
Incremental Proofs of Sequential Work

Nico Döttling1, Russell W. F. Lai2, and Giulio Malavolta3?

1 CISPA Helmholtz Center for Information Security
2 Friedrich-Alexander-Universität Erlangen-Nürnberg

3 Carnegie Mellon University

Abstract. A proof of sequential work allows a prover to convince a verifier that a
certain amount of sequential steps have been computed. In this work we introduce
the notion of incremental proofs of sequential work where a prover can carry on
the computation done by the previous prover incrementally, without affecting the
resources of the individual provers or the size of the proofs.
To date, the most efficient instance of proofs of sequential work [Cohen and
Pietrzak, Eurocrypt 2018] for N steps require the prover to have

√
N memory and

to run for N +
√

N steps. Using incremental proofs of sequential work we can
bring down the prover’s storage complexity to log N and its running time to N .
We propose two different constructions of incremental proofs of sequential work:
Our first scheme requires a single processor and introduces a poly-logarithmic
factor in the proof size when compared with the proposals of Cohen and Pietrzak.
Our second scheme assumes log N parallel processors but brings down the over-
head of the proof size to a factor of 9. Both schemes are simple to implement and
only rely on hash functions (modelled as random oracles).

1 Introduction

Imagine that you discover a candidate solution to a famous open problem (e.g., the
Riemann Hypothesis), and are fairly convinced that your solution is correct but not
entirely. Before publishing your solution you want to scrutinize it further. However,
fearing that someone else might make the same discovery, you need a way to timestamp
yours. While there are many online timestamping services available4, authenticity of such
a timestamp depends on how much one trusts the service provider. Clearly, a solution
independent of trust and resting only on a cryptographic assumption is more desirable.

Proofs of Sequential Work (PoSW) [10] is an emerging paradigm which offers a
conceptually simple solution to the timestamping problem. Roughly speaking, proofs of
sequential work allow a prover P to convince a verifier V that almost time T elapsed
since a certain event happened. A little more concretely, a PoSW system consists of a
proverP and a verifier V . The prover takes as input a statement χ and a time parameterN .
The statement χ can be something like a hash of the file which one wants to timestamp.
After terminating, the prover interacts with the verifier V to convince him that at least
time N has elapsed since χ was sampled.

? Work done while at Friedrich-Alexander-Universität Erlangen-Nürnberg
4 e.g., https://www.freetsa.org

https://www.freetsa.org

We require a PoSW to be complete, sound and efficient. Here completeness means
that an honest prover will succeed in convincing the verifier that time N has elapsed
since the sampling of χ. Soundness means that a cheating prover will not succeed in
convincing the verifier that time N has elapsed if, in fact significantly less time has
passed. Finally, efficiency means that time N is also sufficient for the prover to generate
such a prove. Another practically important aspect is memory complexity of the prover,
i.e., how much memory is required to compute a proof for time parameter N . Regardless
of the requirements on prover efficiency, the verifier’s runtime should be essentially
independent of N . Finally, for practical reasons such a proof should be non-interactive.
That is, after a proof π is computed by the prover P and published, no further interaction
with P is necessary to verify the proof.

1.1 Incremental Proofs of Sequential Work

An aspect not considered in the original formulation of proofs of sequential work is
whether a still running proof of sequential work can be migrated from one prover to
another, or forked to two provers. This aspect becomes relevant when considering that
real computers are not immune to hardware failure, so one may want to spawn clones of
important proofs that have been running for a long time.

In this work, we introduce the notion of incremental proofs of sequential work
(iPoSW). Essentially, an iPoSW is a non-interactive PoSW with the additional feature
that anyone who obtains a proof π for a statement χ and time parameter N can resume
the computation of π, thereby generating a proof π′ for χ with time parameter N +N ′.
More formally, we require that there exists an algorith Inc which takes as input a proof π
for time N and a parameter N ′ and outputs a proof π′. We require that π′ has the same
distribution as a proof for χ for time N +N ′.

One could imagine a direct construction of iPoSW from PoSW as follows. To
increment a proof π for a statement χ and time N , first derive a new statement χ′ from χ
and π, e.g., by computing a hash χ′ ← H(χ, π). Now compute a proof π′ for statement
χ′ and time N ′ and then append π′ to π, i.e., output (π, π′). To verify (π, π′) that (π, π′)
is a proof for χ and time N + N ′, compute χ′ ← H(χ, π) and check whether π is a
proof for χ and time N and π′ is a proof for χ′ and time N ′.

This simple solution has, however, an obvious drawback: The size of the proof grows
linearly in the number of increments, which very is undesirable if the proof is frequently
passed on to new provers.

Moreover, if we look at existing constructions of PoSW [10,5], a proverP computing
a proof π for a statement χ and time N needs to commit memory proportional to N .
Cohen and Pietrzak [5] propose a tradeoff which reduces the memory requirement of
pi to a sublinear but still polynomial amount, however this comes at the expense of
additional sequential computation time, i.e., prover efficiency is affected by this tradeoff.

1.2 Our Results

In this work we provide constructions of incremental proofs of sequential work where the
sequential runtime of an honest prover isN , while its memory complexity is poly(logN).

2

We provide two instantiations, both based on the construction of Cohen and Pietrzak [5],
which differ in terms of prover resources and the proof size.

– The first construction is single-threaded, i.e., the prover needs a single processor.
Compared to the construction of [5], the proof size grows by a factor of (logN)2.

– The second construction is multi-threaded, where the prover needs logN parallel
processors. Compared to [5], the proof size grows by a factor of 9.

In particular, our results close the soundness gap between a prover with a large memory
and a prover with a poly-logarithmic memory present in previous constructions.

We remark that from a technological point of view the assumption of prover paral-
lelism is justified. For actual applications, the expression logN can be upper-bounded
by 100, which corresponds to a processor capable of computing 100 hashes in parallel, a
number well in the reach of modern GPUs.

1.3 Technical Overview

The starting point of our construction is the recent elegant PoSW construction of Cohen
and Pietrzak [5]. We will henceforth refer to this scheme as the CP scheme, which is
briefly reviewed below. The CP construction relies on properties of a special directed
acyclic graph, which we will refer to as CPn. This graph is constructed as follows: Let
Bn be a complete binary tree of depth n, i.e., the longest leaf-to-root path consists of n
edges, with edges pointing from the leaves towards the root. Each node in Bn is indexed
by a bit string of length at most n, while the root node is indexed by the empty string ε.
The graph CPn is constructed by adding edges from all nodes v to all leaves u such that
v is a left-sibling of the path from u to the root.

The CP Approach. For a time parameter N , choose n such that CPn contains (at
least) N nodes. The prover is given a statement χ which is used to seed random oracles
Hχ(·) := H(χ, ·) and H′χ(·) := H′(χ, ·) given the random oracles H and H′ respectively.
Using Hχ, the prover computes a label for each node v in CPn by hashing the labels of
all nodes with incoming edges to v. Starting from the leftmost leaf 0n, which is assigned
a label 0λ, the prover iteratively computes the labels of all nodes in CPn, completing
each subtree before starting a new leaf. Eventually the prover obtains a label `ε for the
root node.

Next, the prover computes H′χ(`ε) which outputs a randomness for sampling t chal-
lenge leaves, where t is a statistical security parameter. The proof then consists of the
labels of all t challenge leaves, as well as the labels of all siblings of the paths from the
challenge leaves to the root. To verify a proof, the verifier recomputes H′χ(`ε) to verify
if the prover provided the correct paths, and if so checks that the t paths provided by the
prover are consistent.

Note that in order to compute a proof, the prover has to either remember the N
labels for the entire CPn graph, or recompute the labels required in the proof once
the challenge leaves are chosen, which requires N sequential hash computations. This
introduces a soundness slack of 1

2 between these two strategies, i.e., the memory efficient
prover has to compute for time 2N to prove a statement for time N . This factor becomes

3

particularly significant when large values of N are considered, e.g., a PoSW that 10
years of sequential operations have been performed may take between 10 and 20 years to
be computed. To attenuate this problem, Cohen and Pietrzak propose a hybrid approach
where the prover stores

√
N nodes and can then recompute the challenge root-to-leaf

paths in time
√
N .

At the Heart of the Problem. This soundness slack is clearly undesirable as the value
of N grows: A prover with access to a large amount of memory can achieve a non-trivial
speed up in the computation of the proof over a prover with polylogarithmic memory.
As it turns out, this issue is tightly connected with the fact that the CP proofs cannot
be extended incrementally: On a very high level, the crux of the problem is that the
challenge leaves are determined solely by the root of the CPn tree. Extending the tree
causes the root to change and renders the previous challenge set obsolete.

The main idea in our first construction is to choose challenge leaves “on-the-fly” at
each node of the tree and then gradually discard some of them as the tree grows. This
will allow us to compute a proof π in a single pass.

More precisely, our selection mechanism works as follows: For any node v in CPn
which has at most t leaves, we assign all these leaves to be the challenge leaves for the
node v. Let l and r be the children of a node v which has more than t leaves, and let
Sl and Sr be the challenge leaves for l and r respectively. To determine the set Sv of
challenge leaves for v, we first compute the label `v of v as in the CP scheme, and then
hash the label `v with H′χ to obtain random coins5. Using these random coins, we can
sample Sv as a random subset of size t from the set Sl ∪ Sr. This operation is visualized
in Figure 1 and Figure 2.

