An Analysis of NIST SP 800-90A

Joanne Woodage! and Dan Shumow?

! Royal Holloway, University of London
2 Microsoft Research

Abstract. We investigate the security properties of the three determin-
istic random bit generator (DRBG) mechanisms in NIST SP 800-90A [2].
The standard received considerable negative attention due to the con-
troversy surrounding the now retracted DualEC-DRBG, which appeared
in earlier versions. Perhaps because of the attention paid to the DualEC,
the other algorithms in the standard have received surprisingly patchy
analysis to date, despite widespread deployment. This paper addresses a
number of these gaps in analysis, with a particular focus on HASH-DRBG
and HMAC-DRBG. We uncover a mix of positive and less positive re-
sults. On the positive side, we prove (with a caveat) the robustness [13]
of HASH-DRBG and HMAC-DRBG in the random oracle model (ROM).
Regarding the caveat, we show that if an optional input is omitted, then —
contrary to claims in the standard — HMAC-DRBG does not even achieve
the (weaker) property of forward security. We then conduct a more in-
formal and practice-oriented exploration of flexibility in the standard.
Specifically, we argue that these DRBGs have the property that par-
tial state leakage may lead security to break down in unexpected ways.
We highlight implementation choices allowed by the overly flexible stan-
dard that exacerbate both the likelihood, and impact, of such attacks.
While our attacks are theoretical, an analysis of two open source im-
plementations of CTR-DRBG shows that these potentially problematic
implementation choices are made in the real world.

1 Introduction

Secure pseudorandom number generators (PRNGs) underpin the vast majority
of cryptographic applications. From generating keys, nonces, and IVs, to produc-
ing random numbers for challenge responses, the discipline of cryptography —
and hence system security — critically relies on these primitives. However, it has
been well-established by a growing list of real-world failures [39] B2} 18] [6], that
when a PRNG is broken, the security of the reliant application often crumbles
with it. Indeed, with much currently deployed cryptography being effectively
‘unbreakable’ when correctly implemented, exploiting a weakness in the under-
lying PRNG emerges as a highly attractive target for an attacker. As such, it is
of paramount importance that standardized PRNGs are as secure as possible.
NIST Special Publication 800-90A Recommendation for Random Number
Generation Using Deterministic Random Bit Generators (NIST SP 800-90A) [2]
has had a troubled history. The first version of this standard included the now
infamous DualEC-DRBG, which was long suspected to contain a backdoor in-
serted by the NSA [36]. This suspicion was confirmed by documents included in
the Snowden leaks [29], leading to a revision of the document that removed the

disgraced algorithm. The remaining DRBGs — which respectively use a hash
function, HMAC, and a block cipher as their basic building blocks — are widely
used. Indeed, any cryptographic software or hardware seeking FIPS certification
must implement a PRNG from the standard [16] B8]. While aspects of these con-
structions have been analyzed [9] 20, 19} 35 2T], 33] and some implementation
considerations discussed [5], these works make significant simplifying assump-
tions and / or treat certain algorithms rather than the constructions as a whole.
To date, there has not been a deeper analysis of these standardized DRBGs,
either investigating the stronger security properties claimed in the standard or
taking into account the (considerable) flexibility in their specification.

The constructions provided in NIST SP 800-90A are nonstandard. Even the
term DRBG is rare, if not absent from the literature, which favors the term
PRNG. Similarly the NIST DRBGs — which return variable length (and sizable)
outputs upon request, and support a variety of optional inputs and parameters
— do not fit cleanly into the usual PRNG security models. With limited formal
analysis to date, coupled with the fact that the standardization of these algo-
rithms did not follow from a competition or widely publicly vetted process, this
leaves large parts of software relying on relatively unanalyzed algorithms.

Security claims. The standard claims that each of the NIST DRBGs is ‘back-
tracking resistant’ and ‘prediction resistant’. The former property guarantees
that in the event of a state compromise, prior output remains secure. The latter
property ensures that if a compromised state is reseeded with sufficient entropy
then security will be recovered. To the best of our knowledge, neither of these
properties have been formally investigated and proved. In fact, the NIST DRBG
algorithms which are responsible for initial state generation and reseeding do
not seem to have been analyzed at all in prior work.

A number of factors may have contributed to this lack of analysis. It seems
likely that the attention given to the Dual EC resulted in the other PRNGs in
NIST SP 800-90A being comparatively overlooked. Secondly, our understanding
of what a PRNG should achieve has developed since the NIST DRBGs were
standardized in 2006. Indeed, the concept of robustness for PRNGs [13] was
not formalized until 2013. Finally, the NIST DRBGs are based on fairly run-
of-the mill concepts such as running a hash function in counter mode, and yet
simultaneously display design quirks which significantly complicate analysis and
defy attempts at a modular treatment. As such, perhaps they have escaped
deeper analysis by not being ‘interesting’ enough to tackle for an attention-
grabbing result and yet too tricky for a straightforward proof.

The goal of this paper is to address some of these gaps in analysis.

1.1 Contributions

We conduct an investigation into the security of the DRBGs in NIST SP 800-
90A, with a focus on HASH-DRBG and HMAC-DRBG. We pay particular atten-
tion to flexibilities in the specification of these algorithms, which are frequently
abstracted away in previous analysis. We set out to analyze the algorithms as

they are specified and used, and so sometimes make heuristic assumptions in our
modeling (namely, working in the random oracle model (ROM) and assuming an
oracle-independent entropy source). We felt this to be more constructive than
modifying the constructions solely to derive a proof under weaker assumptions,
and explain the rationale behind all such decisions.

Robustness proofs. Robustness, introduced by Dodis et al. [I3], captures both
backtracking and prediction resistance and is the ‘gold-standard’ for PRNG secu-
rity. For our main technical results, we analyze HASH-DRBG and HMAC-DRBG
within this framework. As a (somewhat surprising) negative result, we show
that if optional strings of additional input are not always included in next calls
(see Section , then HMAC-DRBG is not forward secure. This contradicts the
claimed backtracking resistance of HMAC-DRBG. This highlights the importance
of formally proving security claims which at first sight seem obviously correct,
and of paying attention to implementation choices. As positive results, we prove
that HASH-DRBG and HMAC-DRBG (called with additional input) are robust
in the ROM. The first result is fully general, while the latter is for a class of
entropy sources which includes those approved by the standard.

A key challenge is that the NIST DRBGs do not appear to have been designed
with a security proof in mind. As such, seemingly innocuous design decisions turn
out to significantly complicate matters. The first step is to reformulate robust-
ness for the ROM. Our modeling is inspired by Gazi and Tessaro’s treatment of
robustness in the ideal permutation model [I7]. We must make various adapta-
tions to accommodate the somewhat unorthodox interface of the NIST DRBGs,
and specifying the model requires some care. It is for this reason that we focus on
HASH-DRBG and HMAC-DRBG in this work, since they map naturally into the
same framework. Providing a similar treatment for CTR-DRBG would require
different techniques, and is an important direction for future work.

At first glance, it may seem obvious that a PRNG built from a random oracle
will produce random looking bits. However, formally proving that the construc-
tions survive the strong forms of compromise required to be robust is far from
trivial. While the proofs employ fairly standard techniques, certain design fea-
tures of the algorithms introduce unexpected complexities and some surprisingly
fiddly analysis. Throughout this process, we highlight points at which a minor
design modification would have allowed for a simpler proof.

Implementation flexibilities. We counter these formal and (largely) positive
results with a more informal discussion of flexibilities in the standard. We argue
that when the NIST DRBGs are used to produce many blocks of output per re-
quest — a desirable implementation choice in terms of efficiency, and permitted
by the standard — then the usual security models may overlook important attack
vectors against these algorithms. Taking a closer look, we propose an informal
security model in which an attacker compromises part of the state of the DRBG
— for example through a side-channel attack — during an output generation
request. Reconsidered within this framework, each of the DRBGs admits vul-
nerabilities which allow an attacker to recover unseen output. We find a further

flaw in a certain variant of CTR-DRBG, which allows an attacker who compro-
mises the state to potentially recover strings of additional input which are fed
to the DRBG and which may contain secrets. While our attacks are theoretical
in nature, we follow this up with an analysis of the open-source OpenSSL and
mbed TLS CTR-DRBG implementations and find that these potentially problem-
atic implementation decisions are taken by implementors in the real world. We
conclude with reflections and recommendations for the safe use of these DRBGs.

Related work. The PRNGs in NIST SP 800-90A have received little formal
analysis to date; we provide an overview here. A handful of prior works have an-
alyzed the NIST DRBGs as deterministic PRGs with an idealized initialization
procedure. i.e., they prove the next algorithm produces pseudorandom bits when
applied to an ideally random initial state e.g., Sy = (Ko, Vo, cntg) for uniformly
random Ky, Vj in the case of CTR-DRBG and HMAC-DRBG. This is a substan-
tial simplification; in reality, state components must be derived from the entropy
source using the setup algorithm. Such proofs are provided for CTR-DRBG by
Campagna [9] and Shrimpton and Terashima [35], and for HMAC-DRBG by Hi-
rose [19] and Ye et al. [21]. A formal verification of the mbedTLS implementation
of HMAC-DRBG is also provided in [21]. None of these works model setup or re-
seeding; as far as we know, ours is the first analysis of these algorithms for
HASH-DRBG and HMAC-DRBG. With the exception of [19], they do not model
the use of additional input. Moreover, pseudorandomness is a weaker property
than robustness and does not model state compromise. Kan [20] considers as-
sumptions underlying the security claims of the DRBGs; however, the analysis is
informal and contains inaccuracies. To our knowledge, this is the only previous
work to consider HASH-DRBG. Ruhault claims a potential attack against the
robustness of CTR-DRBG [33]. However, the specification of CTR-DRBG’s BCC
function in [33] is different to that provided by the standard. In [33], BCC is
defined to split the input IV || S into n 128-bit blocks ordered from right to left
as [By, ..., B1]. However, in the standard these blocks are ordered left to right
[Bi, ..., By]. The attack from [33] does not work when the correct BCC function
is used, and it does not seem possible to recover the attack.

