
Reusable Designated-Verifier NIZKs for all NP
from CDH

Willy Quach1, Ron D. Rothblum2, and Daniel Wichs1

1 Northeastern University
quach.w@husky.neu.edu

wichs@ccs.neu.edu
2 Technion

rothblum@cs.technion.ac.il

Abstract. Non-interactive zero-knowledge proofs (NIZKs) are a funda-
mental cryptographic primitive. Despite a long history of research, we
only know how to construct NIZKs under a few select assumptions, such
as the hardness of factoring or using bilinear maps. Notably, there are
no known constructions based on either the computational or decisional
Diffie-Hellman (CDH/DDH) assumption without relying on a bilinear
map.
In this paper, we study a relaxation of NIZKs in the designated verifier
setting (DV-NIZK), in which the public common-reference string is gen-
erated together with a secret key that is given to the verifier in order
to verify proofs. In this setting, we distinguish between one-time and
reusable schemes, depending on whether they can be used to prove only
a single statement or arbitrarily many statements. For reusable schemes,
the main difficulty is to ensure that soundness continues to hold even
when the malicious prover learns whether various proofs are accepted or
rejected by the verifier. One-time DV-NIZKs are known to exist for gen-
eral NP statements assuming only public-key encryption. However, prior
to this work, we did not have any construction of reusable DV-NIZKs
for general NP statements from any assumption under which we didn’t
already also have standard NIZKs.
In this work, we construct reusable DV-NIZKs for general NP statements
under the CDH assumption, without requiring a bilinear map. Our con-
struction is based on the hidden-bits paradigm, which was previously used
to construct standard NIZKs. We define a cryptographic primitive called
a hidden-bits generator (HBG), along with a designated-verifier variant
(DV-HBG), which modularly abstract out how to use this paradigm to
get both standard NIZKs and reusable DV-NIZKs. We construct a DV-
HBG scheme under the CDH assumption by relying on techniques from
the Cramer-Shoup hash-proof system, and this yields our reusable DV-
NIZK for general NP statements under CDH.
We also consider a strengthening of DV-NIZKs to the malicious designated-
verifier setting (MDV-NIZK) where the setup consists of an honestly
generated common random string and the verifier then gets to choose
his own (potentially malicious) public/secret key pair to generate/verify
proofs. We construct MDV-NIZKs under the “one-more CDH” assump-
tion without relying on bilinear maps.

2 Willy Quach, Ron D. Rothblum, and Daniel Wichs

1 Introduction

(Non-Interactive) Zero-Knowledge. Zero-knowledge proofs, introduced in
the seminal work of Goldwasser, Micali, and Rackoff [GMR85,GMR89], allow
a prover to convince a verifier that a statement is valid without revealing any-
thing beyond its validity. Standard zero-knowledge proof systems are interactive.
Blum, Feldman, and Micali [BFM88] introduced the concept of non-interactive
zero-knowledge (NIZK) proofs, which consist of a single message from the prover
to the verifier. Such NIZKs cannot exist in the plain model, and are therefore
considered in the common reference string (CRS) model, where a trusted third
party chooses some common string (either uniformly at random or from some
designated distribution) which is given to both the prover and the verifier. Such
NIZKs for general NP statements have been constructed from a few select as-
sumptions such as: (doubly-enhanced) trapdoor permutations which can be in-
stantiated from factoring [BFM88,DMP88,FLS99,Gol11], the Diffie-Hellman as-
sumption over bilinear groups [CHK03,GOS06] indistinguishability obfuscation
[SW14] or fully exponential KDM hardness [CCRR18]. We also have such NIZKs
in the random-oracle model [FS87].3 However, despite a long history of research,
we don’t have any constructions based on several common standard assumptions:
most notably the computational or decisional Diffie-Hellman assumptions (CDH,
DDH) without requiring a bilinear map, or the learning-with-errors (LWE) as-
sumption.

Designated-Verifier NIZK. In this work, we focus on a relaxed notion of
NIZKs in the designated-verifier setting (DV-NIZK). In this model a trusted-
third party generates a CRS together with secret key which is given to the
verifier and is used to verify whether proofs are accepting or rejecting. We dis-
tinguish between schemes having one-time (a.k.a. single-theorem) security versus
reusable (a.k.a. multi-theorem) security. One-time secure schemes only guarantee
soundness for a single proof of a single statement. However, since the verifier’s
decision whether to accept or reject a proof depends on the secret key, a ma-
licious prover may be able to learn something about the secret key over time
by producing many proofs and seeing whether they are accepted or rejected by
the verifier. Reusable DV-NIZKs ensure that soundness continues to hold even
in such settings, where a prover can test whether the verifier accepts or rejects
various proofs. In terms of constructions, there appears to be a huge gap be-
tween these notions. One-time secure DV-NIZKs were constructed for general
NP statements assuming only the existence of public-key encryption [PsV06].
On the other hand, prior to this work, we did not have any constructions of
reusable DV-NIZKs for general NP statements based on any assumptions under
which we don’t already also have standard NIZKs.

3 Additionally, we have constructions of NIZKs with an inefficient prover based on
one-way permutations [FLS99]. In this work, we restrict ourselves to NIZKs where
the prover can generate proofs efficiently given an NP witness.

Reusable Designated-Verifier NIZKs for all NP from CDH 3

Malicious-Designated-Verifier NIZK. We also consider a strengthening of
(reusable) DV-NIZKs to the malicious-designated-verifier setting (MDV-NIZKs).
In this setting, the trusted party only generates a common uniformly random
string. The verifier then gets to choose a public/secret key pair where the public
key is used by the prover to generate proofs and the secret key is used by the
verifier to verify proofs. The main difference between DV-NIZKs and MDV-
NIZKs is that, in the latter, we require zero-knowledge to hold even if the public
key is chosen maliciously by the verifier. Therefore, an MDV-NIZK is similar to
standard NIZKs in that the only trusted setup consists of a common random
string, but an MDV-NIZK also requires additional potentially untrusted setup
where the verifier publishes a public-key for which it keeps the corresponding
secret key.

The notion of (reusable) MDV-NIZKs is equivalent to 2-round malicious-
verifier ZK protocols in the common random string model (where the verifier’s
first-round message is reusable) by thinking of the verifier’s public key as the first-
round message. It is easy to see that the construction of non-reusable DV-NIZKs
of [PsV06] extends naturally to yield non-reusable MDV-NIZKs assuming 2-
round maliciously secure oblivious transfer in the common random string model.
However, prior to this work, we did not have any constructions of reusable MDV-
NIZKs for general NP statements based on any assumptions under which we
don’t already also have standard NIZKs.

Prior Work on DV-NIZKs and NIZKs with Pre-Processing. In prior
work, the notion of DV-NIZKs was mainly studied in the context of non-malleable
and CCA secure encryption. It is known that one-time DV-NIZKs allow us to
compile any CPA secure (public-key) encryption scheme into a non-malleable
one [PsV06] and reusable DV-NIZKs can compile it into a CCA secure one (by
adapting the [NY90,DDN91] paradigm to the designated-verifier case). In this
context, the work of Cramer and Shoup [CS98,CS02] constructed “hash-proof
systems” which are unconditionally secure reusable DV-NIZKs for specific “al-
gebraic” languages (e.g., the equality of two discrete logarithms) and used them
to get practical CCA secure encryption. However, reusable DV-NIZKs have re-
ceived surprisingly little attention as a general primitive. We believe that this
notion is naturally interesting beyond its applications to non-malleable and CCA
encryption. For example, it can take the place of standard NIZKs in the context
of multiparty computation in scenarios where there is some (reusable) trusted
setup.

DV-NIZKs can be thought of as a special case of a more general notion
of “NIZKs with preprocessing” in which a trusted-third party creates a CRS
together with two secret key: tdV given to the verifier and tdP given to the
prover. We can consider two special cases of such NIZKs with preprocessing:
if tdP is empty then this corresponds to the “designated-verifier” (DV-NIZK)
setting that we study in this work, and if tdV is empty then we can think
of this as a “designated-prover” (DP-NIZK). Several prior works study NIZKs
with preprocessing [DMP90,KMO90,LS91,Dam93,DFN06,CC18] but all either

4 Willy Quach, Ron D. Rothblum, and Daniel Wichs

(1) only consider specific “algebraic” languages rather than general NP, (2)
are not reusable or (3) require assumptions such as factoring from which we
already have standard NIZKs. The one exception is a very recent work of Kim
and Wu [KW18] (CRYPTO 2018), which gave a novel construction of reusable
DP-NIZKs for general NP languages under the LWE assumption. In that work,
they explicitly asked the question whether one can construct reusable NIZKs
in the preprocessing model under the CDH/DDH assumption. We answer their
open question positively in this paper by constructing reusable DV-NIZKs under
CDH. It remains a fascinating open question whether one can construct reusable
DV-NIZKs under LWE, and conversely, whether one can construct reusable DP-
NIZKs under CDH/DDH.

1.1 Our Results.

In this work, we construct reusable DV-NIZKs for general NP languages un-
der the computational Diffie-Hellman (CDH) assumption without requiring a
bilinear map.

Theorem 1.1. Under the CDH assumption, there exists an (adaptively secure,
statistically sound) reusable DV-NIZK proof system for all NP.

We also construct reusable MDV-NIZKs for general NP languages under the
one-more CDH (OM-CDH) assumption without requiring a bilinear map.

Theorem 1.2. Under the One-More CDH assumption (Definition 6.3), there
exists an (adaptively secure, statistically sound) reusable MDV-NIZK proof sys-
tem for all NP.

Our construction goes through the hidden-bits paradigm introduced by Feige,
Lapidot and Shamir [FLS99] (see also [Gol01,Gol11]) to construct standard
NIZKs. This paradigm consists of two steps. First, construct a NIZK for gen-
eral NP statements in an idealized model called the “hidden-bits model” where
the prover is given a long string of uniformly random bits and can choose to
reveal some subset of them to the verifier. Such NIZKs in the hidden-bits model
were constructed unconditionally with statistical soundness and zero knowledge.
Second, use a cryptographic tool to compile NIZKs in the hidden-bits model
to NIZKs in the CRS model. Such a compiler was constructed concretely using
(doubly enhanced) trapdoor permutations, which can be instantiated based on
factoring.

