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Abstract. In (single-server) Private Information Retrieval (PIR), a server
holds a large database DB of size n, and a client holds an index i ∈ [n]
and wishes to retrieve DB[i] without revealing i to the server. It is well
known that information theoretic privacy even against an “honest but
curious” server requires Ω(n) communication complexity. This is true
even if quantum communication is allowed and is due to the ability of
such an adversarial server to execute the protocol on a superposition of
databases instead of on a specific database (“input purification attack”).
Nevertheless, there have been some proposals of protocols that achieve
sub-linear communication and appear to provide some notion of privacy.
Most notably, a protocol due to Le Gall (ToC 2012) with communication
complexity O(

√
n), and a protocol by Kerenidis et al. (QIC 2016) with

communication complexity O(log(n)), and O(n) shared entanglement.
We show that, in a sense, input purification is the only potent adversar-
ial strategy, and protocols such as the two protocols above are secure in
a restricted variant of the quantum honest but curious (a.k.a specious)
model. More explicitly, we propose a restricted privacy notion called
anchored privacy, where the adversary is forced to execute on a clas-
sical database (i.e. the execution is anchored to a classical database).
We show that for measurement-free protocols, anchored security against
honest adversarial servers implies anchored privacy even against specious
adversaries.
Finally, we prove that even with (unlimited) pre-shared entanglement
it is impossible to achieve security in the standard specious model with
sub-linear communication, thus further substantiating the necessity of
our relaxation. This lower bound may be of independent interest (in
particular recalling that PIR is a special case of Fully Homomorphic
Encryption).

1 Introduction

Private Information Retrieval (PIR), introduced by Chor et al. [CGKS95], is per-
haps the most basic form of joint computation with privacy guarantee. PIR is
concerned with privately retrieving an entry from a database, without revealing
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which entry has been accessed. Formally, a PIR protocol is a communication pro-
tocol between two parties, a server holding a large database DB containing n bi-
nary entries5, and a client who wishes to retrieve the ith element of the database
but without revealing the index i. Privacy can be defined using standard crypto-
graphic notions such as indistinguishability or simulation (see [Gol04]). The sim-
plicity of this primitive is since there is no privacy requirement for the database
(i.e. we allow sending more information than necessary) and that the server is
not required to produce any output in the end of the interaction, so functionality
and privacy are one sided.

Clearly PIR is achievable by sending all of DB to the client. This will have
communication complexity n and will be perfectly private under any plausible
definition since the client sends no information. The absolute optimal result one
could hope for is a protocol with logarithmic communication, matching the most
communication efficient protocol without privacy constraints, in which the client
sends the index i to the server and receives DB[i] in response.

Alas, [CGKS95] proved that linear (in n) communication complexity is nec-
essary for PIR, and that this is the case even in the presence of arbitrary setup
information.6 Despite its pessimistic outlook, this lower-bound served (already
in [CGKS95] itself) as starting point to two extremely prolific and influential
lines of research, showing that the communication complexity can be vastly im-
proved if we place some restrictions on the server. The first considered multiple
non-interacting servers (see, e.g., [Efr12,DG15] and references therein), instead
of just a single server, and the second considered computationally bounded servers
and relying on cryptographic assumptions (see, e.g., [CMS99,Gen09,BV11]).

While our discussion so far referred to protocols executed by classical parties
over classical communication channels, the focus of this work is on the quantum
setting, where there is a quantum communication channel between the client and
server, and where the parties themselves are capable of performing quantum op-
erations. Importantly, we still only require functionality for a classical database
and a classical index.

One could hope that introducing quantum channels could allow an infor-
mation theoretic solution to a problem that classically can only be solved us-
ing cryptographic assumptions, as has been the case for quantum key distri-
bution [BB84], quantum money [Wie83], quantum digital signatures [GC01],
quantum coin-flipping [Moc07, CK09, ACG+16] and more [BS16]. Indeed, the
notion of Quantum PIR (or QPIR) is quite a natural extension of its classical
counterpart and has also been extensively studied in the literature. Nayak’s fa-
mous result on the impossibility of random access codes [Nay99] implies a linear
lower bound for non-interactive protocols (ones that consists of only a single

5 Throughout this work we will focus on the setting of binary database. We do note
that there is vast literature concerned with optimizations for the case of larger al-
phabet.

6 Setup refers to any information that is provided to the parties prior to the execution
of the protocol by a trusted entity, but crucially one that does not depend on the
parties’ inputs. Shared randomness or shared entanglement are common examples.
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message from the server to the client), and implicitly, via extension of the same
methods, also for multi-round protocols. Formal variants of this lower bound
were proven also by Jain, Radhakrishnan and Sen [JRS09] (in terms of quantum
mutual information) and by Baumeler and Broadbent [BB15]. Indeed, one could
trace back all of these results to the notion of adversary purification which was
used to show the impossibility of various cryptographic tasks in the information-
theoretic quantum model starting as early as [Lo97,LC97,May97]. In the context
of QPIR, it can be shown that executing a QPIR protocol with sub-linear com-
munication on a superposition of databases instead of on a single database, will
leave the server at the end of the execution with a state that reveals some infor-
mation about the index i. This is made explicit in [JRS09, Section 3.1] and is
also implicit in the proof of [BB15].

Most relevant to our work is the aforementioned [BB15], which provides an
analysis from a cryptographic perspective and considers a well defined adversar-
ial model known as privacy against specious adversaries, or the specious model
for short. This adversarial model was introduced by Dupuis, Nielsen and Sal-
vail [DNS10] as a quantum counterpart to the classical notion of honest but
curious (a.k.a semi-honest) adversaries.7 A specious adversary can be thought
of as one that contains, as a part of its local state, a sub-state which is indistin-
guishable from that of the respective honest party, even when inspected jointly
with the other party’s local state.8

Let us provide a high level description of the specious model. We provide a
general outline for two-party protocols, and not one that is specific to QPIR.
Consider a protocol executed between parties A,B on input registers X,Y re-
spectively. Let A,B also denote the local state of the parties at a given point
in time. Then the state of an honest execution of the protocol on inputs XY
can be described by the joint density matrix of the registers XABY . A specious
adversarial strategy for party A can be thought of as one where at any point in
time, the local state of the adversary is of the form A′XA (i.e. the adversary is
allowed to maintain additional information, possibly in superposition with other
parts of the system), such that the reduced density matrix of XABY is still
indistinguishable from the one obtained in an honest execution. This provides a
potential advantage to a specious adversary (compared to an honest A) since it
is quite possible that together with A′, the joint state is no longer honest. Thus
the local view of the adversary, i.e. the registers A′XA, might in fact reveal
information about B’s input Y that was supposed to have been kept private.

In the QPIR setting, say taking A to be the server and B to be the client, the
register X holds the database DB, and Y holds the index i. Indeed, [BB15] shows
that it is sufficient that A′ contains a purification of XA, where X is a uniform

7 As [DNS10] point out, their model is stronger, i.e. excludes a larger class of attacks,
compared to the honest but curious model, even when restricted to a completely
classical setting.

8 More accurately, indistinguishability is required to hold even in the presence of
an environment which can be arbitrary correlated (or entangled) with the parties’
inputs. In the quantum setting this usually corresponds to the environment.
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distribution over all databases. We call this the purification attack. Thus, while
the adversary pretends to execute the protocol on a randomly sampled database,
it is in fact executed on a superposition of all possible databases at the same time
(indeed this is the case since A′ contains a purification of X). As explained above,
this methodology is not new, but [BB15] analyze and show that no meaningful
notion of QPIR can be achieved against this class of adversaries.

While the negative results could leave us pessimistic as to the abilities of
quantum techniques to improve the state of the art on single-server PIR, there
is some optimism suggested by two works. Le Gall [LG12] proposed a protocol
with sub-linear communication (specifically O(

√
n)). Kerenidis et al. [KLGR16]

proposed two protocols – an explicit one, with O(log n) communication, which re-
quires linear pre-shared entanglement; and a second protocol, with poly-logarithmic
communication (and does not require pre-shared entanglement). In terms of pri-
vacy, it is shown that in a perfectly honest execution of the protocol, client’s
privacy is preserved. It might not be immediately clear how to translate this
proof of privacy to the existing security models and reconcile it with the neg-
ative results. It is explained in [LG12] that the protocol is not actually secure
if the server deviates from the protocol. However, as [BB15] observed, even a
specious attacker that purifies the adversary can violate the security of the pro-
tocol, and the privacy proof strongly hinges on the honest execution using a
classical database.

