather limited, given that
the simple devastating attacks mentioned above are inherently non-preventable
against active attackers immediately following state compromise. Thus, our main
SM security notion simply disallows all active attacks for ∆SM epochs immediately
following state compromise where ∆SM is the number of rounds of communication
required to refresh a compromised state.

The building blocks. Since the original Signal protocol is quite subtle and
somewhat tricky to understand, one of the main contributions of this work is to
distill out three basic and intuitive building blocks used inside the double ratchet.

The first block is forward-secure authenticated encryption with associated data
(FS-AEAD) and models secure messaging security inside a single so-called epoch;
an epoch should be thought of as a unidirectional stream of messages sent by
one of the parties, ending once a message from the other party is received. As
indicated by the name, an FS-AEAD protocol must provide forward secrecy, but
also immediate decryption. Capturing this makes the definition of FS-AEAD
somewhat non-trivial (cf. Figure 3), but still simpler than that of general SM;
in particular, no PCS is required (which allows us to define FS-AEAD as a
deterministic primitive and not worry about poor randomness).

Building FS-AEAD turns out to be rather easy: in essence, one uses message
counters as associated data for standard AEAD and a PRG to immediately

5

refresh the secret key of AEAD after every message successfully sent or received.
This is exactly what is done in Signal.

The second block is a primitive called continuous key agreement (CKA) (cf.
Figure 2), which could be viewed as an abstraction of the DH-based public-key
ratchet in Signal. CKA is a synchronous and passive primitive, i.e., parties A and
B speak in turns, and no adversarial messages or traffic mauling are allowed. With
each message sent or received, a party should output a fresh key such that (with
“sending” keys generated by A being equal to “receiving” keys generated by B and
vice versa). Moreover, CKA guarantees its own PCS, i.e., after a potential state
exposure, security is restored within two rounds. Finally, CKA must be forward-
secure, i.e., past keys must remain secure when the state is leaked. Forward
security is governed by a parameter ∆CKA ≥ 0, which, informally, guarantees that
all keys older than ∆CKA rounds remain secure upon state compromise.

Not surprisingly, minimizing ∆CKA results in faster PCS for secure messaging.4

Fortunately, optimal CKA protocols achieving optimal ∆CKA = 0 can be built
generically from key-encapsulation mechanisms. Interestingly, the elegant DH-
based CKA used by Signal achieves slightly sub-optimal ∆CKA = 1, which is
due to how long parties need to hold on to their secret exponents. However, the
Signal CKA saves about a factor of 2 in communication complexity, which makes
it a reasonable trade-off in practice.

The third and final component of the generalized Signal protocol is a two-
argument hash function P, called a PRF-PRNG, which is used to produce secret
keys for FS-AEAD epochs from an entropy pool refreshed by CKA keys. More
specifically, with each message exchanged using FS-AEAD, the parties try to run
the CKA protocol “on the side,” by putting the CKA messages as associated
data. Due to asynchrony, the party will repeat a given CKA message until it
receives a legitimate response from its partner, after which the CKA moves
forward with the next message. Each new CKA key is absorbed into the state of
the PRF-PRNG, which is then used to generate a new FS-AEAD key.

Informally, a PRF-PRNG takes as inputs a state σ and a CKA key I and
produces a new state σ′ and a (FS-AEAD) key k. It satisfies a PRF property
saying that if σ is random, then P(σ, ·) acts like a PRF (keyed by σ) in that
outputs (σ′, k) on adversarially chosen inputs I are random. Moreover, it also
acts like a PRNG in that, if the input I is random, then so are the resulting state
σ′ and key k. Observe that standard hash functions are assumed to satisfy this
notion; alternatively, one can also very easily build a PRF-PRNG from any PRG
and a pseudorandom permutation (cf. Section 4.3).

Generalized signal. Putting the above blocks together properly yields the
generalized Signal protocol (cf. Figure 6). As a special case, one can easily obtain
the existing Signal implementation5 by using the standard way of building FS-
AEAD from PRG and AEAD, CKA using the Diffie-Hellman based public-key

4 Specifically, the healing time of the generic Signal protocol presented in this work is
∆SM = 2 + ∆CKA.

5 For syntactic reasons having to do with our abstractions, our protocol is a minor
variant of Signal, but is logically equivalent to Signal in every aspect.

6

ratchet mentioned above, and an appropriate cryptographic hash function in place
of PRF-PRNG. However, many other variants become possible. For example, by
using a generic CKA from DH-KEM, one may trade communication efficiency
(worse by a factor of 2) for a shorter healing period ∆SM (from 3 rounds to
2). More interestingly, using any post-quantum KEM, such as [?,?,?] results
in a post-quantum secure variant of Signal. Finally, we also believe that our
generalized double ratcheting scheme is much more intuitive than the existing
DH-based variant, as it abstracts precisely the cryptographic primitives needed,
including the two types ratchets, and what security is needed from each primitive.

Beyond double ratcheting to full signal. Following most of the prior (and
concurrent) work [?,?,?,?] (discussed in the next section), this paper primarily
concerned with formalizing the double-ratchet aspect of the Signal protocol. This
assumes that any set of two parties can correctly and securely agree on the initial
secret key. The latter problem is rather non-trivial, especially (a) in the multi-user
setting, when a party could be using a global public key to communicate with
multiple recipients, some of which might be malicious, (b) when the initial secret
key agreement is required to be non-interactive, and (c) when state compromise
(including that of the master secret for the PKI) is possible, and even frequent.
Some of those subtleties are discussed and analyzed by Cohn-Gordon et al. [?],
but, once again, in a manner specific to the existing Signal protocol (rather
than a general secure messaging primitive). Signal also suggests using the X3DH
protocol [?] as one particular way to generate the initial shared key. Certainly,
studying (and even appropriately defining) secure messaging without idealized
setup, and analyzing “full Signal” in this setting, remains an important area for
future research.

1.2 Related Work

The OTR (off-the-record) messaging protocol [?] is an influential predecessor of
Signal, which was the first to introduce the idea of the DH-based double ratchet to
derive fresh keys for each encrypted message. However, it was mainly suitable for
synchronous back-and-fourth conversations, so Signal’s double ratchet algorithm
had to make a number of non-trivial modifications to extend the beautiful OTR
idea into a full-fledged asynchronous messaging protocol.

Following the already discussed rigorous description of DH-based double
ratcheting by Marlinspike and Perrin [?], and the protocol-specific analysis
by Cohn-Gordon et al. [?], several formal analyses of ratcheting have recently
appeared [?,?,?,?]; they design definitions of various types of ratcheting and
provide schemes meeting these definitions. As previously mentioned, all these
works have the drawback of no longer satisfying immediate decryption.

Bellare et al. [?] looked at the question of unidirectional ratcheting. In this
simplified variant of double (or bidirectional) ratcheting, the receiver is never
corrupted, and never needs to update its state. Coupled with giving up imme-
diate decryption, this allowed the authors to obtain a rather simple solution

7

Unfortunately, extending their ideas to the case of bidirectional communication
appeared non-trivial and was left to future work.

