
Simple Schemes in the Bounded Storage Model

Jiaxin Guan and Mark Zhandary

Princeton University, Princeton NJ 08544, USA

Abstract. The bounded storage model promises unconditional security
proofs against computationally unbounded adversaries, so long as the
adversary’s space is bounded. In this work, we develop simple new con-
structions of two-party key agreement, bit commitment, and oblivious
transfer in this model. In addition to simplicity, our constructions have
several advantages over prior work, including an improved number of
rounds and enhanced correctness. Our schemes are based on Raz’s lower
bound for learning parities.

1 Introduction

For the vast majority of cryptographic applications, security relies on the as-
sumed hardness of certain computational problems, such as factoring large inte-
gers or inverting certain hash functions. Unfortunately, with the current state of
complexity theory the hardness of these problems can only be conjectured. This
means that the security of such schemes is always conditional on such conjectures
being true.

Maurer proposes the Bounded Storage Model [Mau92] as an alternate model
for constraining the adversary; here, instead of constraining the adversary’s time,
the adversary’s memory is bounded. Amazingly, it is actually possible to give
unconditional proofs of security for schemes in this model. The core idea is
that the honest parties exchange so much information that the adversary cannot
possibly store it all. Then, schemes are cleverly devised to exploit the adversary’s
lack of knowledge about the scheme.

Moreover, the space bounds are only necessary when the protocol is run,
and even if the adversary later gains more space the protocol remains secure.
This means schemes only need to be designed with current storage capacities in
mind. This is fundamentally different than the usual approach of time-bounding
adversaries, where an adversary can later break the protocol if its computational
abilities increase. Hence, traditional schemes must be designed with future com-
putational abilities in mind. This is especially important in light of recent de-
velopments in quantum computing, as Grover’s algorithm [Gro96] and Shor’s
algorithm [Sho94] can speed up attacks on many current cryptographic proto-
cols. Hence, much of the communication taking place today will be revealed once
quantum computers become reality.

This Work. In this work, we devise very simple round-optimal protocols for bit-
commitment and oblivious transfer (namely, 1 round and 2 rounds, respectively)

in the Bounded Storage Model, improving 5 rounds needed in prior works. We
additionally develop a new key agreement protocol with several advantages over
prior works. Our results rely on Raz’s recent space lower bound for learning
parities [Raz17], and in particular the simple encryption scheme based on this
lower bound. Our key observation is that Raz’s encryption scheme has several
useful properties — including additive homomorphism and leakage resilience
— that can be useful for building higher-level protocols. Our core technical
contribution is a new “encrypt zero” protocol for Raz’s encryption scheme, which
may be of independent interest.

Our schemes are based on entirely different techniques than most of the prior
literature — most of which is based on the birthday paradox — and we believe
our work will therefore be a useful starting point for future work in the bounded
storage model.

1.1 Prior Work in the Bounded Storage Model

Prior work in the Bounded Storage Model [Mau92, CM97, CCM98, Lu02, AR99,
Din01, DHRS04] typically uses something akin to the birthday paradox to achieve
security against space-bounded adversaries.

In slightly more detail, the key agreement scheme of Maurer [Mau92] works
as follows. One party sends a stream of roughly n2 random bits to the other
party 1. Each party records a random secret subset of n bits of the stream.
By the birthday paradox, the two parties will have recorded one bit position in
common with constant probability. They therefore share the bit positions they
recorded with each other, and set their secret key to be the bit of the stream at
the shared position.

An eavesdropper first sees n2 random bits. If the eavesdropper’s storage is
somewhat lower than n2, he cannot possibly remember the entire sequence of
random bits. In particular, it can be shown that the adversary has little informa-
tion about the bit shared by the two honest parties. This remains true even after
the parties share their bit positions. Notice that the honest parties require space
n, and security holds even for adversaries with space Cn2 for some constant C.
Therefore, by tuning n so that n storage is feasible, but Cn2 is not, one obtains
the desired security.

Much of the literature on the Bounded Storage Model relies on this sort of
birthday attack property. Unfortunately, this leads to several difficulties:

– The two honest parties only achieve success with constant probability. In
order to achieve success with high probability, the protocol either needs
to be repeated many times (thus requiring more than n2 communication) or
requires the honest users to store more than n positions (thus requiring more
than n space, and making the gap between the honest users and adversaries
less than quadratic).

1 In most works in the Bounded Storage Model, the random bit stream is assumed to
come from a trusted third party. In this work we will insist on there being no trusted
third party, and instead the bit stream comes from the parties themselves.

2

– Remembering n random positions out of n2 requires O(n log n) space just
to record the indices. To compress the space requirements of the honest
parties, the positions are actually chosen by a pairwise independent function,
complicating the scheme slightly.

– The adversary has a 1/n2 chance of guessing the bit position shared by the
two users. As such, the adversary has a non-negligible advantage in guessing
the bit. To get statistical security, a randomness extraction step is applied,
adding slightly to the complexity of the protocol.

– More importantly, there is very little structure to exploit with the birthday
approach. For more advanced applications such as oblivious transfer or bit
commitment, the protocols end up being somewhat complicated and require
several rounds.

1.2 Space Lower Bounds For Learning Parities

In this work, we exploit recent space lower bounds due to Raz [Raz17]. Raz
considers a setting where one party holds a secret key k ∈ {0, 1}n, and streams
random tuples (ri, ri · k), where ri is random in {0, 1}n and the inner product
is taken mod 2. Raz asks: given these random tuples, and only limited storage
(namely Cn2 for some constant C), how hard is it to recover k? Clearly, if
C ≈ 1, then one can store n tuples, and then recover k using linear algebra. But
if C � 1, then the adversary has no hope of storing enough tuples to perform
linear algebra.

Raz proves that, for some constant C (roughly 1/20), then either the adver-
sary needs an exponential (in n) number of samples, or the adversary’s proba-
bility of correctly guessing k is exponentially small.

Raz observes that his lower bound easily leads to a secret key encryption
scheme in the bounded storage model. The key will be an n-bit string k. To
encrypt a message bit b, choose a random r, and produce the ciphertext (r, r ·
k⊕b). Raz’s lower bound shows that after seeing fewer than exponentially many
encrypted messages, an adversary with Cn2 space has an exponentially small
probability of guessing k. This means k always has some min-entropy conditioned
on the adversaries’ view. Then using the fact that the inner product is a good
extractor, we have that for any new ciphertext r·k is statistically close to random,
and hence masks the message b.

1.3 This Work

In this work, we use Raz’s scheme in order to develop simple new constructions
in the Bounded Storage Model that have several advantages over prior work.

Our main observation is that Raz’s encryption scheme has several attractive
properties. First, it is leakage resilient: since inner products are strong extractors,
the scheme remains secure even if the adversary has partial knowledge of the key,
as long as the conditional min-entropy of the key is large.

Next, we note that Raz’s scheme is additively homomorphic: given encryp-
tions (r0, r0·k⊕m0) and (r1, r1·k⊕m1) ofm0,m1, we can compute an encryption

3

of m0 ⊕m1 by simply taking the componentwise XOR of the two ciphertexts,
yielding (r0 ⊕ r1, (r0 ⊕ r1) · k⊕ (m0 ⊕m1)). This additive homomorphism will
prove very useful. We can also toggle the bit being encrypted by toggling the
last bit of a ciphertext.

For example, Rothblum [Rot11] shows that any additively homomorphic se-
cret key encryption scheme can be converted into a public key (additively homo-
morphic) encryption scheme. The rough idea is that the public key consists of
many encryptions of zero. Then, to devise an encryption of a bit m, simply add
a random subset sum of the public key ciphertexts to get a “fresh” encryption
of zero, and then toggle the encrypted bit as necessary to achieve an encryption
of m.

Key Agreement. In the case of Raz’s scheme, the public key will end up contain-
ing O(n) ciphertexts, meaning the public key is too large for the honest users to
even write down. However, we can re-interpret this protocol as a key-agreement
protocol. Here, the public key is streamed from user A to user B, who applies the
additive homomorphism to construct the fresh encryption on the fly. Now one
party knows the secret key, and the other has a fresh ciphertext with a known
plaintext. So the second party just sends the ciphertext back to the first party,
who decrypts. The shared key is the plaintext value.