In a bit more detail, due to the way the graphs are traversed, we only need to store
challenge-paths at what we call unfinished nodes. A node is unfinished if it has already
been traversed/processed, but its right sibling has not yet been traversed. Consequently,
only left siblings can be unfinished. Moreover, due to the structure of the graph CPn
and the way it is traversed, at each step the unfinished nodes are exactly the left siblings
on the path from the root to the node which is currently processed. Consequently, at
each step there are at most logN unfinished nodes. Essentially, when a node l becomes
unfinished, it waits until its right sibling r is processed. By the way we traverse CPn,
the next node to be traversed is the parent v of l and r. Once the label of v has been
computed, we can compute a set of challenge paths for v as described above and remove
l from the list of unfinished nodes.

Observe that if a leaf previously chosen as a challenge leaf is dropped due to the
above subset sampling, this leaf will not be chosen as a challenge leaf again in the rest
of the computation. Therefore the prover can safely erase the labels of some of the
nodes lying on the paths from these dropped challenge nodes to the root, which surely
will not appear in the eventual proof. On the other hand the final challenge set is still
unpredictable to the eyes of the prover since the decision which paths are discarded is
uniquely determined by the complete labelling of the tree.

5 As we are working in the random oracle model, these coins can be taken directly from `v if we
make the hashes sufficiently longer. However, for presentation purposes we use a separate hash
function which hashes `v .

4

It is not immediately clear that the strategy we just described lead to a sound protocol.
Infact, a malicious prover can already see a large fraction of the challenge path before
the label of the root node is even computed and adaptively recompute parts of the proof.
The main observation on which our analysis is based is that, once a node v becomes
unfinished, its label commits to all the leafs under v, thus the challenge paths at v provide
a good statistical sample of the overall fraction of invalid leafs in the subtree of v.

v

l r

Fig. 1: Before choosing challenge subset.

v

l r

Fig. 2: After choosing challenge subset.

Recomputation to the Rescue. The above strategy seems to solve all problems at once:

1. The prover algorithm can traverse the tree and remember the local challenge paths
using poly-logarithmic memory in N and in sequential time N . Once the root is
reached, the set of challenge paths is already in the memory of the prover! Therefore
no recomputation is needed and the source of the slack is obliterated.

2. The proof is naturally incremental: Further iterations of the tree only shave off
root-to-leaf paths in the challenge set, as opposed to determining a completely new
set of challenges.

However there is still a challenge to be addressed: Due to the adaptivity of the adversary,
our strategy introduces a factor of logN in the soundness loss. That is, if the CP scheme
with a set of parameters achieves soundness α, i.e., the prover cannot cheat by computing
less than (1− α)N steps, our scheme only achieves soundness logN · α. This in turn
means that in order to achieve the same soundness parameter as the CP scheme, we need
to increase the number of challenge paths by a factor of (logN)2, which also results in
an increase of the proof size by a factor of (logN)2. Although this does not affect the
asymptotic performance of our scheme, it has an impact on the concrete proof sizes. For
N = 240, our proofs are bigger than those obtained with the CP scheme by a factor of
∼ 1600. To bring down the proof sizes to a practical regime, we reconcile CP scheme
with our “on-the-fly” selection strategy. Our second construction assumes that the prover
is a parallel machine, but we can show that the number of parallel processors required
will never exceed logN .

Our second scheme is based on the following observation. Let v be a node in CPn,
and assume that l is its left child and r is its right child. Further assume that the prover

5

Fig. 3: Recomputation of Sub-Trees.

just finished traversing the tree under l, that is l becomes processed but unfinished. By the
structure of CPn, the prover next traverses the tree underneath r. In our first scheme the
node l would just be on a waiting list of unfinished nodes and has to wait and remember
its challenge paths until r is processed. However, due to symmetry it will take the prover
the same amount of sequential steps to traverse the tree underneath r as it took to traverse
the tree under l. This suggests a strategy (depicted in Figure 3): While l is unfinished
and waiting for the r to be processed, we can recompute the subtree underneath l in
order to fetch fresh challenge paths using an additional parallel processor. By the time
r is finished, this process will have terminated and we do not need to bear the above
soundness loss for l.

Notice further that, to recompute the tree underneath l, all the prover needs is the
labels of the currently unfinished nodes on the path from the root to v, which the prover
needs to keep in memory regardless. This modification of the prover strategy must also
be reflected by the verifier. When we verify a root-to-leaf path, the verification strategy
will change once the path takes a left turn.

Note that the memory complexity of the main thread is unchanged and that at any
point in time there are at most logN parallel processes. The parallel threads are identical
to the recomputation step. Therefore, the complexity of each parallel thread is essentially
the same as that of the CP scheme. This hybrid construction brings down the loss in
soundness to a factor of 3, which corresponds to an increase of the proof size by a factor
of 9. We consider this to be a modest price to pay in exchange for getting the additional
feature of incremental proofs and an essentially optimal prover complexity.

1.4 Perspectives

Merkle trees are ubiquitous in cryptographic protocol design, allowing to compress large
amounts of data into a succinct digest. Membership proofs are particularly efficient
as they usually consist of root-to-leaf paths and can be encoded with logarithmic-size
strings. The de-facto methodology to non-interactively probe Merkle trees at random

6

locations is to apply the Fiat-Shamir [7] transform, on input the root of the tree. This
means that the challenge locations are determined only when the full tree is computed.
Thus, the prover must either recompute the paths or store the full tree in its memory.

Using our techniques one can compress data and generate challenges in a single pass,
without any memory blowup. This becomes particularly advantageous when computing
over very large databases or data streams. Here we exemplify the applications of our
methods to scenarios of interest.

Verifiable Probing. Consider a stream of data where some statistical measure is computed
by an untrusted party. Using our approach we can increase the confidence in the validity
of the statistics by probing the stream on random locations. The prover iteratively
computes a Merkle commitment of the stream and selects random probes using our
“on-the-fly” selection strategy. The verifier can then non-interactively check whether the
distribution of the probes resembles the reported statistics.

Streaming Arguments. In Micali’s CS proofs paradigm [11,8], witnesses for NP relations
are encoded into probabilistically checkable proofs (PCP) [1] and then committed using
a Merkle tree. The testing locations for the PCP are selected using Fiat-Shamir [7] and
the corresponding root-to-leaf paths form the CS proof. Our techniques can be useful
for memory-constrained provers that cannot store the complete PCP encoding in their
memory. Our challenge-selection algorithm allows the provers to compute the CS proof
using only one stream of the encoding.

1.5 Related Work

Proofs of work, a concept introduced by Dwork and Naor [6] and having become wildly
popular in the context of cryptocurrencies, allow a prover to convince a verifier that a
certain amount of computational effort has been invested in a certain task. However,
the computation can be parallelized, thus it generates a mismatch among players which
have different resource constraints. Mahmoody, Moran, and Vadhan [10] introduced
the concept of PoSW and provided a construction based on depth-robust graphs. Very
recently, Cohen and Pietrzak [5] provided an elegant construction based on a binary tree
with some useful combinatorial properties. Their scheme improves over [10] in terms of
conceptual simplicity, concrete efficiency, and can reduce the memory complexity of the
prover up to logN . A shortcoming of their approach is that, in order to achieve such a
memory bound, one has to perform the same amount of computation twice.

Incrementally verifiable computation (IVC) was introduced by Valiant [14] and
allows a machine to output short proofs that arbitrary parts of the computation have
been done correctly without significantly affecting the resources of such a machine. As
observed by Boneh et al. [4], IVC is a more general primitive than PoSW. The main
construction paradigm for IVC consists of a recursive composition of succinct arguments
of knowledge [11], which means that existing constructions of IVC either

– make non-black-box use of random oracles [14], or
– require a trusted setup [2].

7

In general, incremental PoSW appears to be an easier problem than IVC which justifies
the existence of more efficient solutions based on weaker assumptions.

Verifiable delay functions (VDF) have been introduced by Boneh et al. [4] and can be
seen as PoSW with unique proofs: The prover can only convince the verifier with a single
value, which is uniquely determined by the time parameter N and by the statement. Thus
VDF constitutes a stronger primitive than PoSW and as to our current understanding
requires stronger cryptographic material: Known constructions [12,15] rely either on
IVC or on specific number-theoretic assumptions related to factoring large integers.

Time-lock puzzles [13] encapsulate a secret information for a pre-determined amount
of time. This primitive is tightly related to sequential computation as it needs to withstand
attacks from highly parallel processors. Time lock-puzzles can be constructed assuming
the hardness of a variant of the RSA assumption [13] or succinct randomized encodings
and the existence of a worst case non-parallelizable language [3]. Unlike PoSW, no
construction based on symmetric-key primitives is known and [9] gave a black-box
separation for these two objects.

2 Preliminaries

2.1 Notations

LetG = (V,E) be a graph where V is the set of nodes andE is the set of edges. If v ∈ V ,
we write also v ∈ G for convenience. Let T be a tree and i ∈ T be a node. Ti denotes the
set of nodes in the subtree rooted at node i. leaf(i) denotes the set of all leaf nodes that
are descendants of i. parent(i) and child(i) denote the parent of and the set of children
of i, repectively. path(i) returns the set of nodes located at the (unique) path from the
root (inclusive) to node i (inclusive). The notations are extended naturally to sets of
nodes. Let S ⊆ T be a set of nodes, then TS :=

⋃
i∈S Ti, leaf(S) := {leaf(i) : i ∈ S}

and path(S) := {path(i) : i ∈ S}.
For a complete binary tree Bn = (V,E′) of N = 2n+1 − 1 nodes, we say that Bn is

of depth n (counting the number of edges in the longest leaf-to-root path). The nodes
V = {0, 1}≤n are identified by binary strings of length at most n and the empty string
ε represents the root. The edges E′ = {(x||b, x) : b ∈ {0, 1}, x ∈ {0, 1}i, i < n} are
directed from the leaves towards the root. Let v ∈ {0, 1}nv ⊆ Bn be a node nv edges
away from the root. We say that v is of depth nv or height hv := n− nv .