Bidirectionality has been achieved in work by Jaeger and Stepanovs [?]
and Poettering and Rösler [?]. The papers differ in syntax (one treats secure
messaging while the other considers key exchange) and hence use different
definitions. However, in spirit both papers attempt to model a bidirectional
channel satisfying FS and PCS (but not immediate decryption). Moreover, both
consider “fine-grained” PCS requirements which are not met by Signal’s double
ratchet protocol (and not required by the SM definition in this work). The extra
security appears to come at a steep price: both papers use growing (and potentially
unbounded) state as well as heavy techniques from public-key cryptography,
including hierarchical identity-based encryption [?] (HIBE). More discussion
can be found in the full version of this paper [?], including an (informally
stated) extension to Signal which achieves a slightly weaker form of fine-grained
compromise than [?,?], yet still using only constant sized states, bandwidth and
computation as well as comparatively lightweight primitives.

Finally, the notion of immediate decryption is reminiscent in spirit to the
zero round trip time (0-RTT) communication with forward secrecy which was
recently studied by [?,?]. However, the latter primitive is stateless on the sender
side, making it more difficult to achieve (e.g., the schemes of [?,?] use a heavy
tool called puncturable encryption [?]).

Concurrent and Independent Work. We have recently become aware of two
concurrent and independent works by Durak and Vaudenay [?] and Jost, Maurer
and Mularczyk [?]. Like other prior works, these works (1) designed their own
protocols and did not analyze Signal; and (2) do not satisfy immediate decryption
or even message-loss resilience (in fact, they critically rely on receiving messages
from one party in order). Both works also provide formal notions of security,
including privacy, authenticity, and a new property called unrecoverability by [?]
and post-impersonation authentication by [?]: if an active attacker sends a fake
message to the recipient immediately following state compromise of the sender,
the sender can, by design, never recover (and, thus, will notice the attack by
being unable to continue the conversation).

2 Preliminaries

2.1 Game-Based Security and Notation

All security definitions in this work are game-based, i.e., they consider games
executed between a challenger and an adversary. The games have one of the
following formats:

– Unpredictability games: First, the challenger executes the special init proce-
dure, which sets up the game. Subsequently, the attacker is given access to a
set of oracles that allow it to interact with the scheme in question. The goal of
the adversary is to provoke a particular, game-specific winning condition. The

8

advantage of an adversary A against construction C in an unpredictability
game ΓC is

AdvC
Γ (A) := P[A wins ΓC] .

– Indistinguishability games: In addition to setting up the game, the init proce-
dure samples a secret bit b ∈ {0, 1}. The goal of the adversary is to determine
the value of b. Once more, upon completion of init, the attacker interacts
arbitrarily with all available oracles up to the point where it outputs a guess
bit b′. The adversary wins the game if b = b′. The advantage of an adversary
A against construction C in an indistinguishability game Γ is

AdvC
Γ (A) := 2 ·

∣∣P[A wins ΓC]− 1/2
∣∣ .

With the above in mind, to describe a any security (or correctness) notion, one
need only specify the init oracle and the oracles available to A. The following
special keywords are used to simplify the exposition of the security games:

– req is followed by a condition; if the condition is not satisfied, the ora-
cle/procedure containing the keyword is exited and all actions by it are
undone.

– win is used to declare that the attacker has won the game; it can be used
for both types of games above.

– end disables all oracles and returns all values following it to the attacker.

Moreover, the descriptions of some games/schemes involve dictionaries. For ease of
notation, these dictionaries are described with the array-notation described next,
but it is important to note that they are to be implemented by a data structure
whose size grows (linearly) with the number of elements in the dictionary (unlike
arrays):

– Initialization: The statement D[·]← λ initializes an empty dictionary D.

– Adding elements: The statement D[i] ← v adds a value v to dictionary D
with key i, overriding the value previously stored with key i if necessary.

– Retrieval: The expression D[i] returns the value v with key i in the dictionary;
if there are no values with key i, the value λ is returned.

– Deletion: The statement D[i]← λ deletes the value v corresponding to key i.

Finally, sometimes the random coins of certain probabilistic algorithms are made
explicit. For example, y ← A(x; r) means that A, on input x and with random
tape r, produces output y. If r is not explicitly stated, is assumed to be chosen
uniformly at random; in this case, the notation y ←$ A(x) is used.

2.2 Cryptographic Primitives

This paper makes use of the following cryptographic primitives:

9

AEAD. An authenticated encryption with associated data (AEAD) scheme is a
pair of algorithms AE = (Enc,Dec) with the following syntax:

– Encryption: Enc takes a key K, associated data a, and a message m and
produces a ciphertext e← Enc(K, a,m).

– Decryption: Dec takes a key K, associated data a, and a ciphertext e and
produces a message m← Dec(K, a, e).

All AEAD schemes in this paper are assumed to be deterministic, i.e., all ran-
domness stems from the key K.

KEMs. A key-encapsulation mechanism (KEM) is a public-key primitive con-
sisting of three algorithms KEM = (KG,Enc,Dec) with the following syntax:

– Key generation: KG takes a (implicit) security parameter and outputs a fresh
key pair (pk, sk)←$ KG.

– Encapsulation: Enc takes a public key pk and produces a ciphertext and a
symmetric key (c, k)←$ Enc(pk).

– Decapsulation: Dec takes a secret key sk and a ciphertext c and recovers the
symmetric key k ← Dec(sk, c).

3 Secure Messaging

A secure messaging (SM) scheme allows two parties A and B to communicate
securely bidirectionally and is expected to satisfy the following informal require-
ments:

– Correctness: If no attacker interferes with the transmission, B outputs the
messages sent by A in the correct order and vice versa.

– Immediate decryption and message-loss resilience (MLR): Messages must be
decrypted as soon as they arrive and may not be buffered; if a message is
lost, the parties do not stall.

– Authenticity: While the parties’ states are uncompromised (i.e., unknown
to the attacker), the attacker cannot change the messages sent by them or
inject new ones.

– Privacy: While the parties’ states are uncompromised, an attacker obtains
no information about the messages sent.

– Forward secrecy (FS): All messages sent and received prior to a state com-
promise of either party (or both) remain hidden to an attacker.

– Post-compromise security (PCS, aka “healing”): If the attacker remains
passive (i.e., does not inject any corrupt messages), the parties recover from
a state compromise (assuming each has access to fresh randomness).

– Randomness leakage/failures: While the parties’ states are uncompromised, all
the security properties above except PCS hold even if the attacker completely

10

controls the parties’ local randomness. That is, good randomness is only
required for PCS.

This section presents the syntax of and a formal security notion for SM schemes.

3.1 Syntax

Formally, an SM scheme consists of two initialization algorithms, which are given
an initial shared key k, as well as a sending algorithm and a receiving algorithm,
both of which keep (shared) state across invocations. The receiving algorithm also
outputs a so-called epoch number and an index, which can be used to determine
the order in which the sending party transmitted their messages.

Definition 1. A secure-messaging (SM) scheme consists of four probabilistic
algorithms SM = (Init-A, Init-B,Send,Rcv), where

– Init-A (and similarly Init-B) takes a key k and outputs a state sA ← Init-A(k),

– Send takes a state s and a message m and produces a new state and a
ciphertext (s′, c)←$ Send(s,m), and

– Rcv takes a state s and a ciphertext c and produces a new state, an epoch
number, an index, and a message (s′, t, i,m)← Rcv(s, c).

3.2 Security

Basics. The security notion for SM schemes considered in this paper is intuitive
in principle. However, formalizing it is non-trivial and somewhat cumbersome
due to a number of subtleties that naturally arise and cannot be avoided if the
criteria put forth at the beginning of Section 3 are to be met. Therefore, before
presenting the definition itself, this section introduces some basic concepts that
will facilitate understanding of the definition.