Bit Commitment. Next, we observe that the public key encryption scheme ob-
tained above is committing : for any public key there is a unique secret key.
Therefore, we can use the scheme to get a bit commitment scheme as follows: to
commit to a bit b, the Committer simply chooses a random secret key, streams
the public key to the receiver, and then sends an encryption of b. To open the
commitment, the Committer simply sends the secret decryption key. The Veri-
fier, on the other hand, constructs several fresh encryptions of 0 by reading the
Committer’s stream, as user B did in our key agreement protocol. Upon receiv-
ing a supposed secret key, the Verifier checks that all the encryptions do in fact
decrypt to 0. If so, then it decrypts the commitment to get the committed value.

Oblivious Transfer. We can also turn this commitment scheme into an oblivious
transfer protocol: the Receiver, on input b, commits to the bit b. Then the Sender,
on input x0, x1, using the homomorphic properties of the encryption scheme,
turns the encryption of b in the commitment into encryptions of (1−b)x0 and bx1.
To maintain privacy of x1−b, the Sender will re-randomize the encryptions, again
using the homomorphic properties. To re-randomize, the Sender will construct
some fresh encryptions of zero, again just as user B did in our key agreement
protocol. The Receiver can then decrypt these ciphertexts, which yield 0 and xb.

Malicious Security. The commitment scheme and the oblivious transfer protocol
are secure as long as the public key is generated correctly. This occurs, for
example, if the randomness for the encryptions of 0 is generated and streamed
by a trusted third party. This is the setting considered in much of the prior work
in the bounded storage model.

4

On the other hand, if we do not wish to rely on a trusted third party to
generate the encryption randomness, a malicious Committer can choose a public
key with bad randomness, which will allow him to break the commitment, as
explained below. This also would let the Receiver break the security of the
oblivious transfer protocol. We therefore additionally show how to modify the
constructions above to obtain security for malicious parties without relying on
a trusted third party. The result is round-optimal protocols for bit-commitment
and oblivious transfer without a trusted third party.

1.4 Additional Technical Details

The Encrypt Zero Protocol. Notice that all of our schemes have a common
feature: one user has a secret key, and the other user obtains encryptions of 0.
Importantly for security, these encryptions of 0 should be independent of the
view of the first user.

In order to unify our schemes, we abstract the common features required
with an Encrypt Zero protocol for Raz’s encryption scheme. The goal of the
protocol is to give one party, the Keeper, a random key s, and another party,
the Recorder, λ random encryptions {c1, . . . , cλ} of 0. Here, λ is a parameter that
will be chosen based on application. Recorder security dictates that the Keeper
learns nothing about the λ encryptions stored by the Recorder (aside from the
fact that they encrypt 0). Keeper security requires that the min-entropy of the
key s conditioned on the Recorder’s view is Ω(n). We additionally require that
the Keeper’s space is O(n) (which is optimal since the Keeper must store a secret
key of O(n) bits), and the Recorder’s space is O(λn) (which is also optimal, since
the Recorder must store λ encryptions of O(n) bits each).

Our basic protocol for Raz’s scheme works as follows:

– The Keeper chooses a random key k ∈ {0, 1}n. Letm = O(n) be a parameter.
The Recorder chooses a secret matrix Σ ∈ {0, 1}λ×m.

– The Keeper streams m encryptions (ri, ai = ri · k + 0) to the Recorder, for
random ri ∈ {0, 1}n and i = 1, 2, . . . ,m. From now on, we use the convention
that “+” and “·” are carried out mod 2.

– The Recorder maintains matrix Ψ ∈ {0, 1}λ×n and column vector κ ∈
{0, 1}λ. Each row of (Ψ |κ) will be a random subset-sum of the encryptions
sent by the Keeper, with each subset-sum chosen according to Σ. The ma-
trices will be computed on the fly. So when (ri, ai) comes in, the Recorder
will map Ψ → Ψ + σi · ri, κ→ κ + σiai. Here, σi is the i-th column of Σ,
and ri is interpreted as a row vector.

– At the end of the protocol, the Keeper outputs its key s = k, and the
Recorder outputs (Ψ |κ), whose rows are the ciphertexts c1, . . . , cλ.

Let R be the matrix whose rows are the ri’s, and let a be the column vector
of the ai’s. Then we have that a = R · k, Ψ = Σ ·R, and κ = Σ · a = Ψ · k.
Hence, the rows of (Ψ |κ) are encryptions of zero, as desired.

5

For Keeper security, Raz’s theorem directly shows that k has min-entropy
relative to the Recorder’s view. For Recorder security, notice that Σ is inde-
pendent of the the Keeper’s view. Therefore, if the Keeper follows the protocol
and m is slightly larger than n so that R is full rank with high probability,
then Ψ is a random matrix independent of the adversary’s view. Therefore the
ciphertexts ci are actually random encryptions of 0. Thus we get security for
honest-but-curious Keepers.

Key Agreement. This protocol gives a simple key-agreement scheme. Basically,
one party acts as the Keeper, and one as the Recorder. We set λ = 1. The result
of the Encrypt Zero protocol is that the Recorder contains a uniformly random
encryption of 0. The Recorder simply flips the bit encrypted with probability
1/2 to get a random encryption of a random bit b, and sends the resulting
ciphertext to the Keeper. The Keeper decrypts, and the shared secret key is just
the resulting plaintext b.

Security of the protocol follows from the fact that after the Encrypt Zero
protocol, the Keeper’s key has min-entropy relative to any eavesdropper (since
the eavesdropper learns no more than the Recorder). Moreover, the Keeper acts
honestly, so the final ciphertext is always a fresh encryption. Finally, the encryp-
tion scheme is leakage resilient so it hides the bit b even though the adversary
may have some knowledge of the key.

Notice that this scheme has perfect correctness, in that the two parties always
arrive at a secret key. This is in contrast to the existing schemes based on the
birthday paradox, where security is only statistical, and moreover this holds only
if the adversary’s space bounds are asymptotically smaller than n2. In contrast,
we get perfect correctness and statistical security for adversarial space bounds
that are O(n2). The honest users only require O(n) space.

Bit Commitment. We now describe a simple bit-commitment protocol using the
above Encrypt Zero protocol. Recall that in a bit-commitment scheme, there
are two phases: a commit phase where the Committer commits to a bit b, and
a reveal or de-commit phase where the Committer reveals b and proves that b
was the value committed to. After the commit phase, we want that the bit b is
hidden. On the other hand, we want the commit phase to be binding, in that
the Committer cannot later change the committed bit to something else.

The Committer and the Verifier will run the Encrypt Zero protocol, with
Committer playing the role of Keeper and Verifier the role of Recorder. The
protocol works as follows:

– Run the Encrypt Zero protocol, giving the Committer a random key s and
the Verifier λ random encryptions ci of 0.

– The Committer then sends an encryption of b relative to the key s.

– To open the commitment, the Committer sends s. The Verifier checks that
s correctly decrypts all the ci to 0. If so, it decrypts the final ciphertext to
get b.

6

The security of the Encrypt Zero protocol and the leakage resilience of the
encryption scheme show that this scheme is hiding. For binding, we note that
an honest Committer will have no idea what encryptions ci the Verifier has.
As such, if the Committer later tries to change its committed bit by sending a
malicious key s′, s′ will cause each ciphertext ci to decrypt to 1 with probability
1/2. Therefore, the Committer will get caught with probability 1− 2−λ.

Already, this gives a very simple protocol for bit commitment that is non-
interactive; in contrast, the prior work of Ding et al. [DHRS04] required five
rounds. One limitation is that we require the Committer to behave honestly
during the commit phase. For example, if the Committer chooses R to be low
rank, then the encryptions obtained by the Verifier will not be independent of
the Committer’s view, and hence the Committer may be able to cheat during
the de-commit phase.

To get around this, we tweak the Encrypt Zero protocol slightly to get secu-
rity even against malicious Keepers. Our Enhanced Encrypt Zero protocol is as
follows:

– The Keeper chooses a random key k ∈ {0, 1}n and an independent random
secret s ∈ {0, 1}m. We will let m = 2n. The Recorder chooses a secret matrix
Σ ∈ {0, 1}λ×m.

– The Keeper streams random encryptions of the bits of si. We will write this
in matrix form as (R,a = R · k + s).

– The Recorder computes Ψ = Σ ·R and κ = Σ · a.
– The Keeper then sends its key k in the clear.
– The Keeper outputs its secret s as the key, and the Recorder outputs (Σ,κ−

Ψ · k).