2.2 Statistical Distance

In the following we recall the definition of statistical distance.

Definition 1 (Statistical Distance). Let X and Y be two random variables over a finite
set U . The statistical distance between X and Y is defined as

SD [X,Y] = 1
2
∑
u∈U
|Pr[X = u]− Pr[Y = u]|

8

2.3 Tail Bound for the Hypergeometric Distributions

Here we introduce a useful inequality by Hoeffding.

Theorem 1 (Hoeffding Inequality). Let X be distributed hypergeometrically with t
draws. Then it holds that

Pr [X < E[X]− ζ] < e−2ζ2t.

3 Incremental Proofs of Sequential Work

Below we define incremental proof of sequential work in the same spirit as Cohen and
Pietrzak [5], except that we state directly the non-interactive variant.

Definition 2. A (non-interactive) incremental proof of sequential work (iPoSW) scheme
consists of a tuple of PPT oracle-aided algorithms (Prove, Inc,Vf), executed by a prover
P and a verifier V in the following fashion:

Common Inputs. P and V get as common input a computation security parameter λ ∈ N,
a statistical security parameter t ∈ N, and a time parameter N ∈ N. All parties have
access to a random oracle H : {0, 1}∗ → {0, 1}λ.

Statement. V samples a random statement χ←$ {0, 1}λ and sends it to P .

Prove. P computes π ← ProveH(χ,N) and sends π to V .

Increment. P computes π′ ← IncH(χ,N,N ′, π) and sends π′ to V .

Verify. V computes and outputs VfH(χ,N, π).

We require a PoSW scheme to be complete in the following sense.

Definition 3 (Completeness). For all λ ∈ N, all N ∈ N, all random oracles H, and all
statements χ ∈ {0, 1}λ we say that a tuple (χ,N, π) is honest if

π ∈ ProveH(χ,N) or π ∈ IncH(χ,N ′, N ′′, π′),

where N ′ + N ′′ = N and the tuple (χ,N ′, π′) is also honest. A (non-interactive)
incremental proof of sequential work is complete if for all honest tuples (χ,N, π) it
holds that

VfH(χ,N, π) = 1.
In the following we define soundness for incremental proofs of sequential work.

Definition 4 (Soundness). A (non-interactive) incremental proof of sequential work
PoSW is sound if for all λ,N ∈ N, for all α > 0, for all adversariesA that make at most
(1− α)N sequential queries to H, it holds that

µ := Pr
[
χ← {0, 1}λ;π ← AH(χ,N) : VfH(χ,N, π) = 1

]
∈ negl(λ)

where µ is called the soundness error.

9

Fig. 4: CP3 with traversal order highlighted in red.

For our construction we recall the following directed acyclic graph constructed by Cohen
and Pietrzak [5] which has some nice combinatorial properties.

Definition 5 (CP Graphs). For n ∈ N, let N = 2n+1 − 1 and Bn = (V,E′) be a
complete binary tree of depth n with edges pointing from the leaves to the root. The
graph CPn = (V,E) is a directed acyclic graph constructed from Bn = (V,E′) as
follows. For any leaf u ∈ {0, 1}n, for any node v which is a left-sibling of a node on the
path from u to the root ε, an edge (v, u) is appended to E′. Formally, E := E′ ∪ E′′
where

E′′ := {(v, u) : u ∈ {0, 1}n, u = a||1||a′, v = a||0, for some a, a′ ∈ {0, 1}≤n}.

An illustration of CP3 is in Figure 4, with its traversal order (c.f. Lemma 2) highlighted
in red. Here we recall some technical lemmas from [5].

Lemma 1 ([5]). The labels of a CPn graph can be computed in topological order using
λ(n+ 1) bits of memory.

Let T be a tree and S ⊆ T be a subset of nodes. We denote by S∗ the minimal set of
nodes with exactly the same set of leaves as S, in other words, S∗ is the smallest set
such that leaf(S∗) = leaf(S).

Lemma 2 ([5]). For all S ⊆ V , the subgraph of CPn = (V,E) on vertex set V \ TS∗
has a directed path going through all the |V | − |TS∗ | nodes.

Lemma 3 ([5]). For all S ⊆ V , TS∗ contains |TS∗ |+|S|2 many leaves.

4 Main Construction

For any n ∈ N, we construct an incremental PoSW scheme based on the graph CPn =
(V,E) as follows. We assume without loss of generality that, given a random oracle H,
one can sample a fresh random oracle indexed by a string x, which we denote by Hx.
This can e.g., be done by prepending x and a special separator symbol to any query to H,
i.e., Hx(y) := H(x#y) for a separator symbol #.

10

4.1 Parameters

Our incremental Proof-of-Sequential-Work system depends on the following parameters
and objects.

– A time parameter N of the form N = 2n+1 − 1, for some integer n ∈ N.
– A computational security parameter λ
– A statistical security parameter t
– A full-domain hash function H : {0, 1}∗ → {0, 1}λ modelled as a random oracle.
– A full-domain hash function H′ : {0, 1}∗ → {0, 1}3t modelled as a random oracle.
– A sampler RandomSubset(M,m; r) which takes a universe size M , a sample size
m and uniform random coins r and outputs a uniformly random subset X ⊆ [M]
such that |X| = m. In our application, we will always set M = 2t and m = t. Since(2t
t

)
<
(2t·e

t

)t = (2e)t, where log 2e ≈ 2.44, random coins of size 3t are sufficient
to sample statistically close to a uniform subset.

Notation. Let ε be the root-node of CPn and 0n the left-most leaf in the tree or starting-
node. We will call a left node v ∈ V unfinished, if v has been traversed by the prover
algorithm but parent(v) has not yet been. At any time, the prover will keep a list of the
currently unfinished nodes U . At each unfinished node v, the prover will store Lv , a set
of extended labeled paths from v to leaf(v). An extended labeled path consists of a list
of tuples of the form (vi, `li , `ri , indi), where vi is the index/address of a node on the
path, li is the left child of vi, ri is the right child of vi and consequently `li is the label
of li and `ri is the label of ri. Finally, indi is a local path index, the meaning of which
will be explained later.

For simplicity of exposition, we assume that t is a power of 2. Our construction can
be easily adapted to the more general case where t is arbitrarily chosen. For convenience,
we denote by n∗ = n∗(n, t) the depth at which every node has exactly t leafs underneath,
i.e., it holds for every node v which is n∗ edges from ε that |leaf(v)| = t.

4.2 Scheme Description

ProveH,H′(χ,N):

1. Initialize U ← ∅, the set of unfinished nodes.
2. Assign `0n ← 0λ as the label of the starting node.
3. Traverse the graph CPn starting from 0n. At every node v ∈ V which is traversed,

do the following:
(a) Compute the label `v by

`v ← H(χ,v)(`v1 , . . . , `vd)

where v1, . . . , vd ∈ V are all nodes with edges pointing to v, i.e., (vi, v) ∈ E.
(b) Let l and r be the children of v.
(c) If |leafs(v)| ≤ t, set Lv ← {[(v, `l, `r,⊥)‖L] where L ∈ Ll ∪ Lr}.
(d) Otherwise (i.e., if |leafs(v)| ≥ 2t), do the following:

11

i. Compute
rv ← H′(χ,v)(`v).

ii. Choose a random t-subset Sv of [2t] via Sv ← RandomSubset(2t, t; rv).
iii. For j ∈ {0, . . . , t−1}, write Sv[j] = at+b with a ∈ {0, 1} and 0 ≤ b < t.

Lv[j]←
{

[(v, `l, `r, j)‖Ll[b]], if a = 0
[(v, `l, `r, j)‖Lr[b]], if a = 1

(e) Mark l as finished, i.e., remove l from U and, if v is a left child, mark v as
unfinished, i.e., add v to U .

4. Once the set of unfinished nodes consists only of the root-node (i.e., U = {ε}),
terminate and output π ← (`ε,Lε).

IncH,H′(χ,N,N ′, π):

1. Initialize U ← ∅.
2. Parse π as (`ε,Lε)
3. Assign `0n′−n := `ε and L0n′−n := Lε.
4. Execute the algorithm ProveH,H′(χ,N ′) starting from step 3 with a slight change:

Traverse the graph CPn′ starting from 0n′−n−1‖1‖0n (instead of from 0n′).

VfH,H′(χ,N, π):

1. Parse π as (`ε,Lε).
2. For all paths path ∈ Lε do the following:

(a) Parse path as [(v0, `l0 , `r0 , ind0)‖ . . . ‖(vn, `ln , `rn , indn)].
(b) For every node v ∈ {v0, . . . , vn} on the path, check if the label `v was computed

correctly. That is, for v = 0n check whether `v = 0λ, and for any other node
v ∈ V \{0n} check whether `v = H(χ,v)(`v1 , . . . , `vd), where v1, . . . , vd are
all the nodes with edges pointing to v. The value `v can either be retrieved from
the parent node of v, or is directly available for the case of the root-node ε. For
the special case of leaf-nodes, the values `v1 , . . . , `vd are not stored locally with
the node v, but are stored at some other (a-priori known) nodes along the path
path (refer to the structure of the graph CPn).

(c) For all j ∈ {0, . . . , n∗}, compute rvj ← H′(χ,vj)(`vj) and Svj ←
RandomSubset(2t, t; rvj). If vj+1 is the left child of vj , check if

Sv[indj] = indj+1.

Otherwise, if vj+1 is the right child of vj , check if

Sv[indj] = t+ indj+1.