2 Preliminaries

Notation. The set of binary strings of length n is denoted {0,1}". We write
{0,1}* to denote the set of all binary strings, and {0,1}=" to denote the set of
binary strings of length at most n-bits; we include the empty string € in both
sets. We write {0, 1}"<?<" to denote the set of binary strings of length between
n and 7-bits inclusive. We convert binary strings to integers, and vice versa, in
the standard way. We let @ y denote the exclusive-or (XOR) of two strings
z,y € {0,1}™, and write z||y to denote their concatenation. We write left(z,)
(resp. right(z, 8)) to denote the leftmost (resp. rightmost) /3 bits of string z, and
select(x, o, 8) to denote the substring of & consisting of bits « to 8 inclusive. We
let [j1,j2] denote the set of integers between j; and js inclusive. For an integer

j € N, we write (j). to represent j encoded as a ¢-bit binary string. The notation

z & X denotes sampling an element uniformly at random from the set X'. We let
N = {1,2,...} denote the set of natural numbers, and let N = {1,2,... ,n}.

Entropy and Cryptographic Components. In the full version, we recall the
standard definitions of worst-case and average-case min-entropy, along with the
usual definitions of pseudorandom functions (PRFs) and block ciphers.

PRNGs with input. A pseudorandom number generator with input
(PRNG) [13] produces pseudorandom bits and offers strong security guarantees
(see Section when given continual access to an imperfect source of randomness.
We define PRNGs, and discuss our choice of syntax, below.

Definition 1. A PRNG with input is a tuple of algorithms
G = (setup, refresh, next) with associated parameters (p,D, &, Bmaz), defined:

— setup : Seed x {0,1}PSISP x N' — S takes as input a seed X € Seed,
an entropy sample I € {0,1}*<<P and a nonce N € N (where Seed, N,
and S denote the seed space, nonce space, and state space of the PRNG
respectively), and returns an initial state Sy € S.

— refresh : Seed x S x {0, 1}PSISP — S takes as input a seed X € Seed, a state
S €S, and an entropy sample I € {0,1}P<<P and returns a state S’ € S.

— next : Seed x & x NSPmaz x {0 1} — {0,1}SPmaz x S takes as input
a seed X € Seed, a state S € S, a parameter B € NSPmaz and a string of
additional input addin € {0,1}=%, and returns an output R € {0,1}% and
an updated state S’ € S.

If a PRNG always has X = ¢ or addin = € (indicating that, respectively, a seed
or additional input is never used), then we omit these parameters.

Discussion. Our definition follows that of Dodis et al. [I3], with a number
of modifications. The key differences are: (1) we extend the PRNG syntax to
accommodate additional input, nonces and a parameter indicating the number
of output bits requested, all of which are part of the NIST DRBG interface;
(2) following Shrimpton et al. [34], we define setup to be the algorithm which
constructs the initial state of the PRNG from a sample drawn from the entropy
source, and assume that a random seed X is generated externally and supplied
to the PRNG; and (3) we allow entropy samples and outputs to take any length
in a range indicated by the parameters of the PRNG, rather than being of fixed
length. We provide a full discussion of these modifications in the full version.
NIST SP 800-90A uses the term deterministic random bit generator (DRBG)
instead of the more familiar PRNG. We use these terms interchangeably.

3 The NIST SP 800-90A Standard

3.1 Overview of the Standard

NIST SP 800-90A defines three DRBG mechanisms, HASH-DRBG, HMAC-DRBG,
and CTR-DRBG. The former two are based on an approved hash function (e.g.,

SHA-256), and the latter on an approved block cipher (e.g., AES-128); we include
parameters for these variants in the full version.

Algorithms. The standard specifies (Instantiate, Reseed, Generate) algorithms
for each of the DRBGs. These map directly into the (setup, refresh, next) al-
gorithms in the PRNG model of Definition [I} Since the NIST DRBGs are not
specified to take a seed (see Section7 we take X = ¢ and Seed = () in this map-
ping, and omit these parameters from subsequent definitions. For consistency,
we refer to the NIST DRBG algorithms as (setup, refresh, next) throughout. These
(setup, refresh, next) algorithms underly (respectively) the (Instantiate,Reseed,
Generate) functions of the DRBG. When called, these functions check the va-
lidity of the request (e.g., that the number of requested bits does not exceed
Bmaz), and return an error if these checks fail. If not, the function fetches the
internal state of the DRBG, plus any other required inputs (e.g., entropy sam-
ples, a nonce, etc.), and the underlying algorithm is applied to these inputs. The
resulting outputs are returned and / or used to update the internal state, and
the successful status of the call is indicated to the caller. To avoid cluttering
our exposition we abstract away this process, assuming that required inputs are
provided to algorithms (without modeling how these are fetched), and that all
inputs and requests are valid, omitting success / error notifications.

The DRBG State. The standard defines the working state of a DRBG to
be the set of stored variables which are used to produce pseudorandom output.
The internal state is then defined to be the working state plus administrative
information which indicates e.g., the security strength of the instantiation. We
typically omit administrative information as this shall be clear from the context.

Entropy sources. A DRBG must have access to an approved entropy sourcdﬂ
during initial state generation via setup, after which the DRBG is said to be
instantiated. The function Get_entropy_input() is used to request an entropy
sample I of length within range [p,p] containing a given amount of entropy
(discussed further below). Nonces used by setup must either contain v*/2-bits
of min-entropy or not be expected to repeat more than such a value would.
Examples of suitable nonces given in the standard include strings drawn from
the entropy source, time stamps, and sequence numbers.

Reseeding. Entropy samples drawn from the source are periodically incorpo-
rated into the DRBG state via refresh. A parameter reseed_interval indicates
the maximum number of output generation requests allowed by an implementa-
tion before a reseed is forced; this is tracked by a state component called a reseed
counter (cnt). The reseed counter is not a security critical state variable, and
we assume that it is publicly known. For all approved DRBG variants (except
CTR-DRBG based on 3-KeyTDEA) reseed_interval may be as large as 24%. We
assume here that reseeds are always explicitly requested by the caller; this is
without loss of generality. A DRBG instantiation is parameterized by a security

3 Either a live entropy source as approved in NIST SP 800-90B [37] or a (truly) random
bit generator as per NIST SP 800-90C [3].

strength v* € {112,128,192,256}, where the highest supported security strength
depends on the underlying primitive. Each entropy sample used by setup and
refresh must contain at least v*-bits of entropyﬂ

Output generation. The caller may request outputs of length up to B4z bits
via the input 8 to the next function. For all approved DRBG variants (except
CTR-DRBG based on 3-KeyTDEA), B,,4; may be as large as 219.

Additional input. Optional strings of additional input (denoted addin) may
be provided to the DRBG by the caller during next calls. These inputs may
be public or predictable (e.g., device serial numbers and time stamps), or may
contain secrets. Optional additional input may also be provided in refresh calls
and during setup; for brevity, we do not model this here and omit these inputs
from the presentation of the algorithms.

3.2 HASH-DRBG.

HASH-DRBG is built from an approved cryptographic hash function
H : {0,1}=% — {0,1}*. The working state is defined S = (V,C,ent), where
the counter V' € {0,1}% and constant C' € {0,1}% are the security critical
state variables. The standard does not explicitly state the role of C'; however its
purpose would appear to be preventing HASH-DRBG falling into a sequence of
repeated states. We discuss this further in the full version.

Algorithms. The component algorithms for HASH-DRBG are shown in Fig-
ure Both setup and refresh derive a new state by applying the derivation
function HASH-DRBG_df to the entropy input and (in the case of refresh) the
previous counter. Qutput generation via next first incorporates any additional
input into the counter V (lines 3 - 5). Output blocks are then produced by hash-
ing V in CTR-mode (lines 7 - 10). At the conclusion of the call, V' is hashed with
a distinct prefix prepended, and the resulting string — along with the constant
C' and reseed counter cnt — are added into V' (lines 12 - 13).

3.3 HMAC-DRBG

HMAC-DRBG is based on HMAC : {0,1}* x {0,1}=% — {0,1}*, built from an
approved hash function. The working state is of the form S = (K, V, ent), where
the key K € {0,1}* and counter V € {0,1}* are security critical.

Algorithms. The component algorithms of HMAC-DRBG are shown in Fig-
ure [I} Algorithms setup and refresh both use the update subroutine to incorpo-
rate an entropy sample I into K and V. For setup, these variables are initialized
to K =0x00...00 and V' = 0x01...01 prior to this process. Output production
via next first incorporates any additional input into K and V via the update

* In contrast, robustness [I3] requires that a PRNG is secure when reseeded with a
set of entropy samples which collectively has v*-bits of entropy. Looking ahead to
Section [5| we analyze HASH-DRBG with respect to this stronger notion.

HASH-DRBG._df

Require: inp_str, (num_bits)so
Ensure: req_bits

temp < € ;m < [num_bits/l]
For i=1,...,m

temp < temp || H((i)s || (num_bits)sz || inp-_str)

req-bits < left(temp, num_bits)
Return req_bits

HASH-DRBG setup

Require: I, N

Ensure: So = (Vo, Co, cnto)
seed_material « I || N

Vo < HASH-DRBG_df (seed_-material, L)
Cy « HASH-DRBG_df(0x00 || Vo, L)

cntg <+ 1

Return (Vg, Co, ento)

HASH-DRBG refresh

Require: S = (V,C,ent), I

Ensure: S’ = (V',C’, ent’)
seed_material < 0x01 ||V || I

V' <+ HASH-DRBG_df (seed-material, L)
¢ + HASH-DRBG_df(0x00 || V', L)

cnt’ 1

Return (V',C’, ent’)

HASH-DRBG next

Require: S = (V, C, ent), B8, addin
Ensure: R, S’ = (V/,C’, cent’)

1. If ent > reseed_interval

2. Return reseed_required

. If addin # €

w — H(0x02 || V || addin)

V « (V + w) mod 2F

. data <V jtemppr + € ;n <+ [B/£]
.Forj=1,...,n

r < H(data)

9. data + (data + 1) mod 2%

10. temppgr < tempr||r

11. R < left(tempr, B)

12. H « H(0x03 || V)

13. V' « (V 4+ H + C + ¢ent) mod 2F
14. C' < C ;ent’ < cent + 1

15. Return R, (V',C’, cnt’)

® N e o w

CTR-DRBG update
Require: provided_data, K,V
Ensure: K,V
temp <€ ;m < [(k+£)/€]
Forj=1,...,m
V 4+ (V+1) mod 2¢; Z « E(K, V)
temp «+ temp|| Z
temp <« left(temp, (k + £))
temp < temp @ provided_data
K « left(temp, k)
V < right(temp, £)
Return K,V