We generalize the second step of the hidden bits paradigm by defining a
cryptographic primitive called a “hidden-bits generator” (HBG) which can be
used to compile NIZKs in the hidden-bits model into ones in the CRS model.4

This primitive modularizes the “hidden-bits paradigm” and simplifies the task
of constructing NIZKs by reducing it to the task of constructing a HBG. We

4 A similar primitive called a “verifiable pseudorandom generator” was defined by
[DN00] for the purpose of constructing ZAPs, which also lead to a construction of
NIZKs.

Reusable Designated-Verifier NIZKs for all NP from CDH 5

also clarify how to use HBG to get adaptive ZK security via the “hidden bits
paradigm”, which turns out to be surprisingly subtle and was not very clear
from prior presentations of this paradigm. To get our main result, we general-
ize the hidden bits paradigm even further by extending the notion of HBG to
the designated-verifier setting (DV-HBG) and the malicious-designated-verifier
setting (MDV-HBG) and showing that the same compiler allows us to go from
DV-HBG (resp. MDV-HBG) to reusable DV-NIZKs (resp. MDV-NIZKs). We
then show how to construct DV-HBG from the computational Diffie-Hellman
(CDH) assumption without bilinear maps. The last step uses the Cramer-Shoup
hash-proof system, which can be thought of as a reusable DV-NIZK for equal-
ity of two discrete logarithms. Therefore we are in some sense bootstrapping a
reusable DV-NIZK for this specific language to get a reusable DV-NIZK for all
of NP. Finally, we show how to construct MDV-HBG from the one-more CDH
(OM-CDH) assumption. This essentially starts with our construction of DV-
HBG, which is clearly insecure in the the malicious-designated-verifier setting,
and shows how to immunize it against malicious attacks. While the high level
idea is simple, the proof of security is quite involved and uses techniques which
may be of independent interest.

1.2 Technical Overview

NIZKs via the Hidden-Bits Paradigm. We first review the “hidden-bits
paradigm” proposed by [FLS99]; see [Gol01,Gol11] for a modern presentation
which we follow here.

The starting point of this paradigm is a construction of NIZKs in an idealized
model called the “hidden-bits model”. In this model, there is a trusted third party
that generates uniformly random bits r1, . . . , rk and gives them to the prover.
The prover outputs a proof π along with a subset I ⊆ [k] of the bits to open. The
verifier gets (I, π) from the prover together with the bits {ri}i∈I from the trusted
third party. Note that the verifier does not learn anything about the unopened
bits {ri}i 6∈I and the prover cannot modify the values of the opened bits {ri}i∈I .
Such NIZKs in the hidden-bits model can be constructed unconditionally with
security against an unbounded prover/verifier where the soundness error can be
made exponentially small.

The second step compiles NIZKs in the hidden-bits model into NIZKs in
the CRS model. Such a compiler was presented by [FLS99,Gol01,Gol11] using
doubly-enhanced trapdoor permutations (TDPs) (see also [BY93,GR13,CL17]).
On a high level, the CRS consists of random values y1, . . . , yk in the range of
the TDP. The prover chooses a random permutation fcom along with an in-
version trapdoor sk and inverts all of the values in the CRS to get preimages
x1, . . . , xk. Define r1, . . . , rk to be hardcore bits of x1, . . . , xk. The prover then
runs the hidden-bits prover with r1, . . . , rk to generate some proof (π, I) to which
it appends the values com, {xi}i∈I . The verifier checks yi = fcom(xi), computes
{ri}i∈I to be the hardcore bit of xi and then runs the hidden bits verifier on
(π, I). Intuitively, a malicious prover has a extremely limited ability to control
the randomness r1, . . . , rk by choosing com; by relying on an exponentially small

6 Willy Quach, Ron D. Rothblum, and Daniel Wichs

soundness error of the hidden-bits proofs which survives a union-bound over all
such com’s, this flexibility is insufficient to break soundness. On the other hand,
the verifier does not learn anything about the values {ri}i 6∈I by the security
of the TDP.5 While this is the high level approach, there are some subtleties
involved; see [BY93,Gol01,Gol04,Gol11,GR13,CL17].

Hidden-Bits Generator (HBG). We begin by defining an abstract cryp-
tographic primitive, which we call a hidden-bits generator (HBG), that can be
used to compile NIZKs in the hidden-bits model to NIZKs in the CRS model.
An HBG that generates k bits consists of three algorithms:

– Setup creates a crs.
– GenBits(crs) outputs a short commitment com whose size is much smaller

than k, along with hidden-bits {ri}i∈[k], and certificates {πi}i∈[k].
– Verify(crs, com, i, ri, πi) checks the certificate πi to verify that ri is indeed

the i’th hidden bit.

An HBG should satisfy two simple properties. Firstly, we require the scheme
to be statistically binding, meaning that (crs, com) together completely determine
some sequence of bits r1, . . . , rk and no (even inefficient) prover can come up with
a valid certificate π′i for the wrong bit r′i 6= ri. Intuitively, by combining the above
property together with the requirement that com is short, we ensure that the
prover does not have much control over the bits ri that he can open and the
limited control that he does have is insufficient to break the soundness of the
hidden-bits NIZK (by amplifying its soundness sufficiently so that it survives a
union bound over all the com’s that the prover can choose). Secondly, we require
the scheme to be computationally hiding, meaning that for any set I ⊆ [k], if
we are given honestly generated crs, com, {ri, πi}i∈I then the “unopened” hidden
bits {rj}j 6∈I are computationally indistinguishable from uniform.

Compiling from Hidden-Bits Model to CRS Model. Intuitively, we
would like to use HBG to compile NIZKs from the hidden-bits model to the
CRS model by letting the prover generate the hidden-bits via the HBG GenBits
algorithm. There are two issues with this basic approach:

– For soundness, if the malicious prover chooses a “bad” (not uniformly ran-
dom) com then the HBG abstraction does not provide any guarantees that
the bits ri to which he is committed are random and hence we cannot rely
on the soundness of the hidden-bits NIZK.

– For zero-knowledge, we notice that the honest hidden-bits prover may choose
the set I adaptively depending on all of the bits {ri}i∈[k] (and indeed this is
the case for the hidden-bits NIZK constructed in [FLS99]) and we still need
to argue that the unopened bits {rj}j 6∈I are hidden. The hiding property of

5 The basic compiler only achieves zero-knowledge for a single theorem and [FLS99]
then relies on another generic compiler via the “or trick” to go from single-theorem
to multi-theorem zero-knowledge.

Reusable Designated-Verifier NIZKs for all NP from CDH 7

HBG only guarantees that the unopened bits are hidden when I is chosen
ahead of time.

To fix both of the above issues we add additional uniformly random bits s1, . . . , sk
to the CRS of the NIZK and define the hidden-bits to be ri⊕ si where ri comes
from the HBG. This ensures that for any fixed com chosen by a malicious prover
the hidden-bits that he can open are uniform over the choice of si.

6 It also
ensures that the choice of the set I chosen by the honest hidden-bits prover is
independent of the outputs ri of the HBG and therefore allows us to rely on
HBG security.

We uncover an additional complication when proving adaptive ZK, where the
malicious verifier can choose the statement to be proven adaptively depending on
the CRS. The work of [FLS99] showed adaptive ZK for their particular protocol
(using particular hidden-bits NIZK) but it did not give a modular proof. Indeed,
our attempts to prove that the compiler can generically start with any hidden-
bits NIZK and achieve adaptive ZK failed for subtle reasons involving “selective
opening” failures. Instead, we were able to abstract out a special property of the
hidden-bits NIZK of [FLS99] which we call “special ZK”, which we show to be
sufficient to get adaptive ZK in the CRS model via the above compiler.

Using the compiler, we reduce the task of constructing NIZKs to that of
constructing an HBG, which is a conceptually much simpler primitive.

Designated Verifier Setting: (M)DV-HBG to (M)DV-NIZK. We gen-
eralize the notion of HBG to the designated-verifier setting (DV-HBG). The
only differences are that: (1) the Setup algorithm generates a crs together with a
trapdoor td which is given to the verifier and the Verify algorithm takes the trap-
door td as an input, (2) we modify the statistically binding security property to
hold even if a computationally unbounded prover can make polynomially many
queries to the Verify(crs, td, · · ·) oracle which allows it to check whether various
certificates are valid or invalid, and (3) we modify the computationally hiding
property to hold even given td. To get our main result, we naturally extend our
compiler to show that DV-HBG allows us to compile NIZKs in the hidden-bits
model into reusable DV-NIZKs. Therefore, we reduce the task of constructing
reusable DV-NIZKs to that of constructing DV-HBG.

We further generalize the notion of HBG to the malicious-designated-verifier
setting (MDV-HBG). Now, in addition to a Setup algorithm that generates the
crs there is a KeyGen algorithm that generates a public key pk along an associated
secret key sk. Essentially, we think of crs, pk as together corresponding to the
crs in the previous definition, and of sk as the trapdoor. The binding property is
essentially the same as before. However, we require that hiding holds even if pk
is generated maliciously (and adaptively depending on crs). We show that MDV-
HBG allows us to compile NIZKs in the hidden-bits model into reusable MDV-
NIZKs. Therefore, we reduce the task of constructing reusable MDV-NIZKs to
that of constructing MDV-HBG.

6 The fact that the prover can adaptively choose com after seeing s1, . . . , sk is handled
by simply taking a union bound over all possible choices of com.