Epochs. SM schemes proceed in so-called epochs, which roughly correspond
the “back-and-forth” between the two parties A and B. By convention, odd
epoch numbers t are associated with A sending and B receiving, and the other
way around for even epochs. Note, however, that SM schemes are completely
asynchronous, and, hence, epochs overlap to a certain extent. Correspondingly,
consider two epoch counters tA and tB for A and B, respectively, satisfying the
following properties:

– The two counters are never more than one epoch apart, i.e., |tA − tB| ≤ 1 at
all times.

– When A receives an epoch-t message from B for t = tA + 1, it sets tA ← t
(even). The next time A sends a message, tA is incremented again (to an odd
value).

– Similarly, when B receives an epoch-t message from A for t = tB + 1, it sets
tB ← t (odd). The next time B sends a message, tB is incremented again (to
an even value).

11

Message indices. Within an epoch, messages are identified by a simple counter.
To capture the property of immediate decryption and MLR, the receive algorithm
of an SM scheme is required to output the correct epoch number and index
immediately upon reception of a ciphertext, even when messages arrive out of
order.

Corruptions and their consequences. Since SM schemes are required
to be forward-secure and to recover from state compromise, any SM security
game must allow the attacker to learn the state of either party at any given time.
Moreover, to capture authenticity and privacy, the attacker should be given the
power to inject malicious ciphertexts and to call a (say) left-or-right challenge
oracle, respectively. These requirements, however, interfere as follows:

– When either party is in a compromised state, the attacker cannot invoke the
challenge oracle since this would allow him to trivially distinguish.

– When either party is in a compromised state, the attacker can trivially forge
ciphertexts and must therefore be barred from calling the inject oracle.

– When the receiver of messages in transmission is compromised, these messages
lose all security, i.e., the attacker learns their content and can replace them by
a valid forgery. Consequently, while any challenge ciphertext is in transmission,
the recipient may not be corrupted. Similarly, an SM scheme must be able to
deal with forgeries of compromised messages (once the parties have healed).

These issues require that the security definition keep track of ciphertexts in
transmission, of challenge ciphertexts, and of compromised ciphertexts; this will
involve some (slightly cumbersome) record keeping.

Natural SM schemes. For simplicity, SM schemes in this work are assumed
to satisfy the natural requirements below.6

Definition 2. An SM scheme SM = (Init-A, Init-B,Send,Rcv) is natural if the
following criteria are satisfied:

(A) Whenever Rcv outputs m = ⊥, the state remains unchanged.

(B) Any given ciphertext corresponds to an epoch t and an index i, i.e., the values
(t, i) output by Rcv are an (efficiently computable) function of c.

(C) Algorithm Rcv never accepts two messages corresponding to the same pair
(t, i).

(D) A party always rejects ciphertexts corresponding to an epoch in which the
party does not act as receiver

(E) If a party, say A, accepts a ciphertext corresponding to an epoch t, then
tA ≥ t− 1.

The security game. The security game, which is depicted in Figure 1, consists
of an initialization procedure init and of

6 The reader may skip over this definition on first read. The properties are referenced
where they are needed.

12

– two “send” oracles, transmit-A (normal transmission) and chall-A (chal-
lenge transmission);

– two “receive” oracles, deliver-A (honest delivery) and inject-A (for forged
ciphertexts); and

– a corrupt oracle corr-A

pertaining to party A, and of the corresponding oracles pertaining to B. Moreover,
Figure 1 also features an epoch-management function ep-mgmt, a function sam-
if-nec explained below, and two record-keeping functions record and delete;
these functions cannot be called by the attacker. The game is parametrized by
∆SM, which relates to how fast parties recover from a state compromise. All
components are explained in detail below, following the intuition laid out above.

The advantage of A against an SM scheme SM is denoted by AdvSM
sm,∆SM

(A).
The attacker is parameterized by its running time t, the total number of queries
q it makes, and the maximum number of epochs qep it runs for.

Definition 3. A secure-messaging scheme SM is (t, q, qep,∆SM, ε)-secure if for
all (t, q, qep)-attackers A,

AdvSM
sm,∆SM

(A) ≤ ε .

Initialization and state. The initialization procedure chooses a random
key and initializes the states sA and sB of A and B, respectively. Moreover, it
defines several variables to keep track of the execution: (1) tA and tB are the
epoch counters for A and B, respectively; (2) variables iA and iB count how many
messages have been sent by each party in their respective current epochs; (3)
tL records the last time either party’s state was leaked to the attacker and is
used, together with tA and tB, to preclude trivial attacks; (4) the sets trans, chall,
and comp will contain records and allow to track ciphertexts in transmission,
challenge ciphertexts, and compromised ciphertexts, respectively; (5) the bit b is
used to create the challenge.

Sampling if necessary. The send oracles transmit-A and chall-A allow the
attacker to possibly control the random coins r of Send. If r = ⊥, the function
samples r ←$ R (from some appropriate set R), and returns (r, good), where
good indicates that fresh randomness is used. If, on the other hand, r 6= ⊥,
the function returns (r, bad), indicating, via bad, that adversarially controlled
randomness is used.

Epoch management. The epoch management function ep-mgmt advances
the epoch of the calling party if that party’s epoch counter has a “receiving value”
(even for A; odd for B) and resets the index counter. The flag argument is to
indicate whether fresh or adversarial randomness is used. If a currently corrupted
party starts a new epoch with bad randomness, the new epoch is considered
corrupted. However, if it does not start a new epoch, bad randomness does not
make the ciphertext corrupted. This captures that randomness should only be
used for PCS (but for none of the other properties mentioned above).

13

Security Game for Secure Messaging

init
k ←$ K
sA ← Init-A(k)
sB ← Init-B(k)
(tA, tB)← (0, 0)
iA, iB ← 0
tL ← −∞
trans, chall, comp← ∅
b←$ {0, 1}

corr-A
req B /∈ chall

comp
+← trans(B)

tL ← max(tA, tB)
return sA

transmit-A (m, r)
(r, flag)←
sam-if-nec(r)

ep-mgmt(A, flag)
iA ++
(sA, c)← Send(sA,m; r)
record(A, norm,m, c)
return c

chall-A (m0,m1, r)
(r, flag)←
sam-if-nec(r)

ep-mgmt(A, flag)
req safe-chA and
|m0|= |m1|

iA ++
(sA, c)← Send(mb; r)
record(A, chall,mb, c)
return c

deliver-A (c)
req (B, t, i,m, c) ∈ trans

for some t, i,m
(sA, t

′, i′,m′)← Rcv(sA, c)
if (t′, i′,m′) 6= (t, i,m)

win

if (t, i,m) ∈ chall
m′ ← ⊥

tA ← max(tA, t)
delete(t, i)
return (t′, i′,m′)

inject-A (c)
req (B, c) /∈ trans and safe-inj

(sA, t
′, i′,m′)← Rcv(sA, c)

if m′ 6= ⊥ and (B, t′, i′) /∈ comp
win

tA ← max(tA, t
′)

delete(t′, i′)
return (t′, i′,m′)

ep-mgmt (P, flag)

if P = A and tP even or
P = B and tP odd
if flag = bad and
¬safe-chP

tL ← tP + 1
tP ++
iP ← 0

sam-if-nec (r)

flag← bad
if r = ⊥

r ←$ R
flag← good

return (r, flag)

record (P, flag,m, c)
rec← (P, tP, iP,m, c)

trans
+← rec

if ¬safe-chP

comp
+← rec

if flag = chall

chall
+← rec

delete (t, i)
rec← (P, t, i,m, c)

for some P,m, c

trans, chall, comp
−← rec

safe-chP :⇐⇒ tP ≥ tL + ∆SM

safe-inj
:⇐⇒ min(tA, tB) ≥ tL + ∆SM

Fig. 1. Oracles corresponding to party A of the SM security game for a scheme SM =
(Init-A, Init-B, Send,Rcv); the oracles for B are defined analogously.