3. If all checks pass output 1, otherwise 0.

12

Incomplete Trees. We briefly outline how to handle incomplete binary trees. If N does
not define a complete tree, then at the end of the prover’s iteration the list of unfinished
nodes consists of several elements: U = {v1, . . . , vn}. The new proof π consists of
the tuples (`v1 ,Lv1), . . . , (`vn ,Lvn). The proof can be easily verified by running the
standard verification algorithm on each pair (`vi ,Lvi) separately and outputting 1 if all
the verifications succeeds. In a similar way, one can increment the proof by recovering
the trees computed so far, setting the labels of the unfinished nodes to (`v1 , . . . , `vn) and
the corresponding sets to (Lv1 , . . . ,Lvn). Given such a snapshot of the execution, one
can continue the standard iteration and complete the proof for the new (larger) tree.

4.3 Efficiency Analysis

We now discuss the efficiency of our scheme in terms of proof size, computation and
communication.

Proof Size. The proof consists of the root-label `ε and t challenge paths
path0, . . . , patht−1. Each path ∈ {path0, . . . , patht−1} consists of n tuples of
the form (v, `l, `r, ind), where v is the index of a node, `l and `r are the labels of the
left and right children of v, and ind ∈ [t] is the index of path in the challenge set Sv
at v. The node index v can be stored using a single bit per node, indicating whether it
is the left or right child of its parent. Each of `l and `r can be stored using λ bits, and
ind can be represented using log t bits. Consequently, the entire proof has size at most
t · n · (1 + 2λ+ log t) = O(t · λ · n) (assuming t ∈ poly(λ)). Later, in the soundness
analysis, we will show that our construction is sound if t ∈ O(λ · n2). With such choice
of t, the proof size is bounded by O(λ2 · n3).

Prover Efficiency. The prover traverses the N nodes of the graph CPn in the same
manner as the prover algorithm of the CP scheme. Additionally, at each node the prover
computes a challenge using the random oracle H′(χ,v).

The challenges H′(χ,v) can be computed in a way that does not increase the parallel
time complexity of the prover. Specifically, instead of computing the randomness for the
challenges via rv ← H′(χ,v)(`v), we can equivalently compute the rv similar to `v via
rv ← H′(χ,v)(`v1 , . . . , `vd). This is possible as both H and H′ are random oracles. The
proof changes only slightly, but we kept the naive version for presentation purposes. In
the modified scheme H and H′ can be evaluated in parallel. thus the parallel complexity
is not increased by the evaluation of H′. To conclude, the parallel complexity of the
prover is bounded by the time needed for O(N) sequential calls to the random oracles.

For the memory complexity of the prover, Cohen and Pietrzak [5] show using a
standard pebbling argument (c.f. Lemma 1) that the labels of CPn can be computed in
topological order storing at most n + 1 labels at any time, i.e., having at most n + 1
pebbles in the graphs at any time. This corresponds to the number of unfinished nodes,
i.e. at every time-step there are at most n+ 1 unfinished nodes. At each unfinished node
v ∈ U , the prover keeps a list Lv consisting of t labeled paths. By the analysis above
these t paths can be stored using O(λ2 · n3) bits. Consequently, the space complexity of
the prover is bounded by O(λ2 · n4).

13

Verifier Efficiency. The verifier needs to check the consistency of t paths, each consisting
n nodes. Checking a node incurs the computation of a hash using H(χ,v) and one using
H′(χ,v). All nodes can be checked in parallel with by computing a constant number of
hashes. After that, the verifier has to check whether all t · n checks are passed, which
can be performed in parallel time O(log(t · n)) = O(log(λ · n3)).

4.4 Soundness

We now establish soundness of our construction. Before proving the main theorem, we
prove some useful lemmas. Throughout the following analysis, we always assume that
N and t are powers of two, but the arguments naturally extend to the more generic case.
We denote by L := (Tv, {`u}u∈Tv) the labelling for a sub-tree Tv. We slightly abuse
the notation and we say that u ∈ L if u ∈ Tv .

Lemma 4. LetA be an algorithm with access to a random oracle H : {0, 1}∗ → {0, 1}λ
which outputs a root-hash of a Merkle tree of depth n and a (valid) root-to-leaf path
path with siblings. Then there exists an efficient online extractor Extract, which on
input a node v ∈ T, a label `∗ and a list Q (of size q) of all H-queries of A so far,
outputs a labelling L of the sub-tree Tv rooted at v such that the following holds. Let
path∗ be the leaf-to-root path p truncated at v and let pathL be the same path in L, then
path∗ = pathL, except with probability 1+q(q−1)

2λ , over the choice of H.

Proof. We assume without loss of generality that the list Q is of the form {(in, out)},
and that the depth nv of a node is efficiently computable from its identifier. We define
the algorithm Extract in the following.
Extract(v, `∗, Q) : The root of the tree L set to be `∗ and the rest of the tree is recursively
constructed applying (n − nv) times the following function f(node): Parse Q for an
entry of the form (in, node), if such an entry does not exist then return ⊥. Else parse in
as `0‖`1, set `0 as the left child of node and `0 as the right child of node in L. Then run
f(`0), f(`1) and return L.
The algorithm runs with a logarithmic factor in the size of Tv (assuming an ordered
list Q) and therefore it is efficient. Let BAD be the event such that there exists a node
v ∈ path∗ labelled `′v such that `v 6= `′v and `parent(v) = `′parent(v), where `′v and
`v are the labelling output by A and by the extractor, respectively. By the law of total
probability we have that

Pr [BAD] = Pr [BAD | `v = ⊥] Pr [`v = ⊥] + Pr [BAD | `v 6= ⊥] Pr [`v 6= ⊥]
≤ Pr [BAD | `v = ⊥] + Pr [BAD | `v 6= ⊥] .

To bound the first summand observe that H(`′v‖`′v′) = `′parent(v), where v′ is the sibling
of v, since the path path needs to be valid. Further note that there exists no entry of the
form (·, `′parent(v)) ∈ Q, since `v is set to⊥ and `′parent(v) = `parent(v). This implies that
the adversary has correctly guessed a pre-image of `′parent(v) without querying H, which
happens with probability 2−λ. Thus we can bound from above

Pr [BAD | `v = ⊥] ≤ 2−λ.

14

For the second summand consider again that H(`′v‖`′v′) = `′parent(v) and that
H(`v‖`v′) = `parent(v). Since `′parent(v) = `parent(v) we have that H(`′v‖`′v′) =
H(`v‖`v′), which is a valid collision for H since, by assumption, `′v 6= `v . Therefore we
have that

Pr [BAD | `v 6= ⊥] ≤ 1−
q−1∏
k=0

(
1− k

2λ

)
= 1− 2λ

2λ ·
2λ − 1

2λ · · · 2
λ − (q − 1)

2λ

≤ 1−
(

2λ − (q − 1)
2λ

)q
= 1−

(
1− q − 1

2λ

)q
≤ q(q − 1)

2λ

where the last inequality is due to Bernoulli. Thus by triangle inequality we have that

Pr [BAD] ≤ 1
2λ + q(q − 1)

2λ = 1 + q(q − 1)
2λ ,

which implies that the complementary event happens with all but negligible probability.
That is, for all nodes in v ∈ path∗ labelled `v such that and `parent(v) = `parent(v) it holds
that `′v = `v . Since L is rooted at `∗ and path∗ and L have the same depth, it follows by
induction that path∗ must be identical to pathL, with the same probability. ut

Given a labeled tree L, we say that a node v ∈ L is inconsistent if it holds that `v 6=
H(`v1 , . . . , `vd), where (v1, . . . , vd) are the nodes with an incoming edge to v. Let n(L)
be the depth of L, then L has 2n(L)-many paths (or, equivalently, leaves) and we define
C as the set of paths which contain at least one inconsistent node. Note that L uniquely
defines a set of t challenge paths (as specified in the description of the prover algorithm)
which we denote by Z. For convenience we define the functions γ(L) := |C|

2n(L) and
δ(L) := |Z∩C|

|Z| .

Lemma 5. Let v be a node and let l and r be the left and right child of v, respectively. If

δ(Ll) ≥ γ(Ll)− ηl and δ(Lr) ≥ γ(Lr)− ηr

then it holds that

Pr [γ(Lv) ≤ δ(Lv) + ηv] ≥
(

1− e−2
(
ηv−

(ηl+ηr)
2

)2
t

)
.

Proof. Recall that γ(Lv) counts the fraction of inconsistent paths of v. Since l and r are
the children of v it holds that

γ(Lv) = (γ(Ll) + γ(Lr))
2 . (1)

Rearranging the terms we have that

γ(Ll) ≤ δ(Ll) + ηl (2)
γ(Lr) ≤ δ(Lr) + ηr, (3)

15

thus combining (1), (2), and (3) we obtain

γ(Lv) ≤
(δ(Ll) + ηl + δ(Lr) + ηr)

2 = (δ(Ll) + δ(Lr))
2 + (ηl + ηr)

2 . (4)

Let Z ′v be the set of all paths in Zl ∪ Zr extended to v, i.e. Z ′v = {(v, p) | p ∈ Zl ∪ Zr}.
By construction, the set Zv is a random t-subset of Z ′v (where the randomness for this
choice is taken from H′(χ,v)(`v)). Assume now that there are sl rejecting paths in Zl and
sr rejecting paths in Zr, i.e. it holds that δ(Ll) = sl

t and δ(Lr) = sr
t . That is, there are

sl + sr rejecting paths in Z ′v. Consequently, the expected number of rejecting paths in
Zv is sl+sr

2t · t = 1
2 (δ(Ll) + δ(Lr)) · t, that is

E[δ(Lv)] = (δ(Ll) + δ(Lr))
2 , (5)

where the expectation is taken over the random choice H′(χ,v)(`v). Thus we can rewrite

Pr [γ(Lv) > δ(Lv) + ηv] = Pr [δ(Lv) < γ(Lv)− ηv]

< Pr
[
δ(Lv) <

(δ(Ll) + δ(Lr))
2 + (ηl + ηr)

2 − ηv
]

= Pr
[
δ(Lv) < E[δ(Lv)] + (ηl + ηr)

2 − ηv
]

< e
−2
(
ηv−

(ηl+ηr)
2

)2
t

where the first inequality holds by (4), the second equality holds by (5), and the last
inequality is a direct application of the Hoeffding inequality for hypergeometric distribu-
tions (Theorem 1). ut

We are now ready to state and prove the main theorem.