Notice that κ − Ψ · k = Σ · s, a list of λ encryptions of 0 relative to the
key s, as desired. Moreover, these encryptions are random encryptions, even if
R is chosen adversarially by the Keeper, since the Keeper has no knowledge or
control over Σ.

To prove the min-entropy of s relative to a malicious Recorder, we note that
the real-or-random CPA security of the encryption scheme shows that just prior
to receiving k, the Recorder has essentially no information about s. Then, since
k is n bits, revealing it can only reveal n bits of s. But s is a uniformly random
m = 2n bit string, meaning it has roughly n bits of min-entropy remaining, as
desired. Thus we get both our security properties, even for malicious parties.

Our Enhanced Encrypt Zero protocol roughly doubles the communication,
but otherwise maintains all the attractive properties of the original scheme: it is
non-interactive and has perfect correctness.

Putting it all together, our bit commitment protocol is the following:

– To commit to a bit b, the Committer streams R, a = R · k + s followed by
k,γ, c = γ · s + b for random R,k, s,γ.

– The Verifier records Σ,Ψ = Σ ·R,κ = Σ · a for a random choice of Σ, and
then once k comes in it computes φ = κ− Ψ · k = Σ · s.

– To reveal the bit b, the Committer just sends x = s.
– The Verifier checks that φ = Σ · x. If so, it computes b′ = c− γ · x.

7

Oblivious Transfer. We now turn to constructing an oblivious transfer (OT)
protocol. In an OT protocol, one party, the Sender, has two input bits x0, x1.
Another party, the Receiver, has a bit b. The Receiver would like to learn xb
without revealing b, and the Sender would like to ensure that the Receiver learns
nothing about x1−b.

In our protocol, the Receiver will play the role of Committer in our com-
mitment scheme, committing to its input b. The Sender will play the role of
Recorder in the Encrypt Zero protocol, setting λ = 2. The hiding property of
the commitment scheme ensures that the space-bounded Sender learns nothing
about the Receiver’s bit b.

At the end of the Receiver’s message, the Sender has an encryption (γ, c∗ =
γ · s + b) of b with secret key s. Additionally, it also has two encryptions of
0, namely (σ0, c0 = σ0 · s) and (σ1, c1 = σ1 · s) for random vectors σ0,σ1.
Importantly, σ0,σ1 are independent of the Receiver’s view, as they were chosen
by the Sender.

The Sender will now exploit the additive homomorphism of the encryption
scheme once more. In particular, it will compute encryptions of (1 − b)x0 and
bx1, which it will then send back to the Receiver. To compute an encryption of
bx1, it simply multiplies the ciphertext (γ, c∗) by x1. Similarly, to compute an
encryption of (1 − b)x0, it toggles c∗ (to get an encryption of 1 − b) and then
multiplies the entire ciphertext by x0.

Now clearly these two ciphertexts reveal both x0 and x1, so the Sender cannot
send them directly to the Receiver. Instead, it will re-randomize them by adding
the two encryptions of 0. Now it obtains fresh encryptions of (1− b)x0 and bx1:

σ0 + x0γ, c0 + x0(1− c∗) = (σ0 + x0γ) · s +
(
(1− b)x0

)
σ1 + x1γ, c1 + x1c

∗ = (σ1 + x1γ) · s +
(
bx1
)

It sends these ciphertexts to the Receiver, who then decrypts. All the Receiver
learns then is (1 − b)x0 and bx1. One of these plaintexts will be xb as desired,
and the other will be 0. Thus, the Receiver learns nothing about x1−b.

Our protocol is round-optimal, since it involves only a single message in each
direction. This improves on the best prior work of Ding et al. [DHRS04] requiring
5 rounds. Additionally, our protocol is much simpler than the prior work.

1.5 Discussion

Just as homomorphic encryption has been an extremely useful tool in traditional
cryptography, our work demonstrates that the homomorphic properties of Raz’s
encryption scheme are also fruitful for the Bounded Storage model. We believe
our work will be a useful starting point for much future work in this area.

1.6 Other Related Work

A recent work by Ball et al. [BDKM18] shows another application of Raz’s
encryption scheme, where they use it to construct unconditional non-malleable
codes against streaming, space-bounded tempering.

8

2 Preliminaries

Here, we recall some basic cryptographic notions, translated into the setting of
the bounded storage model. In the following definitions, n will be a security
parameter.

A symmetric encryption scheme is a pair of algorithms Π = (Enc, Dec) with
an associated key space Kn, message space M, and ciphertext space Cn. Notice
that the key space and ciphertext space depend on n; the message space will not
depend on n. We require that:

– Enc : Kn ×M→ Cn is a probabilistic polynomial time (PPT) algorithm
– Dec : Kn × Cn →M is a deterministic polynomial time algorithm.
– Correctness: for any k ∈ Kn and any message m ∈M,

Pr[Dec(k, Enc(k,m)) = m] = 1.

Additionally, we will require a security notion. In this work, we will focus on
the following notion.

Definition 1 (Real-or-Random-Ciphertext (RoRC) Security). Let A be
an adversary. A plays the following game RoRCA,Π,b(n, q):

– The challenger’s input is a bit b ∈ {0, 1}.
– The challenger chooses a random key k ∈ Kn
– A makes q adaptive queries on messages m1, . . . ,mq ∈M.
– In response to each query, the challenger does the following:
• If b = 0, the challenger responds with ci ← Enc(k,mi).
• If b = 1, the challenger responds with a random ciphertext ci ∈ Cn.

– Finally, A outputs a guess b′ for b.

We say that Π is (S(n), Q(n), ε)-secure if for all adversaries that use at most
S(n) memory bits and Q(n) queries (i.e. q ≤ Q(n)),

|Pr[RoRCA,Π,0(n, q) = 1]− Pr[RoRCA,Π,1(n, q) = 1]| ≤ ε.

In this work, a lot of the proofs are based on the Leftover Hash Lemma for
Conditional Min-Entropy due to Impagliazzo, Levin, and Luby [ILL89].

For random distributions X and Y , let H∞(X|Y) denote the min-entropy
of X conditioned on Y . Let X ≈ε Y denote that the two distributions are ε-
close, i.e. the statistical distance between these two distributions ∆(X,Y) ≤ ε.
Furthermore, let Um denote a uniformly distributed random variable of m bits
for some positive integer m.

Lemma 1 (Leftover Hash Lemma for Conditional Min-Entropy [ILL89]).
Let X, E be a joint distribution. If H∞(X|E) ≥ k, and m = k− 2 log(1/ε), then

(H(X), H,E) ≈ε/2 (Um, Ud, E),

where m is the output length of a universal hash function H, and d is the length
of the description of H.

9

3 Raz’s Encryption Scheme

Our constructions of the commitment scheme and the oblivious transfer scheme
are largely based on the bit encryption scheme from parity learning proposed by
Raz [Raz17]. Raz sketches how his lower bound for learning implies the security
of his encryption scheme. Below we reproduce the construction of the encryption
scheme, and formalize the security proof.

Construction 1 (Bit Encryption Scheme from Parity Learning). For a
given security parameter n, the encryption scheme consists of a message space
M = {0, 1}, a ciphertext space Cn = {0, 1}n × {0, 1}, a key space Kn = {0, 1}n,
and a pair of algorithms Π = (Enc, Dec) as specified below:

– Enc(k,m ∈ M): Samples a random row vector r ← {0, 1}n, computes a =
r · k +m, and outputs the ciphertext c = (r, a) as a pair.

– Dec(k, c = (r, a) ∈ Cn): Computes and outputs m′ = r · k + a.

To prove Real-or-Random-Ciphertext security of the above scheme, we rely
on a result from Raz [Raz17], reproduced below.

Lemma 2 ([Raz17]). For any C < 1
20 , there exists α > 0, such that: for

uniform k ∈ {0, 1}n, m ≤ 2αn, and algorithm A that takes a stream of (x1, y1),
(x2, y2), . . . , (xm, ym), where xi is a uniform distribution over {0, 1}n and yi =
xi ·k for every i, under the condition that A uses at most Cn2 memory bits and
outputs k̃ ∈ {0, 1}n, then Pr[k̃ = k] ≤ O(2−αn).

We also rely on the Goldreich-Levin Algorithm, reproduced below.