Challenges. The state of affairs prior to this work, was that (non-trivial) QPIR
was proven impossible even against fairly weak adversaries (namely, specious).
Nevertheless, it appears that [LG12,KLGR16] achieve some non-trivial privacy
guarantee using sub-linear communication. This privacy guarantee appears not
to be captured by the existing security model. Lastly, we notice that all existing
negative results are proven in a standalone model and did not consider protocols
where the parties are allowed to share (honestly generated) setup information,
such as the one by Kerenidis et al. [KLGR16]. In the quantum setting, a natural
question is whether shared entanglement can help in achieving a stronger result.9

The goal of this work is to address these challenges.

1.1 Our Results

Anchored Privacy. We start by formalizing a refinement of the standard notion
of quantum privacy - one where the adversary is not allowed to purify its input
register. We show anchored privacy against specious adversaries follows from
anchored privacy against an honest party, if the protocol itself does not require
parties to perform measurements (i.e. is measurement-free). Formally, using our
notation from above, privacy in our model is only required to hold if the reduced

9 We note that to the best of our understanding, even prior “entropic” results such
as [JRS09] seem to fall short of capturing the potential additional power of shared
entanglement. This is essentially due to the property that if AB are entangled, then
it is possible that the reduced state of B will have (much) higher von Neumann
entropy than the joint AB (whose entropy might even be 0).
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density matrix of the register X is a standard basis element, i.e. a fixed classical
value. We call our model anchored privacy as we can view our adversary as
anchored to a specific value for its input X.

We observe that Le Gall’s O(
√
n) protocol [LG12] and the two protocols

mentioned above by Kerenidis et al. [KLGR16] are in fact private against honest
servers. We prove that explicitly for the pre-shared entanglement protocol by
Kerinidis et al. in Appendix B. Using our reduction we can deduce that these
protocol are also anchored private against specious adversaries, namely that so
long as the adversary does not attempt to execute the protocol on a superposition
of databases (and is still specious in the manner explained above), privacy is
guaranteed. In a sense, we formalize the folklore reliance on input purification
to attack cryptographic schemes (and QPIR in particular), and show that in
a model where input purification is impossible or prevented via some external
restriction, it is possible to achieve security against specious adversaries.

We believe this model is interesting for three main reasons:

1. Conceptually, this model helps clarify the exact reason for the impossibility
of QPIR - it is precisely because of the purification attack. Indeed, there
is a formal sense in which some anchoring is necessary since we know that
for any proposed protocol, allowing to execute on a superposition of inputs
allows to violate security – see the preceeding discussion in Section 1.

2. We view the anchored specious model as a stepping stone towards more
robust notions. One intriguing future direction (mentioned briefly in our list
of open problems) is to try to develop a malicious analog that still implements
the ideology of “forbidden input purification, e.g. by forcing the adversary to
“classically open the database before or after the execution in a manner that
is consistent with the clients output. Another interesting direction is to try
to enforce anchoring using a two-server setting, thus achieving logarithmic
two-server QPIR (which is currently still beyond reach).

3. We believe that our new model may be plausible in certain situations where
one could certify that the server cannot employ a superposition on databases.
We note that this model can be externally enforced, e.g. by conducting an
inspection of the server’s local computation device (with a very low probabil-
ity) and making sure that it complies, and otherwise apply a heavy penalty.
One could imagine such an inspection verifying that a copy of the database
is stored on a macroscopic device that cannot be placed in superposition
using available technology. Another example of a setting where the anchored
model could be applicable is when the database contains information with
some semantic meaning, so that the client can easily notice when a non-
sense value has been used (this is somewhat similar to the setting considered
in [GLM08]). We recall that semi-honest protocols are often used as building
blocks, with additional external mechanisms that are employed to validate
the assumptions of the model, and hope that our model can also be used in
this way. Lastly, from a purely scientific perspective, we believe that formal-
izing and pinpointing a non-trivial model where non-trivial QPIR is possible
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will allow to better understand this primitive and the relation between quan-
tum privacy and its classical counterpart.

Improved Lower Bound. It would be instrumental to understand why the
known QPIR lower bounds do not apply to our logarithmic protocol described
above. Specifically, the protocol makes use of setup (pre-shared entanglement),
and one could wonder whether this is the source of improvement, and perhaps
with pre-shared entanglement it is possible to prove security even in the standard
specious model. We show that this is not the case by providing a lower bound
in the specious model even for the one-sided communication from the server to
the client. Namely, we show that linear communication from the server to the
client is necessary even if we allow arbitrary communication from the client to
the server. In particular, this rules out the ability to use the setup to circumvent
the lower bound, since the client (which is assumed to be honest) can generate
the setup locally, and send the server’s share across the channel at the beginning
of the protocol. This completes the picture in terms of the impossibility of QPIR
in the specious model and further justifies our relaxation of the model in order
to achieve meaningful results.

Noting that PIR can be thought of as a special case of Fully Homomorphic
Encryption (FHE), our lower bound implies that even a Quantum Fully Ho-
momorphic Encryption (QFHE) with (even approximate) information theoretic
security cannot have non-trivial communication complexity, even if the QFHE
protocol is allowed to make use of shared entanglement between the server and
the client. We thus generalize (to allow shared prior entanglement) the impossi-
bility results for (even imperfect) QPIR of [BB15] (as well as those of [YPF14]
which explicitly referred to QFHE).

1.2 Overview of Our Techniques

Anchored-Specious Security. Recall the notation introduced above for two
party protocol (A,B) on inputs (X,Y ), and recall that a specious adversary can
be thought of as one where the local state of the adversary is of the form A′XA.
Now let us consider the case of measurement-free protocols and also assume that
the client’s input Y is a pure state (this can be justified since otherwise we can
apply our argument on the joint state of Y and its purifying environment instead
of Y itself). In such an execution, it holds that at any stage XABY is a pure
superposition (i.e. its density matrix is of rank 1). Now let us consider the joint
state together with the specious adversary’s additional register, i.e. A′XABY .
Since (XABY ) is pure, A′ cannot be entangled with it, and therefore A′ is in
tensor product with the remainder of the state, namely (XABY ). It follows that
the status of the register A′ can be simulated at any point in time without any
knowledge of the other components of the protocol. There is a delicate point
here, since A′ may indeed be in tensor product, but we must also argue that it
is independent of Y . Intuitively, to see why such dependence on Y cannot occur
consider, e.g., Y = |y1〉 + |y2〉. Then Y A′ is in the sate |y1〉 ⊗ ρA′ + |y2〉 ⊗ ρA′
(importantly the same ρA′ appears twice). However, this state is exactly the
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purification of executing the protocol either with Y = |y1〉 or with Y = |y2〉. We
conclude that ρA′ must be the same in both settings, and by extension it can be
shown to be the same for all Y .

After taking care of A′, we need to consider the other part of the adversary’s
state, namely the register (XA). This register is, by definition, identical (or
indistinguishable) from the state of an honest party during the execution. Recall
that we assume our protocol is anchored private against honest servers. So the
local honest state (XA) is guaranteed not to leak information about B’s input.
Add to that the conclusion about A′ being in tensor product and independent of
B’s state, and we get that the entire local state of the specious adversary does
not reveal any disallowed information.

As a conclusion, since we can show, e.g. in Le Gall’s protocol or in our
logarithmic protocol, that an honest execution with a classical X does not leak
information about Y , this will also be the case in the anchored-specious setting.

Obviously many details are omitted from this high level overview. For exam-
ple, a specious adversary is not required to make (XABY ) identical to an honest
execution but rather only statistically close (in trace distance), which requires a
more delicate analysis. Furthermore, the formal construction of a simulator for
the adversary as required by the specious definition requires some care to detail.
For the formal definitions and analysis see Section 3 below.