8 Willy Quach, Ron D. Rothblum, and Daniel Wichs

DV-HBG from CDH. We show how to instantiate a designated-verifier DV-
HBG based on the computational Diffie-Hellman (CDH) assumption to get our
reusable DV-NIZK from CDH. Our construction relies on the ideas underlying
the Cramer-Shoup (1-universal) hash-proof system [CS98,CS02] which can be
thought of as an unconditionally secure reusable DV-NIZK for the “equality
of two discrete logs” – i.e., given some public group elements g, h we define
the language consisting of tuples (g′, h′) such that DLOGg(g

′) = DLOGh(h′).
In particular, we think of the projection key of the hash-proof system as the
CRS of the DV-NIZK, and the hashing key as the associated trapdoor. In the
body of our paper, we give our full construction using the specific Cramer-Shoup
instantiation, but for the introduction we will treat the Cramer-Shoup reusable
DV-NIZK proof system as a black-box.

Our DV-HBG construction works as follows. Let G be some cyclic group of
order p and let g be a generator.

– The Setup algorithm chooses random group elements h1, . . . , hk. It also in-
stantiates k copies of the Cramer-Shoup DV-NIZK with respect to the public
group elements (g, hi) respectively. The crs consists of g, h1, . . . , hk together
with the k values {crsi}i∈[k] of the Cramer-Shoup DV-NIZK. The trapdoor
td = {tdi}i∈[k] consists of the k trapdoors for the Cramer-Shoup DV-NIZK.

– The GenBits(crs) algorithm chooses y ← Zq and sets com = gy. For i =
1 . . . , k, it sets ti = hyi , ri = hc(ti), where hc is a hardcore predicate
(e.g., Goldreich-Levin [GL89]). Finally it sets πi = (ti, π

CS
i) where πCSi is a

Cramer-Shoup proof that DLOGg(com) = DLOGhi(ti).
– The Verify algorithm gets ri and πi = (ti, π

CS
i) and checks that ri = hc(ti)

and that πCSi is a valid Cramer-Shoup proof using the corresponding trap-
door tdi.

For the statistically binding property we note that given crs, com the values
ti = hyi and therefore also the hidden bits ri = hc(ti) are completely determined.
The prover cannot lie about ti and therefore also about ri by the unconditional
reusable security of the Cramer-Shoup proof, and this holds even given oracle ac-
cess to the Cramer-Shoup verifier. For the computational hiding property we rely
on the fact that, given g, hi, g

y, the CDH assumption ensures that hyi is compu-
tationally unpredictable and therefore hc(hyi) is indistinguishable from uniform.
This holds even given hj , h

y
j for various random hj since the distinguisher can

sample such values himself by sampling hj = gxj and computing hyj = (gy)xj .

MDV-HBG from One-More CDH. Finally, we show how to instantiate our
malicious-designated-verifier MDV-HBG based on the one-more CDH assump-
tion to get our reusable MDV-NIZK from one-more CDH. The construction and
the security intuition are somewhat involved and so we present them in several
stages.

Initial Attempt. As a first attempt, we can try to use the previous construction
directly as an MDV-HBG. In particular, we can set the crs to only consist of the
uniformly random values crs = (h1, . . . , hk). The Cramer-Shoup DV-NIZKs then

Reusable Designated-Verifier NIZKs for all NP from CDH 9

naturally define pk, sk. Here it helps to be concrete about how the Cramer-Shoup
DV-NIZK works. For each i, the Cramer-Shoup proof system defines pki = haii g

bi

and the corresponding ski = (ai, bi). The MDV-HBG public keys and secret keys
consist of these values pk = {pki}, sk = {ski}. Given a commitment com = gy,
recall that the i’th hidden bit is defined by taking a hardcore predicate ri = hc(ti)
where ti = hyi . The opening to the i’th hidden bit consists of ti = hyi and the
Cramer-Shoup proof πCSi = pkyi .

Attack On Initial Attempt. Unfortunately, it’s clear that the above is not
secure as MDV-HBG. For example, if the malicious verifier chooses pki = hj for
j 6= i then, by opening the i’th hidden bit and giving a proof πCSi = pkyi = hyj ,
the prover inadvertently also reveals the j’th hidden bit! While the above is easily
detectable, the malicious verifier can alternately set pki = hxj for a random x
and still perform the same attack without being detectable. At the very least,
we need to modify our solution to overcome this particular attack.

The Fix. We start with the above “base scheme”, which is not secure in the
MDV setting, and show how to immunize against the above attack. To do so,
we use the “base scheme” to generate ` “base hidden values” for some ` � k
and then combine them carefully to create the k “actual hidden bits”. Recall
that the base scheme defines a commitment gy and the ` base hidden values are
tj = hyj . We can open any base value by giving the opening πCSj = pkyj .

Instead of using the base values directly, we define each of the k “actual
hidden bits” by combining together a small group of base values and applying a
(Goldreich-Levin) hard-core predicate hc. The groups are chosen via a pseudo-
random mapping ϕ which maps each i ∈ [k] to a small group ϕ(i) ⊆ [`]. In other
words, the i’th actual hidden bit is defined as ri = hc({tj : j ∈ ϕ(i)}). The
mapping ϕ is chosen by the prover and is a part of com. To open any actual
hidden bit i ∈ [k] the prover opens all of the base hidden values tyj and also
provides the corresponding Cramer-Shoup proofs pkyj for j ∈ ϕ(i). Note that,
since ϕ is a part of com and we require com to be short, it is important that ϕ has
a short description size and therefore it must be a pseudo-random rather than
truly random mapping. For concreteness, we set the number of based hidden
values to ` = 3kλ and the group size to |ϕ(i)| = λ, where λ is the security
parameter.

Intuition for the Fix. Intuitively, this prevents the above attacks for the
following reason. Assume that the verifier can choose pk maliciously so that the
opening of any base value j can inadvertently also reveal some other base value
j′ = ψ(j), where ψ is some mapping defined implicitly by the choice of pk.
Nevertheless, it is likely that each hidden bit i depends on some hidden value
j ∈ ϕ(i) that is not revealed even if we open all the other hidden bits i′ 6= i.
In particular, opening the bits i′ 6= i corresponds to giving out the base hidden
value j′ as well as the inadvertently opened values ψ(j′) for each j′ ∈ ϕ(i′). But
the entire set of revealed values R = {j′, ψ(j′) : j′ ∈ ϕ(i′), i′ 6= i} is of size
|R| ≤ 2kλ and ϕ(i) ⊂ [` = 3kλ] appears to be a random and independent subset
of size |ϕ(i)| = λ. Hence it is likely that ϕ(i) contains some value j 6∈ R which
was not revealed. Here we crucially rely on the fact that ϕ is chosen (pseudo-

10 Willy Quach, Ron D. Rothblum, and Daniel Wichs

)randomly by the prover after the verifier chooses pk which defines the mapping
ψ.

The One-More CDH Assumption. While the above idea seems to immunize
against the particular class of attacks we previously discussed, proving security
against general attacks is more challenging. Nevertheless, we manage to do so
under the “one-more CDH” assumption. The one-more CDH assumption consid-
ers an adversary who is given g, gy, h1, . . . , hk along with an oracle Oy(·) which
takes as input an arbitrary group element f and returns Oy(f) = fy. It says
that even if the adversary makes m arbitrary calls to the oracle Oy he cannot
predict more than m of the values {hyj}.

Security Under One-More CDH. Our high level proof goes as follows. Assume
that a malicious verifier gets to choose pk = {pkj}j∈[`] maliciously after seeing
crs = {hj}j∈[`] and can break hiding. This means that for some i ∈ [k], if
the verifier gets a random com and openings to all the hidden bits except for
the i’th one, he can distinguish hidden bit i from uniform with non-negligible
advantage. Since the i’th hidden bit is defined by taking the Goldreich-Levin
hardcore bit of the base hidden values j ∈ ϕ(i), this means that the verifier can
also predict all these values with non-negligible probability. So, if the verifier gets
ϕ, g, gy, {hyj , pk

y
j : j ∈ ϕ(i′), i′ ∈ [k] \ {i}} then he can predict {hyj : j ∈ ϕ(i)}.

Intuitively, we want to use such a verifier to break one-more CDH.

But in the above scenario, the verifier gets many more values raised to the
y power than he is able to output. To get around this, we want to “rewind” the
verifier run him on many different choices of ϕ to get more values {hyj : j ∈ ϕ(i)}
out of him. But each time we rewind we also need to provide him with the
appropriate values {hyj , pk

y
j : j ∈ ϕ(i′), i′ ∈ [k] \ {i}} so we are again getting

fewer powers of y out than we need to put in, which appears to be self-defeating.
If ϕ were truly random, we could get around this by freshly sample ϕ(i) on each
rewinding but keep ϕ(i′) : i′ ∈ [k] \ i fixed – that way we would only need
to give out some fixed 2kλ values {hyj , pk

y
j : j ∈ ϕ(i′), i′ ∈ [k] \ {i}} but on

each rewinding we get some additional fresh values {hyj : j ∈ ϕ(i)} out of the
verifier, and eventually we get more out than we put in which allows us to break
one-more CDH.

Unfortunately ϕ needs to have a short description, and therefore can only be
pseudorandom, in which case it’s not clear how to freshly re-sample ϕ(i) while
keeping ϕ(i′) : i′ ∈ [k] \ i fixed. We resolve this issue by using a special form of
pseudorandom functions (PRFs) called “somewhere equivocal PRFs” [HJO+16]
which essentially allow us to do exactly this while keeping the description of ϕ
short. Furthermore, such somewhere equivocal PRFs were constructed from only
one-way functions using the ideas of “distributed point functions” [GI14,BGI15]
and therefore don’t introduce any additional assumptions.

1.3 Concurrent works

Concurrently and independently of ours, the works of [CH19] and [KNYY19]
present a similar construction of reusable DV-NIZKs from CDH, compiling

Reusable Designated-Verifier NIZKs for all NP from CDH 11

the hidden-bits NIZK of [FLS99] using the Cramer-Shoup hash-proof system
[CS98,CS02,CKS08]. Additionally, they respectively obtain the following results:

– [CH19] gives a construction of NIZKs for all NP assuming LWE, along with
a non-interactive witness intistinguishable (NIWI) proof for the Bounded
Distance Decoding problem.