HMAC-DRBG update

Require: provided_data, K,V

Ensure: K,V

K + HMAC(K, V || 000 | provided_data)

V + HMAC(K,V)

If provided_-data # €
K + HMAC(K, V || 0x01 || provided-data)
V < HMAC(K,V)

Return (K, V)

HMAC-DRBG setup

Require: I, N

Ensure: So = (Ko, Vo, cnto)
seed_material < I || N

K <+ 0x00...00

V < 0x01...01

(Ko, Vo) <+ update(seed-material, K, V)
cntg <— 1

Return (Ko, Vo, cnto)

HMAC-DRBG refresh

Require: S = (K, V,ent), I

Ensure: S’ = (K', V', cnt’)
seed_material < I

(Ko, Vo) <+ update(seed-material, K, V')
cntg < 1

Return (Ko, Vo, cnto)

HMAC-DRBG next

Require: S = (K, V, cnt), B, addin
Ensure: R, S’ = (K', V', ent’)

1. If ent > reseed_interval

2 Return reseed_required

3. If addin # ¢

4 (K, V) <« update(addin, K, V)
5. temp < € ;n < [B/€]

6. Forj=1,...,n

7.V « HMAC(K, V)

8. temp < temp||V

. R« left(temp, B)

10.(K’, V') < update(addin, K, V)
11. ent’ < ent + 1

12. Return R, (K', V', cnt’)

CTR-DRBG next
Require: S = (K, V, cnt), 8, addin
Ensure: R, S’ = (K’, V', ent’)
1. If ent > reseed_interval
2. Return reseed_required
. If addin # €

© B

3
4 If derivation function used then

5. addin « CTR-DRBG_df (addin, (x + £))
6. Else if len(addin) < (k + £) then

7 addin < addin || 0("+¢—len(addin))

8. (K,V) <« update(addin, K, V)

9. Else addin « 0%T*

10. temp <+ € ;n « [B/€]

11. For j=1,...,n

12. V + (V+41) mod 2° ;7 « E(K, V)

13. temp < temp||r

14. R <+ left(temp, B)

15. (K’, V') < update(addin, K, V)

16. cnt’ < ent + 1

17. Return R, (K', V', cent’)

Flg 1: Component algorithms for HASH-DRBG, HMAC-DRBG and CTR-DRBG.

function (lines 3 - 4). Output blocks r are generated by iteratively computing
V < HMAC(K, V) and setting » = V' (lines 6 - 8). At the conclusion of the call,
both key and counter are updated via the update function (line 10).

3.4 CTR-DRBG

CTR-DRBG is built from an approved block cipher E : {0,1}*x{0,1}* — {0, 1}*.
The working state is defined S = (K, V, ent), where key K € {0,1}" and counter
V € {0,1}* are the security critical state variables.

Algorithms. Component algorithms for CTR-DRBG are shown in Figure Eﬂ
Use of the derivation function CTR-DRBG_df is optional only if the implemen-
tation has access to a ‘full entropy source’ which returns statistically close to
uniform strings. Output generation via next first incorporates any additional
input addin into the state via the update function (line 8). If a derivation func-
tion is used, additional input addin is conditioned into a (k + £)-bit string with
CTR-DRBG_df prior to this process (line 5); otherwise addin is restricted to be
at most (x4 £)-bits in length. Output blocks are then iteratively generated using
the block cipher in CTR-mode (lines 11 - 13). At the conclusion of the call, both
K and V are updated via an application of the update function (line 15).

4 Robustness in the Random Oracle Model

The security properties of backtracking and prediction resistance claimed in the
standard have never been formally investigated. We address this be analyzing
the robustness [13] of HASH-DRBG and HMAC-DRBG. This models a powerful
attacker who is able to compromise the state and influence the entropy source
of the PRNG, and is easily verifed to imply both backtracking and prediction
resistance. In this section, we adapt the robustness model of [13] to accommodate
the NIST DRBGs, and introduce the notion of robustness in the ROM.

Distribution sampler. We model the gathering of entropy inputs from the
entropy source via a distribution sampler [13]. Formally, a distribution sampler
D : {0,1}* — {0,1}* x {0,1}* x RZ% x {0,1}* is a stateful and probabilistic
algorithm which takes as input its current state ¢ € {0,1}* and outputs a
tuple (o', 1,7, z), where o’ € {0,1}* denotes the updated state of the sampler,
I € {0,1}* denotes the entropy sample, v € RZ? is an entropy estimate for the
sample, and z € {0,1}* denotes a string of side information about the sample.
We say that a sampler D is (¢, v*)-legitimate if (1) for all j € [1,gp + 1]:
HOO(I_]|I].7 R Ij—17Ij+1a s 7Iq1>+1a’717 <o Yap+1, 21 -y qu-‘,—l) > Vi s
where o9 = € and (05, I;, v;, 2j) <= D(0j_1); and (2) it holds that 1 > ~v*. Here,
condition (2) extends the definition of [I3] to model the sample (which recall
must contain v* bits of entropy) with which the DRBG is initially seeded during

5 We do not directly analyze setup, refresh and CTR-DRBG_df in this work, and so
defer their presentation to the full version.

setup. It is straightforward to see that to any sequence of Get_entropy_input()
calls made by the DRBG we can define an associated samplerﬂ

4.1 Robustness and Forward Security in the Random Oracle Model

Our positive results about HASH-DRBG and HMAC-DRBG will be in the random
oracle model (ROM). As such, the first step in our analysis is to adapt the
security model of Dodis et al. [I3] to the ROM.

Robustness. Consider game Rob shown in Figure[2] The game is parameterized
by an entropy threshold v*. We expect security when the entropy in the system
exceeds this value. When analyzing the NIST DRBGs, we take v* to be the secu-
rity strength of the instantiation. At the start of the game, we choose a random
function H <—s H where H denotes the set of all functions of a given domain and
range. All of the PRNG algorithms have access to H (indicated in superscript
e.g., setup™). For reasons discussed below, we do not give the sampler D access
to H. To the best of our knowledge, this is the first treatment of robustness
in the ROM, and our model may be useful beyond analyzing HASH-DRBG and
HMAC-DRBG. We additionally modify game Rob from [13] to: (1) accommodate
our PRNG syntax (including the use of additional input, discussed below); (2)
remove the Next oracle, which was shown in [I1] to be without loss of generality;
and (3) generate the initial state with the deterministic setup™ algorithm using
the first entropy sample output by the sampler, similarly to [34].

The game is implicitly parameterized by a nonce distribution A, where we
write N < N to denote sampling a nonce. Since nonces may be predictable
(e.g., if a sequence number is used) we assume that A is public and the nonce
used during initalization is provided to .A. Similarly, we assume the attacker can
choose the strings of additional input which may be included in next calls. These
are conservative assumptions, since any entropy in these values can only make
the attacker’s job harder. With this in place, the Rob advantage of an adversary
A, and a (g3, v*)-legitimate sampler D, is defined

1
AdvgP.(A, D) =2-|Pr [Rob“g“_ﬁ - 1] -3l

We say that A is a (gn, qr, 9D, 9c, qs)-adversary if it makes gy queries to the
random oracle H, gr queries to its RoR oracle, a total of gg queries to its Get and
Set oracles, and gp queries to its Ref oracle of which at most g¢ are consecutive.

Fixed length variant. While we define the general game Rob here, our robust-
ness proofs will be in a slightly restricted variant Robg, in which the attacker
may only request outputs of fixed length 8 < 3,4, in RoR queries. This sim-
plifying assumption is to avoid further complicating bounds with parameters

5 NIST SP 800-90B [37] defines the entropy estimate of sample I as Hoo(I), rather
than this conditioned on other samples and associated data. However, since the tests
in NIST SP 800-90B estimate entropy using multiple samples drawn from the source,
it seems reasonable to assume the conditional entropy condition is satisfied also.

10

indicating the length of each RoR query. Results for the general game Rob can
be recovered as a straightforward extension of our proofs.

Standard model forward security. Our negative result about the forward
security of HMAC-DRBG shall be in the standard model. We define game Fwd
to be a restricted variant of Rob in which: (1) we remove oracle access to H
from all algorithms; and (2) the attacker A is allowed no Set queries, and makes
a single Get query after which they may make no further queries. The forward
security advantage of (A, D) is defined

Advg'S. (A, D) =2 |Pr [Fwdg‘ﬁ =1]|- %| :
The problem of seeding. Since deterministic extraction from imperfect sources
is impossible in general, the PRNG in game Rob is initialized with a random
public seed X which crucially is independent of the entropy source. Unfortu-
nately (for our analysis), none of the NIST DRBGs are specified to take a seed,
(i.e., X = ¢ in our modeling). Moreover, all state components and inputs to
HASH-DRBG and HMAC-DRBG may depend on the entropy source, and so can-
not be reframed as a seed without adding substantial assumptions; we discuss
this further in the full version. At this point we are faced with two choices. We
either: (1) give sampler D access to H (as in the robustness in the IPM model
of [I7]), and either modify the NIST DRBGs to accommodate a random seed or
restrict our analysis to implementations for which additional input is sufficiently
independent of the source to suffice as a seed. Or: (2) do not give D access to H.
In this case, the oracle H with respect to which security analysis is carried out
is chosen randomly and independently of the entropy source, and so serves the
same purpose as a seed. We take the latter approach for a number of reasons.
Firstly, we wish to analyze the NIST DRBGs as they are specified and used, and
so modifying the construction or restricting the implementations we can reason
about (as per (1)) solely to facilitate the analysis seems counterproductive. Sec-
ondly, as pointed out in [35], generating a seed is challenging in practice due to
the necessary independence from the entropy source. Moreover, given the litany
of tests which approved entropy sources in NIST SP 800-90B are subjected to, it
seems reasonable to assume that the pathological sources used to illustrate e.g.,
deterministic extraction impossibility results, are unlikely to pass these tests.

R,obé'f* Ref RoR(B, addin) Get
HesH ;b8 {0,1}; N « N | |(0:],7,2) <5 D(o) (Ro, S) + next" (X, S, B, addin) | | Return S
o« ;X <8 Seed S <« refresh” (X, S, I) Ife< ™ c+ 0
(0,1,7,2) +3$D(0) cecty Return Ro Set(S™)
S + setupt (X, I, N) Return (v, 2) ce0 S 5
Al ;ij(?((P;Y’GZE];])c H proc. H(X) Else R, ${0,1}” ce0

- ef,RoR, Get,Set, o || Rros- TA)
b* s A (X,7) Return H(X) Return Ry
Return (b = b")

Flg 2: Security game Rob for a PRNG G = (setup, refresh, next).