Theorem 2. The construction given in Section 4.2 is sound for any t ∈ O(λ · n2), and
the soundness error is given by 1+q(q−1)

2λ + q · e−2(αn)2t.

Proof. Let χ be the challenge statement and let qv be the number of calls of A to the
random oracle H′(χ,v), i.e., the adversary makes at most q =

∑
v∈T qv calls to H′ in total.

By Lemma 4, there exists an (efficient) algorithm Extract which on input a node v ∈ T,
a label `v and a list Q of all query to H by A with their responses, outputs a a labelling
Lv of the sub-tree Tv rooted at v. For i = {0, . . . , n} and for j = {1, . . . , 2i}, let vi,j
be the j-th node at layer i of the tree (counting from the root towards the leaves).

Consider the following sequence of hybrids.

– HybridH0: This is identical to the real experiment.
– HybridH1: The same asH0, except for the following modifications.
• The experiment records a list Q of all H queries made byA with their responses.
• Every time A queries H′(χ,v) for a v ∈ V with a label `v, a labelling Lv for the

sub-tree under v is computed via Lv ← Extract(v, `v, Q).

16

• If it holds for any path opened byA that the labels on the path are different from
the labels in Lε (where ε is the root), thenH1 aborts and outputs 0.

Let BADv be the following event:A queries H′(χ,v) with a query ˆ̀
v corresponding to a la-

beled sub-tree Lv ← Extract(v, ˆ̀
v, Q) for which it holds that δ(Lv) < γ(Lv)− n∗−nv

n∗ ·α,
where nv is the depth of v (i.e. the distance between the root-node ε and v) and n∗ is the
depth at which every node has exactly t leafs underneath.

For i = n∗, . . . , 0 and j = 1, . . . , 2i define the following hybrids.

– HybridHi,j : The same as the previous hybrid, except that the experiment outputs 0
if the event BADvi,j happens (Recall that vi,j is the j-th node at layer i of the tree,
counting from the root towards the leaves).

We will now show indistinguishability between the hybrids. By Lemma 4 it holds that
H0 and H1 are indistinguishable. We now turn to the indistinguishability of hybrids
Hi,j . For notational convenience, letH↓i,j be the hybrid beforeHi,j .

First consider i = n∗. It holds for each node v at level i that the set Zv of challenge
paths consists of all paths from v to the leaves under v. Consequently, it holds for all v
at level i that δ(Lv) = γ(Lv) and therefore BADv happens with probability 0.

Now consider the case of i < n∗ and let v = vi,j . Moreover, let l and r be the the
left and right children of v.

First notice that, conditioned on that the event BADv does not happen, hybrid
Hi,j is distributed identically to the previous hybrid, i.e. Pr [Hi,j(A) = 1|¬BADv] =
Pr
[
H↓i,j(A) = 1|¬BADv

]
. Therefore

SD[Hi,j ,H↓i,j] = Pr [BADv] ·
∣∣∣Pr [Hi,j(A) = 1|BADv]− Pr

[
H↓i,j(A) = 1|BADv

]∣∣∣︸ ︷︷ ︸
≤1

≤ Pr [BADv]

It is thus sufficient to bound the probability for the event BADv. A queries the random
oracle H′(χ,v) with at most qv distinct queries. Fix a query ˆ̀

v, and let ˆ̀
l and ˆ̀

r be the
corresponding labels of the children l and r of v. It holds that

δ(Ll) ≥ γ(Ll)−
n∗ − (i+ 1)

n∗
· α

δ(Lr) ≥ γ(Lr)−
n∗ − (i+ 1)

n∗
· α,

17

as otherwise one of the events BADl or BADr would have happened and the experiment
would have aborted. We can now rewrite

Pr [BADv] = Pr
[
δ(Lv) < γ(Lv)−

n∗ − i
n∗

· α
]

= 1− Pr
[
γ(Lv) ≤ δ(Lv) + n∗ − i

n∗
· α
]

< e
−2
(
n∗−i
n∗ ·α−

n∗−(i+1)
n∗ ·α

)2
t

= e−2(α
n∗)2

t

by Lemma 5. A union-bound over all queries to H(χ,v) yields

Pr [BADv] < qv · e−2(α
n∗)2t.

Thus we conclude that the statistical distance between Hi,j and H↓i,j is at most qv ·
e−(α

n∗)2t. Consequently, we can bound the statistical distance between the first hybrid
H0 and the last hybridH0,1 by

SD[H0,H0,1] = 1 + q(q − 1)
2λ +

∑
v∈T

qv · e−2(α
n∗)2t = 1 + q(q − 1)

2λ + q · e−2(α
n∗)2t.

We will finally bound the success probability of A in the last hybridH0,1. This is in fact
identical to the analysis of [5]. Let S denote the set of all inconsistent nodes in the tree
output by A inH0,1. Then by Lemma 2 there exists a path going though all the nodes in
V \ TS∗ . We distinguish two cases

1. |TS∗ | ≤ αN
2. |TS∗ | > αN

For the first case A must have done at least (1 − α)N sequential queries, so we are
left with a bound on the second case. By Lemma 3 TS∗ (and therefore S∗) contains at
least |S

∗|+|TS∗ |
2 > α2n leaves. However, note that in the experimentH0,1 the challenger

aborts whenever the adversary satisfies the winning conditions, since

γ(Lε) >
α2n

2n = α

and therefore
δ(Lε) ≥ γ(Lε)− α > 0.

Consequently, as δ(Lε) = |Z∩C|
|Z| , this implies that |Z ∩C| > 0 and therefore at least one

of the paths in Z is also in C and therefore we detect an inconsistent node. This however
implies that the proof is always rejected by the verifier. So in the final experimentH0,1
the success-probability of the adversary is exactly 0. This concludes our proof. ut

18

5 Multi-Thread Construction

In this section we show how to improve the concrete efficiency of incremental proofs of
sequential work by assuming some parallel capability of the prover. More specifically,
we assume that the prover can spawn n parallel threads, where n denotes the depth of the
graph CPn. Note that we can upper bound n by λ = 100, since we require the prover to
be polynomial time.

5.1 Parameters

Throughout the following section we use the same parameters and notation of Section 4.1
and we define the following additional subroutines.

– A full-domain hash function H′′ : {0, 1}∗ → {0, 1}t(n+2) modelled as a random
oracle.

– A sampler RandomPath(v; r) which takes as input a node v and uniform random
coins r, and outputs a set of t uniformly random paths with common prefix v. Since

log
(2hv
t

)
< log

(
2hv ·e
t

)t
< t(hv + 2) ≤ t(n + 2), random tapes of size t(n + 2)

always suffice to sample a uniform set.
– A function FetchPath(Sv, U, {`v : v ∈ U}) which takes as input a set Sv of t paths

with common prefix v, a set of U = {u : ∃v′ ∈ Tv s.t. (u, v′) ∈ E} where with
edges pointing to Tv, and the set {`v : v ∈ U} of labels of all nodes in U . The
function recomputes the labelling of Tv using the labels of nodes in U . The output
of the function is the labelling of all paths in Sv. Note that such a function can be
computed in time O(2hv) and with memory O(t · hv).

5.2 Scheme Description

ProveH,H′,H′′(χ,N):

1. Initialize U ← ∅ to be the set of unfinished nodes.
2. Assign `0n ← 0λ.
3. Traverse the graph CPn starting from 0n. At every node v ∈ V which is traversed,

do the following:
(a) Compute the label `v by

`v ← H(χ,v)(`v1 , . . . , `vd)

where v1, . . . , vd ∈ V are all nodes v is adjacent with, i.e., (vi, v) ∈ E.
(b) Let l and r be the children of v.
(c) If |leafs(v)| ≤ t, set Lv ← {[(v, `l, `r,⊥)‖L] where L ∈ Ll ∪ Lr}.
(d) Otherwise (i.e., if |leafs(v)| ≥ 2t), do the following:

i. Compute
ru ← H′(χ,u)(`u).

ii. Choose a random t-subset Sv of [2t] via Sv ← RandomSubset(2t, t; rv).

19

iii. For j ∈ {0, . . . , t − 1}, write Sv[j] = at + b where a ∈ {0, 1} and
0 ≤ b < t. Set

Lu[j] :=
{

[(u, `l, `r, j)‖Ll[b]], if a = 0
[(u, `l, `r, j)‖Lr[b]], if a = 1

(e) If v is a left node (i.e., it is the left child of its parent):
i. Compute

ru ← H′′(χ,u)(`u).

ii. Choose a random t-set of paths with prefix v via Sv ← RandomPath(v; rv).
iii. Execute in a parallel thread L ← FetchPath(Sv, U, {`v : v ∈ U}) and set
Lv := {[(v, `l, `r,⊥)‖L] where L ∈ L}.

iv. Mark l as finished, i.e., remove l from U and mark v as unfinished, i.e., add
v to U .

4. Once the set of unfinished nodes consists only of the root-node (i.e., U = {ε}),
terminate and output π ← (`ε,Lε).

IncH,H′,H′′(χ,N,N ′, π): Defined as in Section 4.2.

