
Group Signatures without NIZK:
From Lattices in the Standard Model

Shuichi Katsumata ? and Shota Yamada ??

1 The University of Tokyo
2 AIST

Abstract. In a group signature scheme, users can anonymously sign
messages on behalf of the group they belong to, yet it is possible to trace
the signer when needed. Since the first proposal of lattice-based group
signatures in the random oracle model by Gordon, Katz, and Vaikun-
tanathan (ASIACRYPT 2010), the realization of them in the standard
model from lattices has attracted much research interest, however, it
has remained unsolved. In this paper, we make progress on this problem
by giving the first such construction. Our schemes satisfy CCA-selfless
anonymity and full traceability, which are the standard security require-
ments for group signatures proposed by Bellare, Micciancio, and Warin-
schi (EUROCRYPT 2003) with a slight relaxation in the anonymity
requirement suggested by Camenisch and Groth (SCN 2004). We em-
phasize that even with this relaxed anonymity requirement, all previous
group signature constructions rely on random oracles or NIZKs, where
currently NIZKs are not known to be implied from lattice-based assump-
tions. We propose two constructions that provide tradeoffs regarding the
security assumption and efficiency:

– Our first construction is proven secure assuming the standard LWE
and the SIS assumption. The sizes of the public parameters and the
signatures grow linearly in the number of users in the system.

– Our second construction is proven secure assuming the standard
LWE and the subexponential hardness of the SIS problem. The sizes
of the public parameters and the signatures are independent of the
number of users in the system.

Technically, we obtain the above schemes by combining a secret key
encryption scheme with additional properties and a special type of
attribute-based signature (ABS) scheme, thus bypassing the utilization of
NIZKs. More specifically, we introduce the notion of indexed ABS, which
is a relaxation of standard ABS. The above two schemes are obtained
by instantiating the indexed ABS with different constructions. One is a
direct construction we propose and the other is based on previous work.

? The University of Tokyo, National Institute of Advanced Industrial Science and
Technology (AIST). E-mail: shuichi katsumata@it.k.u-tokyo.ac.jp

?? National Institute of Advanced Industrial Science and Technology (AIST). E-mail:
yamada-shota@aist.go.jp

2

1 Introduction

1.1 Background

Group signatures, originally proposed by Chaum and van Heyst [Cv91], allow
members of a group to sign on behalf of the group while guaranteeing the proper-
ties of authenticity, anonymity, and traceability. The signatures do not reveal the
particular identity of the group member who issued it, however, should the need
arise, a special entity called the group manager can trace the signature back
to the signer using some secret information, thus holding the group members
accountable for their signatures. Due to the appealing properties group signa-
tures offer, they have proven to be useful in many real-life applications including
privacy-protecting mechanisms, anonymous online communication, e-commerce
systems, and trusted hardware attestation such as Intel’s SGX.

Since their introduction, numerous constructions of group signatures
have been proposed with different flavors: in the random oracle model
[BBS04,CL04,GKV10] or standard model [BMW03,BW06,Gro07], support-
ing static groups [BMW03] or dynamic groups [BSZ05,BCC+16], and
constructions based on various number theoretical assumptions such as
strong RSA [ACJT00,CL02], paring-based [BW06,Gro07], and lattice-based
[GKV10,LLLS13]. Despite the vast amount of research concerning group signa-
tures, in essence all constructions follow the encrypt-then-prove paradigm pre-
sented by Bellare, Micciancio, and Warinschi [BMW03]. To sign on a message,
a group member encrypts its certificate provided by the group manager and
then proves in (non-interactive) zero-knowledge of the fact that the ciphertext
is an encryption of a valid certificate while also binding the message to the
zero-knowledge proof.

Thus far, all group signature schemes have relied on non-interactive zero-
knowledge (NIZK) proofs in the proving stage of the encrypt-then-prove
paradigm. Since NIZKs for general languages are implied from (certified dou-
bly enhanced) trapdoor permutations [FLS90,BY93] and from bilinear maps
[GOS06,GS08], group signatures in the standard model are known to exist from
factoring-based and pairing-based assumptions [BMW03,BW06,BW07,Gro07].
In contrast, constructions of lattice-based group signatures in the stan-
dard model have shown to be considerably difficult. Since the first lattice-
based group signature in the random oracle model (ROM) proposed
by Gordon et al. [GKV10], there has been a rich line of subsequent
works [LLLS13,NZZ15,LNW15,LLM+16a,LLNW16,LNWX18,PLS18], however,
all schemes are only provably secure in the ROM. This situation stems from the
notorious fact that lattices are ill-fit with NIZKs. Although more than a decade
has passed since the emergence of lattices, there is still only one construction
of NIZK known in the standard model [PV08], where the language supported
by [PV08] seems unsuitable to devise group signatures. Notably, the open prob-
lem of constructing lattice-based group signatures in the standard model, which
has explicitly been stated in Laguillaumie et al. [LLLS13] for example, has not
made any progress in the past decade or so. Taking prior works on group sig-

3

natures into consideration, it seems we would require a breakthrough result for
lattice-based NIZKs or to come up with a different approach than the encrypt-
then-prove paradigm to obtain a lattice-based group signature in the standard
model.