11

Security games. A key insight of [13] is that the complex notion of robustness
can be decomposed into two simpler notions called preserving and recovering
security. The former models the PRNG’s ability to maintain security if the state
is secret but the attacker is able to influence the entropy source. The latter
models the PRNG’s ability to recover from state compromise after sufficient
(honestly generated) entropy has entered the system. Here we will utilize the
variants of these from [34], which extended the original definitions and added a
new game Init modelling initial state generation.

Consider games Pres, Rec, and Init shown in Figure [3| given here for Robg.
Here we have adapted the notions of [34] in the natural way to accommodate:
(1) a random oracle; and (2) our PRNG syntax. It is straightforward to extend
our analysis to accommodate variable length outputs. All games are defined with
respect to a masking function, which is a randomized function M : SU{e} = S
where S denotes the state space of the PRNG. Here, we extend the definition
of [34] to include € in the domain (implicitly assuming that & does not lie in the
state space of the PRNG; if this is not the case then any distinguished symbol
may be used instead). We discuss the reasons for this adaptation in Section
We give the masking function access to the random oracle, indicated by MH.
We make a number of further modifications. Firstly in Init, we require S§ to be
indistinguishable from M"(¢) as opposed to M"(Sf) as in [34]. Secondly, during
the computation of the challenge in Pres and Rec, we apply the masking function
to the state Sy which was input to next™ as opposed to the state S* which is
output by next". Finally, in Pres, we allow A to output S € SU {} at the start
of his challenge rather than S € S. In all cases, this is to accommodate the
somewhat complicated state distribution of HASH-DRBG (see Section [f]). For all
Gmy € {Inité”,\ﬁqvﬂ*,Presé’Mﬁ, Recé:,a)ﬂ*,qpﬁ} we define

Adve™(y) =2 |Pr [sz =1]- %| .

An adversary in Init is said to be a gy-adversary if it makes gy queries to its H
oracle. An adversary in game Pres or Rec is said to be a (gn, go)-adversary if it
makes gy queries to its H oracle and always outputs d < g¢.

With this in place, the following theorem — which says that Init, Pres and
Rec security collectively imply Rob security — is an adaptation of the analogous
results from [34], [I7]. As a bonus, employing a slightly different line of argument
with two series of hybrid arguments means our proof holds for arbitrary masking
functions, lifting the restriction from [34] that masking functions possess a prop-
erty called idempotence. The proof is given in the full version. We note that the
original result [13] omits a factor of two from the right-hand side of the equation
which we recover here.

Theorem 1. Let G = (setup!, refresh™, next™) be a PRNG with input with asso-
ciated parameter set (p, P, &, Bmaz), built from a hash function H which we model
as a random oracle. Suppose that each invocation of refresht and next! makes
at most qrep and qng: queries to H respectively. Let MH . SuU {e} > Sbea

12

masking function for which each invocation of M? makes at most qu H queries.
Then for any (qu, qr, 4D, qc; s)-adversary A and (qf,v*)-legitimate sampler D
in game Robg against G, there exists a (qu + gD - Qref + QR - qnat)-adversary Ay
and (gn + 4p - Gref + qr - (@nat + qm), gc)-adversaries Az, As, such that

AdvE?Y. 5(A,D) < 2- Advgy 1+ 4p (A1, D)
+ 2qrR - Advgfﬁ7B(A2) + 2qR - Advrgcﬁw’v*,qbyﬁ(./‘b,p) .

Tightness. Unfortunately due to a hybrid argument taken over the qr RoR
queries made by A, Theorem [I| is not tight. This is exacerbated in the ROM,
since the attacker in each of qr hybrid reductions must make enough H queries to
simulate the whole of game Rob for A. This hybrid argument accounts for the qgr
coefficients in the bound and in the attacker query budgets. This seems inherent
to the proof technique and is present in the analogous results of [I3] [34, [I7].
Developing a technique to obtain tighter bounds is an important open question.

Init? P Recé’D

g,M,v*,qap M,v*,qp,8
H+s$H;b+3${0,1} ;N + N H<+$H ;b+3{0,1}
op < € ; X <% Seed g ¢ec; X +8Seed;pu+1
Fork=1,...,qp +1 Fork=1,...,9p+1
(ks Ik, Vi s 21) <_$D(O'kﬁl) (ks Ii, Vies 2) <8 D(0k-1)
If (b= 0) then S5 « setup" (X, Iy, N) (S0, d, addin) «s A"S™ (X, (g, 2))72)
Else S5 <8 M"(e) L L If So ¢ S return L
b* s AM(X, S5, (1)D, (i, 2) {2 N) If i+ d > (g + 1) or TEES v <y
Return (b = b") Return L
Fori=1,...,d
Pres“g“M 5 S +— refreshH(X, I,4i,Si-1)
B b s If (b = 0) then (R*,S*) s next" (X, Sy, B, addin)
«8H;b08{0,1} Else R* « {0,1}7 ; §* <8 M"(Sy)
X <% Seed

b* 8 A(X,R*, 8™, (Ik)k>p+d)

) H
(S¢,I1, ..., I, addin) +$ A" (X) Return (b= b*)

If S{ ¢ SU {e} return L

So +s M"(S)) Sam()
Fori=1,...,d L=+l
Si +— refreshH(X7 I;,S:-1) Return I,

If (b = 0) then (R*, S*) « next" (X, Sy, 8, addin)

Else R* + {0,1}7 ;5% + M"(5,) proc. H(X)
b* s A"(X, R*, 5™) proc. H(X)
Return (b = b") Return H(X)

Fig. 3: Security games Init, Pres and Rec for a PRNG G = (setup, refresh, next) and M : SU{e} — S.

5 Analysis of HASH-DRBG

We now present our analysis of the robustness of HASH-DRBG, in which the
underlying hash function H : {0,1}=% — {0,1}¢ is modelled as a random
oracle. Our proof is with respect to the masking function MH shown in Figure

13

To avoid further complicating security bounds we assume that HASH-DRBG is
never called with additional input; we expect extending the proof to include

additional input to be straightforward.

Challenges. Certain features of HASH-DRBG
significantly complicate the proof, and necessi-
tated adaptations in our security modeling (Sec-
tion . Notice that the distributions of states
returned by setup™ and refresh! are quite dif-
ferent from the distribution of states S’ where
(R,S") « next™(S,3). To model this in games
Init, Pres and Rec, we extended the domain of
M to include the empty string € to indicate that
an idealized state of the first form should be re-
turned (for example, when modeling initial state
generation in Init), and extended Pres to allow A

M7 (s)

IfS=e
Vv’ s {0,1}*
C’ + HASH-DRBG_df" (0x00(|V, L)
cnt’ 1

Else (V,C, cnt) < S
H +s{0,1}*
V!« (V 4+ C + cnt + H) mod oL
C" +— C;ent' «+—cnt+1

S’ «— (V',C ent’)

Return S’

Flg 4. Masking function for proof
of Theorem

to output € at the start of the challenge (which

is required for the proof of Theorem (1} see the full version). Juggling these
different state distributions complicates analysis, and introduces multiple cases
into the proof of Pres security. Care is also required when analyzing the dis-
tribution of S’ = MH(S) for S € S, which idealizes the distribution of the
state S’ = (V',C’,cnt’) as updated following an output generation request.
It is straightforward to verify that V' is distributed uniformly over the range
[V +C+ent,V+C+cnt+ (20 —1)] where S = (V,C,ent) and L > £ + 1. To
accommodate this dependency between the updated state S’ and the previous
state S, we have modifed games Pres and Rec so that it is S which is masked
instead of S’. More minor issues, such as: (1) not properly separating the do-
main of queries made by setup™ to produce the counter V from those made to
produce the constant C; and (2) the way in which L is not a multiple of ¢ for
the approved hash functions; make certain steps in the analysis more fiddly than
they might have been. We discuss these issues further in the full version.

Parameter settings. We provide a general treatment into which any param-
eter setting may be slotted, subject to two restrictions which are utilized in the
proof. Namely, we assume that L > ¢+ 1 and n < 2L, where n = [3//] is the
number of output blocks produced by nextH to satisfy a request for B-bits (with-
out this latter restriction HASH-DRBG is trivially insecure, as the same counter
would be hashed twice during output production). We additionally require that
L < 232 and m < 28 where |V|= |C|= L and m = [L/{] is the number of
blocks hashed by setupt / refresh to produce a new counter. This is because
these values have to be encoded as a 32-bit and an 8-bit string, respectively, by
HASH-DRBG_df. All approved hash functions fall well within these parameters.
(Indeed, for all of these, L > 2/, n < 3277 < 2L and m < 3.)

Robustness. With this in place, we present the following theorem bounding
the Rob security of HASH-DRBG. The proof follows from a number of lemmas
presented below, combined with Theorem |1} (When applying Theorem 1} it is

14

readily verified that for HASH-DRBG ¢,z = n+1, gre = 2m, and gm = m.) The
proofs of all lemmas are given in the full version.

Theorem 2. Let G be HASH-DRBG with parameters (p, D, &, Bmaz), built from
a hash function H : {0,1}=¢ — {0,1}* which we model as a random or-
acle. Let L denote the state length of HASH-DRBG where L > ¢+ 1, n =
[B/€], and m = [L/{]. Let M" denote the masking function shown in Fz'gure
and suppose that HASH-DRBG is never called with additional input. Then for
any (qu, qr, 9D, 4c, 4s)-attacker A in game Robg against G, and any (qf,v*)-
legitimate sampler D, it holds that

qr-Gn +2494 |, qr- Ty - (2n+1)
27 —2 202

qr - ((qc —1)(2qy + qc) + Gf) +2
2L—2 :

Advgy - (A D) <

|

Moreover, ¢y = (gun+2m-gp + (n+1) -qr) and g4 = ¢; + m - qr.