Our Lower Bound. We first note that previous lower bound proofs in [Nay99,
BB15] bounded the total communication complexity by a reduction to quan-
tum random access codes. It is not a-priori clear how to generalize this proof
method to the presence of shared entanglement. To do so, we provide a new lower
bound argument that establishes a linear lower bound on the server’s commu-
nication complexity. Specifically, we show that the server needs to transmit at
least roughly n/2 qubits to the client, no matter how many qubits is transmitted
from the client to the server (assuming that the protocol has sufficiently small
correctness and privacy error). As we mentioned above, such a lower bound triv-
ially extends to hold with prior shared entanglement, since one can think of that
the shared entanglement is established by the client sending messages to the
server.

Our new lower bound argument is based on an interactive leakage chain rule
in [LC18] and might even be considered conceptually simpler than previous meth-
ods. At a high level, we consider a server holding a uniformly random database
a ∈ {0, 1}n and running a QPIR protocol with a client. Initially, from the client’s
point of view, the database a has n-bits of min-entropy, and the protocol execu-
tion can be viewed as an “interactive leakage” that leaks information about a to
the client. LetmA andmB denote the server and the client’s communication com-
plexity in the protocol. The interactive leakage chain rule in [LC18] states that
the min-entropy of a can only be decreased by at most min{2mA,mA + mB}.
More precisely, let ρAB denote the states at the end of the protocol execu-
tion where the A register stores the (classical) random database a and B de-
notes the client’s local register. The interactive leakage chain rule states that
Hmin(A|B)ρ ≥ n−min{2mA,mA+mB}. By the operational meaning of quantum
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min-entropy, given the client’s state ρB , one cannot predict the database cor-
rectly with probability higher than 2−(n−min{2mA,mA+mB}). On the other hand,
suppose the protocol is secure against specious servers with sufficiently small cor-
rectness and privacy error. We can combine the by-now standard lower bound
argument by Lo [Lo97] and gentle measurement [Win99,Aar04,ON07], we show
that one can reconstruct the database a from the client’s state ρB with a con-
stant probability. Combining both claims allows us to establish lower bounds on
both the server’s and the total communication complexity in a unified way.

1.3 Remaining Open Problems

We proposed a new model and a new protocol which, we believe, resurfaces the
question of what can be achieved in the context of QPIR. We believe that a
number of intriguing questions still remain for future work.

1. As discussed above, our model is a relaxation of the specious model, which
is by itself a semi-honest model. Such models are fairly restrictive in the
sense that they make structural assumptions on the adversary (i.e. that it
follows the protocol, or contains a part that follows the protocol). Obviously,
if we hope for non-trivial results, any model that we formalize must preclude
purification of input. It is thus an intriguing question whether it is possible
to formulate malicious adversarial models that are still purification-free, and
what can be said about the plausibility of QPIR in such models. The current
definition of anchored privacy will need to be amended, since a malicious
server is allowed to just ignore its prescribed input, so a different method of
anchoring needs to be devised.

2. Another natural question is whether setup is necessary to achieve logarith-
mic QPIR in the anchored specious model. We know from Kerenidis et al.’s
result that polylogarithmic communication is achievable even without setup.
Is there a reason that one can only improve it when assuming a setup? An-
other surprising aspect is that the shared entanglement created during the
setup is not consumed during the protocol, and can be used for other needs
after the execution of the protocol (e.g., running another execution of PIR,
or teleportation). A similar phenomenon occurs in quantum information:
catalyst quantum states are useful for mapping one bi-partite state to an-
other using LOCC, without consuming the catalyst state [JP99,Kli07]. The
related notion of quantum embezzlement [vDH03] has a similar property,
but in this case, the original shared state changes slightly. The authors are
not aware of any other cryptographic protocol with this non-consumption
property.

3. Most state of the art classical PIR protocols (both in the multi-server setting
and in the computational cryptographic setting) only require one round of
communication. That is, one message (query) from the client to the server (or
servers) and one response message. All the existing sublinear QPIR protocols
have multiple rounds. Understanding the round complexity of QPIR in light
of the classical state of the art is also an intriguing direction.
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4. A main contribution of this work is to formalize the notion of anchored secu-
rity and show it can be used to provide a non-trivial cryptographic primitive.
It would be interesting to study the relevance of this notion (or adequately
adapted versions) in the context of a variety of other cryptographic tasks.
In particular, the question of whether it is possible to construct information
theoretically secure fully homomorphic encryption (FHE) given quantum
channels has received attention in recent years (see, e.g., [YPF14]). In ho-
momorphic encryption, the server has a function f and the client has an
input x, and the goal of the protocol is for the client to learn f(x) without
revealing any information about x. PIR and FHE functionalities are inti-
mately related (think about a function fDB(i) = DB[i] for FHE, and about
executing PIR with database equal to the truth table of some function), and
it is thus intriguing whether the anchored model is applicable in the context
of FHE as well.

1.4 Paper Organization

General preliminaries are provided in Section 2. We present our new model,
and the proof that for pure protocols honest security implies anchored specious
security in Section 3. Our new lower bound is stated and proven in Section 4. In
Appendix B, we show that the protocol by Kerenidis et al. is anchored private
against specious adversaries.

This work is also available on the arXiv eprint [ABC+19].

2 Preliminaries

Standard preliminaries regarding Hilbert spaces and quantum states can be
found in Appendix A. We provide below background and definitions concerning
two-party quantum protocols, specious adversaries and quantum private infor-
mation retrieval.

2.1 Two-Party Quantum Protocols

As in [BB15], we base our definitions on the works of [GW07] and [DNS10].
However, we make slight adaptations to allow for prior entanglement between
the parties.

Definition 2.1 (Two-party quantum protocol). An s-round, two-party quan-
tum protocol, denoted Π = {A ,B, ρjoint, s} consists of:

1. input spaces A0 and B0 for parties A and B respectively,
2. initial spaces Ap and Bp (p for pre-shared state) for parties A and B re-

spectively,
3. a joint initial state ρjoint ∈ Ap ⊗ Bp, split between the two parties,
4. memory spaces A1, . . . ,As for A and B1, . . . ,Bs for B, and communication

spaces X1, . . . ,Xs, Y1, . . . ,Ys−1,
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5. an s-tuple of quantum operations (A1, . . . ,As) for A , where A1 : L(A0 ⊗
Ap) 7→ L(A1 ⊗X1), and At : L(At−1 ⊗ Yt−1) 7→ L(At ⊗Xt) (2 ≤ t ≤ s),

6. an s-tuple of quantum operations (B1, . . . ,Bs) for B, where B1 : L(B0 ⊗
Bp ⊗ X1) 7→ L(B1 ⊗ Y1), Bt : L(Bt−1 ⊗ Xt) 7→ L(Bt ⊗ Yt) (2 ≤ t ≤ s − 1),
and Bs : L(Bs−1 ⊗Xs) 7→ L(Bs).

Note that in order to execute a protocol as defined above, one has to specify
the input, namely a quantum state ρin ∈ S(A0 ⊗ B0) from which the execution
starts.

Definition 2.2 (Protocol Execution). If Π = {A ,B, ρjoint, s} is an s-round
two-party protocol, then the state after the t-th step (1 ≤ t ≤ 2s), and upon input
state ρin ∈ S(A0 ⊗ B0 ⊗R), for any R, is defined as

ρt(ρin) := (A(t+1)/2 ⊗ IB(t−1)/2
) . . . (B1 ⊗ IA1

)(A1 ⊗ IB0,Bp)(ρin ⊗ ρjoint),

for t odd, and

ρt(ρin) := (Bt/2 ⊗ IAt/2) . . . (B1 ⊗ IA1
)(A1 ⊗ IB0,Bp)(ρin ⊗ ρjoint),

for t even. We define the final state of protocol Π = {A ,B, ρjoint, s} upon input
state ρin ∈ S(A0 ⊗ B0 ⊗R) as: [A ~ B] (ρin) := ρ2s(ρin).

The communication complexity of a protocol is the number of qubits that
are exchanged between the parties. Slightly more generally, we can consider the
logarithm of the dimension of the message registers Xt, Yt. The formal definition
thus follows.

Definition 2.3 (Communication Complexity). The communication com-
plexity of a protocol as in Definition 2.1 is

s∑
t=1

log dim(Xt) +

s−1∑
t=1

log dim(Yt) .