1.2 Our Contribution

In this paper, we make progress on this problem and give the first construction
of group signatures from lattices in the standard model. Our main result can be
stated informally as follows:

Theorem 1 (Informal). Under the hardness of the LWE and SIS problems
with polynomial approximation factors,3 there exists a group signature scheme
with full-traceability and CCA-selfless anonymity in the standard model.

We explain the statement in more details in the following. Here, we basically
adopt the syntax and the security notions of the group signatures defined by
Bellare, Micciancio, and Warinschi [BMW03], which are presumably one of the
most widely accepted definitions. Our construction satisfies the standard notion
of full-traceability, which asserts that an adversary cannot forge a valid signature
that can be opened to an uncorrupted user or that cannot be traced to anyone.
As for anonymity, our construction satisfies CCA-selfless anonymity introduced
by Camenisch and Groth [CG05]. The notion of CCA-selfless anonymity is a
relaxation of CCA-full anonymity defined by Bellare et al. [BMW03]. Informally,
full-anonymity requires that the adversary cannot distinguish signatures from
two different members even if all the signing keys of the members of the system
are exposed and it has access to an open oracle. On the other hand, CCA-selfless
anonymity requires anonymity to hold only when the signing keys of the two
members in question are not exposed and it has access to an open oracle. While
the latter definition is weaker, as discussed by Camenisch and Groth [CG05], it
is sufficient for some natural situations. For example, consider a situation where
an adversary can adaptively corrupt users while the parties cannot erase the
data. In this setting, the former security notion does not buy any more security
than the latter. We emphasize that even with this relaxed security notion, no
group signature from lattices is known in the standard model prior to our work.
In particular, regardless of what the security notion we consider for anonymity,
all prior lattice-based constructions required random oracles.

One potential drawback of the above construction may be that it has rather
large public parameters and signatures, whose sizes grow linearly in the number
of users in the system. A natural question would be whether we can make these
sizes independent of the number of users. As a side contribution, we answer this
question affirmatively under a stronger assumption:

3 By LWE and SIS problems with polynomial approximation factors, we mean they are
problems which are as hard as certain worst case lattice problems with polynomial
approximation factor.

4

Theorem 2 (Informal). Under the hardness of the LWE problem with polyno-
mial approximation factors and the subexponential hardness of the SIS problem
with polynomial approximation factors, there exists a group signature scheme
with full-traceability and CCA-selfless anonymity whose sizes of the public pa-
rameters and signatures are independent of the number of users.

These results are obtained by a generic construction of group signatures from
one-time signatures (OTS), secret key encryptions (SKE), and a new primitive
which we call indexed attribute-based signatures (indexed ABS). We require the
standard notion of strong unforgeability for the OTS and it can be instanti-
ated by any existing schemes such as [Moh11]. For the SKE, we require some
special properties. Specifically, we require the SKE to be anonymous in addi-
tion to standard notions of hiding the message. We also require the SKE to
have a decryption circuit with logarithmic depth and the property which we
call key-robustness. Intuitively speaking, the key-robustness requires that the
ciphertext spaces corresponding to two random secret keys to be disjoint with
all but negligible probability. Such an SKE with special properties can be in-
stantiated from the standard LWE assumption. The indexed ABS is a relaxation
of the standard notion of ABS, where the setup and key generation algorithms
take additional inputs. We require it to satisfy the security notion that we call
co-selective unforgeability and (perfect) privacy. We show two ways of instanti-
ating the indexed ABS. As for the first instantiation, we provide a construction
of an indexed ABS that is proven to have the required security properties un-
der the standard hardness of the SIS assumption. This instantiation leads us to
Theorem 1. As for the second instantiation, we view the constrained signature
scheme by Tsabary [Tsa17] as an indexed ABS scheme. Using this we obtain
Theorem 2. We note that unlike our first instantiation, since the constrained
signature scheme in [Tsa17] does not offer sufficient security properties for our
purpose, we need to utilize complexity leveraging that incurs a subexponential
reduction loss to when constructing our group signature.