VfH,H′,H′′(χ,N, π):

1. Parse π as (`ε,Lε).
2. For all paths path ∈ Lε do the following:

(a) Parse path as [(v0, `l0 , `r0 , ind0)‖ . . . ‖(vn, `ln , `rn , indn)].
(b) For every node v ∈ {v0, . . . , vn} on the path, check if the label `v was computed

correctly. That is, for v = 0n check whether `v = 0λ, and for any other node
v ∈ V \{0n} check whether `v = H(χ,v)(`v1 , . . . , `vd), where v1, . . . , vd are
the nodes with edges pointing to v. The value `v can either be retrieved from the
parent node of v, or is directly available for the case of the root-node ε. For the
special case of leaf-nodes, the values `v1 , . . . , `vd are not stored locally with the
node v, but are stored at some other (a-priori known) nodes along path (refer to
the structure of the graph CPn).

(c) For all j ∈ {0, . . . , n∗}:
i. If vj is a right node or j = 0: Compute rvj ← H′(χ,vj)(`vj) and Svj ←

RandomSubset(2t, t; rvj). If vj+1 is the left child of vj , check if

Su[indj] = indj+1.

Otherwise, if vj+1 is the right child of vj , check if

Su[indj] = t+ indj+1.

ii. If vj is a left node: Compute rvj ← H′′(χ,vj)(`vj) and Svj ←
RandomPath(vj ; rvj). Check if all paths in Svj are present in Lε.

3. If all checks pass output 1, otherwise 0.

20

5.3 Efficiency Analysis

The verifier efficiency is essentially unchanged from the construction in Section 4.2.

Prover Efficiency. For the main thread the prover complexity is identical to our construc-
tion in Section 4.2. For the parallel threads the prover has to recompute a CPn graph
of size at most n, so we can again upper bound their memory complexity to λ(n+ 1)
by Lemma 1.

In the following we argue that the number of parallel threads of our protocol is
upper-bounded by n. Recall that a new thread is spawned each time the main thread
traverses a left node v (i.e., a node which is the left child of its parent). The complexity
of each parallel thread is dominated by the factor O(2hv) of the function FetchPath,
where hv is the height at which the thread was spawned. However, note that the main
thread must perform at least O(2hv) steps before spawning a new sub-thread at height
hv. This implies that for each hv = 1, . . . , n there can be at most one parallel thread
running. It follows that n parallel processors are sufficient to run the prover algorithm.

Proof Size. As for our construction in Section 4.2, the proof size isO(t ·λ ·n). Theorem 3
shows that our construction is sound if t = O(λ), which gives proofs of size O(λ2 · n).
Concretely, our proofs are larger than those of the CP scheme by a factor of roughly 9.

5.4 Soundness

Theorem 3. The construction given in Section 5.2 is sound for any t ∈ O(λ), and the

soundness error is given by 1+q(q−1)
2λ + q · e− 2α2t

9 .

Proof. Let χ be the challenge statement and let qv be the number of calls of A to the
random oracle H′(χ,v), i.e., the adversary makes at most q =

∑
v∈T qv calls to H′ in total.

Let η be a free (positive) variable to be fixed later. Consider the following sequence of
hybrids.

– HybridH0: This is identical to the real experiment.
– HybridH1: The same asH0, except for the following modifications.
• The experiment records a list Q of all H queries made byA with their responses.
• Every time A queries H′(χ,v) for a v ∈ V with a label `v, a labelling Lv for the

sub-tree under v is computed via Lv ← Extract(v, `v, Q).
• If it holds for any path opened byA that the labels on the path are different from

the labels in Lε (where ε is the root), thenH1 aborts and outputs 0.

Let BADv be the following event: A queries H′(χ,v) with a query ˆ̀
v corresponding to a

labeled sub-tree Lv ← Extract(v, ˆ̀
v, Q) for which it holds that δ(Lv) < γ(Lv)− η.

For v ∈ {1n∗−1‖0, . . . , 10, 0} define the following hybrids.

– HybridHv1 : The same as the previous hybrid, except that the experiment outputs 0
if the event BADv happens.

21

Let ˆBADv be the following event: A queries H′(χ,v) with a query ˆ̀
v corre-

sponding to a labeled sub-tree Lv ← Extract(v, ˆ̀
v, Q) for which it holds that

δ(Lv) < γ(Lv)−
(
3η − 2n∗−nvη

)
, where nv is the depth of v (i.e., the distance between

the root-node ε and v).

For v ∈ {1n∗ , . . . , 1, ε} define the following hybrids.

– HybridHv2 : The same as the previous hybrid, except that the experiment outputs 0
if the event ˆBADv happens.

We will now show indistinguishability between the hybrids. By Lemma 4 it holds that
H0 andH1 are indistinguishable. We now turn to the indistinguishability of hybridsHv1 .
For notational convenience, letHv↓1 be the hybrid beforeHv1 .

First consider v = 1n∗−1‖0. For each node v at level n it holds that the set Zv of
challenge paths consists of all paths from v to the leaves under v. Consequently, it holds
that δ(Lv) = γ(Lv) and therefore BADv happens with probability 0.

First notice that, conditioned on that the event BADv does not happen, hybrid
Hv1 is distributed identically to the previous hybrid, i.e., Pr [Hv1(A) = 1|¬BADv] =
Pr
[
Hv↓1 (A) = 1|¬BADv

]
. Therefore

SD[Hv1 ,H
v↓
1] = Pr [BADv] ·

∣∣∣Pr [Hv1(A) = 1|BADv]− Pr
[
Hv↓1 (A) = 1|BADv

]∣∣∣︸ ︷︷ ︸
≤1

≤ Pr [BADv]

It is thus sufficient to bound the probability for the event BADv. A queries the random
oracle H′(χ,v) with at most qv distinct queries. Note that v is always a left node and
therefore the challenge set Z is chosen uniformly at random for each label. Hence
we have that E[δ(Lv)] = γ(Lv), i.e., the fraction of inconsistent paths is preserved in
expectation, over the random coins of H′(χ,v). We can then rewrite

Pr [BADv] = Pr [δ(Lv) < γ(Lv)− η]
= Pr [δ(Lv) < E[δ(Lv)]− η]

< e−2η2t

by Theorem 1. A union-bound over all queries to H(χ,v) yields

Pr [BADv] < qv · e−2η2t.

Thus we conclude that the statistical distance betweenHv1 andHv↓1 is at most qv · e−η
2t.

We now turn to the indistinguishability of hybridsHv2 . Again we use the convention that
Hv↓2 denotes the hybrid beforeHv2 .

First consider v = 1n∗ . As argued above, for each node at depth n it holds that
δ(Lv) = γ(Lv) and therefore ˆBADv happens with probability 0. For the rest of the cases,
bounding the probability that ˆBADv happens suffice, since, if ˆBADv does not happen,

22

the hybrids are identical. We bound the probability that ˆBADv happens with an inductive
argument over v ∈ {1n∗ , . . . , 1, ε}. The base case v = 1n∗ is settled above.

For any node v ∈ {1n∗−1, . . . , 1, ε}, fix a query ˆ̀
v and let l and r be the left and

right child of v. Since l is a left node, we have that

δ(Ll) ≥ γ(Ll)− η (6)

as otherwise BADl would be triggered. For the right node r we have that

δ(Lr) ≥ γ(Lr)−
(

3η − 2n
∗−(nv+1)η

)
(7)

by induction hypothesis, as otherwise ˆBADr would be triggered. We can now rewrite

Pr
[

ˆBADv
]

= Pr
[
δ(Lv) < γ(Lv)−

(
3η − 2n

∗−nvη
)]

= 1− Pr
[
γ(Lv) ≤ δ(Lv) +

(
3η − 2n

∗−nvη
)]

< e
−2

((
3η−2n

∗−nvη
)
−
η+(3η−2n

∗−(nv+1)η)
2

)2

t

= e
−2
(

3η− (η+3η)
2

)2
t

= e−2η2t

by (6), (7), and Lemma 5. A union-bound over all queries to H(χ,v) yields

Pr
[

ˆBADv
]
≤ qv · e−2η2t.

This bounds the statistical distance betweenHv2 andHv↓2 by qv · e−2η2t.
We are now in the position to bound the statistical distance between the first hybrid

H0 and the last hybridHε2. Let Tl be the set {1n∗−1‖0, . . . , 10, 0} and let Tr be the set
{1n∗ , . . . , 1, ε}

SD[H0,Hε2] = 1 + q(q − 1)
2λ +

∑
v∈{Tl∪Tr}

qv · e−2η2t

≤ 1 + q(q − 1)
2λ + q · e−2η2t.

Setting η := α
3 we obtain

SD[H0,Hε2] ≤ 1 + q(q − 1)
2λ + q · e−2α2t

9 .

What is left to be shown is that A cannot win inHε2. Note that in the latter experiment
we have that for all Lε computed via Extract we have that

δ(Lε) ≥ γ(Lε)−
(

3η − 2n
∗
η
)
≥ γ(Lε)− 3η = γ(Lε)− α.

The same argument as in the proof of Theorem 2 can be used to show that the success
probability of A is exactly 0. ut

23

General Arity Trees. Both schemes presented in this work can be generalized to work
over p-ary trees, for any p ≥ 2. By adjusting the value p, we can achieve slightly better
concrete proof sizes and prover efficiency. We refer the reader to Section A for an
extensive treatment on the matter.

References

1. Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of
np. Journal of the ACM (JACM), 45(1):70–122, 1998.

2. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and
bootstrapping for SNARKS and proof-carrying data. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, 45th ACM STOC, pages 111–120, Palo Alto, CA, USA, June 1–4,
2013. ACM Press.

3. Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikuntanathan, and
Brent Waters. Time-lock puzzles from randomized encodings. In Madhu Sudan, editor, ITCS
2016, pages 345–356, Cambridge, MA, USA, January 14–16, 2016. ACM.

4. Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of
LNCS, pages 757–788, Santa Barbara, CA, USA, August 19–23, 2018. Springer, Heidelberg,
Germany.

5. Bram Cohen and Krzysztof Pietrzak. Simple proofs of sequential work. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS,
pages 451–467, Tel Aviv, Israel, April 29 – May 3, 2018. Springer, Heidelberg, Germany.

6. Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Ernest F.
Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 139–147, Santa Barbara, CA, USA,
August 16–20, 1993. Springer, Heidelberg, Germany.

7. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
186–194, Santa Barbara, CA, USA, August 1987. Springer, Heidelberg, Germany.

8. Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In
24th ACM STOC, pages 723–732, Victoria, British Columbia, Canada, May 4–6, 1992. ACM
Press.

9. Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Time-lock puzzles in the random
oracle model. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 39–50,
Santa Barbara, CA, USA, August 14–18, 2011. Springer, Heidelberg, Germany.

10. Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Publicly verifiable proofs of
sequential work. In Robert D. Kleinberg, editor, ITCS 2013, pages 373–388, Berkeley, CA,
USA, January 9–12, 2013. ACM.

11. Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436–453, Santa Fe, New
Mexico, November 20–22, 1994. IEEE Computer Society Press.

12. Krzysztof Pietrzak. Simple verifiable delay functions. Cryptology ePrint Archive, Report
2018/627, 2018. https://eprint.iacr.org/2018/627.

13. Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and timed-release
crypto. 1996.

14. Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 1–18, San Francisco,
CA, USA, March 19–21, 2008. Springer, Heidelberg, Germany.

15. Benjamin Wesolowski. Efficient verifiable delay functions. Cryptology ePrint Archive, Report
2018/623, 2018. https://eprint.iacr.org/2018/623.

24

https://eprint.iacr.org/2018/627
https://eprint.iacr.org/2018/623

A General Arity Constructions

The schemes described in Section 4.2 and Section 5.2 can be generalized rather easily to
work with p-ary trees for any p ≥ 2.

A.1 Generalized CP Graphs

We begin by describing the generalized CP graphCP pn , and generalizing Lemma 1, Lemma 2,
and Lemma 3.

Definition 6 (Generalized CP Graphs). For n ∈ N, let N = pn+1 − 1 and Tp,n =
(V,E′) be a complete p-ary tree of depth n. Let Σ := {0, . . . , p− 1} be an alphabet set
of size p. The nodes V = Σ≤n are identified by p-ary strings of length at most n and the
empty string ε represents the root. The edges E′ = {(x||s, x) : s ∈ Σ, x ∈ Σi, i < n}
are directed from the leaves towards the root.

The graph CP pn = (V,E) is a DAG constructed from Tp,n = (V,E′) as follows. For
any leaf u ∈ Σn, for any node v which is a left-sibling of a node on the path from u to
the root ε, an edge (v, u) is appended to E′. Formally, E := E′ ∪ E′′ where

E′′ := {(v, u) : u ∈ Σn, u = a||r||a′, v = a||s, r > s for some a, a′ ∈ Σ≤n}.

We state and prove the generalizations of Lemma 1, Lemma 2, and Lemma 3.

Lemma 6. The labels of a CP pn graph can be computed in topological order using
λ((p− 1)n+ 1) bits of memory.

Proof. We prove by induction on n. Let 0, . . . , p− 1 be the children of ε. For i ∈ Σ =
{0, . . . , p−1}, let Ti be the subtree rooted at the i. Note that Ti is isomorphic to CP pn−1.
To compute the labels of CP pn , we first compute the labels of T0. Upon completion, we
store only the label of 0, denoted `0. Next, we compute the labels of T1 using `0. This
is possible since all edges start from the node 0. Upon completion, we store the label
`1. Now suppose that for some i ∈ {1, . . . , p} the labels of T0, . . . ,Ti−1 are computed,
and we have stored `0, . . . , `i−1. The labels of Ti can be computed since all edges start
from the nodes 0, . . . , i− 1. Eventually, we obtain the last label `p−1. Using this with
`0, . . . , `p−2 stored in the memory, we can compute the label of ε.

Since for each i ∈ Σ, storing `i requires λ bits of memory, the memory required
for computing the label of CP pn equals to that of CP pn−1 plus λ(p − 1) extra bits.
Furthermore, CP p0 has exactly 1 node and its label can be computed using λ bits of
memory. Solving the recursion gives the claimed bound.

Lemma 7. For all S ⊆ V , the subgraph of CP pn = (V,E) on vertex set V \TS∗ , has a
directed path going through all the |V | − |TS∗ | nodes.

Proof. We prove by induction on n. The lemma is trivial for CP p0 as it contains only 1
node. Now, suppose the lemma is true forCP pn−1. ConsiderCP pn , and let 0, . . . , p−1 be
the children of ε. For i ∈ Σ = {0, . . . , p− 1}, let Ti be the subtree rooted at the i. Note
that Ti is isomorphic to CP pn−1. CP pn consists of the root ε, the subtrees T0, . . . ,Tp−1,
and edges going from i to the leaves of Tj for all i < j and i, j ∈ Σ.

25

The lemma is true if ε ∈ S∗, as |V | − |TS∗ | = 0. Otherwise, let I := S∗ ∩Σ be the
subset of children of ε which are in S∗. For concreteness, we write I = {i1, . . . , ik} for
some k ∈ {1, . . . , p}. We apply the lemma to Ti for all i ∈ Σ \ I , so that for each Ti
there exists a directed path going from the left-most leaf of Ti, i.e., i0 . . . 0, to i. Since
for all i, j ∈ Σ where i < j, there exists an edge from i to j0 . . . 0, it means that for
each i′ ∈ I , there exists a edge (i′ − 1, (i′ + 1)0 . . . 0) which “skips” Ti′ . Formally, the
following edges exist:

(0, 10 . . . 0), . . . , (i1 − 2, (i1 − 1)0 . . . 0),
(i1 − 1, (i1 + 1)0 . . . 0), . . . , (ik − 1, (ik + 1)0 . . . 0),

(ik + 1, (ik + 2)0 . . . 0), . . . , (p− 1, p0 . . . 0).

Finally, we note that there also exists an edge (i∗, ε) where i∗ := maxi/∈I(i ∈ Σ), which
completes the path from 0 . . . 0 to ε, passing through all |V | − |TS∗ | nodes.

Lemma 8. For all S ⊂ V , TS∗ contains |TS∗ |+|S|p many leaves.

Proof. Let S∗ = {v1, . . . , vk}. Since S∗ is minimal, it holds that Tvi ∩ Tvj = ∅ for all
i, j ∈ {1, . . . , k} with i 6= j. Therefore we can write

|Σn ∩ TS∗ | =
k∑
i=1
|Σn ∩ Tvi |.

As for all i ∈ {1, . . . , k}, Tvi is a complete p-ary tree, it has (|Tvi |+ 1)/p many leaves.
Thus,

k∑
i=1
|Σn ∩ Tvi | =

k∑
i=1

|Tvi |+ 1
p

= |TS
∗ |+ |S|
p

.

A.2 Generalized Single-Thread Construction

The generalized construction is almost identical to the basic one presented in Section 4.2,
except the graphCPn is replaced withCP pn , and the computation of the labels is changed
accordingly.
ProveH,H′(χ,N):

1. Initialize U ← ∅.
2. Assign `0n ← 0λ.
3. Traverse the graph CP pn = (V,E) starting from 0n. At every node v ∈ V which is

traversed, do the following:
(a) Compute the label `v by `v ← H(χ,v)(`v1 , . . . , `vd), where v1, . . . , vd ∈ V are

all nodes with edges pointing to v, i.e., (vi, v) ∈ E.
(b) Let c0, . . . , cp−1 be the children of v.
(c) If |leafs(v)| ≤ t, set

Lv ← {[(v, `c0 , . . . , `cp−1 ,⊥)‖L] where L ∈ Lc0 ∪ . . . ∪ Lcp−1}.

26

(d) Otherwise (i.e., if |leafs(v)| ≥ pt), do the following:
i. Compute rv ← H′(χ,v)(`v).

ii. Choose a random t-subset Sv of [pt] via Sv ← RandomSubset(pt, t; rv).
iii. For j ∈ {0, . . . , t − 1}, write Sv[j] = at + b where 0 ≤ a < p and

0 ≤ b < t and set Lv[j]← (v, `c0 , . . . , `cp−1 , j)‖Lca [b].
(e) Mark c0, . . . , cp−2 as finished, i.e., remove c0, . . . , cp−2 from U and, if v is not

the right-most child of its parent, mark v as unfinished, i.e., add v to U .
4. Once the set of unfinished nodes consists only of the root-node (i.e., U = {ε}),

terminate and output π ← (`ε,Lε).

IncH,H′(χ,N,N ′, π):

1. Initialize U := ∅.
2. Parse π as (`ε,Lε)
3. Assign `0n′−n := `ε and L0n′−n := Lε.
4. Execute the algorithm ProveH,H′(χ,N ′) starting from step 3 with a slight change:

Traverse the graph CP pn′ starting from 0n′−n−1‖1‖0n (instead of from 0n′).