Lemma 3 (Goldreich-Levin Algorithm [GL89]). Assume that there exists
a function f : {0, 1}n → {0, 1} s.t. for some unknown x ∈ {0, 1}n, we have

Pr
r∈{0,1}n

[f(r) = 〈x, r〉] ≥ 1

2
+ ε

for ε > 0.
Then there exists an algorithm GL that runs in time O(n2ε−4 log n), makes

O(nε−4 log n) orcale queries into f , and outputs x with probability Ω(ε2).

Instead of directly proving RoRC security of the encryption scheme, we
prove Modified Real-or-Random-Ciphertext (RoRC’) security, which differs from
RoRC security in that for all but the last query, the challenger always responds
with the valid encryption of the messsage; for the last query, the challenger
responds either with a valid encryption or a random ciphertext, each with prob-
ability 1/2. A detailed definition is given below.

Definition 2 (Modified Real-or-Random-Ciphertext (RoRC’) Security).
Let A be an adversary. A plays the following game RoRC′A,Π,b(n, q):

– The challenger’s input is a bit b ∈ {0, 1}.

10

– The challenger chooses a random key k ∈ Kn.
– A makes q adaptive queries on messages m1, . . . ,mq ∈M.
– In response to query mi with 1 ≤ i ≤ q − 1, the challenger responds with
ci ← Enc(k,mi).

– In response to query mq, the challenger does the following:
• If b = 0, the challenger responds with cq ← Enc(k,mq).
• If b = 1, the challenger responds with a random ciphertext cq ∈ Cn.

– Finally, A outputs a guess b′ for b.

We say that Π is (S(n), Q(n), ε)-secure if for all adversaries that use at most
S(n) memory bits and Q(n) queries (i.e. q ≤ Q(n)),

|Pr[RoRC′A,Π,0(n, q) = 1]− Pr[RoRC′A,Π,1(n, q) = 1]| ≤ ε.

We now show that RoRC’ security implies RoRC security.

Lemma 4. An encryption scheme that is (S(n), Q(n), ε)-secure under the
RoRC’ setting is (S(n), Q(n), Q(n)ε)-secure under the RoRC setting.

Proof. We prove this using a hybrid argument. For any q ≤ Q(n), consider the
hybrid security games H0, H1, . . . , Hq, where Hj describes the following hybrid
game:

– The challenger chooses a random key k ∈ Kn.
– A makes q adaptive queries on messages m1, . . . ,mq ∈M.
– In response to query mi with 1 ≤ i ≤ j, the challenger responds with ci ←

Enc(k,mi).
– In response to query mi with j + 1 ≤ i ≤ q, the challenger responds with a

random ciphertext ci ∈ Cn.

Particularly, notice that H0 corresponds to a game where the challenger
always responds with random ciphertexts, and that Hq corresponds to a game
where the challenger always responds with valid encryptions of the messages. In
that way, the RoRCA,Π,b(n, q) game is equivalent to distinguishing Hq from H0.

To put this formally, let D be an arbitrary distinguisher, and h← Hj denote
a randomly sampled instance of the game Hj , we have

|Pr[RoRCA,Π,0(n, q) = 1]− Pr[RoRCA,Π,1(n, q) = 1]|

=

∣∣∣∣ Pr
h←Hq

[D(h) = 1]− Pr
h←H0

[D(h) = 1]

∣∣∣∣ .
By the hybrid argument, there exists j, s.t. 0 ≤ j < q and

∣∣∣∣ Pr
h←Hq

[D(h) = 1]− Pr
h←H0

[D(h) = 1]

∣∣∣∣ ≤ q ∣∣∣∣ Pr
h←Hj+1

[D(h) = 1]− Pr
h←Hj

[D(h) = 1]

∣∣∣∣ .
To distinguish between Hj+1 and Hj , consider the following security game

DistA,Π,b(n, q, j):

11

– The challenger’s input is a bit b ∈ {0, 1}.
– The challenger chooses a random key k ∈ Kn.

– A makes q adaptive queries on messages m1, . . . ,mq ∈M.

– In response to query mi with 1 ≤ i ≤ j, the challenger responds with ci ←
Enc(k,mi).

– In response to query mj+1, the challenger does the following:

• If b = 0, the challenger responds with cj+1 ← Enc(k,mj+1).

• If b = 1, the challenger responds with a random ciphertext cj+1 ∈ Cn.

– In response to query mi with j + 1 < i ≤ q, the challenger responds with a
random ciphertext ci ∈ Cn.

– Finally, A outputs a guess b′ for b.

This directly gives us

∣∣∣∣ Pr
h←Hj+1

[D(h) = 1]− Pr
h←Hj

[D(h) = 1]

∣∣∣∣
= |Pr[DistA,Π,0(n, q, j) = 1]− Pr[DistA,Π,1(n, q, j) = 1]| .

Next, we show that we can use an adversary A for the DistA,Π,b(n, q, j)
game to construct an adversary A′ for the RoRC′A′,Π,b(n, j + 1) game. Notice
that the only difference between RoRC′A′,Π,b(n, j + 1) and DistA,Π,b(n, q, j) is
that DistA,Π,b(n, q, j) has (q − j − 1) extra queries at the end. An adversary
A′ for RoRC′A′,Π,b(n, j + 1) can simulate DistA,Π,b(n, q, j) for adversary A by
forwarding each of A’s first (j+1) queries to the challenger in RoRC′A′,Π,b(n, j+
1), and similarly forward the responses from the challenger back to A. For the
additional (q − j − 1) queries in the end, A′ can simply respond by drawing
random ciphertexts from Cn. A′ will output whatever is output by A.

Notice that adversary A′ does not require any additional memory space be-
sides the space used by adversary A. All that A′ needs to do is to forward A’s
queries and the challenger’s responses, and to sample random ciphertexts from
Cn. These operations do not require A′ to store any persistent states.

Therefore, we have

|Pr[DistA,Π,0(n, q, j) = 1]− Pr[DistA,Π,1(n, q, j) = 1]|
≤ |Pr[RoRC′A,Π,0(n, j + 1) = 1]− Pr[RoRC′A,Π,1(n, j + 1) = 1]| .

12

Bringing all these parts together, assuming that the encryption scheme Π is
(S(n), Q(n), ε)-secure yields

|Pr[RoRCA,Π,0(n, q) = 1]− Pr[RoRCA,Π,1(n, q) = 1]|

=

∣∣∣∣ Pr
h←Hq

[D(h) = 1]− Pr
h←H0

[D(h) = 1]

∣∣∣∣
≤q
∣∣∣∣ Pr
h←Hj+1

[D(h) = 1]− Pr
h←Hj

[D(h) = 1]

∣∣∣∣
=q |Pr[DistA,Π,0(n, q, j) = 1]− Pr[DistA,Π,1(n, q, j) = 1]|
≤q |Pr[RoRC′A,Π,0(n, j + 1) = 1]− Pr[RoRC′A,Π,1(n, j + 1) = 1]|
≤qε ≤ Q(n)ε.

Therefore, Π is (S(n)), Q(n), Q(n)ε)-secure under the RoRC setting. ut

Theorem 1. For any C < 1
20 , there exists α > 0, s.t. the bit encryption scheme

from parity learning is (Cn2, 2αn, O(2−αn/2))-secure under the RoRC’ setting.

Proof. We prove this result by reducing a parity learning game to an RoRC’
game.

To start off, we consider a weaker variant of the parity learning game de-
scribed in Lemma 2, denoted as PLA,b(n, q):

– The challenger’s input is a bit b ∈ {0, 1}.
– The challenger chooses a random k ∈ {0, 1}n.
– The challenger streams (x1, y1), (x2, y2), . . . , (xq−1, yq−1), where xi is uni-

formly distributed over {0, 1}n and yi = xi · k for all i.
– The challenger sends (xq, yq), where xq is uniformly distributed over {0, 1}n

and:
• If b = 0, yq = xq · k.
• If b = 1, yq is a random bit.

– Finally, A outputs a guess b′ for b.

We now show how we can use an adversary A for RoRC′A,Π,b(n, q) to build
an adversary A′ for PLA′,b(n, q). The adversary A′ works as follows:

– Simulate for A an RoRC′A,Π,b(n, q) game.
– For every query mi submitted by A, respond with (xi, yi+mi) where xi and
yi come from the i-th pair of the PLA′,b(n, q) game.

– If the adversary A outputs 0, output 0. Otherwise, output 1.