1.3 Overview of Our Technique

Preprocessing NIZKs. The starting point of our work is the recent break-
through result of preprocessing NIZK for NP from lattices in the standard model
by Kim and Wu [KW18]. In a preprocessing NIZK [DMP88], a trusted third
party generates a proving key kP and a verification key kV independently of the
statement to be proven and provides kP to the prover and kV to the verifier.
The prover can construct proofs using kP and the verifier can validate the proofs
using kV . Preprocessing NIZKs can be seen as a general form of NIZKs; if both
kP and kV need not be secret, then it corresponds to NIZKs in the common ref-
erence string (CRS) model; if kP can be public but kV needs to be secret, then it
corresponds to designated verifier NIZKs [PsV06,DFN06]. The lattice-based pre-
processing NIZK of Kim and Wu [KW18] can be viewed as a designated prover
NIZK (DP-NIZK), where the proving key kP needs to be kept secret but the

5

verification key kV can be made public.4 Here, the zero-knowledge property of
DP-NIZKs crucially relies on the fact that the verifier does not know the proving
key kP .

At first glance, DP-NIZKs seem to be all that we require to construct group
signatures. The trusted group manager provides the user a (secret) proving key
kP on time of joining the group and publicly publishes the verification key kV .
This meets the criteria of DP-NIZKs since kP will be kept secret by the group
members and the proofs (i.e., signatures) can be publicly verified. Therefore,
one might be tempted to substitute NIZKs in the CRS model with lattice-based
DP-NIZKs to obtain a lattice-based group signature in the standard model. Un-
fortunately, this naive approach is trivially insecure. Specifically, the anonymity
will be broken the moment a single group member becomes corrupt. If the group
manager provides the same proving key kP to the group members, then in case
any of the group members become corrupt, kP will be in the hands of the ad-
versary. As we mentioned above, the zero-knowledge property of DP-NIZKs will
break if the proving key kP is known. An easy fix may be to instead provide
proving keys (kP i)i∈I respectively to each group members i ∈ I and publicly
publish the corresponding verification keys (kV i)i∈I . In this case, even if some
of the group members become corrupt, their proving keys will not affect the
zero-knowledge property of the other non-corrupt members using an indepen-
dent proving key. However, the problem with this approach is that each proof
constructed by a proving key kP i is implicitly associated with a unique verifi-
cation key kV i. Since each verification key kV i is associated to a group member
i ∈ I, the adversary can simply check which verification key accepts the proof
(i.e., signature) to break anonymity. Therefore, although DP-NIZKs seem to be
somewhat useful for constructing group signatures, it itself is not sufficient to
be a substitute for NIZKs in the CRS model.

Viewing Attribute-Based Signatures as DP-NIZKs. The problem with
the approach using DP-NIZKs is the following: if we give the same proving key kP
to every group member, then the scheme will be insecure against collusion attacks
and if we give different proving keys kP i individually to each group members,
then the scheme will lose anonymity. Therefore, the primitive we require for
constructing group signatures is something akin to DP-NIZKs that additionally
provides us with both collusion resistance and anonymity.

At this point, we would like to draw the attention to attribute-based signa-
tures (ABS) [MPR11]. In ABS, a signer assigned with an attribute y is provided
a signing key sky from the authority and the signer can anonymously sign a mes-
sage associated with a policy C using sky if and only if C(y) = 1. In addition,
using the master public key mpk, anybody can verify the signature regardless of
who signed it. The first requirement of an ABS, which captures unforgeability,
is that any collusion of signers with attributes (yi)i∈I cannot forge a signature
on a message associated with a policy C if C(yi) = 0 for all i ∈ I. The sec-

4 As mentioned in Section 4 of [KW18], their scheme is only publicly verifiable when
considering a slightly weaker notion of zero-knowledge than the standard notion of
zero-knowledge for preprocessing NIZKs. In our work, the weaker notion suffices.

6

ond requirement, which captures anonymity, is that given a valid signature on
a message associated with a policy C, the attribute y that was used to sign
the message must remain anonymous. Namely, signatures generated by sky0 and
sky1 are indistinguishable if C(y0) = C(y1) = 1. Looking at the similarity be-
tween DP-NIZKs and ABS, it is tempting to view a witness w as an attribute
y and to set the proving key kP as the ABS signing key skw. To prove that w
is a valid witness to the statement x, i.e., (x,w) ∈ R for the NP relation R,
the prover first prepares a circuit Cx(w) := R(x,w) that has the statement x
hard-wired to it. Then the prover signs some message associated with the policy
Cx using its proving key kP = skw and outputs the signature as the proof π. The
verifier can publicly verify the proof π by checking whether or not the signature
is valid. At a high level, the soundness of the proof system would follow from the
unforgeability of ABS and the zero-knowledge property would follow from the
anonymity of ABS. Furthermore, our initial motivation of satisfying collusion
resistance and anonymity is met by the properties of ABS; even if the proving
keys (kP i = skwi)i∈I are compromised, it cannot be used to prove a statement
x such that R(x,wi) = 0 for all i ∈ I and the proofs constructed by different
proving keys are indistinguishable from one another since the single mpk can
be used to check the validity of all proofs (unlike the above case where unique
verification keys kV i were assigned to each proving keys kP i).