VfH,H′(χ,N, π):

1. Parse π = (`ε,Lε).
2. For all paths path ∈ Lε do the following:

(a) Parse path as [(v0, `c0,0 , . . . , `c0,p−1 , ind0), . . . , (vn, `cn,0 , . . . , `cn,p−1 , indn)].
(b) For every node v ∈ {v0, . . . , vn} on the path, check if the label `v was computed

correctly. That is, for v = 0n check whether `v = 0λ, and for any other node
v ∈ V \{0n} check whether `v = H(χ,v)(`v1 , . . . , `vd), where `v1 , . . . , `vd are
the nodes with edges pointing to v. The value `v can either be retrieved from
the parent node of v, or is directly available for the case of the root-node ε. For
the special case of leaf-nodes, the values `v1 , . . . , `vd are not stored locally with
the node v, but are stored at some other (a-priori known) nodes along the path
path (refer to the structure of the graph CP pn).

(c) For all j ∈ {0, . . . , n∗}, compute rvj ← H′(χ,vj)(`vj) and Svj ←
RandomSubset(pt, t; rvj). Let i ∈ {0, . . . , p − 1} so that vj+1 is the
i-th child of vj . Check if Sv[indj] = i · t+ indj+1.

3. If all checks pass then output 1. Otherwise output 0.

We state the soundness error and the efficiency of the generalized construction. The
analysis is essentially identical to that in Section 4.3 and is therefore omitted.

Soundness. Here we state a generalized version of Lemma 5 for p-ary trees.

Lemma 9. Let v be a node and let (v1, . . . , vp) the set of children of v. If for all i ∈
{1, . . . , p} we have

δ(Lvi) ≥ γ(Lvi)− ηvi
then it holds that

Pr [γ(Lv) ≤ δ(Lv) + ηv] ≥ 1− e
−2

(
ηv−

∑
i∈p

ηvi

p

)2

t

.

27

The bound for the soundness error has the same form as that in the basic construction,
except that n = logp(N +1)−1. Previously, n = log(N +1)−1. The proof is identical
to that of Theorem 2, except that we apply Lemma 9 instead of Lemma 5.

Theorem 4. The construction given in Section A.2 is sound for any t ∈ O(λ · n2), and
the soundness error is given by 1+q(q−1)

2λ + q · e−2(αn)2t.

Efficiency. In the following, we set t = O(λ · n2) and n = logpN . The parallel time
complexity of the prover remains unchanged at O(N). The parallel time complexity of
the verifier is O(log(1

log3 p
· λ · log3 N)), which decreases at p increases. The proof size

and the space complexity of the prover areO(p
log3 p

·λ2·log3 N) andO(p2

log4 p
·λ2·log4 N)

respectively. The fractions φp := p
log3 p

and θp := p2

log4 p
are minimized at p = 20 and

p = 7 respectively. Compared to p = 2, we have φ20/φ2 ≈ 0.124 and θ7/θ2 ≈ 0.197.

A.3 Generalized Multi-Thread Construction

Similar to the above, we present a generalization of the construction in Section 5.2.
ProveH,H′,H′′(χ,N):

1. Initialize U ← ∅ to be the set of unfinished nodes.
2. Assign `0n ← 0λ.
3. Traverse the graph CP pn starting from 0n. At every node v ∈ V which is traversed,

do the following:
(a) Compute the label `v by `v ← H(χ,v)(`v1 , . . . , `vd), where v1, . . . , vd ∈ V are

all nodes nodes v is adjacent with, i.e., (vi, v) ∈ E.
(b) Let c0, . . . , cp−1 be the children of v.
(c) If |leafs(v)| ≤ t, set

Lv ← {[(v, `c0 , . . . , `cp−1 ,⊥)‖L] where L ∈ Lc0 ∪ . . . ∪ Lcp−1}.

(d) Otherwise (i.e., if |leafs(v)| ≥ pt), do the following:
i. Compute rv ← H′(χ,v)(`v).

ii. Choose a random t-subset Sv of [pt] via Sv ← RandomSubset(pt, t; rv).
iii. For j ∈ {0, . . . , t − 1}, write Sv[j] = at + b where 0 ≤ a < p and

0 ≤ b < t. Set Lv[j] := [(v, `l, `r, j)‖Lca [b]].
(e) If v is not a right node (i.e., it is not the right-most child of its parent):

i. Compute rv ← H′′(χ,v)(`v).
ii. Choose a random t-set of paths with prefix v via Sv ← RandomPath(v; rv).

iii. Execute in a parallel thread L ← FetchPath(Sv, U, {`v : v ∈ U}) and set
Lv := {[(v, `l, `r,⊥)‖L] where L ∈ L}.

iv. Mark c0, . . . , cp−2 as finished, i.e., remove c0, . . . , cp−2 from U and mark
v as unfinished, i.e., add v to U .

4. Once the set of unfinished nodes consists only of the root-node (i.e., U = {ε}),
terminate and output π ← (`ε,Lε).

28

IncH,H′,H′′(χ,N,N ′, π): Defined as in Section A.2.

VfH,H′,H′′(χ,N, π):

1. Parse π as (`ε,Lε).
2. For all paths path ∈ Lε do the following:

(a) Parse path as [(v0, `c0,0 , . . . , `c0,p−1 , ind0)‖ . . . ‖(vn, `cn,0 , . . . , `cn,p−1 , indn)].
(b) For every node v ∈ {v0, . . . , vn} on the path, check if the label `v was computed

correctly. That is, for v = 0n check whether `v = 0λ, and for any other node
v ∈ V \{0n} check whether `v = H(χ,v)(`v1 , . . . , `vd), where v1, . . . , vd are
the nodes with edges pointing to v. The value `v can either be retrieved from the
parent node of v, or is directly available for the case of the root-node ε. For the
special case of leaf-nodes, the values `v1 , . . . , `vd are not stored locally with the
node v, but are stored at some other (a-priori known) nodes along path (refer to
the structure of the graph CP pn).

(c) For all j ∈ {0, . . . , n∗}:
i. If vj is the right-most child of its parent or j = 0: Compute rvj ←

H′(χ,vj)(`vj) and Svj ← RandomSubset(pt, t; rvj). Let vj+1 be the i-th
child of vj , check if Sv[indj] = i · t+ indj+1.

ii. If vj is not the right-most child of its parent: Compute rvj ← H′′(χ,vj)(`vj)
and Svj ← RandomPath(vj ; rvj). Check if all paths in Svj are present in
Lε.

3. If all checks pass output 1, otherwise 0.

Next we state the soundness error and the efficiency.

Soundness. The soundness analysis requires some tweaking of the argument.

Theorem 5. The construction given in Section A.3 is sound for any t ∈ O((1+ p
p−1)2·λ),

and the soundness error is given by 1+q(q−1)
2λ + q · e

−
(

α

1+ p
p−1

)2
t
.

Proof. The proof follows the blueprint of the proof of Theorem 3, except for the follow-
ing changes. First we add a hybridHv1 for each sibling of the nodes {1n∗ , . . . , 1, ε}. The
indistinguishability arguments are identical.

Then we define the event ˆBADv as follows: A queries H′(χ,v) with a query ˆ̀
v

corresponding to a labeled sub-tree Lv ← Extract(v, ˆ̀
v, Q) for which it holds that

δ(Lv) < γ(Lv)−
(

2η + η
∑n∗−nv
i=1

1
pi

)
, where nv is the depth of v.

We bound the probability that ˆBADv happens with an inductive argument over v ∈
{1n∗ , . . . , 1, ε}. For the base case v = 1n∗ is enough to observe that δ(Lv) = γ(Lv) and
therefore ˆBADv happens with probability 0.

For any node v ∈ {1n∗−1, . . . , 1, ε}, fix a query ˆ̀
v and let (v1, . . . , vp) be the

children of v. For all i ∈ {1, . . . , p− 1} we have that

δ(Lvi) ≥ γ(Lvi)− η (8)

29

as otherwise BADvi would be triggered. For the node vp we have that

δ(Lvp) ≥ γ(Lvp)−
(

2η + η

n∗−nv−1∑
i=1

1
pi

)
(9)

by induction hypothesis, as otherwise ˆBADvp would be triggered. We can now rewrite

Pr
[

ˆBADv
]

= Pr
[
δ(Lv) < γ(Lv)−

(
2η + η

n∗−nv∑
i=1

1
pi

)]

= 1− Pr
[
γ(Lv) ≤ δ(Lv) +

(
2η + η

n∗−nv∑
i=1

1
pi

)]

< e

−2

(2η+η
∑n∗−nv

i=1
1
pi

)
−
η(p−1)+

(
2η+η

∑n∗−nv−1
i=1

1
pi

)
p

2

t

= e−2η2t

by (8), (9), and Lemma 9. For p > 1 we can bound

2η + η

n∗∑
i=1

1
pi

= η + η

n∗∑
i=0

1
pi
≤
(

1 + p

p− 1

)
η.

since it is a geometric series. Thus we can set η := α

(1+ p
p−1) and derive

SD[H0,Hε2] ≤ 1 + q(q − 1)
2λ + q · e

− 2α2t

(1+ p
p−1)2

.

The remainder of the analysis is unchanged. ut

Efficiency. In the following, we set t = O

((
1 + p

p−1

)2
· λ
)

and n = logpN . The

parallel time complexity of the prover remains unchanged at O(N). The number of
parallel threads is bounded by O(p logpN), which is minimized at p = 3. The parallel

time complexity of the verifier is O(log((1+ p
p−1)2

log p · λ · logN)), which decreases at p

increases. The proof size and the space complexity of the prover are O(p(1+ p
p−1)2

log p · λ2 ·

logN) and O(p
2(1+ p

p−1)2

log2 p
· λ2 · log2 N) respectively. The fractions φ′p := p(1+ p

p−1)2

log p

and θ′p := p2(1+ p
p−1)2

log2 p
are both minimized at p = 4. Compared to p = 2, we have

φ′4/φ
′
2 ≈ 0.605 and θ′7/θ

′
2 ≈ 0.605.

30

	Incremental Proofs of Sequential Work