– [KNYY19] builds pre-processing NIZKs for all NP with succinct proofs,
namely a pre-processing NIZK from DDH with proofs of size |C| + poly(λ)
(where C is a circuit checking the NP relation), and a designated-prover
NIZK from (strong) assumptions over pairing-friendly groups, with proof
size |C|+ poly(λ).

Meanwhile, our work introduces the notion of malicious designated-verifier NIZKs
(MDV-NIZK), and presents a construction from the One-More CDH assumption.

Organization

Basic definitions and notations are given in Section 2. In Section 3 we introduce
our new notion of Hidden Bits Generator (HBG). In Section 4 we show how
to use an HBG to construct NIZKs. In Section 5 we construct a designated-
verifier Hidden Bits Generator assuming CDH. A few extension are mentioned
in Section 7. In the full version of the paper, we additionally give a construction
of a HBG from the CDH assumption over bilinear groups and we construct a
HBG from (doubly-enhanced) trapdoor permutations.

2 Preliminaries

We will denote by λ the security parameter. The notation negl(λ) denotes any
function f such that f(λ) = λ−ω(1), and poly(λ) denotes any function f such
that f(λ) = O(λc) for some c > 0.

We define the statistical distance between two random variables X and Y
over some domain Ω as: SD(X,Y) = 1

2

∑
w∈Ω |X(w)− Y (w)| . We say that two

ensembles of random variables X = {Xλ}, Y = {Yλ} are statistically indistin-

guishable, denoted X
s
≈ Y , if SD(Xλ, Yλ) ≤ negl(λ).

We say that two ensembles of random variables X = {Xλ}, and Y = {Yλ} are

computationally indistinguishable, denoted X
c
≈ Y , if, for all (non-uniform) PPT

distinguishers Adv, we have |Pr[Adv(Xλ) = 1]− Pr[Adv(Yλ) = 1]| ≤ negl(λ).

For a set X, integer k and sequence x ∈ Xk, we denote by xi the i-th entry
in the sequence, for any i ∈ [k]. For a subset I ⊂ [k], we denote by xI = (xi)i∈I
the subsequence of x in locations I.

For a probabilistic algorithm alg(·), we may explicit its internal randomness
as follows: alg(· ; coins).

12 Willy Quach, Ron D. Rothblum, and Daniel Wichs

2.1 The Diffie-Hellman Assumption

A group generator (G, p, g)← GroupGen(1λ) is a PPT algorithm which, on input
1λ, outputs the description of a cyclic group G of order p, and a generator g of
G. We require that there are efficient algorithms running in time poly(λ) to
perform the group operation in G and to test membership in G. For notational
simplicity, we will often shorten such an output (G, p, g) to G and assume that
g, p are implicit. A prime-order group generator additionally ensures that p is
prime.

Definition 2.1 (Computational Diffie-Hellman (CDH) assumption). Let
GroupGen be a group generator. We say that the Computational Diffie-Hellman
(CDH) assumption holds relative to GroupGen if for all PPT algorithm A, we
have:

Pr
[
A
(
G, p, g, ga, gb

)
= gab : (G, p, g)← GroupGen(1λ), (a, b)

$← Z2
p

]
≤ negl(λ).

Given such a group generator satisfying the CDH assumption, we can con-
sider an associated (randomized) hard-core bit hc : G→ {0, 1} such that for all
PPT algorithm A, we have:

Pr

A (G, p, g, ga, gb, τ) = hc(gab ; τ) :
τ

$← {0, 1}L(λ)

(G, p, g)← GroupGen(1λ)

(a, b)
$← Z2

p

 ≤ 1/2+negl(λ),

where the hard-core bit hc uses L(λ) random coins.

Such a hard-core bit can be generically obtained, using the Goldreich-Levin
construction [GL89].

2.2 Reusable Designated-Verifier NIZKs

In this section we define the notion of Reusable Designated-Verifier NIZKs (and
obtain the standard notion of NIZK as a special case).

Definition 2.2 (Reusable DV-NIZKs). Let be L an NP language with wit-
ness relation RL. A Reusable Designated-Verifier Non-Interactive Zero-Knowledge
(DV-NIZK) Proof for L is a tuple of PPT algorithms (Setup,P,V) where:

– Setup(1λ, 1n): On input the security parameter λ and statement length n,
outputs a common reference string crs and a trapdoor td;

– P(crs, x, w): On input a common reference string crs, a statement x of length
n and a witness w, outputs a proof π;

– V(crs, td, x, π): On input a common reference string crs, a trapdoor td, a
statement x and a proof π, outputs accept or reject,

such that they satisfy the following properties:

Reusable Designated-Verifier NIZKs for all NP from CDH 13

– Completeness: We require that for all (x,w) ∈ RL, we have:

Pr

[
V(crs, td, x, π) = accept :

(crs, td)← Setup(1λ, 1|x|)
π ← P(crs, x, w)

]
= 1;

– Statistical Soundness: Let n and Q be any polynomials, and let P̃ be
any (computationally unbounded) cheating prover that makes at most Q(λ)
queries to an oracle V(crs, td, ·, ·) which takes as input (x, π), and outputs
V(crs, td, x, π)). We require that:

Pr

[
V(crs, td, x, π) = accept ∧ x /∈ L :

(crs, td)← Setup(1λ, 1n(λ))

(x, π) ← P̃ V(crs,td,·,·)(crs)

]
≤ negl(λ);

– Zero-Knowledge (Selective): We require that there exists a PPT simu-
lator Sim such that for any PPT stateful7 adversary A, the two following
distributions are computationally indistinguishable:

expReal(1λ) : expIdeal(1λ) :

(x,w)← A(1λ) (x,w)← A(1λ)
where (x,w) ∈ RL where (x,w) ∈ RL

(crs, td)← Setup(1λ, 1|x|), π ← P(crs, x, w) (crs, td, π)← Sim(1λ, x)
Output A(crs, td, π) Output A(crs, td, π)

Our basic definition only considers selective ZK where the statement being
proven is chosen ahead of time, prior to seeing the CRS. In Section 4.1 we also
consider a stronger notion of adaptive ZK.

Our definition of designated-verifier NIZK coincides with that of standard
(publicly verifiable) NIZK if the trapdoor td is empty.

Definition 2.3. A publicly-verifiable NIZK is a reusable designated-verifier NIZK
where the trapdoor td output by Setup is an empty string.

Remark 2.4 (Bounding the number of queries to the Verify oracle). Notice that
for soundness we only allow the unbounded cheating prover to make a polyno-
mial number of queries to V(crs, td, ·, ·). One would ideally allow the unbounded
cheating prover to make arbitrarily many queries to V (matching more closely
the publicly-verifiable setting, where a cheating prover can indeed query the ver-
ification algorithm on arbitrarily many inputs). It turns out that any DV-NIZK
satisfying this stronger notion can be generically turned into a publicly-verifiable
one. This is because the cheating prover can query all possible proofs to V for
any x /∈ L; and therefore soundness can only hold if there are no valid proof of
any false statement (with overwhelming probability over the choice of crs), in
which case soundness also holds when the prover is given the trapdoor. Therefore
this is essentially the best requirement one can hope for as a meaningful notion
of reusable DV-NIZKs which is weaker than publicly-verifiable ones.
7 Throughout this paper we follow the convention that whenever a stateful adversary
A is invoked with some inputs it also produces some state which it gets as input on
the next invocation.

14 Willy Quach, Ron D. Rothblum, and Daniel Wichs

Remark 2.5 (Single-Theorem vs. Multi-Theorem Zero-Knowledge.). The defini-
tion of ZK above is often referred to as “single-theorem ZK” since it only requires
zero-knowledge to hold for a single statement. However, there is a generic com-
piler from single-theorem ZK to multi-theorem ZK where zero-knowledge holds
polynomially many statements via the “OR trick” [FLS99]. We note that the
very same transformation directly applies to both the selective and adaptive ZK
setting and also both the publicly-verifiable and the designated-verifier setting.

2.3 NIZKs in the Hidden-Bits Model

We now recall the definition of a NIZK in the hidden-bits model:

Definition 2.6 (NIZK in the Hidden-Bits Model). Let L be an NP lan-
guage and n be an integer. A Non-Interactive Zero-Knowledge Proof in the
Hidden-Bits Model for L is given by a pair of PPT algorithms (P,V), and a
polynomial k(λ, n), where:

– P(1λ, r, x, w): On input string r ∈ {0, 1}k(λ,n), a statement x of size |x| = n
and a witness w, output a set of indices I ⊆ [k] and proof π.

– V(1λ, I, rI , x, π): On input a subset I ⊆ [k], a string rI , a statement x and
a proof π, outputs accept or reject,

such that they satisfy the following properties:

– Completeness: We require that for all x ∈ L of size |x| = n with witness
w we have:

Pr

[
V(1λ, I, rI , x, π) = accept : r

$← {0, 1}k(λ,n)

(I, π)← P(1λ, r, x, w)

]
= 1;

– Soundness: We require that for all polynomial n = n(λ), and all unbounded

cheating prover P̃, we have:

Pr

 V(1λ, I, rI , x, π) = accept

∧ x /∈ L
∧ |x| = n

:
r

$← {0, 1}k(λ,n)

(x, π, I)← P̃(1λ, r)

 ≤ negl(λ);

– Zero-Knowledge: We require that there exists an efficient simulator Sim
such that for any adversary A the two following distributions are statistically
indistinguishable:

(I, rI , π)
s
≈ (I ′, r′I , π

′)

where (x,w)← A(1λ), r ← {0, 1}k(λ,|x|), (I, π)← P(1λ, r, x, w), (I ′, r′I , π
′)←

Sim(1λ, x).

When clear from context, we will omit 1λ as an argument to the algorithms
defined above.

Reusable Designated-Verifier NIZKs for all NP from CDH 15

Remark 2.7 (Amplifying soundness). Let `(λ, n) be a polynomial. Then, given
any NIZK in the hidden-bits model, we can build one with soundness 2−`(λ,n) ·
negl(λ). This is simply done by running `(λ, n) copies of the NIZK in parallel,
and where the new verification algorithm accepts a proof if and only if all of
the executions accept. Note that doing so requires to use k · `(λ, n) hidden bits
instead of k initially.