Record keeping. The game keeps track of ciphertexts in transmission, of
challenge ciphertexts, and of compromised ciphertexts. Records have the format
(P, tP, iP,m, c), where P is the sender, tP the epoch in which the message was
sent, iP the index within the epoch, m the message itself, and c the ciphertext.

Whenever record is called, the new record is added to the set trans. If a
party is not in a safe state, the record is also added to the set of compromised
ciphertexts comp. If the function is called with flag = chall, the record is added to

14

chall. The function delete takes an epoch number and an index and removes the
corresponding record from all three record keeping sets trans, chall, and comp.

Sometimes, it is convenient to refer to a particular record (or a set thereof)
by only specifying parts of it. For example, the expression B /∈ chall is equivalent
to there not being any record (B, ∗, ∗, ∗, ∗) in the set chall. Similarly, trans(B) is
the set of all records of this type in trans.

Send oracles. Both send oracles, transmit-A and chall-A, begin with
sam-if-nec, which samples fresh randomness if necessary, followed by a call to
ep-mgmt. Observe that the flag argument is set to flag← good by sam-if-nec
if fresh randomness is used, and to flag← bad otherwise. Subsequently:

– transmit-A increments iA, executes Send, and creates a record using flag =
norm, indicating that this is not a challenge ciphertext. Observe that if A is
not currently in a safe state, the record is added to comp.

– chall-A works similarly to transmit-A, except that one of the two inputs
is selected according to b, and the record is saved with flag = chall, which
will cause it to be added to the challenges chall. Note that chall-A can only
be called when A is not in a compromised state, which is captured by the
statement req safe-chA.

The oracles for B are defined analogously.

Receive oracles. Two oracles are available by which the attacker can get A
to receive a ciphertext: deliver-A is intended for honest delivery, i.e., to deliver
ciphertexts created by B, whereas inject-A is used to inject forgeries. These
rules are enforced by checking (via req) the set trans.

– deliver-A: The ciphertext is first passed through Rcv, which must correctly
identify the values t, i, and m recorded when c was created; if it fails to do
so, the correctness property is violated and the attacker immediately wins
the game. In case c was a challenge, the decrypted message is replaced by
⊥ in order to avoid trivial attacks. Before returning the output of Rcv, tA
is incremented if t is larger than tA, and the record corresponding to c is
deleted.

– inject-A: Again, the ciphertext is first passed through Rcv. Unless the cipher-
text corresponds7 to (t, i) ∈ comp, algorithm Rcv must reject it; otherwise,
authenticity is violated and the attacker wins the game. The final instructions
are as in deliver-A. Oracle inject-A may only be called if neither party is
currently recovering from state compromise, which is taken care of by flag
safe-inj.

The oracles for B are defined analogously.
By deleting records at the end of deliver-A and inject-A, the game enforces

that no replay attacks take place. For example, if a ciphertext c that at some
point is in trans is accepted twice, the second time counts as a forgery. Similarly,

7 cf. Property (B) in Definition 2.

15

if two forgeries for a compromised pair (t, i) are accepted, the attacker wins
as well. Note, however, that natural schemes do not allow replay attacks (cf.
Property (C) in Definition 2).

Corruption oracles. The corruption oracle for A, corr-A, can be called
whenever no challenges are in transit from B to A, i.e., when B /∈ chall. If
corruption is allowed, all ciphertexts in transit sent by B become compromised.
Before returning A’s state, the oracle updates the time of the most recent
corruption. The corruption oracle chall-B for B is defined similarly.

4 Building Blocks

The SM scheme presented in this work is a modular construction and uses three
components: continuous key-agreement (CKA), forward-secure authenticated
encryption with associated data (FS-AEAD) and—for lack of a better name—
PRF-PRNGs. These primitives are presented in isolation in this section before
combining them into an SM scheme in Section 5.

4.1 Continuous Key Agreement

This work distills out the public-ratchet part of the Signal protocol and casts it
as a separate primitive called continuous key agreement (CKA). This step is not
only useful to improve the intuitive understanding of the various components of
the Signal protocol and their interdependence, but it also increases modularity,
which, for example, would—once the need arises—allow to replace the current
CKA mechanism based on DDH by one that is post-quantum secure.

Defining CKA. At a high level, CKA is a synchronous two-party protocol
between A and B. Odd rounds i consist of A sending and B receiving a message
Ti, whereas in even rounds, B is the sender and A the receiver. Each round i also
produces a key Ii, which is output by the sender upon sending Ti and by the
receiver upon receiving Ti.

Definition 4. A continuous-key-agreement (CKA) scheme is a quadruple of
algorithms CKA = (CKA-Init-A,CKA-Init-B,CKA-S,CKA-R), where

– CKA-Init-A (and similarly CKA-Init-B) takes a key k and produces an initial
state γA ← CKA-Init-A(k) (and γB),

– CKA-S takes a state γ, and produces a new state, message, and key (γ′, T, I)←
$ CKA-S(γ), and

– CKA-R takes a state γ and message T and produces new state and a key
(γ′, I)← CKA-R(γ, T).

Denote by K the space of initialization keys k and by I the space of CKA keys I.

16

Security Game for CKA

init (t∗)
k ←$ K
γA ← CKA-Init-A(k)

γB ← CKA-Init-B(k)
tA, tB ← 0
b←$ {0, 1}

corr-A
req allow-corr or
finishedA

return γA

send-A
tA ++
(γ, TtA , ItA)←$ CKA-S(γ)
return (TtA , ItA)

send-A’ (r)
tA ++
req allow-corr

(γ, TtA , ItA)← CKA-S(γ; r)
return (TtA , ItA)

receive-A
tA ++

(γA, ∗)← CKA-R(γA, TtA)

chall-A
tA ++
req tA = t∗

(γ, TtA , ItA)←$ CKA-S(γ)

if b = 0
return (TtA , ItA)

else
I ←$ I
return (TtA , I)

allow-corrP :⇐⇒ max(tA, tB) ≤ t∗ − 2

finishedP :⇐⇒ tP ≥ t∗ + ∆CKA

Fig. 2. Oracles corresponding to party A of the CKA security game for a scheme CKA =
(CKA-Init-A,CKA-Init-B,CKA-S,CKA-R); the oracles for B are defined analogously.

Correctness. A CKA scheme is correct if in the security game in Figure 2
(explained below), A and B always, i.e., with probability 1, output the same key
in every round.