This should be easily verifiable. First, notice that A′ faithfully simulates
RoRC′A,Π,b(n, q). For 1 ≤ i ≤ q − 1, A receives (xi, yi +mi) = (xi,xi · k +mi),
which is a valid encryption of mi. Also, for the last query mq, A receives either
(xq, yq + mq) = (xq,xq · k + mq), i.e. a valid encryption, or (xq, yq + mq) for a
random bit yq, i.e. a random ciphertext. Secondly, if A outputs 0, that implies
(xq, yq + mq) = Enc(k,mq) = (xq,xq · k + mq), and hence yq = xq · k and A′

13

should output 0. Lastly, if A outputs 1, we have yq + mq being a random bit.
Since mq is fixed, we have yq a random bit and hence A′ should output 1.

This yields

|Pr[RoRC′A,Π,0(n, q) = 1]− Pr[RoRC′A,Π,1(n, q) = 1]|
≤ |Pr[PLA,0(n, q) = 1]− Pr[PLA,1(n, q) = 1]| .

Let β = |Pr[PLA,0(n, q) = 1]− Pr[PLA,1(n, q) = 1]|. Then we have an algo-
rithm that distinguishes between (xq, yq = xq · k) and (xq, yq ← {0, 1}) with
probability (1 + β)/2, i.e. it outputs 0 if yq is a valid inner product and 1 if it
is random. This can be easily converted into an algorithm that given xq, out-
puts xq · k with probability (1 + β)/2 (simply XOR the output of the previous
algorithm with yq). Let f be the function computed by this algorithm. Then
for given xq ∈ {0, 1}n and unknown k ∈ {0, 1}n, f(xq) = 〈k,xq〉 with proba-
bility (1 + β)/2. By applying Lemma 3, there is an algorithm that runs in time
O(n2β−4 log n) and outputs k with probability at least Ω(β2).

Recall from Lemma 2 that for any C < 1/20, there is a positive α such
that any potentially computationally unbounded algorithm that uses up to Cn2

memory bits and has access to at most 2αn (xi, yi) pairs can output k with
probability at most O(2−αn). Therefore, for adversaries that are space-bounded
by Cn2 bits and submit at most 2αn queries, Ω(β2) ≤ O(2−αn). And hence
β = O(2−αn/2)

Therefore, for any C < 1/20, there is a positive α such that for all adversaries
that use at most Cn2 memory bits and at most 2αn queries (q ≤ 2αn), we have

|Pr[RoRC′A,Π,0(n, q) = 1]− Pr[RoRC′A,Π,1(n, q) = 1]| ≤ β = O(2−αn/2),

i.e. the scheme is (Cn2, 2αn, O(2−αn/2))-secure under the RoRC’ setting as de-
sired. ut

Corollary 1 (RoRC Security of the Bit Encryption Scheme from Par-
ity Learning). For any C < 1

20 , there exists α > 0, s.t. the bit encryption

scheme from parity learning is (Cn2, 2αn/4, O(2−αn/2))-secure under the RoRC’
setting (here we further bound the number of queries to αn/4 instead of αn).
By Lemma 4, this scheme is also (Cn2, 2αn/4, 2αn/4 · O(2−αn/2) = O(2−αn/4))-
secure under the RoRC setting. Put another way, for any C < 1

20 , there ex-
ists α′(= α/4) > 0, s.t. the bit encryption scheme from parity learning is
(Cn2, 2α

′n, O(2−α
′n))-secure under the RoRC setting.

4 Encrypt Zero Protocols

In this section, we introduce two constructions of the Encrypt Zero Protocol.
They both have the same goal: to give one party, the Keeper, a random key s,
and the other party, known as the Recorder, several encryptions of 0 under the
key s. They differ in that the simple construction is only secure against honest-
but-curious Keepers, while the enhanced construction is secure even against
malicious Keepers.

14

Before we jump into the constructions, we first define an Encrypt Zero Pro-
tocol and its security properties.

An Encrypt Zero Protocol Π involves two parties, a Keeper K and a Recorder
R. The protocol takes three parameters n,m = O(n) and λ, and produces
(s, {c1, c2, . . . , cλ}, trans), where s is a random key output by K, {c1, c2, . . . , cλ}
is a set of ciphertexts output by R, and trans is the transcript of their commu-
nication.

The correctness of an Encrypt Zero Protocol requires that the set of cipher-
texts output by R are encryptions of zero under the key s output by K. Put
formally, we require that Dec(s, ci) = 0 for all i.

Now, we define two desired security properties for the Encrypt Zero Protocol,
namely Keeper security and Recorder security.

The security of the Keeper ensures that the Keeper’s key s has enough min-
entropy conditioned on the Recorder’s view viewR.

Definition 3 (Keeper Security). Let the view of the Recorder be viewR, we
say that a protocol Π is (S(n), h)-secure for the Keeper if for all Recorders R
that use up to S(n) memory bits,

H∞(s|viewR) ≥ h.

The security of the Recorder ensures that the Keeper learns nothing about
c1, c2, . . . , cλ (except that they are encryptions of zero).

For an honest-but-curious Keeper K, this means that given all the Keeper’s
randomness and the transcript produced by the protocol, it is hard to distin-
guish the output ciphertexts (c1, c2, . . . , cλ) from some random ciphertexts that
encrypt zero.

Definition 4 (Recorder Security with Honest-but-Curious Keeper). Let
C = {c1, c2, . . . , cλ} be the ciphertexts output by R at the end of the protocol,
and C ′ = {c′1, c′2, . . . , c′λ} where c′i ← Enc(s, 0) be fresh encryptions of zero under
the key s. Let stateK consist of all the random coins used by K together with
trans. Given the Keeper’s state stateK, the key s, the protocol Π is ε-secure for
the Recorder if for any distinguisher D,∣∣∣ Pr

c←C
[DstateK,s(c) = 1]− Pr

c←C′
[DstateK,s(c) = 1]

∣∣∣ ≤ ε.
In the case of a malicious Keeper K∗ who can have arbitrary behavior, we

let stateK∗ be the state of K∗ at the end of the protocol. Notice that regardless
of the possible behaviors that K∗ could have, it is constrained to the state that
it has stored at the end of the protocol. It has no additional information besides
what it has stored in stateK∗ .

Definition 5 (Recorder Security with Malicious Keeper). Let C = {c1,
c2, . . . , cλ} be the ciphertexts output by R at the end of the protocol, and C ′ =
{c′1, c′2, . . . , c′λ} where c′i ← Enc(s, 0) be fresh encryptions of zero under the key s.

15

Given the malicious Keeper’s state stateK∗ , the key s, the protocol Π is ε-secure
for the Recorder if for any distinguisher D,∣∣∣ Pr

c←C
[DstateK∗ ,s(c) = 1]− Pr

c←C′
[DstateK∗ ,s(c) = 1]

∣∣∣ ≤ ε.
4.1 Simple Encrypt Zero Protocol

Here we present the Simple Encrypt Zero Protocol, which achieves Keeper Se-
curity and Recorder security against honest-but-curious Keeper. The main idea
here is simple: the Keeper will stream a sequence of ciphertexts which are en-
cryptions of zero, and and Recorder will obtain fresh encryptions of zero by
taking random subset-sums of the ciphertexts received.

Construction 2 (Simple Encrypt Zero Protocol). A Simple Encrypt Zero
Protocol instance EZ(n,m, λ) for the Keeper K and the Recorder R proceeds as
follows:

– K chooses a random key k ∈ {0, 1}n, and R chooses a random secret matrix
Σ ∈ {0, 1}λ×m.

– K streams encryptions (ri, ai = ri · k + 0) to R, for i = 1, 2, . . . ,m and
random ri ∈ {0, 1}n.

– R maintains matrix Ψ ∈ {0, 1}λ×n and column vector κ ∈ {0, 1}λ. Each row
of (Ψ |κ) will be a random subset-sum of the encryptions sent by K, with
each subset-sum chosen according to Σ. Ψ and κ will be computed on the
fly. Specifically, when encryption (ri, ai) comes in, R will update Ψ to be
Ψ + σi · ri and κ to be κ + σiai. Here, σi is the i-th column of Σ, and ri
is interpreted as a row vector.

– At the end of the protocol, K outputs its key s = k, and R outputs (Ψ |κ),
whose rows are the ciphertexts c1, c2, . . . , cλ.