Init security. We first argue that the states returned by setup! are indistin-
guishable from MH(¢). The gy - 277" term follows since the initial state variable
Vo will be indistinguishable from random unless the attacker queries H on one of
the points which was hashed to produce it. This in turn requires A to guess the
value of the entropy sample I, which contains v*-bits of entropy. The additional
27L term arises since the queries made to compute the counter V; are not fully
domain separated from those made to compute the constant Cy. Indeed, if it so
happens that I;||N = 0x00||Vy where I; and N denote the entropy input and
nonce (an event which — while very unlikely — is not precluded by the param-
eter constraints in the standard), then the derived values of Vy and Cy will be
equal, allowing the attacker to distinguish with high probability. A small tweak
to the design of setup (e.g., prepending 0x01 to I||N before hashing) would have
avoided this. For implementations of HASH-DRBG for which such a collision is
impossible (e.g., due to length restrictions on the input I) this additional term
can be removed.

Lemma 1. Let G = HASH-DRBG and masking function M" be as specified
in Theorem [3. Then for any gu-adversary A in game Init against G, and any
(g, 7")-legitimate sampler D, it holds that

AdVEN - gn (A D) < gu 277 +275.
Pres security. At the start of game Pres, the (gu,gc)-attacker A outputs
(Sh, I, ..., 13) where d < qc. The game sets (Vp, Co, cntp) <—s MH(S)), and itera-
tively computes Sy via S; = refreshH(S’i_l7 I;) for i € [1,d]. The proof first argues
that unless A queries H on the counter Vj, or any of the counters Vi,..., V4
passed through during reseeding, then (barring certain accidental collisions)
Sa = (V4,Cq,centy) is indistinguishable from a masked state. The proof then
shows that, unless the attacker can guess Vy, the resulting output / state pair is

15

indistinguishable from its idealized counterpart. We must consider a number of
cases depending on whether the tuple (S, I1,. .., Is) output by A is such that:
(1) S{ € Sor S =¢e;and (2) d > 1 or d = 0; since these induce different
distributions on Sy and Sy respectively.

Lemma 2. Let G = HASH-DRBG and masking function M7 be as specified in
Theorem @ Then for any (qu, qc)-adversary A in game Pres against G, it holds
that

qu - (n+1) + (gc —1)(2gn + gc) '

Advgy 5(A) < 96—1 oL

g.M,B

Rec security. The first stage in the proof of Rec security argues that itera-
tively reseeding an adversarially chosen state Sy with d entropy samples which
collectively have entropy v* yields a state Sq = (Vy, Cy, cnty) which is indistin-
guishable from MH(¢). This represents the main technical challenge in the proof,
and uses Patarin’s H-coefficient technique (see full version). Our proof is closely
based on the analogous result for sponge-based PRNGs in the ideal permutation
model (IPM) of Gazi and Tessaro [17], essentially making the same step-by-step
argument. However, making the necessary adaptations to analyze HASH-DRBG
is still non-trivial. As well as working in the ROM as opposed to the IPM, we
must adapt the proof to handle the state component C' and the more involved
reseeding process, which concatenates the responses to multiple H queries to de-
rive updated counters. With this in place, an analogous argument to that made
for Pres security implies that an output / state pair produced by applying next!
to this masked state is indistinguishable from its idealized counterpart.

Lemma 3. Let G = HASH-DRBG and masking function MY be as specified in
Theorem @ Then for any (qu, qc)-adversary A in game Rec against G, and any
(g, 7*)-legitimate sampler D, it holds that

rec qH gH N (QC - 1) i (2QH + QC) + 2qa
AdVGM,V*ﬂD,B(A’D) < 27 —1 + 9(£—1) + 9L :

Using Theorem [I] to combine Lemmas and [3] — which bound the Init, Pres
and Rec security of HASH-DRBG respectively — proves Theorem [2| and com-
pletes our analysis of the robustness of HASH-DRBG in the ROM.

6 Analysis of HMAC-DRBG

In this section, we present our analysis of HMAC-DRBG. We give both positive
and negative results, showing that the security guarantees of HMAC-DRBG differ
depending on whether additional input is provided in next calls.

6.1 Negative Result: HMAC-DRBG Called Without Additional
Input is Not Forward Secure

We present an attack which breaks the forward security of HMAC-DRBG if
called without additional input. This contradicts the claim in the standard that

16

HMAC-DRBG is backtracking resistant. Since Rob security implies Fwd security,
this rules out a proof of robustness in this case also.

The attack. Consider the application of update at the conclusion of a next call
for HMAC-DRBG (Figure). Notice that if addin = ¢, then the final two lines of
update are not executed. In this case, the updated state S* = (K*,V*, ent*) is
of the form V* = HMAC(K™*,r*) where r* is the final output block produced in
the call. An attacker A in game Fwd who makes a RoR query with addin = ¢ to
request ¢-bits of output, followed immediately by a Get query to learn S*, can
easily test this relation. If it does not hold, they know the challenge output is
truly random. We note that the observation that V* depends on r* is also implicit
in the proof of pseudorandomness by Hirose [19]; however, the connection to
forward security is not made in that work. To concretely bound A’s advantage we
define game Fwd$, which is identical to game Fwd against HMAC-DRBG except
the PRNG is initialized with an ‘ideally distributed’ state Sy = (Ko, Vo, cnto)
where K, Vy < {0,1}¢ and cnty < 1. The attacker’s job can only be harder in
Fwd$7 since they cannot exploit any flaws in the setup procedure.

Theorem 3. Let G be HMAC-DRBG built from the function HMAC : {0,1}* x
{0,1}=% — {0,1}¢, with parameters (p, P, a, Bmaz) such that Bmaz > €. Then
there exist efficient adversaries A, B, such that for any sampler D, it holds that

AdviE3 (A, D) > 1— 2 AdvByac(B,2) — 27D

A makes one RoR query in which additional input is not included, and one Get
query. B runs in the same time as A, and makes two queries to their real-or-
random function oracle.

Discussion. The first negative term on the right-hand side of the above equa-
tion is the advantage of an attacker B who tries to break the PRF-security of
HMAC given two queries to its real-or-random function oracle; since HMAC is
widely understood to be a secure PRF, we expect this term to be small. Simi-
larly, ¢ denotes the output length of HMAC and so the second negative term will
be small for all commonly used hash functions. This implies that A succeeds
with probability close to one, making this an effective attack. For simplicity, the
theorem assumes that outputs of length £ bits may be requested (i.e., Bmaz > £);
in the full version, we discuss how to relax this restriction.

6.2 Positive Result: Robustness of HMAC-DRBG Called with
Additional Input in the ROM

In this section, we prove that HMAC-DRBG is robust in the ROM when additional
input is always used, with respect to a restricted (but realistic) class of samplers.
We model the function HMAC : {0,1}¢ x {0,1}=* — {0,1}* as a keyed random
oracle, whereby each fresh query of the form (K,X) € {0,1}¢ x {0,1}=% is
answered with an independent random /¢-bit string.

17

Rationale. While a standard model proof of Pres security MR 5)

is possible via a reduction to the PRF-security of HMAC, | 7=

how to achieve the same for Init and Rec is unclear. These ent < 0

results require showing that HMAC is a good randomness | Flse (K, V. cnt) < S
extractor. In games Init and Rec, the HMAC key is chosen by glgflt:t{i’ll }

or known to the attacker, and so we cannot appeal to PRF- |5 « (K, V', cnt’)

security. Entropy samples are non-uniform, so a dual-PRF [Return s’
assumption does not suffice either. As such, some idealized Fie. 5: _
assumption on HMAC or the underlying hash / compression tiig'ﬂ,; ﬁfﬁj?l;}g{‘ﬁﬁﬁ
function seems to be inherently required. The extraction rem[]

properties of HMAC (under various idealized assumptions) were studied in [12].
However, these consider a single-use version of extraction which is weaker than
what is required here, and typically require inputs containing much more entropy
than is required by the standard, and so are not generally applicable to real-world
implementations of HMAC-DRBG.

By modeling HMAC as a keyed RO, we can analyze HMAC-DRBG with respect
to the entropy levels of inputs specified in the standard (and at levels which
are practical for real-world applications). This is a fairly standard assumption,
having been made in other works in which HMAC is used with a known key or to
extract from lower entropy sources e.g., [32, 23] 24]. In [T4], HMAC was proven to
be indifferentiable from a random oracle for all commonly deployed parameter
settings (although since robustness is a multi-stage game, the indifferentiability
result cannot be applied generically here [31]).

Discussion. A standard model proof of Rec security for HMAC-DRBG would
be a stronger and more satisfying result. While idealizing HMAC or the underly-
ing hash / compression function seems inherent, a result under weaker idealized
assumptions is an important open problem. Despite this, we feel our analysis is a
significant forward step from existing works. Ours is the first analysis of the full
specification of HMAC-DRBG; prior works [19] 21] omit reseeding and initializa-
tion, assuming HMAC-DRBG is initialized with a state for which K,V <s {0, 1}¢,
which is far removed from HMAC-DRBG in a real system. Our work is also the
first to consider security properties stronger than pseudorandomness. We hope
our result is a valuable first step to progress the understanding of this widely
deployed (yet little analyzed) PRNG, and a useful starting point for further work
to extend.

Sampler. Our proof is with respect to the class of samplers {D}, -, defined to be
the set of (¢, 7*)-legitimate samplers for which ~; > v* for i € [1,¢p + 1] (i.e.,
each sample I contains v*-bits of entropy). This is a simplifying assumption,
making the proof of Rec security less complex. However, we stress that this is
the entropy level per sample required by the standard, and so this is precisely
the restriction imposed on allowed entropy sources. An H-coefficient analysis, as
in the proof of Lemma [3] seems likely to yield a fully general result.

Proof of robustness. We now present the following theorem bounding the
robustness of HMAC-DRBG. The proof follows from the lemmas presented below,

18

combined with Theorem (1] (It is straightforward to verify that gref = 4, qna =
n+ 8, and gv = 0). The proofs of all lemmas are given in the full version.

Theorem 4. Let G be HMAC-DRBG with parameters (p,D, &, Bimaz), built from
HMAC : {0,1}* x {0,1}=% — {0,1}* which we model as a keyed random oracle.
Let MHMAC be the masking function shown in Figure @ and n = [B/€]. Then
for any (qu, qr, 9D, 9c ¢s)-attacker A in game Robg against HMAC-DRBG who
always outputs addin # ¢, and any (qh,~*)-legitimate sampler D € {D}.+, it
holds that

AdVrgO,EA,V*,ﬁ(A) <qr-(Gn-ea +e) 27D
+ a2 ar - (Gn - (n43) Fey) 27
+(gn - (2qr + (14272)) - 270770 427G

Here e = 12qc + 10 + (4gc —2) - 277", 2 = (g - (10gc +4n + 18 + (go — 1) -
270" D) +6n+16), e =n(n+1), and gu = (g +4 - gp + (0 +8) - qr).