Security. The basic property a CKA scheme must satisfy is that conditioned
on the transcript T1, T2, . . ., the keys I1, I2, . . . look uniformly random and in-
dependent. An attacker against a CKA scheme is required to be passive, i.e.,
may not modify the messages Ti. However, it is given the power to possibly (1)
control the random coins used by the sender and (2) leak the current state of
either party. Correspondingly, the keys Ii produced under such circumstances
need not be secure. The parties are required to recover from a state compromise
within 2 rounds.8

The formal security game for CKA is provided in Figure 2. It begins with a
call to the init oracle, which samples a bit b, initializes the states of both parties,
and defines epoch counters tA and tB. Procedure init takes a value t∗, which
determines in which round the challenge oracle may be called.

Upon completion of the initialization procedure, the attacker gets to interact
arbitrarily with the remaining oracles, as long as the calls are in a “ping-pong”
order, i.e., a call to a send oracle for A is followed by a receive call for B, then
by a send oracle for B, etc. The attacker only gets to use the challenge oracle

8 Of course, one could also parametrize the number of rounds required to recover (all
CKA schemes in this work recover within two rounds, however).

17

for epoch t∗. No corruption or using bad randomness (send-A’ and send-B’) is
allowed less than two epochs before the challenge is sent (allow-corr).

The game is parametrized by ∆CKA, which stands for the number of epochs
that need to pass after t∗ until the states do not contain secret information
pertaining to the challenge. Once a party reaches epoch t∗ + ∆CKA, its state may
be revealed to the attacker (via the corresponding corruption oracle). The game
ends (not made explicit) once both states are revealed after the challenge phase.
The attacker wins the game if it eventually outputs a bit b′ = b.

The advantage of an attacker A against a CKA scheme CKA with ∆CKA = ∆
is denoted by AdvCKA

ror,∆(A). The attacker is parameterized by its running time t.

Definition 5. A CKA scheme CKA is (t,∆, ε)-secure if for all t-attackers A,

AdvCKA
ror,∆(A) ≤ ε .

Instantiating CKA. This paper presents several instantiations of CKA: First,
a generic CKA scheme with ∆ = 0 based on any key-encapsulation mechanism
(KEM). Then, by considering the ElGamal KEM and observing that an encapsu-
lated key can be “reused” as public key, one obtains a CKA scheme based on the
decisional Diffie-Hellman (DDH) assumption, where the scheme saves a factor of
2 in communication compared to a straight-forward instantiation of the generic
scheme. However, the scheme has ∆ = 1.

CKA from KEMs. A CKA scheme with ∆ = 0 can be built from a KEM in
natural way: in every epoch, one party sends a public key pk of a freshly generated
key pair and an encapsulated key under the key pk′ received from the other party
in the previous epoch. Specifically, consider a CKA scheme CKA = (CKA-Init-A,
CKA-Init-B,CKA-S,CKA-R) that is obtained from a KEM KEM as follows:

– The initial shared state k = (pk, sk) consists of a (freshly generated) KEM
key pair. The initialization for A outputs pk← CKA-Init-A(k) and that for B
outputs sk← CKA-Init-B(k).

– The send algorithm CKA-S takes as input the current state γ = pk and
proceeds as follows: It

1. encapsulates a key (c, I)←$ Enc(pk);

2. generates a new key pair (pk, sk)←$ KG;

3. sets the CKA message to T ← (c, pk);

4. sets the new state to γ ← sk; and

5. returns (γ, T, I).

– The receive algorithm CKA-R takes as input the current state γ = sk as well
as a message T = (c, pk) and proceeds as follows: It

1. decapsulates the key I ← Dec(sk, c);

2. sets the new state to γ ← pk; and

3. returns (γ, I).

18

The full version of this paper [?] shows that the above scheme is a secure CKA
protocol by reducing its security to that of the underlying KEM.

CKA from DDH. Observe that if one instantiates the above KEM-based
CKA scheme with the ElGamal KEM over some group G, both the public key
and the encapsulated key are elements of G. Hence, the Signal protocol uses an
optimization of the ElGamal KEM where a single group element first serves as an
encapsulated key sent by, say, A and then as the public key B uses to encapsulate
his next key. Interestingly, this comes at the price of having ∆ = 1 (as opposed
to ∆ = 0) due to the need for parties to hold on to their exponents (which serve
both as secret keys and encapsulation randomness) longer.

Concretely, a CKA scheme CKA = (CKA-Init-A,CKA-Init-B,CKA-S,CKA-R)
can be obtained from the DDH assumption9 in a cyclic group G = 〈g〉 as follows:

– The initial shared state k = (h, x0) consists of a (random) group element
h = gx0 and its discrete logarithm x0. The initialization for A outputs
h← CKA-Init-A(k) and that for B outputs x0 ← CKA-Init-B(k).

– The send algorithm CKA-S takes as input the current state γ = h and
proceeds as follows: It
1. chooses a random exponent x;

2. computes the corresponding key I ← hx;

3. sets the CKA message to T ← gx;

4. sets the new state to γ ← x; and

5. returns (γ, T, I).

– The receive algorithm CKA-R takes as input the current state γ = x as well
as a message T = h and proceeds as follows: It
1. computes the key I = hx;

2. sets the new state to γ ← h; and

3. returns (γ, I).

The full version of this paper [?] shows that the above scheme is a secure CKA
protocol if the DDH assumption holds in group G.

4.2 Forward-Secure AEAD

Defining FS-AEAD. Forward-secure authenticated encryption with associated
data is a stateful primitive between a sender A and a receiver B and can be
considered a single-epoch variant of an SM scheme, a fact that is also evident
from its security definition, which resembles that of SM schemes.

Definition 6. Forward-secure authenticated encryption with associated data
(FS-AEAD) is a tuple of algorithms FS-AEAD = (FS-Init-S,FS-Init-R,FS-Send,
FS-Rcv), where

9 The DDH assumption states that it is hard to distinguish DH triples (ga, gb, gab) from
random triples (ga, gb, gc), where a, b, and c are uniformly random and independent
exponents.

19

– FS-Init-S (and similarly FS-Init-R) takes a key k and outputs a state vA ←
FS-Init-S(k),

– FS-Send takes a state v, associated data a, and a message m and produces a
new state and a ciphertext (v′, e)← FS-Send(v, a,m), and

– FS-Rcv takes a state v, associated data a, and a ciphertext e and produces a
new state, an index, and a message (v′, i,m)← FS-Rcv(v, a, e).

Observe that all algorithms of an FS-AEAD scheme are deterministic.

Memory management. In addition to the basic syntax above, it is useful to
define the following two functions FS-Stop (called by the sender) and FS-Max
(called by the receiver) for memory management:

– FS-Stop, given an FS-AEAD state v, outputs how many messages have been
received and then “erases” the FS-AEAD session corresponding to v form
memory; and

– FS-Max, given a state v and an integer `, remembers ` internally such that
the session corresponding to v is erased from memory as soon as ` messages
have been received.

These features will be useful in the full protocol (cf. Section 5) to be able
to terminate individual FS-AEAD sessions when they are no longer needed.
Providing a formal requirement for these additional functions is omitted. Moreover,
since an attacker can infer the value of the message counter from the behavior of
the protocol anyway, there is no dedicated oracle included in the security game
below.

Correctness and security. Both correctness and security are built into the
security game depicted in Figure 3. The game is the single-epoch analogue of
the SM security game (cf. Figure 1) and therefore has similarly defined oracles
and similar record keeping. A crucial difference is that as soon as the receiver
B is compromised, the game ends with a full state reveal as no more security
can be provided. If only the sender A is compromised, the game continues and
uncompromised messages must remain secure.