Theorem 2.8 ([FLS99], see also [Gol01, Section 4.10.2]). Every L ∈ NP
has a NIZK in the Hidden-Bits Model.

3 Hidden-Bits Generator

In this section, we define our new notion of Hidden-Bits Generator (HBG). For
simplicity, we first define a publicly verifiable version of HBG and then extend
the definition to a designated-verifier version (DV-HBG).

Definition 3.1 (Hidden-Bits Generator). A Hidden-Bits Generator (HBG)
is given by a set of PPT algorithms (Setup,GenBits,Verify):

– Setup(1λ, 1k): Outputs a common reference string crs.

– GenBits(crs): Outputs a triple
(
com, r, {πi}i∈[k]

)
, where r ∈ {0, 1}k.

– Verify(crs, com, i, ri, πi): Outputs accept or reject, where i ∈ [k].

We require any Hidden-Bits Generator to satisfy the following properties:

Correctness: We require that for every polynomial k = k(λ) and for all i ∈
[k], we have:

Pr
[
Verify(crs, com, i, ri, πi) = accept :

crs ← Setup(1λ, 1k)
(com, r, π[k])← GenBits(crs)

]
= 1.

Succinct Commitment: We require that there exists some set COM(λ) and

some constant δ < 1 such that |COM(λ)| ≤ 2k
δpoly(λ), and such that for all

crs output by Setup(1λ, 1k) and all com output by GenBits(crs) we have com ∈
COM(λ). Furthermore, we require that for all com /∈ COM(λ), Verify(crs, com, ·, ·)
always outputs reject.8

8 The set of commitments COM should not be thought of as the set of all valid com-
mitments (and indeed it may contain commitments not in the support of GenBits).
In particular, the simplest way to satisfy this property is to bound the bit-length of
com and have the verifier reject commitments that are too large. Note that additional
structural properties about com can be checked by the Verify algorithm.

16 Willy Quach, Ron D. Rothblum, and Daniel Wichs

Statistical Binding: There exists an (inefficient) deterministic algorithm
Open(1k, crs, com) such that for every polynomial k = k(λ), on input 1k, crs
and com, the algorithms outputs r such that for every (potentially unbounded)

cheating prover P̃:

Pr

 r∗i 6= ri
∧ Verify(crs, com, i, r∗i , πi) = accept

:

crs ← Setup(1λ, 1k)

(com, i, r∗i , πi)← P̃(crs)
r ← Open(1k, crs, com)

 ≤ negl(λ).

Computationally Hiding: We require that for all polynomial k = k(λ) and
I ⊆ [k], the two following distributions are computationally indistinguishable:(

crs, com, I, rI , πI , rĪ

)
c
≈(

crs, com, I, rI , πI , r
′
Ī

)
,

where crs← Setup(1λ, 1k), (com, r, π[k])← GenBits(crs) and r′
$← {0, 1}k.

Designated-Verifier Hidden-Bits Generator. We define the Designated-
Verifier version of a Hidden-Bits Generator (DV-HBG) similarly, but with the
following differences:

– Setup(1λ, 1k) : Now outputs (crs, td), where td is a trapdoor associated to
the crs;

– Verify(crs, td, com, i, ri, πi) takes the trapdoor td as an additional input, and
outputs accept or reject as before;

– For Statistical Binding, the cheating prover P̃ can now make a polynomial
number of oracle queries to Verify(crs, td, · · ·). We require that for any such

P̃ :

Pr

 r∗i 6= ri
∧ Verify(crs, td, com, i, r∗i , πi) = accept

:

(crs, td) ← Setup(1λ, 1k)

(com, i, r∗i , πi)← P̃Verify(crs,td,···)(crs)
r ← Open(1k, crs, com)

 ≤ negl(λ).

– For Computational Hiding, we require that the distributions are indistin-
guishable given the associated trapdoor td:(

crs, td, com, I, rI , πI , rĪ

)
c
≈
(
crs, td, com, I, rI , πI , r

′
Ī

)
,

where (crs, td)← Setup(1λ, 1k), (com, r, π[k])← GenBits(crs) and r′
$← {0, 1}k.

4 From Hidden-Bits Generator to NIZKs

We now prove that we can combine any (DV-)HBG with a NIZK in the Hidden-
Bits model to get a (Reusable DV-)NIZK in the CRS model. Recall that our

Reusable Designated-Verifier NIZKs for all NP from CDH 17

basic notion of NIZKs considered selective version of ZK where the statement to
be proven is chosen prior to seeing the CRS. In Section 4.1 we will then extend
our compiler to the adaptive ZK setting.

Theorem 4.1. Suppose there exists a Hidden-Bits Generator, then there exists
a publicly verifiable NIZK. Suppose there exists a designated-verifier Hidden-
Bits Generator (DV-HBG), then there exists a reusable designated-verifier NIZK
(reusable DV-NIZK).

For simplicity, we first consider the publicly verifiable version of Theorem 4.1,
the minor differences that are needed to extend it to the designated-verifier
setting are discussed in the full version of the paper.

Construction. Let L be an NP language and n be an integer. Let (SetupBG,
GenBits, Verify) be a hidden-bits generator (Definition 3.1), where |COM| =

|COM(λ)| ≤ 2k
δp(λ) for some polynomial p and constant δ < 1. (where k is the

number of hidden bits generated).
Given a NIZK in the hidden-bits model for L using k′ = k′(λ, n) hidden bits

(which exists unconditionally by Theorem 2.8), by Remark 2.7, there exists, for
all polynomial q(λ, n) (which we will set later), a NIZK in the hidden-bits model
(PHB,VHB) using k = k′ · q(λ, n) hidden bits with soundness-error 2−q(λ,n) ·
negl(λ).

Consider the following candidate NIZK (SetupZK,P,V) in the CRS model:

– SetupZK(1λ, 1n): Compute crsBG ← SetupBG(1λ, 1k), sample s
$← {0, 1}k and

output:
crs = (crsBG, s);

– P(crs, x, w): Compute (com, rBG, π[k]) ← GenBits(crsBG). Set ri = rBGi ⊕ si
for all i ∈ [k], and run the hidden-bits prover to get (I ⊆ [k], πHB) ←
PHB(r, x, w). Output:

Π = (I, πHB, com, rI , πI).

– V(crs, x,Π = ((I, πHB, com, rI , πI))): Compute rBGi = ri ⊕ si for all i ∈ [k].
Accept if for all i ∈ I, Verify(crsBG, com, i, rBGi , πi) accepts, and if VHB(I, rI , x, π

HB)
also accepts.

We refer the reader to the full version of the paper for a proof that (SetupZK,P,V)
is a NIZK, and how to extend this construction to the designated-verifier setting.

4.1 Adaptive ZK

Our default definition of (reusable designated-verifier) NIZKs considers a selec-
tive version of the zero-knowledge property, where the statement x is chosen
before the CRS. We also consider a stronger adaptive zero-knowledge property,
where the statement x can depend adaptively on the CRS. Let us begin by
defining adaptive ZK.

18 Willy Quach, Ron D. Rothblum, and Daniel Wichs

Definition 4.2 (Adaptive ZK). A (reusable designated-verifier) NIZK satis-
fies adaptive Zero-Knowledge (adaptive ZK) if the following holds. We require
that there exists a stateful PPT simulator Sim such that for any stateful PPT
adversary A the two following distributions are computationally indistinguish-
able:

expReal(1λ) : expIdeal(1λ) :

1n ← A(1λ) 1n ← A(1λ)
(crs, td)← Setup(1λ, 1n) (crs, td)← Sim(1λ, 1n)
(x,w)← A(crs, td) (x,w)← A(crs, td)

where (x,w) ∈ RL, |x| = n where (x,w) ∈ RL, |x| = n
π ← P(crs, x, w) π ← Sim(x)
Output A(π) Output A(π)

The compiler of Theorem 4.1 can be extended to the adaptive setting:

Theorem 4.3. Suppose there exists a Hidden-Bits Generator, then there ex-
ists a publicly verifiable NIZK with adaptive ZK security. Suppose there ex-
ists a designated-verifier Hidden-Bits Generator (DV-HBG), then there exists
a reusable designated-verifier NIZK (DV-NIZK) with adaptive ZK security.

We refer to the full version of the paper for the proof of Theorem 4.3.

5 Designated-Verifier Hidden-Bits Generator from
CDH

Let (G, p, g) ← GroupGen(1λ) be a prime-order group generator so that G is
a group of prime order p, with a generator g. Let hc be the corresponding
Goldreich-Levin [GL89] hard-core bit. Let us define the following hidden-bits
generator:

– Setup(1λ, 1k): Let (G, p, g) ← GroupGen(1λ). For all i ∈ [k], pick random

ai, bi
$← Zp and hi

$← G and compute:

fi = haii · g
bi .

Sample some random coins γ matching the randomness used by hc(·). Out-
put: (

crs =
(
G, {(hi, fi)}i∈[k], γ

)
, td = {(ai, bi)}i∈[k]

)
.

– GenBits(crs): Pick a random y ← Zp, and compute for all i ∈ [k]: ti = hyi
and ui = fyi . Output:

com = s = gy,

{ri = hc(ti; γ)}i∈[k],

{πi = (ui, ti)}i∈[k].

Reusable Designated-Verifier NIZKs for all NP from CDH 19

– Verify(crs, td = {(ai, bi)}, com = s, i, ri, πi = (ui, ti)) : Compute:

ρi = taii · s
bi ,

and accept if and only if ρi = ui, and ri = hc(ti; γ).

Theorem 5.1. The triple (Setup,GenBits,Verify) is a Designated-Verifier Hidden-
Bits Generator under CDH.