We sometimes also refer to one-sided communication complexity, i.e. the to-
tal communication originating from one party to the other. The communication
complexity of A is defined to be the communication originating from A , or for-
mally

∑s
t=1 log dim(Xt). Symmetrically the communication complexity of B is∑s−1

t=1 log dim(Yt).

2.2 Specious Adversary

Given a two-party quantum protocol Π = {A ,B, ρjoint, s}, an adversary Ã

for A is an s-tuple of quantum operations (A1, . . . ,As), where Ã1 : L(Ã0) 7→
L(A1 ⊗X1) and Ãt : L(Ãt−1 ⊗Yt−1) 7→ L(Ãt ⊗Xt), 2 ≤ t ≤ s, with Ã1, . . . , Ãs
being Ã ’s memory spaces. The global state after the tth step of a protocol run
with Ã is ρ̃t(Ã , ρin). An adversary B̃ for B is similarly defined.
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Definition 2.4 (Specious adversaries). Let Π = {A ,B, ρjoint, s} be an s-

round two-party protocol. An adversary Ã for A is said to be γ-specious, if there
exists a sequence of quantum operations (called recovery operators) F1, . . . ,F2s,
such that for 1 ≤ t ≤ 2s and for all ρin ∈ S(A0 ⊗ B0 ⊗R):

1. For all t even, Ft : L(Ãt/2) 7→ L(At/2).

2. For all t odd, Ft : L(Ã(t+1)/2 ⊗X(t+1)/2) 7→ L(A(t+1)/2 ⊗X(t+1)/2).
3. For every input state ρin ∈ S(A0 ⊗ B0 ⊗R), for any R,

∆
(

(Ft ⊗ IBt,R)
(
ρ̃t(Ã , ρin)

)
, ρt (ρin)

)
≤ γ. (1)

A γ-specious adversary B̃ for B is similarly defined.

2.3 Quantum Private Information Retrieval

We define QPIR similarly to [BB15].

Definition 2.5 (Quantum Private Information Retrieval). An s-round,
n-bit Quantum Private Information Retrieval protocol (QPIR) is a two-party
protocol ΠQPIR = {A ,B, ρjoint, s}, where A is the server, B is the client, and
ρjoint is an initial state shared between them prior to the protocol. We call ΠQPIR

(1− δ)-correct if, for all inputs ρin = |x〉〈x|A0
⊗ |i〉〈i|B0

, with x = x1, . . . , xn ∈
{0, 1}n and i ∈ {1, . . . , n}, there exists a measurement M acting on Bs with
outcome 0 or 1, such that:

Pr {M (trAs [A ~ B] (ρin)) = xi} ≥ 1− δ .

If δ = 0 we say that the protocol is perfectly correct.
We call ΠQPIR ε-private against a (possibly adversarial) server Ã , if there

exists a sequence of quantum operations (simulators) I1, . . . ,Is−1, where It :
L(A0 ⊗ Ap) 7→ L(Ãt ⊗ Yt), such that for all 1 ≤ t ≤ s − 1 and for all ρin ∈
S(A0 ⊗ B0 ⊗R),

∆
(

trB0
(It ⊗ IB0,R(ρin)) , trBt(ρ̃2t(Ã , ρin))

)
≤ ε . (2)

If ε = 0 we say that the protocol is perfectly private.
We say that a QPIR protocol is ε-private against a class of servers if it is

ε-private against any server from this class.

We note that in the above definition privacy is required to hold also for ad-
versarial input states for the client and server, which also includes inputs in
superposition, and even for the case where the client and server (and possibly
a third party) are entangled. Nayak [Nay99,ANTSV02] showed that a perfectly
private QPIR protocol, even only against 0-specious servers, must have commu-
nication complexity at least (1−H(1− δ))n, where H(p) is the binary entropy
function. Baumeler and Broadbent [BB15] extended this lower bound to the case
of ε > 0 and presented a communication lower bound of(

1−H
(

1− δ − 2
√
ε(2− ε)

))
n . (3)
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3 Anchored Privacy Against Specious Adversaries

We now present our new restricted notion of privacy, that we call anchored
privacy. A protocol is anchored private if it satisfies the standard definition of
privacy with respect to classical inputs on the adversary’s side. There is no
privacy requirement for superposition input states on the adversary’s side (and
therefore this notion of privacy is weaker, and hence, easier to achieve). A formal
definition follows.

Definition 3.1 (Anchored Privacy). A QPIR protocol is anchored ε-private
if Eq. (2) holds for all ρin ∈ A0⊗B0⊗R (for any R), for which ρin|A0 = |x〉〈x|
for some x ∈ {0, 1}n.

We note that prior intuitive notions of security such as that implied by the
analysis of Le Gall [LG12] in fact correspond to anchored privacy against honest
servers. Our main theorem below shows that this type of privacy extends to the
specious setting as well.

Theorem 3.2. Let Π be a measurement-free QPIR protocol which is anchored
ε-private against honest servers, then Π is anchored (ε+ 3

√
2γ)-private against

γ-specious servers.

Critically, the theorem only holds for measurement-free QPIR protocols. To
see this, consider the following protocol, which will be anchored-private against
honest servers but not anchored-private against specious ones. Let Π be a QPIR
protocol which is anchored-private against honest servers (e.g., Le-Gall’s pro-
tocol [LG12]). Now consider the following protocol Π ′ which first generates a
superposition over all possible databases, then measures this superposition to ob-
tain a classical value for the database. It then runs Π on this measured database
(with the client using its real input index). Finally, both parties toss out the
output of this first execution, and run Π again, now using the actual input
database.

Let us first see thatΠ ′ is anchored-private against honest servers. This follows
since Π is secure against honest adversaries when executed over input states in
which the server’s input is classical, and hence so is Π ′ which just consists of
two sequential executions of Π over classical databases. However, a purification
of an honest server allows to execute a purification attack on the first execution
of Π in a way that allows to recover the client’s input, even though the database
used as input for Π ′ is completely classical.

Warm-up. We first give a proof under some simplifying assumptions: (i) γ =
ε = 0. (ii) the input is pure (iii) the purification space is trivial: R = C and (iv)
the specious server’s quantum operations Ãt are unitary. The main point that
makes the analysis easier in this case is assumption (i).

Fix a step of the protocol t.

1. We claim that for every unitary γ-specious adversary, which is perfect (i.e.
γ = 0) the entire state, (written in some fixed but maybe non standard
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basis), is of the form |η〉S′ ⊗ |ψt〉S,C where |ψt〉 is the state that an honest
server and client would have when running on the same input. Here, and
later, we use the notation S for all of the honest server registers at step t,
C for all of the client’s registers at step t and S ′ for the specious server’s
ancillary register at step t. Crucially, |η〉 is independent of the (server and
client) input.
We now prove the above claim. By the specious property, we know that
there exists a quantum operation Ft which maps the global state at the tth
stage to the state |ψt〉. We know that the state in step t in the honest run is
necessarily pure since Π is measurement free. W.l.o.g. we can assume that
the operation Ft is a unitary Ut, followed by tracing out everything other
then the S and C registers.
Let’s assume towards contradiction that the state in the basis U†t is of the
form |η(input)〉 ⊗ |ψt〉, where |η(input)〉 depends on the input (where here
we mean both the client and the server’s input). There must be two different
input states such that running them would give |η(1)〉⊗ |ψt(1)〉 and |η(2)〉⊗
|ψt(2)〉 for which |η(1)〉 6= |η(2)〉. Since the honest runs are entirely unitary
(by the measurement-free property) and have different inputs, necessarily,
|ψt(1)〉 6= |ψt(2)〉. By running the specious adversary on a superposition of
these two inputs, we get that after applying Ft, the state becomes a mixture
of the two states, |ψt(1)〉 and |ψt(2)〉. This contradicts the perfect specious
property (see Eq. (1)) – which requires the state to be the pure (since all
the operations of the client and honest servers are unitary, and their input
in this case is pure).

2. By the perfect anchored-privacy against the honest server, the state ρt =
trC(|ψt〉〈ψt|S,C) is independent of the client’s input, and therefore, could
only depend on x – the server’s input. To emphasize that independence on
the client’s input (and possible dependence on the server’s input), we denote
the state ρt by ρt(x).