Concrete example. For HMAC-SHA-512, / = 512 and the bound is dominated
by the O(Gn - qr) - 2=~V term. Supposing ¢p < qr (i.e., there are fewer Ref
than RoR calls) and n is small, then gy - gr < qr - (gu + ¢ - gr) for some small
constant c. Now if HMAC-DRBG is instantiated at strength v* = 256, it achieves
a good security margin up to fairly large gy, qr. At lower +* the margins are
less good; however, this is likely an artefact of the proof technique.

Init security. The proof of Init security argues that unless attacker A queries
HMAC on certain points which require guessing the value of either the input I;
with which HMAC-DRBG was seeded, or an intermediate key / counter computed
during setup, then — barring a collision in the inputs to the second and fourth
HMAC queries made by setup, contributing 27%¢ to the bound — the resulting
state is identically distributed to MAMAC(¢).

Lemma 4. Let G = HMAC-DRBG and masking function MAMAC be a5 specified
in Theorem[], Then for any gu-adversary A in game Init against HMAC-DRBG,
and any (g5, v*)-legitimate sampler D € {D}.,+, it holds that

AdVE W e an (A D) < gn- (142722777 4270y 4 o720

Pres and Rec security. The proofs of Pres and Rec security proceed by
bounding: (1) the probability that two of the points queried to HMAC during
the challenge computation collide; and (2) the probability that A queries HMAC
on one of these points. We then argue that if neither of these events occur,
then the challenge output / state are identically distributed to their idealized
counterparts. However, this process is surprisingly delicate. Firstly, the domains
of queries are not fully separated, so multiple collisions must be dealt with.
Secondly, the guessing / collision probabilities of points from the same domain
differ throughout the game. This rules out a modular treatment, and complicates
the bound. A small modification to separate queries would simplify analysis.

19

Lemma 5. Let G = HMAC-DRBG and masking function MPMAC be as spec-
ified in Theorem . Then for any (qu,qc)-adversary A in game Pres against
HMAC-DRBG who always outputs addin # €, it holds that

Advg 5(A) < (gn - (8gc +6) +e) - 2% 4 (qgu-(n+2)+n(n+1))-27°,
where € = g¢ - (6gc +2n + 8) + 3n + 8.

Lemma 6. Let G = HMAC-DRBG and masking function MHMAC be as spec-
ified in Theorem . Then for any (qu,qc)-adversary A in game Rec against
HMAC-DRBG who always outputs addin # ¢, and any (qh,v*)-legitimate sam-
pler D € {D},-, it holds that

AdVESy e an (A D) < (an - (dge +4+ (dgc —2) - 277) +€) - 272
+lgn-(n+4) +nm+1)- 27 +gu-27077Y

where € = (qo - (4qc +2n+ 10+ (go — 1) - 27" =1) 4+ 3n + 8).

This completes our analysis of the Init, Pres, and Rec security of HMAC-DRBG.
Combining these results via Theorem [I] then proves Theorem [

7 Overlooked Attack Vectors

While the positive results of Sections [f] and [6] are reassuring, the flexibility in the
standard to produce variable length and large outputs (of up to 2! bits) means
that two implementations of the same DRBG may be very different depending
on how limits on output production are set. While this is reflected in the secu-
rity bounds of the previous sections (in terms of the parameter n denoting the
number of output blocks computed per request), we argue that the standard
security notion of robustness may overlook attack vectors against the (fairly
non-standard) NIST DRBGs. The points made in this section do not contradict
the results of the previous sections; rather we argue that in certain (realistic)
scenarios — namely when the DRBG is used to produce many output blocks
per next call — it is worth taking a closer look at which points during output
generation a state may be compromised.

Iterative next algorithms. The next algorithm of each of the NIST DRBGs
has the same high-level structure (modulo slight variations which again frustrate
a modular treatment). First, any additional input provided in the call is incor-
porated into the state, and in the case of HASH-DRBG one of the state variables
is copied into an additional variable in preparation for output generation (i.e.,
setting data = V', see Figure . Output blocks are produced by iteratively ap-
plying a function to the state variables (or in the case of HASH-DRBG, the copy
of the state variable). These blocks are concatenated and truncated to -bits to
form the returned output R, and a final state update is performed to produce 5.

Decomposition. We wish to track the evolution of the state variables during
a next call relative to the production of different output blocks, in order to

20

reason precisely about the effects of state component compromises at different
points. We say that a DRBG has an iterative next algorithm if next may be
decomposed into a tuple of subroutines C = (init, gen, final). Here init : Seed x
SxNSPmazx [0 1}5% — §x{0,1}* updates the state with additional input prior
to output generation, and optionally sets a variable data € {0,1}*. Algorithm
gen : Seed x S x {0,1}* — {0,1}* x & x {0,1}* maps a state S and optional
string data to an output block r € {0, 1}¢, an updated state S’, and string data’ €
{0,1}*. Finally final : Seed x S x NSfmaz x {0 1}=* — S updates the state
post output generation. The next algorithm is constructed from these component
parts as shown in the top left panel of Figure [} The decomposition algorithms
C = (init, gen, final) for each of the NIST DRBGs are shown in remaining panels
of Figure [} For CTR-DRBG and HMAC-DRBG, data is not set during output
generation (e.g., data = €, and so we omit it from the discussion of these DRBGs.
Similarly since none of the NIST DRBGs are specified to take a seed, we omit
this parameter.) A diagrammatic depiction of output generation for each of the
DRBGs is shown in the full version.

Variable length outputs. Within this iterative structure, the gen subroutine
acts like the next algorithm of an internal PRNG, called multiple times within a
single next call to produce output blocks. However, as we shall see, the state up-
dates performed by gen do not provide forward security after each block m This
may not seem unreasonable if the DRBG produces only a handful of blocks per
request; however since the standard allows for up to 2! bits of output to be re-
quested in each next call, there are situations in which the possibility of a partial
state compromise occurring during output generation is worth considering.

Attack scenario: side channels. We consider an attacker who learns some
information about the state variables being processed during output generation,
but who is not able to perform a full memory compromise by which they would
learn e.g., the output blocks r!,..., 7" buffered in the internal memory, thereby
compromising all output in the call. The natural scenario we consider here is
a side channel attack. Generating multiple output blocks in a single next call
results in a significant amount of computation going on ‘under the hood’ of
next — e.g., up to 2'2 = 4096 AES-128 computations using a fixed key K© for
CTR-DRBG with AES-128 — which, given that AES invites leaky implementa-
tions [41 28] 7, [25] 27, 22], is concerning. Since robustness only allows the attacker
to compromise the state after it has ‘properly’ updated (via the final process)
at the conclusion of a next call, it does not model side channel during the call.

Use case: buffering output. As pointed out by Bernstein [5], the overhead
incurred by the state update at the conclusion of a CTR-DRBG next call is
undesirable. As such, an appealing usage choice is to generate a large output

" This is similar to an observation by Bernstein [5] criticizing the inefficiency of
CTR-DRBG’s update function which appeared concurrently to the production of the
first draft of this work. We stress that our modelling of the attack scenario, and
systematic treatment of how the issue affects each of the NIST DRBGs, is novel.

21

next(X, S, B8, addin)
If ent > reseed_interval

Return reseed_required
(5%, data®) « init(X, S, B, addin)
‘ If addin < € then addin < 0" ‘
tempr < € ;n < [B/0]

HMAC-DRBG init
Require : S = (K, V, ent), B, addin
Ensure: S = (K, V, cnt)
If addin # ¢

(K, V) <« update(addin, K, V)
Return (K, V, cnt)

Fori=1,..n HMAC DRBG gen
(r%, 8%, data®) + gen(X, S data®™1) Require (K, V, cnt)
tempr < tempg ||t Ensure r, S = (K, V, cnt)

V < HMAC(K,V) ;r + V

Return r, (K, V, ent)

HMAC-DRBG final

Require : S = (K, V, cnt), 8, addin
Ensure: S = (K, V, cnt)

(K, V) <« update(addin, K, V')

cnt < cnt + 1

Return (K, V, cnt)

R <+ left(tempr, B)
S’ «+ final(X, S™, B, addin)
Return (R, S")

HASH-DRBG init
Require: S = (V, C, ent), B, addin
Ensure: S = (V, C, cnt), data
If addin # €

w <+ H(0x02 || V || addin)

V « (V +w) mod 2F
data <V
Return (V, C, ent), data
HASH-DRBG gen
Require S = (V, C, ent), data
Ensure: r, S = (V, C, ent), data

CTR-DRBG init
Require: S = (K, V, cnt), 8, addin
Ensure: S = (K, V, cent)
If addin # ¢
If derivation function used then
addin + CTR-DRBG._df (addin, (k + £))

r < H(data)
data <+ (data + 1) mod oL
Return r, (V, C, ent), data

HASH-DRBG final

Require: S = (V, C, ent), 8, addin
Ensure: S = (V, C, ent)

H + H(0x03 || V)

V + (V+ H + C + ¢nt) mod oL

Else if len(addin) < (k + £) then
addin <+ addin || p(rte—ten(addin))
(K, V) <« update(addin, K, V)
Return (K, V, cnt)

CTR-DRBG gen

Require: S = (K, V, ent)

Ensure: r, S = (K, V, cnt)

V + (V 4+ 1) mod 2° ;7 + E(K,V)

Return r, (K, V, cnt)

CTR-DRBG final

Require: S = (K, V, ent), 8, addin
Ensure: S = (K, V, cnt)

(K, V) <« update(addin, K, V)

cnt < cnt + 1

Return (K, V, cnt)

cnt < cent + 1
Return (V, C, ent)

FlgG Top left: iterative next algorithm for a DRBG with associated decomposition C =
(init, gen, final). Boxed text included for CTR-DRBG only. Right and bottom left: C = (init, gen, final)
for HASH-DRBG, HMAC-DRBG and CTR-DRBG.

upfront in a single request, and buffer it to later be used for different purposes E|
Our attack model investigates the soundness of this approach for scenarios in
which partial state compromise during output generation via a side channel —
which can only be exacerbated by such usage — is a realistic concern. Portions of
the buffered output may be used for public values such as nonces, whereas other
portions of the output from the same call may be used for e.g., secret keys. As
such, our model assumes an attacker learns an output block sent in the clear as
e.g., a nonce, in conjunction with the partial state information gleaned via a side

8 Indeed, NIST SP 800-90A says: “For large generate requests, CTR-DRBG produces
outputs at the same speed as the underlying block cipher algorithm encrypts data”,
highlighting the efficiency of this approach.