We refer to the full version of the paper for a proof of Theorem 5.1.
Combining Theorems 4.3 and 5.1, and Remark 2.5, we obtain the following:

Theorem 5.2 (Reusable DV-NIZK from CDH). Under the CDH assump-
tion, there exists a reusable DV-NIZK for all NP with statistical soundness, and
adaptive, multi-theorem zero-knowledge (Definitions 2.2, 4.2).

6 Malicious-Designated-Verifier NIZKs

In this section we consider a strengthening of designated-verifier NIZKs to the
malicious-designated-verifier setting (MDV-NIZK). In this setting, the trusted
setup consists solely of a common random string (CRS). Given the CRS, the
(potentially malicious) verifier generates a public key pk along with a secret key
sk. The rest of the protocol is otherwise similar to the previous setting: any
prover can use the CRS along with the newly generated public key to build
non-interactive proofs of (many) NP statements, which can be verified using the
corresponding secret key. The main difference is that we require zero-knowledge
to hold against malicious verifiers, who can generate arbitrarily malformed public
keys pk.

6.1 More Preliminaries

Reusable Malicious-Designated-Verifier NIZK

Definition 6.1 (Reusable Malicious-Designated-Verifier NIZK (MDV-
NIZK)). Let L be an NP language with witness relation RL. A Reusable Malicious-
Designated-Verifier NIZK (MDV-NIZK) for L is a tuple of PPT algorithms
(Setup,KeyGen,P,V) where:

– Setup(1λ, 1n): outputs a common random string crs;
– KeyGen(crs): outputs a public key pk along with an associated secret key sk;
– P(crs, pk, x, w): outputs a proof π;
– V(crs, sk, pk, x, π): Outputs accept or reject.

We require those algorithms to satisfy the same completeness and statistical
soundness properties as Reusable DV-NIZKs (see Definition 2.2) with direct
modifications to match the new syntax above, where now (crs, pk) together act
in place of what was previously just the crs. The requirement for zero-knowledge
is strengthened to the following:

20 Willy Quach, Ron D. Rothblum, and Daniel Wichs

Malicious Zero-Knowledge (Adaptive): We require that there exists a PPT
simulator Sim such that for any PPT stateful adversary A, the two following
distributions are computationally indistinguishable:

expReal(1λ) : expIdeal(1λ) :

1n ← A(1λ) 1n ← A(1λ)
crs← Setup(1λ, 1n) crs← Sim(1λ, 1n)
(x,w, pk)← A(crs) (x,w, pk)← A(crs)

where (x,w) ∈ RL, |x| = n where (x,w) ∈ RL, |x| = n
π ← P(crs, pk, x, w) π ← Sim(pk, x)
Output A(π) Output A(π)

Remark 6.2 (Single-Theorem vs. Multi-Theorem Zero-Knowledge). As in Def-
inition 2.2, the definition above only captures single-theorem zero-knowledge.
However the same “Or trick” of [FLS99] as in Remark 2.5 allows to generically
compile any MDV-NIZK with single-theorem, adaptive (resp. selective) ZK into
one satisfying multi-theorem, adaptive (resp. selective) ZK.

One-More CDH

We will use in this section a strengthening of the CDH assumption called One-
More CDH. Intuitively, it states that given a set of challenge elements {hj = gbj}
and the ability to make m queries to an oracle that raises arbitrary elements to
some hidden exponent a ∈ Zp, it is hard to guess more than m of the values
h
aj
j = gabj .

Definition 6.3 (One-More Computational Diffie-Hellman assumption
(One-More CDH)). Let GroupGen be a group generator. Let ` = `(λ) and
m = m(λ) be polynomials. Consider, for any PPT A, the following experiment:

ExpOne-More CDH(1λ)

1. (G, p, g)← GroupGen(1λ)

2.
(
ga, {gbi}i≤`

) $← G1+`

3. L← AOa(·)(G, p, g, ga, {gbi}i≤`)

4. Output 1 if ∃ i1 < · · · < im+1 ∈ [`] such that ∀j ≤ m+ 1,, g
a·bij ∈ L;

Otherwise output 0,

where the oracle Oa takes as input a group element h ∈ G and outputs ha.

Reusable Designated-Verifier NIZKs for all NP from CDH 21

We say that the One-More CDH assumption holds relative to GroupGen9 if
for all PPT algorithm A making at most m queries to Oa, we have:

Pr[ExpOne-More CDH(1λ) = 1] ≤ negl(λ).

Remark 6.4 (One-More CDH in Prior Works). A variety of previous works de-
fined assumptions similar to the one above. To our knowledge, the first of this
kind was introduced in the context of blind signatures in [Bol03], following the
steps of [BNPS03] who first introduced One-More variants of the RSA and Dis-
crete Log assumptions. More recently, another variant was used in the context
of Oblivious PRFs (e.g. [JKK14]). The variant of [Bol03] requires the adversary
to output one single guess for each target index j ∈ J , as opposed to a list of
candidates L. As the adversary a-priori cannot test himself whether an element
is correct, this makes it more difficult for the adversary to win the game and
therefore the assumption of [Bol03] is weaker than our version in Definition 6.3.
In [JKK14], on the other hand, the adversary is also given oracle access to a
procedure that tests whether an element is a correct CDH output associated
to some target index, but still has to output a single element for each target
index. A direct reduction shows that this assumption is at least as strong as our
variant: an adversary in the latter can call the oracle of [JKK14] on the whole
list L to recover the matching indices.

Somewhere-Equivocable PRFs (SEPRFs)

We recall here the concept of Somewhere-Equivocable pseudorandom function
(SEPRF)s, introduced in [HJO+16]. This is a function PRF(K, ·) with two modes
of generating a key. There is the standard key generation algorithm which gen-
erates a key K honestly. In addition, there is a way to generate a key K ′ that
leaves a “hole” at some particular point x∗ but defines the PRF output at all
other points; later one can “plug the hole” to any value r by creating a key K∗

which agrees with K ′ on all values other than x∗ but on x∗ it outputs r. For any
x∗ and a random r one cannot distinguish between an honestly generated key K
and the key K∗ created as above. Intuitively, the second mode of key generation
ensures that the function PRF(K∗, ·) outputs a truly random and independent
value on some specific point x∗.

Definition 6.5 (1-Somewhere-Equivocable PRFs (1-SEPRFs) [HJO+16]).
A 1-Somewhere-Equivocable PRF (1-SEPRF) with input size s and output size
d is a tuple of PPT algorithms (ObvGen,PRF,Sim1,Sim2):

9 Later, we will also use the (mild) additional property that one can obliviously sam-
ple uniform group elements in G, so that the One-More CDH assumption holds
even given the random coins used to sample the group elements in Step 2. (and in
particular a and the bi’s should be computationally hidden). Note that most stan-
dard groups (such as Z∗

p or elliptic curves) allow to do so. Looking ahead, if such a
property does not hold, the resulting MDV-NIZK (Theorem 6.9) will use a common
reference string instead.

22 Willy Quach, Ron D. Rothblum, and Daniel Wichs

– ObvGen(1λ): outputs a key K such that PRF(K, ·) maps {0, 1}s to {0, 1}d;
– Sim1(x∗): on input x∗ ∈ {0, 1}s, outputs a key K and a state state;
– Sim2(state, r): on input r ∈ {0, 1}d, outputs a key K ′.

such that the following properties hold:

Correctness: We have that for all x∗ ∈ {0, 1}s and r ∈ {0, 1}d, if (K, state)
$←

Sim1(x∗) and K ′
$← Sim2(state, r), then:

PRF(K,x) = PRF(K ′, x) if x 6= x∗

PRF(K ′, x∗) = r.

Equivocation security: For all PPT adversary A we have:∣∣∣∣∣∣∣∣∣Pr

 x∗
$← A(1λ)

K
$← ObvGen(1λ)
A(K) = 1

− Pr

x∗

$← A(1λ), r∗
$← {0, 1}d

(K, state)← Sim1(x∗)

K ′
$← Sim2(state, r∗)
A(K ′) = 1

∣∣∣∣∣∣∣∣∣ ≤ negl(λ).

Claim ([HJO+16]). Assuming one-way functions exist, there exist 1-SEPRFs,
with key size O(s · d · λ).

6.2 Reusable Malicious-Designated-Verifier HBG (MDV-
HBG)

To define a reusable Malicious-Designated-Verifier Hidden-Bits Generator (MDV-
HBG), we extend the definition of a DV-HBG in a manner analogous to the
difference between DV-NIZKs and MDV-NIZKs. Namely, instead of having a
trusted setup that generates a public crs along with a secret key sk for the
verifier, we now only have the setup algorithm generate the crs and allow the
(potentially malicious) verifier to generate pk, sk on his own via a new KeyGen
algorithm. Furthermore, we want to ensure that the generated hidden bits only
depend on crs but not on pk; only the openings of the hidden bits can depend
on pk.

Definition 6.6 (Reusable Malicious-Designated-Verifier HBG (MDV-
HBG)). A Reusable Malicious-Designated-Verifier HBG is a tuple of PPT al-
gorithms (Setup,KeyGen, (GenBits.Commit,GenBits.Prove),Verify):

– Setup(1λ, 1k): outputs a common random string crs.
– KeyGen(crs): outputs a public key pk with an associated secret key sk.
– GenBits(crs, pk) is now split into two sub-procedures:
• GenBits.Commit(crs): on input a crs, outputs a commitment com, some

bits r ∈ {0, 1}k and a state state.
• GenBits.Prove(crs, pk, state): on input a public key pk, a crs and a state
state, produces proofs {πi}i∈k.

Reusable Designated-Verifier NIZKs for all NP from CDH 23

It outputs (com, r, {πi}i∈[k]).
– Verify(crs, sk, com, i, ri, πi): Outputs accept or reject.

We require an MDV-HBG to satisfy the following properties. The first three
(correctness, succinctness of the commitments and statistical binding), are direct
adaptations of Definition 3.1 to the new syntax:

Correctness: We require that for every polynomial k = k(λ) and for all i ∈
[k], we have:

Pr
[
Verify(crs, sk, com, i, ri, πi) = accept :

crs ← Setup(1λ, 1k)
(pk, sk) ← KeyGen(crs)

(com, r, π[k])← GenBits(crs, pk)

]
= 1.