Our goal is to show the anchored-privacy property for the specious server.
Indeed, the two points above show that the specious server’s state (in the fixed
basis we choose to work in) is |η〉〈η| ⊗ ρt(x), which is independent of the client’s
input. Therefore the simulator can generate that state exactly by using the
server’s classical input x, as required (see Eq. (2)).

Outline of the general proof. For each round t we construct a simulator for
the server in the following way: we first construct a simulator Ĩ x0,0

t for input
|x0〉 ⊗ |0〉 where |x0〉 is an input for the server and |0〉 is an input for the client.
We construct this simulator using the simulator for the honest server along with
the ’specious operator’, and an ancillary state |σx0,0〉. We then show that |σx0,0〉
is also an appropriate ancillary state for any input |x〉 ⊗ |η〉. Using this, we
show that Ĩ x,0

t is indeed a simulator for any input |x〉⊗ |η〉, with slightly worse
parameters.

We are now ready to give the proof in full generality:

Proof (Theorem 3.2 (Proof)). Let Π be a purified QPIR protocol which is an-
chored ε-private against honest servers, and let Ã be a γ-specious server for Π.
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W.l.o.g we can assume that Ã is purified, namely, a unitary10. From now on,
we will fix t. We can denote

|ψρint 〉〈ψ
ρin
t | = ρt(ρin) (4)

where |ψρint 〉 ∈ S ⊗C ⊗R for some R, and we use S to represent the server’s
registers S = At ⊗ Yt ⊗ Ap (for t odd. otherwise S = At ⊗ Ap), and C to
represent the client’s registers C = Bt⊗Xt⊗Bp (for t even. otherwise C = Bt⊗Bp).
Furthermore, w.l.o.g we assume the various recovery operators for Ã are purified.

That is, there exist unitary operators F̂t such that Ft(·) = trS′
(
F̂t(·)

)
for some

purification space S ′ which is at the hands of the server (from now on, for the
sake of this proof, where we say ”recovery operators” we regard these unitary
F̂t operators). Therefore we can denote

|ψ̃ρint 〉〈ψ̃
ρin
t | = ρ̃t

(
Ã , ρin

)
(5)

where w.l.o.g |ψ̃ρint 〉 ∈ S′⊗S⊗C⊗R. We note that all of the unitary operators -
At,Bt which are used in the original protocol (by either the server or the client),

Ãt which are used by the specious server Ã , and the recovery F̂t operators are
independent of both the client’s and the server’s inputs

For each round t, we will start by constructing a simulator for Ã acting
on ρin = |x0〉〈x0|A0 ⊗ |0〉〈0|B0 , where x0 ∈ {0, 1}n (in this specific input, R is
trivial and is thus omitted). By γ-speciousness of Ã , along with our purification

assumptions, there exists a unitary recovery operator F̂2t : L(Ãt) 7→ L(S ′⊗At)
such that

∆
(

trS′
((

F̂2t ⊗ IC
)
|ψ̃|x0〉⊗|0〉

2t 〉
)
, |ψ|x0〉⊗|0〉

2t 〉
)
≤ γ (6)

By Lemma A.1, this means that there exists a state |σx0,0〉 ∈ S ′ such that:

∆
((

F̂2t ⊗ I
)
|ψ̃|x0〉⊗|0〉

2t 〉, |σx0,0〉 ⊗ |ψ
|x0〉⊗|0〉
2t 〉

)
≤ √γ (7)

We can now operate on Eq. (7) with F̂ †2t ⊗ I to get:

∆
(
|ψ̃|x0〉⊗|0〉

2t 〉,
(
F̂ †2t ⊗ I

)(
|σx0,0〉 ⊗ |ψ

|x0〉⊗|0〉
2t 〉

))
≤ √γ (8)

The above connects the states derived from the execution with the specious
server to that with the honest server. By anchored ε-privacy of Π against honest
servers, there exists a simulator It : L(A0⊗Ap) 7→ L(At⊗Xt) such that for all
x ∈ {0, 1}n and |α〉 ∈ B0 ⊗R, for any R,

∆
(

trB0,Bp
((

It ⊗ IB0,Bp
)
◦ (|x〉〈x|A0 ⊗ |α〉〈α|R,B0 ⊗ ρjoint)

)
, trBt

(
|ψ|x〉⊗|α〉2t 〉

))
≤ ε

(9)

10 This is because we can include the purification register at any point, as the server
could have included himself rather than throwing it away
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(In fact, the above holds for any mixture over such α’s, by convexity). We can
now define the simulator for ρin corresponding to input state |x0〉⊗ |0〉 to be the
following unitary embedding from A0 ⊗Ap to S ′ ⊗A0 ⊗Ap:

Ĩ x0,0
t (·) = F̂ †2t ◦ (|σx0,0〉〈σx0,0| ⊗It (·)) (10)

To show that it indeed satisfies the requirements from a simulator, we com-
bine Eqs. (8),(10), and (9) for x = x0, |α〉 = |0〉, to get that

∆
(
trB0,Bp

((
Ĩ x0,0
t ⊗ IB0,Bp

)
◦ (|x0〉〈x0|A0

⊗ |0〉〈0|B0
⊗ ρjoint)

)
, trBt

(
|ψ̃|x0〉⊗|0〉

2t 〉
))
≤ ε+

√
γ

(11)

We now define the simulator for any input to be this exact simulator:

Ĩt(·) = Ĩ x0,0
t (·); (12)

In the remainder of the proof we show that Ĩt(·) satisfies an inequality similar
to Eq. (11) with respect to all classical server inputs x ∈ {0, 1}n (not necessarily
x0) and any input state |α〉 ∈ B0 ⊗ R for any R, as well as for a mixture of
such α’s; this would imply anchored privacy for the specious server. To this end
we show that also for this input, a similar inequality to Eq. (11) holds (with a
slightly worse bound). Define

|xα+〉 =
1√
2
|0〉R′ |x0〉A0

|0〉B0,R +
1√
2
|1〉R′ |x〉A0

|α〉B0,R,

where we have added an additional (control) qubit in the space R′. The specious
adversary condition applies to this input state as well, and thus using the same
derivation as for Eq. (8)) we get:

∆
(
|ψ̃|xα+〉

2t 〉,
(
F̂ †2t ⊗ I

)(
|σxα+〉 ⊗ |ψ

|xα+〉
2t 〉

))
≤ √γ (13)

Using the fact that neither the server nor the client act on the R′ register,
we get:

|ψ|xα+〉
2t 〉 =

1√
2
|0〉R′ ⊗ |ψ|x0〉⊗|0〉

2t 〉S,C,R +
1√
2
|1〉R′ ⊗ |ψ|x〉⊗|α〉2t 〉S,C,R (14)

Similarly, since the same is true for the adversarial run, we get:

|ψ̃|xα+〉
2t 〉 =

1√
2
|0〉R′ ⊗ |ψ̃|x0〉⊗|0〉

2t 〉S,C,R +
1√
2
|1〉R′ ⊗ |ψ̃|x〉⊗|α〉2t 〉S′,S,C,R (15)

We plug Eqs. (14) and (15) into Eq. (13), and project the register R′ in the
resulting state onto |1〉R′ to get:
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∆

(
1√
2
|1〉R′ ⊗ |ψ̃|x〉⊗|α〉2t 〉S,C ,

(
F̂ †2t ⊗ IR,C

)( 1√
2
|1〉R′ ⊗ |σx,α+

〉S′ ⊗ |ψ|x〉⊗|α〉2t 〉S,C
))
≤ √γ

(16)

Now we apply the fact that F̂ †2t doesn’t act on the client’s input; the fact that a
unitary operator doesn’t change the distance between states; and the fact that
tracing out doesn’t increase that distance [AKN98], and Eq. (16) becomes:

∆
(
|ψ̃|x〉⊗|α〉2t 〉,

(
F̂ †2t ⊗ I

)(
|σxα+〉 ⊗ |ψ

|x〉⊗|α〉
2t 〉

))
≤
√

2γ (17)

Similarly, by projecting onto |0〉R′ instead of |1〉R′ in the derivation of 16, we
get

∆
(
|ψ̃|x0〉⊗|0〉

2t 〉,
(
F̂ †2t ⊗ I

)(
|σxα+

〉 ⊗ |ψ|x0〉⊗|0〉
2t 〉

))
≤
√

2γ (18)

We now want to apply the triangle inequality to (18), using Eqs. (8). Applying
yet again the same sequence of simple argument, namely the fact that unitary
transformations preserve the trace distance and tracing out can only decrease
it, we get

∆
(
|σx0,0〉, |σxα+

〉
)
≤ 2
√

2γ (19)

And we can use Eq. (19) together with Eq. (17) to get:

∆
(
|ψ̃|x〉⊗|α〉2t 〉,

(
F̂ †2t ⊗ I

)(
|σx0,0〉 ⊗ |ψ

|x〉⊗|α〉
2t 〉

))
≤ 3
√

2γ (20)

And finally combine Eq. (20), (9) and (12) (in a similar way to how we derived
Eq. (11)) to get:

∆
(

trB0

((
Ĩt ⊗ I

)
(|x〉〈x| ⊗ |α〉〈α| ⊗ ρjoint)

)
, trBt

(
|ψ̃|x〉⊗|α〉t 〉

))
≤ ε+ 3

√
2γ.