Remark 1. For the ease of analysis, we combine all the encryptions sent together,

and denote R =

r1
r2
· · ·
rm

 ∈ {0, 1}m×n, and a =

a1
a2
· · ·
am

 ∈ {0, 1}m. This gives us

a = R · k.

Correspondingly, notice that R is essentially recording Σ, Ψ = Σ · R and
κ = Σ · a = Σ ·R · k = Ψ · k.

It is easy to verify that the rows of (Ψ |κ) are encryptions of 0 under the
key s = k, as they are simply sums of encryptions of 0 under s and by the
additive homomorphism of Raz’s encryption scheme they also must encrypt 0.
Therefore, this construction meets the correctness requirement for an Encrypt
Zero Protocol.

Next, we show that this construction achieves Keeper security and Recorder
security against honest-but-curious Keepers.

16

Theorem 2 (Keeper Security of EZ). The Simple Encrypt Zero Protocol is
(Cn2, Ω(αn))-secure for the Keeper, for some C < 1

20 and α dependent on C.

Proof. This follows directly from Lemma 2. Here viewR essentially contains m
pairs of (ri, ai), where ai = ri · s for i = 1, 2, . . . ,m and random ri ← {0, 1}n.
For adversaries space-bounded to Cn2 memory bits for some C < 1

20 and α
dependent on C, by applying Lemma 2, we get that the probability of an adver-
sary outputting s is no more than O(2−αn). Hence, the average min-entropy of
s conditioned on viewR is Ω(αn). ut

Theorem 3 (Recorder Security of EZ). The Simple Encrypt Zero Protocol
with parameter m = 2n and an honest-but-curious Keeper is O(2−n)-secure for
the Recorder.

Proof. Since the Keeper is honest and follows the protocol, R is a random m×n
matrix. For m = 2n, we have R being a random 2n × n matrix, which is full
rank with probability 1−O(2−n). Notice that if R is full rank, given that Σ is
a random matrix conditioned on the Keeper’s state stateK and s, Ψ = Σ ·R is
also a random matrix conditioned on stateK and s.

In this way, conditioned on stateK and s, (Ψ |κ) contains random encryp-
tions of 0. Therefore, by definition, these encryptions {c1, . . . , cλ} cannot be
distinguished from {c′1, . . . , c′λ} where c′i is a random encryption of 0. Hence, the
probability of distinguishing C from C ′ is bounded by the probability that R is
not full rank, which is O(2−n). Thus we have∣∣∣ Pr

c←C
[Dtrans,s(c) = 1]− Pr

c←C′
[Dtrans,s(c) = 1]

∣∣∣ ≤ 2O(2−n) = O(2−n)

as desired. ut

Kindly notice that this simple construction of an Encrypt Zero protocol is
only secure for the Recorder if the Keeper is honest. For malicious Keepers, they
could, for example, generate the matrix R with bad randomness so that it is
very likely to be low rank.

One way to tackle this is to have the random matrix R generated and
streamed by a trusted third party, which is a common practice in much of the
prior work in the bounded storage model. However, if we do not wish to rely
on a trusted third party (notice that the model without a trusted third party is
stronger than one with a trusted third party), we show in the following subsec-
tion how we can tweak our simple construction to have Recorder security even
against malicious Keepers.

4.2 Enhanced Encrypt Zero Protocol

In the Enhanced Encrypt Zero Protocol construction, we tweak the simple con-
struction slightly to account for malicious Keepers.

17

Construction 3 (Enhanced Encrypt Zero Protocol). An Enhanced En-
crypt Zero Protocol instance EZ+(n,m, λ) with the Keeper K and the Recorder
R proceeds as follows:

– K chooses a random key k ∈ {0, 1}n and an independent random secret
s ∈ {0, 1}m. R chooses a random secret matrix Σ ∈ {0, 1}λ×m.

– K streams random encryptions of the bits in s. Namely, in matrix form, K
sends (R,a = R · k + s) for random R ∈ {0, 1}m×n.

– R maintains matrix Ψ = Σ ·R and column vector κ = Σ · a.
– K sends its key k in the clear, and R uses that to compute φ = κ− Ψ · k.
– K outputs s as its key, and R outputs (Σ|φ), whose rows are the ciphertexts
c1, c2, . . . , cλ.

Notice that φ = κ− Ψ · k = Σ · s, and hence the rows of (Σ|φ) are indeed
encryptions of 0 using key s, as desired in the correctness property.

Theorem 4 (Keeper Security of EZ+). The Simple Encrypt Zero Protocol is
(Cn2, Ω(n))-secure for the Keeper, for some C < 1

20 and α dependent on C.

Proof. First, notice that before the Keeper sends over k, the two distributions
(s,R,R · k + s) and (s,R,R · k + s′) for random s′ ∈ {0, 1}m are statistically
indistinguishable, due to the RoRC security of Raz’s encryption scheme.

Now, notice that in the second distribution, the probability the Recorder can
guess s is 2−m. In this case, if it later receives k, the probability it guesses s is
still at most 2n−m, which is 2−n.

Now, we use the following simple fact: suppose two distributions X,Y are
ε-close. Then there is a procedure P which first samples x← X, and then based
which x it samples, it may replace x with a different sample x′. P satisfies the
property that (1) its output distribution is identical to Y , and (2) the probability
it re-samples is ε.

We use this simple fact by assigning X to (s,R,R · k + s′) for random
s′ ∈ {0, 1}m and Y to (s,R,R · k + s).

Now consider the probability of guessing s. In the case X, we know it is 2−n.
So if we consider Y sampled from P , we know that the probability of guessing
s in the non-replacing case is 2−n. But the replacing case only happens with
probability ε, meaning overall the probability of outputting s is at most ε+ 2−n.

ut

Theorem 5 (Recorder Security of EZ+). The Enhanced Encrypt Zero Pro-
tocol with parameter m = 2n and any possibly malicious Keeper K∗ is perfectly
secure for the Recorder.

Proof. Notice that regardless of the Keeper’s state stateK∗ (even if one of a
malicious Keeper), Σ is always random conditioned on stateK∗ and s, since it is
solely sampled by the Recorder. Therefore, (Σ|φ) is already random encryptions
of 0 conditioned on stateK∗ and s. Hence, to distinguish it from other random
encryptions of 0, one can do no better than a random guess. Thus, the advantage
that any distinguisher D could have in distinguishing C and C ′ is 0 as desired.

ut

18

5 Two-Party Key-Agreement Protocol

Consider a pair of interactive PPT algorithms Π = (A,B). Each of A,B take
n as input. We will let (a, b, trans) ← Π(n) denote the result of running the
protocol on input n. Here, a is the output of A, b the output of B, and trans is
the transcript of their communication.

A two-party key-agreement protocol is a protocol Π = (A,B) with the cor-

rectness property that Pr[a = b] = 1. In this case, we will define k̂ = a = b and

write (k̂, trans)← Π(n). Additionally, we will require eavesdropping security:

Definition 6 (Eavesdropping Security of Two-Party Key-Agreement
Protocol). We say that Π is (S(n), ε)-secure if for all adversaries A that use
at most S(n) memory bits,

|Pr[A(k̂, trans) = 1 : (k̂, trans)← Π(n)]

−Pr[A(k′, trans) = 1 : k′ ← Kn, (k, trans)← Π(n)]| ≤ ε.

In this section we demonstrate how we can use the Simple Encrypt Zero
Protocol to implement a two-party key-agreement protocol. For simplicity, we
consider a key space of one single bit.

Construction 4 (Two-Party Key-Agreement Protocol). For two parties

P and Q trying to derive a shared key k̂ ∈ {0, 1}, they will first run a Simple
Encrypt Zero Protocol EZ(n,m, λ = 1) with P as the Keeper and Q as the
Recorder. At the end of the EZ protocol, P gets a key s, and Q gets an encryption
of 0 using s, namely (Ψ |κ) (notice that κ is of dimension λ× 1, and hence is a
single bit here). To derive a shared key, Q sends Ψ to P. The shared key is thus
κ, which is known to Q, and is computable by P as κ = Ψ · s.

Remark 2. For key spaces {0, 1}d, we can simply tune the protocol to use λ = d,

and that will yield a shared key k̂ ∈ {0, 1}d.

Theorem 6. The two-party key-agreement protocol presented above is (Cn2,
O(2−αn/2))-secure against eavesdropping adversaries.