Succinct Commitment: We require that there exists some set COM(λ) and

some constant δ < 1 such that |COM(λ)| ≤ 2k
δpoly(λ), and such that for all

crs output by Setup(1λ, 1k) and all com output by GenBits(crs) we have com ∈
COM(λ). Furthermore, we require that for all com /∈ COM(λ), Verify(crs, com, ·, ·)
always outputs reject.

Statistical Binding: There exists an (inefficient) deterministic algorithm
Open(1k, crs, com) such that for every polynomial k = k(λ), on input 1k, crs
and com, the algorithms outputs r such that for every (potentially unbounded)

cheating prover P̃:

Pr

 r∗i 6= ri
∧ Verify(crs, sk, com, i, r∗i , πi) = accept

:

crs ← Setup(1λ, 1k)
(pk, sk) ← KeyGen(crs)

(com, i, r∗i , πi)← P̃(crs, pk)
r ← Open(1k, crs, com)

 ≤ negl(λ).

The main conceptual difference with Definition 3.1 comes from the computa-
tional hiding property, which now captures security against malicious verifiers:

Computationally Hiding against Malicious Verifiers: Consider, for an
integer k, a bit b, and a stateful PPT adversary A, the following experiment:

ExpHiding,b(1λ, 1k)

0. I ⊆ [k]← A(1k)

1. crs← Setup(1λ, 1k)

2. pk← A(crs)

3. Compute (com, r, {πi}i∈[k])← GenBits(crs, pk).

Set for all i /∈ I :

{
ρi = ri if b = 0;

ρi
$← {0, 1} otherwise.

4. Output : β ← A (crs, com, I, rI , πI , {ρi}i/∈I)

24 Willy Quach, Ron D. Rothblum, and Daniel Wichs

We require that for all polynomial k = k(λ) and stateful PPT adversary A:∣∣∣Pr
[
ExpHiding,0(1λ) = 1

]
− Pr

[
ExpHiding,1(1λ) = 1

]∣∣∣ ≤ negl(λ).

6.3 Reusable MDV-NIZK from MDV-HBG

We present here an analogue to Theorem 4.1 in the malicious-verifier setting.

Theorem 6.7. Suppose there exists a MDV-HBG. Then there exists a reusable
MDV-NIZK with adaptive ZK security.

The proof of Theorem 6.7 is a simple adaptation of the one of Theorem 4.1. We
refer the reader to the full version of the paper for more details.

6.4 MDV-HBG from One-More CDH

Notation. Let d, k and ` be integers, where ` is a power-of-two. Given a
function ϕ : [k] → [`]d and some index i ∈ [k], we define, for some vector u of
dimension `, the vector:

uϕ(i) :=
(
uϕ(i)1 , . . . , uϕ(i)d

)
.

In other words, we can think of ϕ(i) as a set of neighbors of vertex i ∈ [k]
in the bipartite (multi-)graph ([k], [`]). Furthermore if the vertices j ∈ [`] are
labelled with some element uj , then uϕ(i) denotes the list of labels associated to
neighbors of i. Note that vertices in [k] have d neighbors in [`] (where there can
be multiple occurrences of the same edge). We naturally extend this definition
for sets of indices: for I ⊆ [k], we define

uϕ(I) :=
(
uϕ(i)1 , . . . , uϕ(i)d

)
i∈I .

Let hc be the Goldreich-Levin [GL89] hard-core bit (which, on input a bit-

string x ∈ {0, 1}L, uses randomness r
$← {0, 1}L and outputs hc(x; r) := (〈x, r〉, r)).

Construction. Let (G, p, g)← GroupGen(1λ) be a prime-order group genera-
tor so that G is a group of prime order p, with a generator g. For λ, k ∈ N, let ` =
`(λ, k) be the least power-of-two greater than 3kλ (i.e. ` = 2dlog(3kλ)e), and let
d = λ. Let (ObvGen,PRF,Sim1,Sim2) be a 1-SEPRF (as defined in Section 6.1)
where ObvGen(1λ) outputs keys K such that PRF(K, ·) maps {0, 1}dlog ke to
{0, 1}d·log ` (and in particular maps [k] to [`]).

Let us define the following hidden-bits generator:

– Setup(1λ, 1k): Let (G, p, g) ← GroupGen(1λ). For all j ∈ [`], pick hj
$← G.

Output:

crs = (G, {hj}j∈[`]).

Reusable Designated-Verifier NIZKs for all NP from CDH 25

– KeyGen(crs): For all j ∈ [`], pick random aj , bj
$← Zp, compute:

fj = h
aj
j · g

bj ,

and output:

pk = {fj}j∈[`],

sk = {(aj , bj)}j∈[`].

– GenBits(crs, pk):
• GenBits.Commit(crs): Pick a random y ← Zp and set s = gy. Compute for

all j ∈ [`]: tj = hyj . Sample some random coins γ matching the random-
ness used by hc(·) taking as input (the bit-representation of) elements
in Gd. Sample K ← ObvGen(1λ). Parsing the output of PRF(K, ·) as d
blocks of log ` bits, this defines for all i ∈ [k]:

ϕ(i) := (PRF(K, i)1, . . . ,PRF(K, i)d) ∈ [`]d. (1)

Compute for all i ∈ [k]: ri = hc
(
(hy)ϕ(i) ; γ

)
, where we recall that by

definition (hy)ϕ(i) =
(
hyPRF(K,i)1

, . . . , hyPRF(K,i)d

)
. Output:

com = (s, γ,K),

{ri}i∈[k],

state = (y,K).

• GenBits.Prove(crs, pk, state): Parse pk as {fj}j∈[`]. The key K in state
defines a function ϕ as per Equation 1. Compute for all j ∈ [`]: tj = hyj
and uj = fyj . Compute for all i ∈ [k]:

πi = {(tj , uj)}j∈ϕ(i).

Output:
(com, r, {πi}i∈[k]).

– Verify(crs, sk, com, i, ri, πi) : Parse sk = {(aj , bj)}j∈[`], com = (s, γ,K), πi =
{(tj , uj)}j∈ϕ(i). Compute for j ∈ ϕ(i) (where ϕ(i) is defined as per Equa-
tion 1):

ρj = t
aj
j · s

bj ,

and accept if and only if ρj = uj for all j ∈ ϕ(i), and ri = hc
(
{t}ϕ(i) ; γ

)
.

Theorem 6.8. Suppose that (ObvGen,PRF,Sim1,Sim2) is a 1-SEPRF (Defini-
tion 6.5). Then, assuming the One-More CDH assumption holds (Definition 6.3,
(Setup,GenBits,Verify) is a reusable Malicious-Designated-Verifier Hidden-Bits
Generator (Definition 6.6).

We refer the reader to the full version of this paper for a proof of Theorem 6.8.
Combining Claim 6.1, Theorems 6.7 and 6.8, and Remark 6.2, we obtain the

following:

Theorem 6.9 (MDV-NIZK from One-More CDH). Under the One-More
CDH assumption (Definition 6.3), there exists a MDV-NIZK for all NP (Defini-
tion 6.1) with statistical soundness, and adaptive, multi-theorem zero-knowledge.

26 Willy Quach, Ron D. Rothblum, and Daniel Wichs

7 Extensions

We informally describe two simple extensions of our construction.

Unbounded Statement Size. In our construction of (reusable DV-)NIZKs,
we need to have a bound n on the size of the statements that can be proved and
the size of the CRS depends on n. Ideally, we would have a fixed-size CRS which
allows us to prove statements of arbitrary size. Indeed, we can achieve this using
non-interactive statistically-binding commitments in the CRS model, which exist
assuming OWFs [Nao90,Nao91]. Let us fix 3SAT as the NP-complete language.
To prove that some 3CNF is satisfiable the prover commits to the satisfying
assignments one variable at a time. Then he uses a (reusable DV-)NIZK scheme
for each clause separately to show that the 3 relevant committed values satisfy
the clause. Note that the size of the statements being proved by the underlying
(reusable DV-)NIZK is independent of the size of the actual 3CNF formula.
Therefore the above technique bootstraps a (reusable DV-)NIZK for statements
of some fixed size which depends only on the security parameter to construct a
(reusable DV-)NIZK for statements of arbitrary size.

Proof of Knowledge. While our basic construction is not a proof-of-knowledge
it is easy to generically add this property assuming the existence of public-key
encryption (PKE). We can add a public-key com of a PKE scheme to the CRS
and have the prover encrypt the witness under com and then use the (reusable
DV-)NIZK to prove that the ciphertext is an encryption of a valid witness for
the statement. The extractor would choose com along with a corresponding de-
cryption key sk and use it to extract the witness.

Acknowledgments

Research supported by NSF grants CNS-1314722, CNS-1413964, CNS-1750795
and the Alfred P. Sloan Research Fellowship. The second author was supported in
part by the Israeli Science Foundation (Grant No. 1262/18). We thank Geoffroy
Couteau, Dennis Hofheinz, Shuichi Katsumata, Ryo Nishimaki, Shota Yamada,
and Takashi Yamakawa for sharing their manuscripts [CH19,KNYY19] and for
helpful discussions.

References

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In 20th Annual ACM
Symposium on Theory of Computing, pages 103–112, Chicago, IL, USA,
May 2–4, 1988. ACM Press.

BGI15. Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Elis-
abeth Oswald and Marc Fischlin, editors, Advances in Cryptology – EURO-
CRYPT 2015, Part II, volume 9057 of Lecture Notes in Computer Science,

Reusable Designated-Verifier NIZKs for all NP from CDH 27

pages 337–367, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg,
Germany.

BNPS03. Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Se-
manko. The one-more-RSA-inversion problems and the security of Chaum’s
blind signature scheme. Journal of Cryptology, 16(3):185–215, June 2003.