(21)

This finishes our proof. ut

4 Linear Lower Bound in the Specious Model, Even with
Prior Entanglement

In this section we show that in the standard specious model, even allowing
arbitrarily long prior entanglement, it is still impossible to achieve QPIR with
sublinear communication. We do so by presenting a new lower bound argument
based on an interactive leakage chain rule in [LC18], which allows us to establish
linear lower bounds on both the server’s communication complexity and the
total communication complexity in a unified way. Then we observe that the
lower bound on the server’s communication complexity extends trivially to the
case with arbitrary prior entanglement. In the following, we state some useful
preliminaries in Section 4.1 and present our lower bound in Section 4.2.
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4.1 Quantum Information Theory Background

We first recall the notion of quantum min-entropy. Consider a bipartite quantum
state ρAB . The quantum min-entropy of A conditioned on B is defined as

Hmin(A|B)ρ = − inf
σB

{
inf
{
λ ∈ R : ρAB ≤ 2λIA ⊗ σB

}}
.

When ρAB is a cq-state (i.e., the A register is a classical state), the quantum min-
entropy has a nice operational meaning in terms of guessing probability [KRS09].
Specifically, if Hmin(A|B)ρ = k, then the optimal probability of predicting the
value of A given ρB is exactly 2−k.

In the following, we state the interactive leakage chain rule in [LC18]. Let
ρ = ρAB be a cq-state, that is, the system A is classical while B is quantum. The
interactive leakage chain rule bounds how much the min-entropy Hmin(A|B)ρ
can be decreased by an “interactive leakage” produced by applying a two-party
protocol Π = {A ,B, ρjoint, s} to ρ, where A is treated as a classical input to
A and B is given to B as part of its initial state in ρjoint.

Definition 4.1. Let ρ = ρAB be a cq-state. Let Π = {A ,B, ρjoint, s} be a two-
party protocol where ρjoint contains ρB in the Bp system, and ρin be an input
state where the classical state ρA is copied to A0 as the input for A . (That is,
A0 has an initial state |0〉A0

and we do controlled NOT gates from ρA to |0〉A0
.)

Consider the protocol execution [A ~ B] (ρin) and let σABs be the final state
where A denotes the original classical state and Bs denotes the final state of B.
We say σBs is an interactive leakage of A produced by Π.

Theorem 4.2. Let ρ = ρAB be a cq-state. Let σABs be the final state of a two-
party protocol Π = {A ,B, ρjoint, s} with certain input state ρin. Let mA and
mB be the communication complexity of A and B, respectively. We have

Hmin(A|Bs)σ ≥ Hmin(A|B)ρ −min{mA +mB , 2mA}, (22)

We will also use the following lemma about gentle measurement, which is first
proved by Winter [Win99] and improved by Ogawa and Nagaoka [ON07], and
is also referred to as the almost-as-good-as-new Lemma by Aaronson [Aar04]. It
says that the post-measurement state of an almost-sure measurement will remain
close to its original. The following version is taken from Wilde’s book [Wil13].

Lemma 4.3. Suppose 0 ≤ Λ ≤ I is a measurement operator such that for a
mixed state ρ,

tr (Λρ) ≥ 1− ε.

Then the post-measurement state ρ̃ is
√
ε-close to the original state ρ:

||ρ̃− ρ||tr ≤
√
ε.

We will also need the following lemma, which can be proved by a standard
argument using Uhlmann theorem and the Fuchs and van de Graaf inequal-
ity [FvdG99] (for a proof, see, e.g., [BB15]).
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Lemma 4.4. Suppose ρA, σA ∈ A are two quantum states with purifications
|φ〉AB, |ψ〉AB ∈ A ⊗ B, respectively, and ||ρA − σA||tr ≤ ε. Then there exists a
unitary UB ∈ L(B) such that

|||φ〉AB − IA ⊗ UB |ψ〉AB ||tr ≤
√
ε(2− ε).

4.2 Our Lower Bound

Theorem 4.5. Let Π = {A ,B, ρjoint = |0〉〈0|, s} be a QPIR protocol for the
server’s database of size n. Suppose Π is (1 − δ)-correct and ε-private against
γ-specious servers with δ ≤ n−4/100, ε ≤ n−8/100. Then the server’s communi-
cation complexity is at least (n − 1)/2 and the total communication complexity
is at least n− 1.

In the above theorem, we consider protocols with no prior setup, i.e., ρjoint =
|0〉〈0|. We observe that the lower bound for the server’s communication complex-
ity extends for general ρjoint, since one can think of ρjoint as prepared by the
client, who sends the server’s initial state to the server at the beginning of the
protocol. This simple reduction does not increase the server’s communication
complexity and extends the lower bound on the server’s communication com-
plexity for arbitrary ρjoint.

Corollary 4.6. Let Π = {A ,B, ρjoint, s} be a QPIR protocol for the server’s
database of size n with arbitrary ρjoint. Suppose Π is (1 − δ)-correct and ε-
private against γ-specious servers with δ ≤ n−4/100, ε ≤ n−8/100. Then the
server’s communication complexity is at least (n− 1)/2.

We now prove Theorem 4.5.

Proof. To establish communication complexity lower bound for Π, we consider
a purified version Π̄ = {Ā , B̄, ρjoint, s} of Π, where both parties’ operations
are purified. Specifically, Ā is modified from A , where the sequence of quantum
operations Ā1, . . . , Ās are unitaries

Ā1 :L(A0 ⊗ Ā0)→ L(A1 ⊗ Ā1 ⊗X1),

Āt :L(At−1 ⊗ Āt−1 ⊗ Yt−1)→ L(At ⊗ Āt ⊗Xt), t = 2, . . . , s;

Ā0 is of sufficiently large dimension and initialized to |0〉; Āt are called purifying
spaces and

trĀt(ρ̄t(ρin)) = ρt(ρin)

for all ρ ∈ A0 ⊗ B0. The purified B̄ for B is similarly defined.
By inspection, it is easy to verify that Π̄ preserves the properties of Π, i.e.,

Π̄ is also (1− δ)-correct, ε-private against γ-specious servers, and has the same
communication complexity as Π. Thus, communication complexity lower bound
for Π̄ implies that for Π. Also, note that Ā is a 0-specious adversary for Π.

Now, let us consider an experiment that first samples a uniformly random
database a ∈ {0, 1}n, and use a as the server’s database to run the protocol Π̄
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with an arbitrary fixed input of the client. Note that execution of the protocol
can be viewed as producing an interactive leakage of a. Let ρAB denote the final
state where system A denotes the input a and system B has the client’s final
local state. By Theorem 4.2, we have

H(A|B)ρ ≥ H(A)ρ −min{2mA,mA +mB},

where mA,mB denote the server and the client’s communication complexities,
respectively. The operational meaning of min-entropy says that given the client’s
state ρB , one cannot guess the random database a correctly with probability
higher than 2−(H(A)ρ−min{2mA,mA+mB}). To derive a lower bound on the com-
munication complexity, we show a strategy to predict the database a with prob-

ability at least 1 − n2
√
δ + 2

√
ε(1− ε) > 1/2, which gives the desired lower

bound.
Let σiB = trA[Ā ~ B̄](|a〉〈a|A0 ⊗ |i〉〈i|B0) and σiA = trB [Ā ~ B̄](|a〉〈a|A0 ⊗

|i〉〈i|B0
).