Proof. First, by the Keeper security of the EZ protocol, for adversaries with up
to Cn2 memory bits for some C < 1

20 , H∞(s|viewR) ≥ Ω(αn). Subsequently,
H∞(Ψ , s|viewR) ≥ Ω(αn). Let H : {0, 1}n×{0, 1}n → {0, 1} compute the inner
product. Using the fact that the inner product is a universal hash function and
applying Lemma 1, we have

(H(Ψ , s), H, viewR) ≈ε/2 (U1, Ud, viewR),

where 1 + 2 log(1/ε) = Ω(αn). Solving for ε yields that ε = O(2−αn/2), i.e. an
adversary has advantage at most O(2−αn/2) in distinguishing H(Ψ , s) and U1.
Recall that in the eavesdropping security game for Two-Party Key-Agreement
Protocols, the adversary need to distinguish between actual derived keys k̂ =

19

Ψ · s from random k′ sampled directly from the key space {0, 1}. Observe that

H(Ψ , s) = Ψ · s = k̂, and k′ is drawn from U1. Therefore, we have

|Pr[A(k̂, trans) = 1 : (k̂, trans)← Π(n)]

−Pr[A(k′, trans) = 1 : k′ ← Kn, (k, trans)← Π(n)]| ≤ ε = O(2−αn/2)

as desired. ut

6 Bit Commitment Scheme

Let n and λ be security parameters. A bit commitment scheme Π consists of a
tuple of algorithm (Commit, Reveal, Verify) for a committer C and a verifier V.

– The Commit algorithm is run by the committer, and it takes as input the
security parameter n and a bit b to be committed to. A transcript of the com-
munication, a committer state, and a verifier state (trans, stateC , stateV) ←
Commit(n, λ, b) is output by the Commit algorithm.

– The Reveal algorithm is also run by the committer, and it takes as input
a committer state stateC and a bit b′. It outputs a revealing, denoted as x,
together with the committed bit b′.

– The Verify algorithm is run by the Verifier and takes input a verifier state
stateV and outputs of a Reveal algorithm, (x, b′). It outputs a bit u.

There are two desired security properties for a bit commitment scheme, namely
hiding and binding. We will give out formal definitions below.

The hiding property of a bit commitment scheme essentially states that the
committed bit b should be hidden from the Verifier given the Verifier’s view after
the Commit algorithm. Notice that the Verifier’s view after the Commit algorithm
consists of exactly trans and stateV . Put formally:

Definition 7 (Hiding Property of a Bit Commitment Scheme). For
some given security parameters n, λ and a bit b, let (trans, stateC , stateV) ←
Commit(n, λ, b), we say that the bit commitment scheme is (S(n), ε)-hiding if for
all Verifiers V with up to S(n) memory bits,

(b, trans, stateV) ≈ε (r, trans, stateV)

for random r uniformly sampled from {0, 1}.

The binding property of a bit commitment scheme essentially requires that
a committer is not able to open a commitment to both 0 and 1. Notice that this
applies to all committers, who can be potentially malicious. A malicious commit-
ter A can run an arbitrary Commit∗ procedure, which has no guarantees except
that it produces some (trans, stateA, stateV). Note that this Commit∗ procedure
does not necessarily commit to a bit b, so it does not take b as a parameter.

20

Definition 8 (Binding Property of a Bit Commitment Scheme). Let A
be an adversary. A plays the following game BindingA,Π(n, λ) for some given
security parameters n and λ:

– The adversary A runs an arbitrary commit procedure (potentially malicious)
Commit∗(n, λ) with an honest Verifier V and produces (trans, stateA, stateV).

– The adversary produces (x0, 0) and (x1, 1).
– The game outputs 1 if both Verify(stateV , (x0, 0)) and Verify(stateV , (x1, 1))

output 1, and 0 otherwise.

We say that Π is ε-binding if for all adversary A

Pr[BindingA,Π(n, λ) = 1] ≤ ε.

Now we present the construction for a bit commitment scheme using the
Enhanced Encrypt Zero Protocol.

Construction 5 (Bit Commitment Scheme from Parity Learning). For
security parameters n, λ and committer input bit b, we construct the bit com-
mitment scheme by specifying each of the (Commit, Reveal, Verify) algorithms.

– Commit(n, b): Runs the Enhanced Encrypt Zero Protocol EZ+(n, 2n, λ) with
C as the Keeper and V as the Recorder. Set trans to be the transcript of
the EZ+ protocol, stateC to be the output of C after the EZ+ protocol, i.e.
a secret key s, and stateV to be the output of V after the EZ+ protocol,
namely (Σ|φ), which contains multiple encryptions of 0 under the key s.
Additionally, samples random γ ∈ {0, 1}2n, and sends (γ, c = γ · s + b) to
the Verifier (notice that this also gets appended to trans).

– Reveal(stateC , b
′): Outputs (x, b′) = (s, b′).

– Verify(stateV ,x, b
′): Checks that φ = Σ · x, and that c = γ · x + b′. If any

of the checks fail, output 0; otherwise, output 1.

Theorem 7. The bit commitment construction above is (Cn2, O(2−n/2))-hiding
for some C < 1/20.

Proof. First, by the Keeper security of the EZ+ protocol, for adversaries with
up to Cn2 memory bits for some C < 1

20 , H∞(s|viewV) ≥ Ω(n). Recall that
viewV is exactly (trans, stateV). Subsequently, H∞(γ, s|trans, stateV) ≥ Ω(n).
Let H : {0, 1}n × {0, 1}n → {0, 1} compute the inner product. Using the fact
that the inner product is a universal hash function and applying Lemma 1, we
have

(H(γ, s), H, trans, stateV) ≈ε/2 (U1, Ud, trans, stateV),

where 1 + 2 log(1/ε) = Ω(n). Furthermore, we have

(H(γ, s) + c,H, trans, stateV) ≈ε/2 (U1 + c, Ud, trans, stateV),

Solving for ε yields that ε = O(2−n/2), i.e. an adversary has advantage at
most O(2−n/2) in distinguishing H(γ, s)+c and U1+c. Notice that H(γ, s)+c =

21

γ · s + c = b, and that U1 + c is yet another uniformly random bit r ← {0, 1}.
Therefore, we have

(b,H, trans, stateV) ≈ε/2 (r, Ud, trans, stateV)

for ε = O(2−n/2) and r a uniformly random bit. Thus, by

(b, trans, stateV) ≈ε′ (r, trans, stateV)

for ε′ = 1
2O(2−n/2) = O(2−n/2) and r a uniformly random bit, we have shown

that the bit commitment scheme presented above is (Cn2, O(2−n/2))-hiding as
desired. ut

Theorem 8. The bit commitment scheme presented above is (2−λ)-binding.

Proof. We show that the scheme is statistically binding by arguing that the
probability that an adversary can win the Binding game is no more than 1

2λ
.

Notice that in order for the adversary to win the game, the adversary need
to output (x0, 0) and (x1, 1) that both pass the Verify algorithm. Recall that the
Verify Algortihm checks for two things:

– c = γ ·x0 + 0 and c = γ ·x1 + 1 where c and γ are part of the transcipt trans
and are stored in the Verifier’s state stateV . This leads to that γ ·x0 6= γ ·x1

and hence x0 6= x1.
– φ = Σ · x0 = Σ · x1 where Σ and φ are sampled and computed by the

Verfier and stored in stateV . Notice this leads to Σ · (x0 − x1) = 0.

Now let x′ = x0 − x1. From x0 6= x1, we know that x′ 6= 0. Therefore, we
need to find a non-trivial root for the equation Σ · x′ = 0. Recall that by the
Recorder’s perfect security of the EZ+ protocol, the matrix Σ stored in stateV is
random conditioned on the Committer’s view. For each row of Σ, denoted as Σi

for the i-th row, the probability that Σi ·x′ = 0 is no more than a random guess,
i.e. 1

2 . Since to pass the Verify algorithm requires Σ ·x′ = 0, i.e. Σi ·x′ = 0 for
all i = 1, 2, . . . , λ, and recall that the rows of Σ are independent, the probability
that the adversary can find such a x′ is no more than (1

2)λ = 1
2λ

. ut

7 Oblivious Transfer Protocol

In an oblivious transfer (OT) protocol, one party, the Sender S, has two input
bits x0, x1, and the other party, known as the Receiver R′ (not to be confused
with the Recorder R in the Encrypt Zero Protocols), has an input bit b. After
some communication between the two parties, R′ outputs xb. The OT protocol
requires two security properties, namely Sender security and Receiver security.
Sender security dictates that R′ should have no information about x1−b, and
Receiver security requires that S has no information about b.