22

channel. The attacker’s goal is to recover unseen output blocks used as security
critical secrets, thereby breaking the security of the consuming application.

7.1 Attack Model

We now describe our attack model. We found that a more formal and / or
code-based model using abstract leakage functions (in line with the literature on
leakage-resilient cryptography e.g., [26] (15 [I]) introduced significant complexity,
without clarifying the presentation of the attacks or providing further insight.
We therefore opted for a more informal written definition of the attack model
which is nonetheless sufficiently precise to capture e.g., exactly what the attacker
may learn, what he is challenged to guess, and so on. We aim to demonstrate
key attacks rather than providing an exhaustive treatment.

Attack setup and goals. Consider the next call shown in Figure [6] Letting
S denote the state input to next, then this defines a sequence of intermediate
states / output blocks passed through during the course of the request:

(S, (SY, data®),r, (S*, data),. .. ,r", (S™, data™),S") ,

with the algorithm finally returning (R, S’) = (r1|... ||r™,S"). (For simplicity,
we assume the requested number of bits is a multiple of the block length; it is
straightforward to remove this assumption.) We consider an attacker A who is
able to compromise a given component of an arbitrary intermediate state S® (or
in the case of HASH-DRBG, the additional state information data®) for i € [0, n],
in addition to an arbitrary output block r7 for j € [1,7n] produced in the same
call. We assume the indices (4, j)E| are known to .A. We then assess the attacker’s
ability to achieve each of the following ‘goals’:
— (1) Recover unseen output blocks produced prior to the compromised block
within the call {r¥}x;;
— (2) Recover unseen output blocks produced following the compromised block
within the call {r¥};;; and
— (3) Recover the state S” as updated at the conclusion of the call. This allows
the attacker to run the generator forwards and recover future output.

Extensions. If addin = ¢, then init returns the state unchanged, S° = S. As
such, all attacks which succeed when SV is partially compromised in our model
can also be executed if the relevant component of state S is compromised prior
to the next call, creating a greater window of opportunity for the attacker.

Security analysis. We analyzed each of the NIST DRBGs with respect to
our attack model, and found that each DRBG exhibited vulnerabilities, with
CTR-DRBG faring especially badly. We summarize our findings in Figure

9 Here we assume the attacker learns a full block and knows its index. This seems
reasonable; for example, a TLS client or server random will contain at least one
whole block and 12 bytes of a second block (if 4 bytes of timestamp are used). These
values would be generated early in a call to the DRBG, and so have a low index j.
Both assumptions can be relaxed at the cost of the attacker performing more work
to brute-force any missing bits and / or the index.

23

(1) Past output|(2) Future output|(3) Updated|Additional
within call within call state S’ input
CTR-DRBG // compromised K v v v v
HMAC-DRBG // compromised K X v v
HASH-DRBG // compromised V/ v v X X

(a) Table summarizing our analysis. The leftmost three columns correspond to Sections
The rightmost column corresponds to Section A v indicates that we demonstrate an attack. A
X indicates that we believe the DRBG is not vulnerable to such an attack, with justification given.
* corresponds to an attack if CTR-DRBG is implemented without a derivation function. ** indicates
an exception in the case that cnt = 1 at the point of compromise.

CTR-DRBG//A(K®,r7,4,7) HMAC-DRBG//A(K®, 77,4,) HASH-DRBG//A(data®, 7,14, j)
Vi ETY (K,) VI i data® « (data® — i) mod 2%
VO« (VI = 5) mod 2° Fork=j+1,...,n Fork=1,...,n
Fork=1,...,n V* « HMAC(K*®, VF—1) r® « H(data®~1)

VFE (VP! £ 1) mod 2° ko vk data® « (data*~' 4 1)

rk — E(K', V) (K', V') + update(addin, K*, V™) | | Return ({r*}r<j, {r"}r>;, L)
(K', V') + update(addin, K*, V™) ent’ «— ent + 1
ent’ <+ cent + 1 S« (K, V', ent’)
S+ (K', V' ent’) Return (L, {r*}x~;,5")
Return ({r*}r<;, {r*}rsj, S")

(b) Adversaries for Section

Flg 7: Summary of analysis (top) and adversaries (bottom) for Scction

7.2 CTR-DRBG with Compromised Key

Since each output block encrypts the secret counter V', leakage of the key compo-
nent of the CTR-DRBG state is especially damaging. Consider attacker A shown
in the left-hand panel of Figure [7b| We claim that for all ¢ € [0,7] and j € [1,n],
if additional input is not used (addin = €) then A achieves goals (1),(2) (recov-
ery of all unseen output blocks produced in the next call) and (8) (recovery of
the next state S’) with probability one. If additional input is used (addin # ¢)
then the same statement holds for (1), (2), and the attacker’s ability to satisfy
(3) is equal to his ability to guess addin. To see this, notice that each block of
output produced in the next call is computed as 7¥ = E(K°, VO +k) for k € [1,n],
where K°, V9 denote the key and counter as returned by init at the start of out-
put generation. The key does not update through this process, and so whatever
intermediate key K° attacker A compromises, this is the key used for output
generation. It is then trivial for A to decrypt the output block 77 received in his
challenge to recover the secret counter, thereby possessing all security critical
state variables. However if addin # €, A must guess its value to compute S’.

Discussion. This attack is especially damaging, since target output blocks
used as e.g., secret keys will be recovered irrespective of their position relative
to the block learnt by the attacker, increasing the exploitability of the com-
promised CTR-DRBG. In comparison, the infamously backdoored DualEC-DRBG
only allowed recovery of output produced after the compromised block, impact-

24

ing its practical exploitability [I0] (although, of course, the embedded backdoor
in DualEC means the attack itself is far easier to execute).

7.3 HMAC-DRBG with Compromised Key

Consider the attacker 4 shown in the middle panel of Figure who compro-
mises the key component K* of an intermediate state of HMAC-DRBG. We claim
that for all ¢ € [0,n] and j € [1, n], if addin = e then A achieves goals (2) and (3)
with probability one. If addin # ¢ then the same statement holds for (2), and
the attacker’s ability to satisfy (3) is equal to his ability to guess addin. To see
this, let K9, V0 denote the state variables at the beginning of output generation.
Output blocks are iteratively produced by computing r* = HMAC(K?, V’“_l) for
k € [1,n], and setting r* = V*. Since the key does not update during this pro-
cess, the key K* compromised by the attacker will be equal to the key K° used
for output generation. Since the output block 7/ which A receives in his challenge
is equal to the secret counter V7, A now knows all security critical state variables
of intermediate state S7. A can then run HMAC-DRBG forward to recover all
output produced following the compromised block in the call, and the updated
state S’ (subject to guessing addin).

Past output in a compromised next call. It appears that even if an attacker
learns the entirety of an intermediate state S* for i € [0,n] in addition to an
output block 7 for j € [1,n], then it is still infeasible to achieve goal (1) and
recover the set of output blocks {rk}k<j produced prior to the compromised
block within the call. To see this, let V9 denote the value of the counter at the
start of output generation. For each j € [1,n], output block r’/ takes the form:
1 = V7 =HMAC/ (K°, V),

where HMAC (K,) denotes the i iterate of HMAC(K,-). As such, recovering
prior blocks 7* for k < j given K° and V7 corresponds to finding preimages of
HMAC(K?,-). Since the key is known to the attacker, we clearly cannot argue
that this is difficult based on the PRF-security of HMAC. However, modeling
HMAC as a random oracle (Section @, it follows that inverting HMAC for suffi-
ciently high entropy V? is infeasible. Formalizing this intuition under a standard
model assumption remains an interesting open question.

7.4 HASH-DRBG with Compromised Counter.

For HASH-DRBG, it is straightforward to see that if A learns the counter V* or
its iterating copy data® for any i € [0,n], j € [1,n], then A achieves goals (1)
and (2) with probability one. Knowledge of the counter is sufficient to execute
the attack; no output block is needed. The case in which data’ is compromised
is shown in the rightmost panel of Figure [Tb} However, unlike CTR-DRBG and
HMAC-DRBG, without also learning the constant C, achieving goal (3) does not
seem to be possible in general; we discuss this further in the full version.

25

7.5 Security of Additional Input

We present an additional attack against CTR-DRBG implemented without a
derivation function; an appealing implementation choice in terms of efficiency
due to the overhead incurred by CTR-DRBG_df. Under certain conditions, this
allows an attacker who compromises the DRBG state to recover strings of addi-
tional input (which may contain secrets) fed to the DRBG during next calls.

The attack. Notice that if CTR-DRBG is implemented without a deriva-
tion function, then raw strings of additional input are XORed directly into the
CTR-DRBG state during the application of the update function in next calls
(Figure] lines 8 and 15). Consider such an implementation of CTR-DRBG built
from AES-128. We describe the attack with respect to the ‘ideal’ conditions.
Suppose that attacker A has compromised the internal state S = (K, V, cnt)lﬂ
and that the state compromise is followed by a next call in which additional
input addin is used. Moreover, suppose addin has the form addin = X || X
where X; € {0,1}2® is known to the attacker and X5 € {0, 1}'?® consists of 128
unknown bits. We assume X5 includes a secret value such as a password which
will be the target of the attack.

At the start of the next call, the state components K,V are updated with
addin via (K°,V°) < update(addin, K, V). It is straightforward to verify that

K| VY= K* | V* @ addin = (K* & X)) || (V* © Xy) ,

where K*||V* = E(K,V + 1) || E(K,V + 2). Since A has compromised (K,V),
they can compute (K*,V*). Moreover, since X; is known to A, it follows that
the updated key K° = (K* @ X7) is known to A also. During output genera-
tion, output blocks are produced by encrypting the iterating counter under K°.
Therefore, the k' block of output is of the form:

r* = E(E VO + k) = E(K°, (V" @ X2) + k) ,

where the variables in bold are known to A. As such, each block of output
produced is effectively an encryption of the target secret X5 under a known key.
Given a single block of output 7*, A can instantly recover the target secret Xy —
consisting of 128-bits of unknown and secret data — as Xy = (E71(K?,r7¥)—k)®
V*. Moreover, it is straightforward to verify that A has sufficient information to
compute the state as updated following the next call. As such, A can continue
to execute the same attack against subsequent output generation requests for as
long as the key component of the state evolves predictably.