By the definition of privacy, there exists a quantum operation F such that

∆
(
trB0F0 ⊗ IB̄0

(
ρ1
in

)
, σ1
A

)
≤ ε. (23)

Since trB0
F0 ⊗ IB̄0

(
ρ1
in

)
= trB0

F0 ⊗ IB̄0

(
ρiin
)

for all i,

∆
(
trB0F0 ⊗ IB̄0

(
ρ1
in

)
− σiA

)
≤ ε (24)

We have, by triangle inequality,

∆
(
σ1
A − σiA

)
≤ 2ε.

for all i.
By Lemma 4.4, we have

∆
(
IA ⊗ U1→i

B |ψ1〉ĀB̄ , |ψi〉ĀB̄
)
≤ 2
√
ε(1− ε) , ε′, (25)

where |φ〉ĀB̄ and |ψi〉ĀB̄ are purifications of σ1
A and σiA, respectively.

By the definition of correctness error, there exists measurementMi such that

Pr
{
Mi

(
σiB
)

= ai
}
≥ 1− δ.

Let
M′i =

(
U1→i
B

)†MiU
1→i
B

for i = 2, . . . , n. Thus we have by Eq. (25)

Pr
{
M′i

(
σ1
B

)
= ai

}
≥ 1− δ − ε′. (26)

By Lemma 4.3, the client can recover σ̃
(i)
B such that

∆
(
σ̃

(i)
B , σ1

B

)
≤
√
δ + ε′. (27)
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Now we construct a protocol for the client to learn all the bits a = a1, . . . , an.
First the client chooses input |1〉〈1|. Then he plays the protocol Π̄ with Alice
and obtains σ1

B . Measuring σ1
B by M1, the client gets a1 with probability at

least 1− δ. By Lemma 4.3, the client can recover σ̃1
B such that

∆
(
σ̃1
B , σ

1
B

)
≤
√
δ.

Then the client measuresM′2 on σ̃1
B and then recovers σ̃2

B . Continue this process
and σ̃kB will be the state recovered from applying M′k to σ̃k−1

B . We claim that

∆
(
σ̃kB , σ

1
B

)
≤ k
√
δ + ε′. (28)

Suppose this is true for i = 2, · · · , k. If we measure M′k+1 on σ̃k+1
B and on σ1

B ,

respectively, and recover σ̃k+1
B and σ̃

(k+1)
B , respectively, we have

∆
(
σ̃k+1
B , σ̃

(k+1)
B

)
≤ ∆

(
σ̃kB , σ

1
B

)
≤ k
√
δ + ε′ (29)

where the first inequality is because quantum operations do not increase trace
distance. Now use the triangle inequality with Eqs. (27) and (29), and the claim
follows by induction.

By Eqs. (26) and (28), the probability of recovering ai by measuring M′i on
σ̃i−1
B is at least 1 − i

√
δ + ε′. Therefore, the client learns a with probability at

least
n∏
i=1

(
1− i

√
δ + ε′

)
≥ 1− n2

√
δ + ε′,

which is what we need to complete the proof. ut
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A Hilbert Spaces and Quantum States

The Hilbert space of a quantum system A is denoted by the corresponding
calligraphic letter A and its dimension is denoted by dim(A). Let L(A) be the
space of linear operators on A. A quantum state of system A is described by
a density operator ρA ∈ L(A) that is positive semidefinite and with unit trace
(tr(ρA) = 1). Let S(A) = {ρA ∈ L(A) : ρA ≥ 0, tr(ρA) = 1} be the set of density
operators on A. When ρA ∈ S(A) is of rank one, it is called a pure quantum state
and we can write ρ = |ψ〉〈ψ|A for some unit vector |ψ〉A ∈ A, where 〈ψ| = |ψ〉†
is the conjugate transpose of |ψ〉. If ρA is not pure, it is called a mixed state and
can be expressed as a convex combination of pure quantum states.

The Hilbert space of a joint quantum system AB is the tensor product of the
corresponding Hilbert spaces A ⊗ B. For ρAB ∈ S(A ⊗ B), its reduced density
operator in system A is ρA = trB(ρAB), where

trB(ρAB) =
∑
i

IA ⊗ 〈i|B (ρAB) IA ⊗ |i〉B

for an orthonormal basis {|i〉B} for B. We sometimes use the equivalent notation,

ρAB |A := trB(ρAB).

Suppose ρA ∈ S(A) of finite dimension dim(A). Then there exists B of di-
mension dim(B) ≥ dim(A) and |ψ〉AB ∈ A⊗ B such that

trB |ψ〉〈ψ|AB = ρA.

The state |ψ〉AB is called a purification of ρA.
The trace distance between two quantum states ρ and σ is

∆(ρ, σ) = ||ρ− σ||tr,

where ||X||tr = 1
2 tr
√
X†X is the trace norm of X. Hence the trace distance

between two pure states |α〉, |β〉 is

∆(|α〉〈α|, |β〉〈β|) =

√
1− |〈α|β〉|2 . (30)

Lemma A.1. Consider a quantum state ρXY over two registers X,Y , and de-
note ρX = trY (ρXY ). Then if there exists ε, |ϕ〉 s.t. ∆(ρX , |ϕ〉〈ϕ|) ≤ ε, then
there exists ρ̃Y s.t. ∆(ρXY , |ϕ〉〈ϕ|⊗ ρ̃Y ) ≤

√
ε. Furthermore, if ρXY is pure then

so is ρ̃Y .

Proof. It is sufficient w.l.o.g to prove for a pure ρXY , since it is always possible to
purify ρXY by adding an additional register Z, and consider the pure state ρXY Z .
The transitivity of the partial trace operation implies that if the theorem is true
for X, (Y Z), then it is also true for X,Y . Also assume w.l.o.g that |ϕ〉 = |0〉
(this is just a matter of choosing a basis elements).
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Thus we will provide a proof in the case where the joint state of X,Y can
be written as a superposition |α〉 =

∑
x,y wx,y|x〉|y〉. Define P0 = Pr[X = 0] =∑

y |w0,y|2, and note that it must be the case that P0 ≥ 1− ε. To see this, note
that P0 is the probability of measuring X = 0 in the experiment where we first
trace out Y and then measuring X. Since ∆(ρX , |0〉〈0|) ≤ ε, the probability of
measuring X = 0 after tracing out Y is ε close to the probability of measuring
X = 0 in |0〉〈0|, which is 1 (see, e.g., [AKN98]). The claim P0 ≥ 1− ε follows.

Now define |β〉 = 1√
P0

∑
y w0,y|y〉, and let ρ̃Y = |β〉〈β|. Then

∆(ρXY , |0〉〈0| ⊗ ρ̃Y ) = ∆(|α〉〈α|, |0〉〈0| ⊗ |β〉〈β|) =

√
1− |〈α|(0, β)〉|2 . (31)

We have

〈α|(0, β)〉 = 1√
P0

∑
y

|w0,y|2 =
√
P0 , (32)

which implies that indeed ∆(ρXY , |0〉〈0| ⊗ ρ̃Y ) =
√

1− P0 ≤
√
ε. ut

B Security Analysis of Kereneidis et al.’s Protocol

For completeness, we restate11 the QPIR protocol with pre-shared entanglement
by Kerenidis et al. [KLGR16, Section 6]. Given a database DB ∈ {0, 1}n for some
n = 2` as input to the server, and index i ∈ [n] as input to the client (If the
client’s input is a superposition, the algorithm is run in superposition), we denote
the protocol Πn as follows.

The protocol Πn is recursive and calls Πn/2 as a subroutine. For the execution
of Πn, the parties are required to pre-share a pair of entangled state registers

1
2n/4

∑
r∈{0,1}n/2 |r〉R|r〉R′ , where R is held by the server and R′ is held by the

client. They also share an entangled state needed for the recursive application
of the protocol Πn/2 (and the recursive calls it entails). Unfolding the recursion,

this means that for all n′ = 2`
′

with `′ ∈ [`− 1], there is an entangled register of
length n′ shared between the client and the server.