Before we proceed to our construction of an OT protocol, we first formally
define these two security properties.

22

The security of the Sender ensures that an adversarial Receiver can learn
about at most one of x0 and x1. In other words, there always exists a b′ s.t. the
Receiver has no information about xb′ . Put formally:

Definition 9 (Sender Security). An OT protocol is said to be ε-secure for the
Sender if there exists some b′ s.t. for any arbitrary distinguisher D and Receiver’s
view viewR′ , ∣∣Pr[DviewR′ (xb′) = 1]− Pr[DviewR′ (r) = 1]

∣∣ ≤ ε
for a uniformly random bit r.

The security of the Receiver requires that the sender S has no information
about b. In other words, given the view of the Sender, one should not be able to
distinguish between b and a random bit r. Put formally:

Definition 10 (Receiver Security). Let viewS denote the view of the sender,
the OT protocol Π is said to be (S(n), ε)-secure for the Receiver if for all possible
Senders that use up to S(n) memory bits,

(b, viewS) ≈ε (r, viewS),

where r is a uniformly random bit.

Now we give out our construction of the OT protocol.
The key idea is that the Receiver will send a commitment of its bit b to

the Sender. And the Sender therefore uses the additive homomorphism of Raz’s
encryption scheme to compute the encryptions of (1− b)x0 and bx1. The Sender
further re-randomizes these two ciphertexts by adding fresh encryptions of zero
before sending them to the Receiver. The Receiver decrypts these two ciphertexts
and obtains 0 and xb as desired.

Construction 6 (Oblivious Transfer Protocol from Parity Learning).
For given security parameter n, a Sender S and a receiver R′:

– Run an Enhanced Encrypt Zero Protocol EZ+(n, 2n, λ = 2) with R’ as the
Keeper and S as the Recorder. At the end of the protocol, R′ has as output
a secret key s, and S has output (Σ|φ), which consists of two encryptions of
0 under the key s. Additionally, R′ samples random γ ∈ {0, 1}2n, and sends
(γ, c = γ · s + b) to the Sender. Kindly notice that in this step the Receiver
R′ is actually just executing Commit(n, b).

– For Sender S, let σ0, σ1 be the first and second row of Σ, and φ0, φ1 be
the two elements in φ. Notice that φ0 = σ0 · s and φ1 = σ1 · s. The Sender
then sends to the Receiver two ciphertexts:

σ0 + x0γ, φ0 + x0(1− c) = (σ0 + x0γ) · s +
(
(1− b)x0

)
σ1 + x1γ, φ1 + x1c = (σ1 + x1γ) · s +

(
bx1
)
.

23

– R′ decrypts both ciphertexts that it has received using the key s, and learns
(1− b)x0 and bx1. Notice that one of these two values will be xb as desired
and gets output by R′.

We then proceed to prove desired security properties for the above construc-
tion of the OT protocol.

Theorem 9. The OT protocol described above is perfectly secure for the Sender.

Proof. We show that right after the first part of the protocol where R′ executes
Commit(n, b), there is a fixed b′ = c+γ ·s+1 such that the Receiver will have no
information about xb′ . Notice that this does not break Receiver security, since
although b′ is fixed, S has no way to compute b′ as s is only known to the
Receiver R′.

If b′ = c+ γ · s + 1 = 0, we show that the Receiver has no information about
x0, i.e. x0 is random given the Receiver’s view. Notice that we have 1− c = γ · s.
And hence the two ciphertext that the Receiver receives are

σ0 + x0γ, φ0 + x0(1− c) = (σ0 + x0γ) · s
σ1 + x1γ, φ1 + x1c = (σ1 + x1γ) · s + x1.

The only source that the Receiver might be able to gather information about
x0 is from the first ciphertext. However, since σ0 is uniformly random given the
Receiver’s view, σ0 + x0γ is also uniformly random given the Receiver’s view,
i.e., it does not give any additional information to the Receiver. The Receiver
also gets no information from (σ0 +x0γ) ·s, as this value can be easily simulated
by the Receiver since it knows both σ0 + x0γ and s. Therefore, x0 is random
given the Receiver’s view.

If b′ = c + γ · s + 1 = 1, by a similar argument, we have that x1 is random
given the Receiver’s view. Bringing these parts together, we have shown that for
b′ = c+ γ · s + 1, xb′ is random conditioned on the Receiver’s view, i.e.∣∣Pr[DviewR′ (xb′) = 1]− Pr[DviewR′ (r) = 1]

∣∣ = 0.

Thus, the OT protocol above is perfectly secure for the Sender as desired. ut

Theorem 10. The OT protocol described above is (Cn2, O(2−n/2))-secure for
the Receiver, for some C < 1

20 .

Proof. The proof for this is extremely straightforward. As observed above, the
receiver R′ is exactly executing Commit(n, b), i.e. it is committing the bit b to
the Sender, who is playing the role of the Verifier in the commitment scheme.
Hence, by the (Cn2, O(2−n/2))-hiding property of the commitment scheme, we
have that for all possible Sender S that uses at most Cn2 memory bits,

(b, trans, stateS) ≈ε (r, trans, stateS)

for ε = O(2−n/2)) and a uniformly random bit r. Notice that viewS is actually
just (trans, stateS). Therefore, the above equation can be rewritten as

(b, viewS) ≈ε (r, viewS).

24

This is the exact definition for (Cn2, ε)-Receiver-security. Therefore, the OT
protocol above is (Cn2, O(2−n/2))-secure for the Receiver as desired. ut

References

[AR99] Yonatan Aumann and Michael O. Rabin. Information theoretically secure
communication in the limited storage space model. In Michael J. Wiener,
editor, CRYPTO’99, volume 1666 of LNCS, pages 65–79. Springer, Heidel-
berg, August 1999.

[BDKM18] Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin.
Non-malleable codes from average-case hardness: AC0, decision trees, and
streaming space-bounded tampering. In Jesper Buus Nielsen and Vincent
Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS,
pages 618–650. Springer, Heidelberg, April / May 2018.

[CCM98] Christian Cachin, Claude Crépeau, and Julien Marcil. Oblivious transfer
with a memory-bounded receiver. In 39th FOCS, pages 493–502. IEEE
Computer Society Press, November 1998.

[CM97] Christian Cachin and Ueli M. Maurer. Unconditional security against
memory-bounded adversaries. In Burton S. Kaliski Jr., editor,
CRYPTO’97, volume 1294 of LNCS, pages 292–306. Springer, Heidelberg,
August 1997.

[DHRS04] Yan Zong Ding, Danny Harnik, Alon Rosen, and Ronen Shaltiel. Constant-
round oblivious transfer in the bounded storage model. In Moni Naor,
editor, TCC 2004, volume 2951 of LNCS, pages 446–472. Springer, Heidel-
berg, February 2004.

[Din01] Yan Zong Ding. Oblivious transfer in the bounded storage model. In
Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 155–170.
Springer, Heidelberg, August 2001.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way
functions. In 21st ACM STOC, pages 25–32. ACM Press, May 1989.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search.
In 28th ACM STOC, pages 212–219. ACM Press, May 1996.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random
generation from one-way functions (extended abstracts). In 21st ACM
STOC, pages 12–24. ACM Press, May 1989.

[Lu02] Chi-Jen Lu. Hyper-encryption against space-bounded adversaries from on-
line strong extractors. In Moti Yung, editor, CRYPTO 2002, volume 2442
of LNCS, pages 257–271. Springer, Heidelberg, August 2002.

[Mau92] Ueli M. Maurer. Conditionally-perfect secrecy and a provably-secure ran-
domized cipher. Journal of Cryptology, 5(1):53–66, 1992.

[Raz17] Ran Raz. A time-space lower bound for a large class of learning problems.
In 58th FOCS, pages 732–742. IEEE Computer Society Press, 2017.

[Rot11] Ron Rothblum. Homomorphic encryption: From private-key to public-key.
In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 219–234.
Springer, Heidelberg, March 2011.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In 35th FOCS, pages 124–134. IEEE Computer Society Press,
November 1994.

25