The advantage of an attacker A against an FS-AEAD scheme FS-AEAD is
denoted by the expression AdvFS-AEAD

fs-aead (A). The attacker is parameterized by its
running time t and the total number of queries q it makes.

Definition 7. An FS-AEAD scheme FS-AEAD is (t, q, ε)-secure if for all (t, q)-
attackers A,

AdvFS-AEAD
fs-aead (A) ≤ ε .

Instantiating FS-AEAD An FS-AEAD scheme can be easily constructed from
two components:

– an AEAD scheme AE = (Enc,Dec), and

– a PRG G :W →W ×K, where K is the key space of the AEAD scheme.

20

Security Game for FS-AEAD

init
k ←$ K
vA ← FS-Init-S(k)
vB ← FS-Init-R(k)
iA ← 0
corrA ← false
trans, chall, comp← ∅
b←$ {0, 1}

corr-A
corrA ← true
return vA

corr-B
req chall = ∅
end (vA, vB)

transmit-A (a,m)
iA ++
(vA, e)← FS-Send(vA, a,m)
record(good, a,m, e)
return c

chall-A (a,m0,m1)
req ¬corrA and |m0|= |m1|
iA ++
(vA, e)← FS-Send(vA, a,mb)
record(chall, a,mb, e)
return e

deliver-A (a, e)
req (i, a,m, e) ∈ trans

for some i,m
(vA, i

′,m′)← FS-Rcv(vA, a, e)

if (i′,m′) 6= (i,m)
win

if (i,m) ∈ chall
m′ ← ⊥

delete(i)
return (i′,m′)

inject-A (a, e)
req (a, e) /∈ trans

(vA, i
′,m′)← FS-Rcv(vA, a, e)

if m′ 6= ⊥ and (B, i′) /∈ comp
win

delete(i′)
return (i′,m′)

record (flag, a,m, e)
rec← (iA, a,m, e)

trans
+← rec

if flag = bad or corrA

comp
+← rec

if flag = chall

chall
+← rec

delete (i)
rec← (i, a,m, e) for m, a, e

s.t. (i, a,m, e) ∈ trans

trans, chall, comp
−← rec

Fig. 3. Oracles corresponding to party A of the FS-AEAD security game for a scheme
FS-AEAD = (FS-Init-S,FS-Init-R,FS-Send,FS-Rcv); the oracles for B are defined analo-
gously.

The scheme is described in Figure 4. For simplicity the states of sender A
and receiver B are is not made explicit; it consists of the variables set during
initialization. The main idea of the scheme, is that the A and B share the state
w of a PRG G. State w is initialized with a pre-shared key k ∈ W, which is
assumed to be chosen uniformly at random. Both parties keep local counters
iA and iB, respectively.10 A, when sending the ith message m with associated
data (AD) a, uses G to expand the current state to a new state and an AEAD
key (w,K)← G(w) and computes an AEAD encryption under K of m with AD
h = (i, a).

Since B may receive ciphertext out of order, whenever he receives a ciphertext,
he first checks whether the key is already stored in a dictionary D. If the index
of the message is higher than expected (i.e., larger than iB + 1), B skips the PRG

10 For ease of description, the FS-AEAD state of the parties is not made explicit as a
variable v.

21

Forward-Secure AEAD

Init-A (k)
w ← k
iA ← 0

Init-B (k)
w ← k
iB ← 0
D[·]← λ

try-skipped (i)
K ← D[i]
D[i]← ⊥
return K

FS-Send (a,m)
iA ++
(w,K)← G(w)
h← (iA, a)
e← Enc(K,h,m)
return (iA, e)

skip (u)
while iB < u− 1

iB ++
(w,K)← G(w)
D[u]← K

FS-Rcv (a, c)
(i, e)← c
K ← try-skipped(i)
if K = ⊥

skip(i)
(w,K)← G(w)
iB ← i

h← (i, a)
m← Dec(K,h, e)
if m = ⊥

error
return (i,m)

Fig. 4. FS-AEAD scheme based on AEAD and a PRG.

ahead and stores the skipped keys in D. In either case, once the key is obtained,
it is used to decrypt. If decryption fails, FS-Rcv throws an exception (error),
which causes the state to be rolled back to where it was before the call to FS-Rcv.

In the full version of this work [?], it is shown that, based on the security of
the AEAD scheme and the PRG, the above yields a secure FS-AEAD scheme.

4.3 PRF-PRNGs

Defining PRF-PRNGs. A PRF-PRNG resembles both a pseudo-random
function (PRF) and a pseudorandom number generator with input (PRNG)—
hence the name. On the one hand, as a PRNG would, a PRF-PRNG (1) repeatedly
accepts inputs I and uses them to refresh its state σ and (2) occasionally uses the
state, provided it has sufficient entropy, to derive a pseudo-random pair of output
R and new state; for the purposes of secure messaging, it suffices to combine
properties (1) and (2) into a single procedure. On the other hand, a PRF-PRNG
can be used as a PRF in the sense that if the state has high entropy, the answers
to various inputs I on the same state are indistinguishable from random and
independent values.

Definition 8. A PRF-PRNG is a pair of algorithms P = (P-Init,P-Up), where

– P-Init takes a key k and produces a state σ ← P-Init(k), and

– P-Up takes a state σ and an input I and produces a new state and an output
(σ′, R)← P-Up(σ, I).

Security. The simple intuitive security requirement for a double-seed PRG is
that P-Init(σ, I) produce a pseudorandom value if the state σ is uncorrupted (i.e.,
has high entropy) or the input I is chosen uniformly from some set S. Moreover,

22

Security Game for PRF-PRNG

init
k ←$ K
σ ← P-Init(k)
corr← false
prng, prf ← false
b←$ {0, 1}

corr
req ¬prf
return σ

process (I)
I ← sam-if-nec(I)
(σ,R)← P-Up(σ, I)
return R

chall-prf (I)
req ¬corr and ¬prng
prf ← true
(σ′, R)← P-Up(σ, I)
if b = 1

R←$ R
return (σ′, R)

chall-prng (I)
I ← sam-if-nec(I)
req ¬corr and ¬prf
prng← true

(σ,R)← P-Up(σ, I)
if b = 1

R←$ R
return R

sam-if-nec (I)
if I = ⊥

I ←$ I
corr← false

return I

Fig. 5. Oracles of the PRF-PRNG security game for a scheme P = (P-Init,P-Up).

if the state is uncorrupted, it should have the PRF property described above.
This is captured by the security definition described by Figure 5:

– Initialization: Procedure init chooses a random bit b, initializes the PRF-
PRNG with a random key, and sets two flags prng and prf to false: the PRNG
and PRF modes are mutually exclusive and only one type of challenge may
be called; the flags keep track of which.

– PRNG mode: The oracle process can be called in two ways: either I is an
input specified by the attacker and is simply absorbed into the state, or
I = ⊥, in which case the game chooses it randomly (inside sam-if-nec) and
absorbs it into the state, which at this point becomes uncorrupted. Oracle
chall-prng is works in the same fashion but creates a challenge.

– PRF mode: Once the state is uncompromised the attacker can decide to
obtain PRF challenges by calling chall-prf , which simply evaluates the
(adversarially chosen) input on the current state without updating it and
creates a challenge.