Extensions. In the full version we describe how to generalize the attack, and
discuss how use of the derivation function prevents it.

10 Here we mean the working state of the PRNG, as opposed to the ‘intermediate’
states considered in the previous section.

26

8 Open Source Implementation Analysis

In Section |7} we showed that certain implementation decisions — permitted
by the overly flexible standard — may influence the security guarantees of the
NIST DRBGs. To determine if these decisions are taken by implementers in the
real world, we investigated two open source implementations of CTR-DRBG, in
OpenSSL [30] and mbed TLS [8]. We found that between the two libraries these
problematic decisions have indeed been made.

Large output requests. Generating many blocks of output in a single re-
quest increases the likelihood and impact of our attacks. In OpenSSL, the next
call of CTR-DRBG is implemented in the function drbg_ctr_generate in the file
drbg_ctr.c. Interestingly — and contrary to the standard — this function does
not impose any limit on the number of random bits which may be requested. As
such, an arbitrarily large output may be generated using a single key, exacerbat-
ing the attacks of Section More generally, exceeding the output generation
limit increases the success probability of the well-known distinguishing attack
against a block cipher in CTR-mode, which uses colliding blocks to determine
if an output is truly random. The implementation of CTR-DRBG in mbed TLS
limits the number of output blocks per next call to 64 blocks of 128-bits; much
better for security in the context of our attacks than the 4,096 blocks allowed
by the standard. Also, this implementation forces a reseed after 10,000 calls to
next; much lower than the allowed maximum of 248.

Derivation function. In Section [7.5] we described a potential vulnerability
in implementations of CTR-DRBG which do not use a derivation function. We
found that the OpenSSL implementation of CTR-DRBG allows the generator to
be called simultaneously without the derivation function and with additional
input. Specifically, by setting the flags field of the RAND_DRBG_FLAG_CTR_NO_DF
structure to RAND_DRBG_FLAG_CTR the caller may suppress calls to the derivation
function, presumably for performance purposes. As such, the attack described
in Section may be possible in real world implementations.

Summary. Despite the high level and theoretical nature of our analysis, we
found that the problematic implementation decisions which we highlight are
made in the real world. While none of these decisions leads to an immediate vul-
nerability, both the implementation and usage of the functions may exacerbate
other problems such as side channel or state compromise attacks. We hope that
highlighting these issues will help implementers make informed decisions about
how best to use these algorithms in the context of their implementation.

9 Conclusion

We conducted an in-depth analysis of NIST SP 800-90A, to investigate unproven
security claims and explore flexibilities in the standard. On the positive side,
we formally verify a number of the claimed — and yet, until now unproven
— security properties in the standard. However, we argue that taking certain

27

implementation choices permitted by the overly flexible standard may lead to
vulnerabilities.

Design and prove. Certain design features of the NIST DRBGs complicate
their analysis, and a small tweak in design would facilitate a far simpler proof.
This emphasizes the importance of developing cryptographic algorithms along-
side security proofs, and — more importantly — not standardizing algorithms
with unproven security properties.

Flexibility. In Section [6] we saw how the option to call HMAC-DRBG without
additional input changed the algorithm in a subtle way which lead to an attack.
Similarly, the attacks of Section [7] are both facilitated, and exacerbated, by cer-
tain implementation choices allowed by the overly flexible standard. In Section 8]
we confirmed that implementers do make these choices in the real world. These
may be a warning to standard writers to avoid unnecessary flexibility which may
lead to unintended vulnerabilities.

Recommendations. Because these vulnerabilities stem from implementation
choices, we can offer recommendations to make the use of these algorithms more
secure. First off, if the algorithms are being run in a setting where side channel
attacks are a concern then CTR-DRBG should not be used. Additional input
should be (safely) incorporated during output generation wherever possible and
the DRBG should be reseeded with fresh entropy as often as is practical. While
the standard allows outputs of sizeable length to be requested, users should
not ‘batch up’ calls by making a single call for all randomness required for an
application. Finally, the CTR-DRBG derivation function should always be used.

Future work. Analyzing the robustness of CTR-DRBG is an important direc-
tion for further work. More generally, the design flexibilities we critique above
are related to efficiency savings. Designing PRNGs that achieve an optimal bal-
ance between security and efficiency is a key direction for future work. The gap
between the specification of these DRBGs, which allows for various optional in-
puts and implementation choices, and the far simpler manner in which PRNGs
are typically modeled in the literature could indicate that theoretical models are
not adequately capturing real world PRNGs. Extending these models may help
understand the limits and possibilities of what can be achieved.

Acknowledgements. The authors thank Kenny Paterson and the anonymous
reviewers for their insightful comments which greatly improved the paper. The
first author is supported by the EPSRC and the UK government as part of the
Centre for Doctoral Training in Cyber Security at Royal Holloway, University of
London (EP/K035584/1); much of this work was completed during an internship
at Microsoft Research.

Bibliography

1 Abdalla, M., Belaid, S., Pointcheval, D., Ruhault, S., Vergnaud, D.: Robust
pseudo-random number generators with input secure against side-channel
attacks. In: ACNS (2015)

28

10

11

12

13

14

15

16
17

18

19

20
21

Barker, E., Kelsey, J.: NIST SP 800-90A Rev. 1 Recommendation for random
number generation using deterministic random bit generators (2015)
Barker, E., Kelsey, J.: Draft NIST SP 800-90C. Recommendation for random
bit generator (RBG) constructions (2012)

Bernstein, D.J.: Cache-timing attacks on AES. Preprint:
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf (2005)

Bernstein, D.J. Fast-key-erasure random-number-generators.
https://blog.cr.yp.to/20170723-random.html (2017)

Bernstein, D.J., Chang, Y.A., Cheng, C.M., Chou, L.P., Heninger, N., Lange,
T., Van Someren, N.: Factoring RSA keys from certified smart cards: Cop-
persmith in the wild. In: ASTACRYPT (2013)

Bogdanov, A.: Improved side-channel collision attacks on AES. In: SAC
(2007)

Butcher, S., Follath, J., Garcia, A.A.: mbed TLS. https://tls.mbed.org/
(2015-2018)

Campagna, M.J.: Security bounds for the NIST codebook-based determinis-
tic random bit generator. ePrint (2006)

Checkoway, S., Niederhagen, R., Everspaugh, A., Green, M., Lange, T., Ris-
tenpart, T., Bernstein, D.J., Maskiewicz, J., Shacham, H., Fredrikson, M.,
et al.: On the practical exploitability of Dual EC in TLS implementations.
In: USENIX (2014)

Cornejo, M., Ruhault, S.: Characterization of real-life PRNGs under partial
state corruption. In: ACM CCS (2014)

Dodis, Y., Gennaro, R., Hastad, J., Krawczyk, H., Rabin, T.: Randomness
extraction and key derivation using the CBC, cascade and HMAC modes.
In: CRYPTO (2004)

Dodis, Y., Pointcheval, D., Ruhault, S., Vergniaud, D., Wichs, D.: Security
analysis of pseudo-random number generators with input: /dev/random is not
robust. In: ACM CCS (2013)

Dodis, Y., Ristenpart, T., Steinberger, J.P., Tessaro, S.: To hash or not to
hash again? (In) differentiability results for H2 and HMAC. In: CRYPTO
(2012)

Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS
(2008)

FIPS, P.: 140-2. Security Requirements for Cryptographic Modules (2001)
Gazi, P., Tessaro, S.: Provably robust sponge-based PRNGs and KDFs. In:
EUROCRYPT (2016)

Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your ps
and gs: Detection of widespread weak keys in network devices. In: USENIX
(2012)

Hirose, S.: Security analysis of DRBG using HMAC in NIST SP 800-90. In:
WISA (2008)

Kan, W.: Analysis of underlying assumptions in NIST DRBGs. (2007)
Katherine, Q.Y ., Green, M., Sanguansin, N., Beringer, L., Petcher, A., Appel,
A.W.: Verified correctness and security of mbedTLS HMAC-DRBG. ACM

29

22

23

24

25

26

27

28
29

30
31

32

33

34

35

36

37

38

39

CCS (2017)

Kocher, P., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power
analysis. JCEN (2011)

Krawczyk, H.: Cryptographic extraction and key derivation: The HKDF
scheme. In: CRYPTO (2010)

Krawczyk, H., Eronen, P.: Hmac-based extract-and-expand key derivation
function (hkdf) (2010)

Mangard, S.: A simple power-analysis (SPA) attack on implementations of
the AES key expansion. In: International Conference on Information Security
and Cryptology (2002)

Micali, S., Reyzin, L.: Physically observable cryptography. In: TCC (2004)
Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures:
the case of AES. In: CT-RSA (2006)

Percival, C.: Cache missing for fun and profit (2005)

Perlroth, N.: Government announces steps to restore confidence on encryp-
tion standards (2013)

Project, T.O.: Openssl. https://www.openssl.org/ (1998-2018)

Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: Lim-
itations of the indifferentiability framework. In: EUROCRYPT (2011)
Ristenpart, T., Yilek, S.: When good randomness goes bad: Virtual machine
reset vulnerabilities and hedging deployed cryptography. In: NDSS (2010)
Ruhault, S.: SoK: Security models for pseudo-random number generators. In:
TACR Transactions on Symmetric Cryptology (2017)

Shrimpton, T., Terashima, R.S.: A provable security analysis of Intel’s secure
key RNG. In: EUROCRYPT (2015)

Shrimpton, T., Terashima, R.S.: Salvaging weak security bounds for
blockcipher-based constructions. In: ASTACRYPT (2016)

Shumow, D., Ferguson, N.: On the possibility of a back door in the NIST
SP800-90 Dual EC PRNG (2007)

Turan, M.S., Barker, E., Kelsey, J., McKay, K.A., Baish, M.L., Boyle, M.:
SP 800-90B. recommendation for the entropy sources used for random bit
generation (2012)

Vassilev, A., May, W.: Annex C: Approved random number generators for
FIPS PUB 140-2, security requirements for cryptographic modules (2016)
Yilek, S., Rescorla, E., Shacham, H., Enright, B., Savage, S.: When private
keys are public: Results from the 2008 Debian OpenSSL vulnerability. In:
ACM SIGCOMM (2009)

30

	An Analysis of NIST SP 800-90A