Bol03. Alexandra Boldyreva. Threshold signatures, multisignatures and blind sig-
natures based on the gap-Diffie-Hellman-group signature scheme. In Yvo
Desmedt, editor, PKC 2003: 6th International Workshop on Theory and
Practice in Public Key Cryptography, volume 2567 of Lecture Notes in Com-
puter Science, pages 31–46, Miami, FL, USA, January 6–8, 2003. Springer,
Heidelberg, Germany.

BY93. Mihir Bellare and Moti Yung. Certifying cryptographic tools: The case of
trapdoor permutations. In Ernest F. Brickell, editor, Advances in Cryp-
tology – CRYPTO’92, volume 740 of Lecture Notes in Computer Science,
pages 442–460, Santa Barbara, CA, USA, August 16–20, 1993. Springer,
Heidelberg, Germany.

CC18. Pyrros Chaidos and Geoffroy Couteau. Efficient designated-verifier non-
interactive zero-knowledge proofs of knowledge. In Jesper Buus Nielsen
and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018,
Part III, volume 10822 of Lecture Notes in Computer Science, pages 193–
221, Tel Aviv, Israel, April 29 – May 3, 2018. Springer, Heidelberg, Germany.

CCRR18. Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-
Shamir and correlation intractability from strong KDM-secure encryption.
In Advances in Cryptology - EUROCRYPT 2018 - 37th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Tech-
niques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part I, pages
91–122, 2018.

CH19. Geoffroy Couteau and Dennis Hofheinz. Towards non-interactive zero-
knowledge proofs from CDH and LWE. In EUROCRYPT, 2019.

CHK03. Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key
encryption scheme. In Eli Biham, editor, Advances in Cryptology – EURO-
CRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages
255–271, Warsaw, Poland, May 4–8, 2003. Springer, Heidelberg, Germany.

CKS08. David Cash, Eike Kiltz, and Victor Shoup. The twin Diffie-Hellman prob-
lem and applications. In Nigel P. Smart, editor, Advances in Cryptology –
EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science,
pages 127–145, Istanbul, Turkey, April 13–17, 2008. Springer, Heidelberg,
Germany.

CL17. Ran Canetti and Amit Lichtenberg. Certifying trapdoor permutations, re-
visited. IACR Cryptology ePrint Archive, 2017:631, 2017.

CS98. Ronald Cramer and Victor Shoup. A practical public key cryptosys-
tem provably secure against adaptive chosen ciphertext attack. In Hugo
Krawczyk, editor, Advances in Cryptology – CRYPTO’98, volume 1462 of
Lecture Notes in Computer Science, pages 13–25, Santa Barbara, CA, USA,
August 23–27, 1998. Springer, Heidelberg, Germany.

CS02. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm
for adaptive chosen ciphertext secure public-key encryption. In Lars R.
Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, volume
2332 of Lecture Notes in Computer Science, pages 45–64, Amsterdam, The
Netherlands, April 28 – May 2, 2002. Springer, Heidelberg, Germany.

28 Willy Quach, Ron D. Rothblum, and Daniel Wichs

Dam93. Ivan Damg̊ard. Non-interactive circuit based proofs and non-interactive
perfect zero-knowledge with proprocessing. In Rainer A. Rueppel, editor,
Advances in Cryptology – EUROCRYPT’92, volume 658 of Lecture Notes
in Computer Science, pages 341–355, Balatonfüred, Hungary, May 24–28,
1993. Springer, Heidelberg, Germany.

DDN91. Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptogra-
phy (extended abstract). In 23rd Annual ACM Symposium on Theory of
Computing, pages 542–552, New Orleans, LA, USA, May 6–8, 1991. ACM
Press.

DFN06. Ivan Damg̊ard, Nelly Fazio, and Antonio Nicolosi. Non-interactive zero-
knowledge from homomorphic encryption. In Shai Halevi and Tal Rabin,
editors, TCC 2006: 3rd Theory of Cryptography Conference, volume 3876
of Lecture Notes in Computer Science, pages 41–59, New York, NY, USA,
March 4–7, 2006. Springer, Heidelberg, Germany.

DMP88. Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive
zero-knowledge proof systems. In Carl Pomerance, editor, Advances in
Cryptology – CRYPTO’87, volume 293 of Lecture Notes in Computer Sci-
ence, pages 52–72, Santa Barbara, CA, USA, August 16–20, 1988. Springer,
Heidelberg, Germany.

DMP90. Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive
zero-knowledge with preprocessing. In Shafi Goldwasser, editor, Advances
in Cryptology – CRYPTO’88, volume 403 of Lecture Notes in Computer
Science, pages 269–282, Santa Barbara, CA, USA, August 21–25, 1990.
Springer, Heidelberg, Germany.

DN00. Cynthia Dwork and Moni Naor. Zaps and their applications. In 41st Annual
Symposium on Foundations of Computer Science, pages 283–293, Redondo
Beach, CA, USA, November 12–14, 2000. IEEE Computer Society Press.

FLS99. Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero
knowledge proofs under general assumptions. SIAM J. Comput., 29(1):1–
28, September 1999.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
Advances in Cryptology – CRYPTO’86, volume 263 of Lecture Notes in
Computer Science, pages 186–194, Santa Barbara, CA, USA, August 1987.
Springer, Heidelberg, Germany.

GI14. Niv Gilboa and Yuval Ishai. Distributed point functions and their appli-
cations. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in
Cryptology – EUROCRYPT 2014, volume 8441 of Lecture Notes in Com-
puter Science, pages 640–658, Copenhagen, Denmark, May 11–15, 2014.
Springer, Heidelberg, Germany.

GL89. Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way
functions. In 21st Annual ACM Symposium on Theory of Computing, pages
25–32, Seattle, WA, USA, May 15–17, 1989. ACM Press.

GMR85. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof-systems (extended abstract). In 17th Annual
ACM Symposium on Theory of Computing, pages 291–304, Providence, RI,
USA, May 6–8, 1985. ACM Press.

GMR89. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on Computing,
18(1):186–208, 1989.

Reusable Designated-Verifier NIZKs for all NP from CDH 29

Gol01. Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cam-
bridge University Press, Cambridge, UK, 2001.

Gol04. Oded Goldreich. Foundations of Cryptography: Basic Applications, vol-
ume 2. Cambridge University Press, Cambridge, UK, 2004.

Gol11. Oded Goldreich. Basing Non-Interactive Zero-Knowledge on (Enhanced)
Trapdoor Permutations: The State of the Art, pages 406–421. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011.

GOS06. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero
knowledge for NP. In Serge Vaudenay, editor, Advances in Cryptology –
EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science,
pages 339–358, St. Petersburg, Russia, May 28 – June 1, 2006. Springer,
Heidelberg, Germany.

GR13. Oded Goldreich and Ron D. Rothblum. Enhancements of trapdoor permu-
tations. J. Cryptology, 26(3):484–512, 2013.

HJO+16. Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro,
and Daniel Wichs. Adaptively secure garbled circuits from one-way func-
tions. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryp-
tology – CRYPTO 2016, Part III, volume 9816 of Lecture Notes in Com-
puter Science, pages 149–178, Santa Barbara, CA, USA, August 14–18,
2016. Springer, Heidelberg, Germany.

JKK14. Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal
password-protected secret sharing and T-PAKE in the password-only
model. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology
– ASIACRYPT 2014, Part II, volume 8874 of Lecture Notes in Computer
Science, pages 233–253, Kaoshiung, Taiwan, R.O.C., December 7–11, 2014.
Springer, Heidelberg, Germany.

KMO90. Joe Kilian, Silvio Micali, and Rafail Ostrovsky. Minimum resource zero-
knowledge proofs (extended abstract). In Gilles Brassard, editor, Advances
in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer
Science, pages 545–546, Santa Barbara, CA, USA, August 20–24, 1990.
Springer, Heidelberg, Germany.

KNYY19. Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa.
Designated verifier/prover and preprocessing NIZKs from Diffie-Hellman
assumptions. In EUROCRYPT, 2019.

KW18. Sam Kim and David J. Wu. Multi-theorem preprocessing NIZKs from lat-
tices. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in
Cryptology – CRYPTO 2018, Part II, volume 10992 of Lecture Notes in
Computer Science, pages 733–765, Santa Barbara, CA, USA, August 19–
23, 2018. Springer, Heidelberg, Germany.

LS91. Dror Lapidot and Adi Shamir. Publicly verifiable non-interactive zero-
knowledge proofs. In Alfred J. Menezes and Scott A. Vanstone, editors,
Advances in Cryptology – CRYPTO’90, volume 537 of Lecture Notes in
Computer Science, pages 353–365, Santa Barbara, CA, USA, August 11–
15, 1991. Springer, Heidelberg, Germany.

Nao90. Moni Naor. Bit commitment using pseudo-randomness. In Gilles Brassard,
editor, Advances in Cryptology – CRYPTO’89, volume 435 of Lecture Notes
in Computer Science, pages 128–136, Santa Barbara, CA, USA, August 20–
24, 1990. Springer, Heidelberg, Germany.

Nao91. Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptol-
ogy, 4(2):151–158, 1991.

30 Willy Quach, Ron D. Rothblum, and Daniel Wichs

NY90. Moni Naor and Moti Yung. Public-key cryptosystems provably secure
against chosen ciphertext attacks. In 22nd Annual ACM Symposium on
Theory of Computing, pages 427–437, Baltimore, MD, USA, May 14–16,
1990. ACM Press.

PsV06. Rafael Pass, abhi shelat, and Vinod Vaikuntanathan. Construction of a non-
malleable encryption scheme from any semantically secure one. In Cynthia
Dwork, editor, Advances in Cryptology – CRYPTO 2006, volume 4117 of
Lecture Notes in Computer Science, pages 271–289, Santa Barbara, CA,
USA, August 20–24, 2006. Springer, Heidelberg, Germany.

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In David B. Shmoys, editor, 46th Annual
ACM Symposium on Theory of Computing, pages 475–484, New York, NY,
USA, May 31 – June 3, 2014. ACM Press.

	Reusable Designated-Verifier NIZKs for all NP from CDH