– Corruption: At any time, except after asking for PRF challenges, the attacker
may obtain the state by calling corr.

The advantage of A in the PRF-PRNG game is denoted by AdvP
PP(A). The

attacker is parameterized by its running time t.

Definition 9. An PRF-PRG P is (t, ε)-secure if for all t-attackers A,

AdvP
PP(A) ≤ ε .

23

Instantiating PRF-PRNGs. Being a PRF-PRNG is a property the HKDF
function used by Signal is assumed to have; in particular, Marlinspike and
Perrin [?] recommend the primitive be implemented with using HKDF [?] with
SHA-256 or SHA-512 [?] where the state σ is used as HKDF salt and I as
HKDF input key material. This paper therefore merely reduces the security of
the presented schemes to the PRF-PRNG security of whatever function is used
to instantiate it.

Alternatively, a simple standard-model instantiation (whose rather immediate
proof is omitted) can be based on a pseudorandom permutation (PRP) Π :
{0, 1}n × {0, 1}n → {0, 1}n and a PRG G : {0, 1}n → {0, 1}n ×K by letting the
state be the PRP key s ∈ {0, 1}n and

(s′, R)← P-Up(s, I) = G(Πs(I)) .

5 Secure Messaging Scheme

This section presents a Signal-based secure messaging (SM) scheme and establishes
its security under Definition 3. The scheme suitably and modularly combines
continuous key-agreement (CKA), forward-secure authenticated encryption with
associated data (FS-AEAD), and PRF-PRNGs; these primitives are explained in
detail in Section 4.

5.1 The Scheme

The scheme is inspired by the Signal protocol, but differs from it in a few points,
as explained in Section 5.2. The main idea of the scheme is that the parties A and
B keep track of the same PRF-PRG (aka the “root RNG”), which they use to
generate keys for FS-AEAD instances as needed. The root RNG is continuously
refreshed by random values output by a CKA scheme that is run “in parallel.”

State. Scheme SM keeps an internal state sA (resp. sB), which is initialized by
Init-A (resp. Init-B) and used as well as updated by Send and Rcv. The state sA
of SM consists of the following values:

– an ID field with id = A,

– the state σroot of the root RNG,

– states v[0], v[1], v[2], . . . of the various FS-AEAD instances,

– the state γ of the CKA scheme,

– the current CKA message Tcur, and

– an epoch counter tA.

In order to remove expired FS-AEAD sessions from memory, there is also a
variable `prv that remembers the number of messages sent in the second most
recent epoch. Recall (cf. Section 4.2) that once the maximum number of messages
has been set via FS-Max, a session “erases” itself from the memory, and similarly
for calling FS-Stop on a particular FS-AEAD session. For simplicity, removing

24

Signal-Based Secure-Messaging Scheme

Init-A (k)
id← A
(kroot, kCKA)← k
σroot ← P-Init(kroot)

v[·]← λ
(σroot, k)← P-Up(σroot, λ)
v[0]← FS-Init-R(k)

γ ← CKA-Init-A(kCKA)
Tcur ← λ

`prv ← 0

tA ← 0

Send-A (m)
if tA is even

`prv ← FS-Stop(v[tA − 1])
tA ++
(γ, Tcur, I)←$ CKA-S(γ)
(σroot, k)← P-Up(σroot, I)
v[tA]← FS-Init-S(k)

h← (tA, Tcur, `prv)
(v[tA], e)← FS-Send(v[tA], h,m)

return (h, e)

Rcv-A (c)
(h, e)← c
(t, T, `)← h
req t even and t ≤ tA + 1

if t = tA + 1
tA ++
FS-Max(v[t− 2], `)

(γ, I)← CKA-R(γ, T)
(σroot, k)← P-Up(σroot, I)

v[t]← FS-Init-R(k)

(v[t], i,m)← FS-Rcv(v[t], h, e)

if m = ⊥
error

return (t, i,m)

Fig. 6. Secure-messaging scheme based on a FS-AEAD, a CKA scheme, and a PRF-
PRNG.

the corresponding v[t] from memory is not made explicit in either case. The state
sB is defined analogously.

The algorithms. The algorithms of scheme SM are depicted in Figure 6 and
described in more detail below. For ease of description, the algorithms Send and
Rcv are presented as Send-A and Rcv-A, which handle the case where id = A;
the case id = B works analogously. Moreover, to improve readability, the state
sA is not made explicit in the description: it consists of the variables set by the
initialization algorithm.

– Initialization: The initialization procedure Init-A expects a key k shared
between A and B; k is assumed to have been created at some point before
the execution during a trusted setup phase and to consist of initialization
keys kroot and kCKA for the root RNG and the CKA scheme, respectively. In
a second step, the root RNG is initialized with k. Then, it is used to generate
a key for FS-AEAD epoch v[0]; A acts as receiver in v[0] and all subsequent
even epochs and as sender in all subsequent odd epochs. Furthermore, Init-A
also initializes the CKA scheme and sets the initial epoch tA ← 0 and Tcur to
a default value.11

As pointed out above, scheme SM runs a CKA protocol in parallel to sending
its messages. To that end, A’s first message includes the first message T1 output
by CKA-S. All subsequent messages sent by A include T1 until some message
received from B includes T2. At that point A would run CKA-S again and include
T3 with all her messages, and so on (cf. Section 4.1).

11 B also starts in epoch tB ← 0.

25

Upon either sending or receiving Ti for odd or even i, respectively, the CKA
protocol also produces a random value Ii, which A absorbs into the root RNG.
The resulting output k is used as key for a new FS-AEAD epoch.

– Sending messages: Procedure Send-A allows A to send a message to B. As a
first step, Send-A determines whether it is A’s turn to send the next CKA
message, which is the case if tA is even. Whenever it is A’s turn, Send-A
runs CKA-S to produce the her next CKA message T and key I, which is
absorbed into the root RNG. The resulting value k is used as a the key for
a new FS-AEAD epoch, in which A acts as sender. The now old epoch is
terminated by calling FS-Stop and the number of messages in the old epoch
is stored in `prv, which will be sent along inside the header for every message
of the new epoch.
Irrespective of whether it was necessary to generate a new CKA message and
generate a new FS-AEAD epoch, Send-A creates a header h = (tA, Tcur, `prv),
and uses the current epoch v[tA] to get a ciphertext for (h,m) (where h is
treated as associated data).

– Receiving messages: When a ciphertext c = (h, e, `) with header h = (t, T, `)
is processed by Rcv-A, there are two possibilities:

• t ≤ tA (and t even): In this case, ciphertext c pertains to an existing
FS-AEAD epoch, in which case FS-Send is simply called on v[t] to process
e. If the maximum number of messages has been received for session v[t],
the session is removed from memory.

• t = tA + 1 and tA odd: Here, the receiver algorithm advances tA by
incrementing it and processes T with CKA-R. This produces a key I,
which is absorbed into the PRF-PRG to obtain a key k with which to
initialize a new epoch v[tA] as receiver. Then, e is processed by FS-Rcv on
v[tA]. Note that Rcv also uses FS-Max to store ` as the maximum number
of messages in the previous receive epoch.

Irrespective of whether a new CKA message was received and a new epoch
created, if e is rejected by FS-Rcv, the algorithm raises an exception (error),
which causes the entire state sA to be rolled back to what it was before Rcv-A
was called.