The protocol execution is described in shorthand Figure 1. In what follows we
provide a detailed description and analyze the steps of the protocol to establish
correctness and assert properties that will allow us to analyze privacy.

1. If n = 1 then the database contains a single value. In this case there is no
need for shared entanglement, and the server sends a register F containing
|DB〉 (the final response) to the client, and the protocol terminates. This is
trivially secure and efficient. Otherwise proceed to the next steps.

2. The server denotes DB0, DB1 ∈ {0, 1}n/2 s.t. DB = [DB0‖DB1], i.e. the low-order
and high-order bits of the database respectively. The server starts with two
single-bit registers Q0, Q1 initialized to 0. The server CNOTs Qb with the

11 We make one minor adaptation – see Remark B.1.
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inner product of R and DBb so that it contains |r · DBb〉Qb , and sends Q0, Q1

to the client.
At this point, the joint state between the client and (an honest) server is∑

r∈{0,1}n/2
|r〉R|r〉R′ |r · DB0〉Q0 |r · DB1〉Q1 .

In particular the reduced density matrix of the server’s state is independent
of the index i.

3. Let b∗ = b i−1
n e denote the most significant bit of i. The client evaluates a Z

gate on Qb∗ . It sends Q0, Q1 back to the server.
At this point, the joint state between the client and (an honest) server is∑

r∈{0,1}n/2
(−1)r·DBb∗ |r〉R|r〉R′ |r · DB0〉Q0 |r · DB1〉Q1 .

Importantly, the reduced density matrix of the server, which contains the
registers R,Q0, Q1, is the diagonal matrix that corresponds to the classical
distribution of sampling a random r in register R, and placing r · DB0, r · DB1

in Q0, Q1. This density matrix is independent of b∗ and therefore of i.
4. The server again CNOTs Qb with the inner product of R and DBb.

At this point, the joint state between the client and (an honest) server is∑
r∈{0,1}n/2

(−1)r·DBb∗ |r〉R|r〉R′ |0〉Q0 |0〉Q1 .

From this point on we disregard Q0, Q1 since they remain zero throughout.
Since this step only involves a local unitary by the server, we are guaranteed
that its reduced density matrix is still independent of i.

5. The server performs QFT on R and the client performs QFT on R′. The
resulting state is

1
23n/4

∑
r,y,w∈{0,1}n/2

(−1)r·(DBb∗⊕y⊕w)|y〉R|w〉R′ = 1
2n/4

∑
y∈{0,1}n/2

|y〉R|y ⊕ DBb∗︸ ︷︷ ︸
w

〉R′ .

Since we only performed local operations on the server and client side (with-
out communication), the server’s density matrix remains perfectly indepen-
dent of b∗ and thus of i.

6. Note that at this point, the joint state of the client and server is a “shifted”
entangled state where the shift corresponds to the half-database DBb∗ that
contains the element that the client wishes to retrieve. More explicitly,
DB[i] = DBb∗ [i

∗] for i∗ = i (mod n/2) contains the (` − 1) least significant
bits of i. Therefore, for all y,w in the support of the joint state, it holds
that DB[i] = w[i∗]⊕ y[i∗].
The client will now ignore (temporarily) the register R′ and execute Πn/2

recursively on index i∗. The (honest) server will carry out the protocol with
the value y from the register R serving as the server’s database. Note that
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since the register R′ is not touched, for the purposes of executing the protocol
the value w in R′ is equivalent to have been measured, and the value y in
R is equivalent to the deterministic register w ⊕ DBb∗ .
We are recursively guaranteed that in the end of the execution of Πn/2, the
client receives a register F containing the value y[i∗] = w[i∗] ⊕ DBb∗ [i

∗] =
w[i∗]⊕DB[i]. Since the client still maintains the original register R′ containing
w, it can CNOT the value w[i∗] from F and obtain |DB[i]〉A. Namely, in the
end of the execution, the register F indeed contains the desired value DB[i].

7. Lastly, if the client and server desire to “clean up” and restore the shared
entanglement so that it can be reused in consequent executions, the client
can copy the contents of the register F to a fresh register (which is possible
since this register contains a classical value). Since the client and server are
pure (i.e. do not measure) throughout the protocol, they can rewind the
execution of the protocol to restore their initial joint entanglement.

If the final cleanup step is not executed then the total number of rounds of
Πn is 2`+ 1, and the total communication complexity is 4l + 1 (recall that ` =
log(n)). If the cleanup step is executed, the round complexity and communication
complexity are doubled due to rewinding the execution.

Remark B.1. Note that in the original protocol by Kerenidis et al. step 7 does
not appear, and it is not mentioned that the shared entanglement can be cleaned
and reused.

Lemma B.2. The protocol Πn is a PIR protocol with perfect correctness and
perfect anchored privacy against honest servers. It furthermore has communica-
tion complexity O(log n), and uses O(n) bits of (reusable) shared entanglement.

Proof. The analysis in the body of the protocol establishes that the local view
of the adversary is independent of the input i, when i is treated as a fixed
(classical) parameter. Next, we show that the server’s local state is independent
of the client’s input, even when the input is an arbitrary quantum state.

We observe two facts: (i) since we are interested in the server’s local view,
the input register is traced out, (ii) the client interacts with its input qubits as
control bits for Controlled operations only. By property (i), we can assume for
the sake of the analysis that the qubits are measured just before tracing them
out. Using property (ii), the entire protocol commutes with a measurement in
the standard basis of the input register. Therefore, we can assume the server’s
local view would not be changed by adding a measurement in the standard basis
of the input register at the very beginning of the protocol. By the argument in
the previous paragraph, we already know that for a classical input, the server’s
local view is independent of the input. The measurement in the standard basis
collapses the state a classical, and we conclude that the server’s local view is
independent of the input, for any input state.

In order to comply with the simulation based privacy definition (see Defini-
tion 2.5), we can define the simulators to be simulations of the protocol run with
input i = |0〉〈0|. Since the server’s state is independent of the input, we complete
the proof that the protocol has perfect anchored privacy against honest servers.
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Recursive QPIR with Logarithmic Communication

Server input: Database DB ∈ {0, 1}n.
Client input: Index i ∈ [n].
Desired output: Value DB[i] stored in register F on the client side.
Setup: Register R for server and R′ for client in joint state 1

2n/4

∑
r∈{0,1}n/2 |r〉R|r〉R′ .

(This setup is for external recursion loop, internal loops require their own R,R′ defined
recursively.)

1. If n = 1, copy the (single-bit) database into a register and send to client, then
terminate (or go to clean up step 7 below).

2. The server denotes DB0, DB1 ∈ {0, 1}n/2 s.t. DB = [DB0‖DB1], i.e. the low-order and
high-order bits of the database respectively. The server starts with two single-bit
registers Q0, Q1 initialized to 0. The server CNOTs Qb with the inner product of
R and DBb so that it contains |r · DBb〉Qb . It sends Q0, Q1 to the client.

3. Let b∗ = b i−1
n
e denote the most significant bit of i. The client evaluates a Z gate

on Qb∗ . It sends Q0, Q1 back to the server.
4. The server again CNOTs Qb with the inner product of R and DBb.
5. The server performs QFT on R and the client performs QFT on R′.
6. Call Πn/2 recursively (with fresh R,R′ obtained from the setup). The server in-

put is the contents of the register R (of length n/2). The client input is i∗ = i
(mod n/2) ∈ [n/2]. The client receives a response register F as the output of the
recursive call. It then CNOTs R′[i∗] into F . Finally, F contains the output of the
recursive execution.

7. If it is desired to restore the shared entanglement, copy the (classical) output into
a fresh register and rewind the execution of the protocol.

Fig. 1: The QPIR protocol of Kerenidis et al.

The communication complexity and the amount of reusable shared entangle-
ment needed in this protocol follow directly from the protocol. ut

We can therefore apply Theorem 3.2 and conclude that Π is secure against
anchored-specious adversaries.

Corollary B.3. There exists a PIR protocol Π with logarithmic communication
complexity assuming linear shared entanglement, which is perfectly correct and
anchored O(

√
γ)-private against γ-specious adversaries.
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