5.2 Differences to Signal

By instantiating the building blocks as shown below, one obtains an SM scheme
that is very close to the actual Signal protocol (cf. [?, Section 5.2] for more
details):

– CKA: the DDH-based CKA scheme from Section 4.1 using Curve25519 or
Curve448 as specified in [?];

– FS-AEAD: FS-AEAD scheme from Section 4.2 with HMAC [?] with SHA-256
or SHA-512 [?] for the PRG, and an AEAD encryption scheme based on
either SIV or a composition of CBC with HMAC [?,?];

26

– PRF-PRNG: HKDF [?] with SHA-256 or SHA-512 [?], used as explained in
Section 4.3.

We now detail the main differences:

Deferred randomness for sending. Deployed Signal implementations
generate a new CKA message and absorb the resulting key into the RNG in Rcv,
as opposed to taking care of this inside Send, as done here. The way it is done
here is advantageous in the sense that the new key is not needed until the Send
operation is actually initiated, so there is no need to risk its exposure unnecessarily
(in case the state is compromised in between receiving and sending). Indeed,
this security enhancement to Signal was explicitly mentioned by Marlinspike
and Perrin [?] (cf. Section 6.5), and we simply follow this suggestion for better
security.

Epoch indexing. In our scheme we have an explicit epoch counter t to index a
given epoch. In Signal, one uses the uniqueness of latest CKA message (of the
form gx) to index an epoch. This saves an extra counter from each party’s state,
but we find our treatment of having explicit epoch counters much more intuitive,
and not relying on any particular structure of CKA messages. In fact, indexing
a dictionary becomes slightly more efficient when using a simple counter than
the entire CKA message (which could be long for certain CKA protocols; e.g.,
post-quantum from lattices).

FS-AEAD abstraction. Unlike the SM proposed from this section, Signal
does not use the FS-AEAD abstraction. Instead, each party maintains a sending
and a receiving PRG that are kept in sync with the other party’s receiving and
sending PRG, respectively. Moreover, when receiving the first message of a new
epoch, the current receive PRG is skipped ahead appropriately depending on the
value `, and the skipped keys are stored in a single, global dictionary. The state
of the receive PRG is then overwritten with the new state output by the root
RNG. Then, upon the next send operation new randomness for the CKA message
is generated, and the sending RNG is also overwritten by the state output from
updating the root RNG again. This is logically equivalent to our variant of
Signal with the particular FS-AEAD implementation in Figure 4, except we will
maintain multiple dictionaries (one for each epoch t). However, merging these
dictionaries into one global dictionary (indexed by epoch counter in addition to
the message count within epoch) becomes a simple efficiency optimization of the
resulting scheme. Moreover, once this optimization is done, there is no need to
store an array of FS-AEAD instances v[t]. Instead, we can only remember the
latest sending and receiving FS-AEAD instance, overwriting them appropriately
with each new epoch. Indeed, storing old message keys from not-yet-delivered
messages is the only information one needs to remember from the prior FS-AEAD
instances. So once this information is stored in the global dictionary, we can
simply overwrite the remaining information when moving to the new epoch. With
these simple efficiency optimizations, we arrive to (almost) precisely what is done
by Signal (cf. Figure 7).

27

Signal Scheme

Init-A (k)
id← A
(kroot, kCKA)← k
σroot ← P-Init(kroot)

(σroot, σB)← P-Up(σroot, λ)

γ ← CKA-Init-A(kCKA)
Tcur ← λ

`prv ← 0
tA, iA, iB ← 0
D[·]← λ

skip (t, u)
while iB < u

iB ++
(σB,K)← G(σB)
D[t, iB]← K

Send-A (m)
if tA is even

tA ++
`prv ← iA
iA ← 0
(γ, Tcur, I)←$ CKA-S(γ)
(σroot, σA)← P-Up(σroot, I)

iA ++
h← (tA, iA, Tcur, `prv)
(σA,K)← G(σA)
e← Enc(K,h,m)

return (h, e)

try-skipped (t, i)
K ← D[t, i]
D[t, i]← ⊥
return K

Rcv-A (c)
(h, e)← c
(t, i, T, `)← h
req t even and t ≤ tA + 1

if t = tA + 1
skip(t− 2, `prv)
tA ++, iB ← 0

(γ, I)← CKA-R(γ, T)
(σroot, σB)← P-Up(σroot, I)

K ← try-skipped(t, i)
if K = ⊥

skip(t, i− 1)
iB ++
(σB,K)← G(σB)

m← Dec(K,h, e)

if m = ⊥
error

return (t, i,m)

Fig. 7. Signal scheme without the FS-AEAD abstraction, based on a CKA scheme, a
PRF-PRNG, authenticated encryption, and a regular PRG. The figure only shows the
algorithms for A; B’s algorithms are analogous, with the roles of iA and iB switched.

To sum up, blindly using the FS-AEAD abstraction results in a slightly less
efficient scheme, but (1) we feel our treatment is more modular and intuitive; (2)
when using a concrete FS-AEAD scheme from Section 4.2, getting actual Signal
becomes a simple efficiency optimization of the resulting scheme. In particular,
the security of Signal itself still follows from our framework.

Initial key agreement. As mentioned in the introduction, our modeling
only addresses the double-ratchet aspect of the Signal protocol, and does not
tackle the challenging problem of the generation of the initial shared key k. One
thing this also allows us to do is to elegantly side-step the issue that natural
CKA protocols are unkeyed, and do not generate shared a shared key I0 from
the initial message T0. Instead, we model CKA as a secret key primitive, where
the initial key kCKA effectively generates the first message T0 of “unkeyed CKA”
protocol, but now shared keys I1, I2, . . . get generated right away from subsequent
messages T1, T2, In other words, rather than having k only store the root key
kroot, in our protocol we let it store a tuple (kroot, kCKA), and then use kCKA to
solve the syntactic issue of having a special treatment for the first CKA message
T0.

In most actual Signal implementations, the initial shared key k will only
contain the value kroot, and it is the receiver B who stores several initial CKA
messages T0 (called “one-time prekeys”) on the Signal server for new potential
senders A. When such A comes along, A would take one such one-time prekey
value T0 from the Signal server, and (optionally) use it to generate the initial

28

shared key kroot using the X3DH Key Agreement Protocol [?]. This creates slight
circularity, and we leave it to the future work to properly model and analyze
such generation of the initial key kroot.

5.3 Security of the SM Scheme

The proof of the following main theorem can be found in the full version of this
paper [?].

Theorem 1. Assume that

– CKA is a (t′,∆CKA, εcka)-secure CKA scheme,

– FS-AEAD is a (t′, q, εfs-aead)-secure FS-AEAD scheme, and

– P is a (t′, εp)-secure PRF-PRNG.

Then, the SM construction above is (t, q, qep,∆SM, ε)-SM-secure for t ≈ t′, ∆SM =
2 + ∆CKA, and

ε ≤ 2q2
ep · (εcka + q · εfs-aead + εp) .

29

	The Double Ratchet: Security Notions, Proofs, and Modularization for the Signal Protocol
	Introduction
	Our Results
	Related Work

	Preliminaries
	Game-Based Security and Notation
	Cryptographic Primitives

	Secure Messaging
	Syntax
	Security

	Building Blocks
	Continuous Key Agreement
	Forward-Secure AEAD
	PRF-PRNGs

	Secure Messaging Scheme
	The Scheme
	Differences to Signal
	Security of the SM Scheme