Constructing Groups Signatures from ABS. While the idea of viewing
ABS as some variant of DP-NIZK seems to be a great step forward, the question
of how to use it to construct a group signature remains. Let us come back to
the basic but powerful encrypt-then-prove paradigm of Bellare et al. [BMW03].
Recall that with this approach, the group manager issues a certificate to each
group member i ∈ I and publishes a public key for a public-key encryption
scheme. To sign, a group member i encrypts its certificate as cti under the
public key of the group manager and creates a NIZK proof of the fact that cti
encrypts the certificate. Observe that each group member i implicitly constructs
a member-specific statement xi = cti when generating the NIZK proof and sets
the pair of certificate and the randomness used to create cti as the witness wi.
Traceability follows since each statement xi encrypts the identity of the signer
and the group manager who holds the secret key can decrypt them. Anonymity
of the group signature is also intact even though the statement xi used by each
group member is different, due to the semantic security of the underlying public-
key encryption scheme. Now, let us look at the above approach through the lens
of NIZK-like ABSs: The group manager issues a certificate and an ABS signing
key skwi for some witness wi to each group member i ∈ I, and to sign, a group
member i encrypts its certificate as cti under the public key of the group manager
and uses the ABS signing key skwi to create an ABS signature for some policy
Cxi which serves as a NIZK proof of the fact that cti encrypts the certificate.
In order for this approach to work, the witness (i.e., attribute) embedded to the
ABS signing key skwi must be an accepting input to the policy Cxi which has the
statement xi = cti hard-wired. Although it may be not obvious at first glance,
as a matter of fact, this approach is impossible! Notably, the group manager

7

cannot prepare in advance a witness wi to a statement xi that will be chosen by
the group member at the time of signing. Recall that the witness wi to xi = cti
was the certificate and the randomness used to create cti. The group manager
can embed in the ABS signing key a certificate but not the randomness since
there is no way to not know what kind of randomness will be used to generate
the ciphertext by the group member beforehand. Therefore, to use the ABS as
a type of NIZK proof system, we must devise a mechanism for constructing
statements xi while keeping the witness wi fixed once and for all at the time of
preparation of the ABS signing key.

This brings us to our final idea. To overcome the above problem, we embed
the group member identifier i ∈ I and a key Ki of a secret key encryption
scheme to the ABS signing key ski||Ki . We then construct the statements xi so
that i and Ki can be reused as the fixed witness.5 The following is the high-level
construction of our group signature.

-GS.KeyGen: The group manager provides user i ∈ I with a key Ki of an SKE
scheme and an ABS signing key ski||Ki where the string i||Ki is interpreted
as an attribute.

-GS.Sign: To sign on a message M, the group member i ∈ I prepares a ciphertext
cti ← SKE.Enc(Ki, i), views the statement xi as cti, and prepares a circuit
Cxi with the statement xi hard-wired such that Cxi(i||Ki) := (i ∈ I) ∧ (i =
SKE.Dec(Ki, cti)). Then using ski||Ki , it runs the ABS signing algorithm on
message M with Cxi as the policy. The signature is Σ = (σABS, cti).

-GS.Vrfy: To verify a signatureΣ = (σABS, ct), it prepares the circuit Cct(z||y) :=
(z ∈ I)∧ (z = SKE.Dec(y, ct)) and runs the ABS verification algorithm with
message M, signature σABS and policy Cct.

-GS.Open: To trace a signer from a signature Σ = (σABS, ct), the group manager
uses the secret keys (Ki)i∈I to extract the group member identifier from the
ciphertext ct.

It can be checked that the scheme is correct. If the ciphertext cti encrypts i ∈ I,
then ski||Ki can be used to construct a signature for the policy Cxi where xi =
cti. We briefly sketch the traceability and anonymity of our group signature.
First, traceability holds from the key robustness of the SKE scheme and the
unforgeability of the ABS scheme. The former property states that the ciphertext
space of a different set of secret keys must be disjoint. In particular, this implies
that the set of statements xi = cti (i.e., languages) constructed by each group
member will be disjoint. Therefore, since this also implies that the set of policies
Cxi used by each group members will be disjoint, it allows us to reduce the
problem of traceability to the unforgeability of the underlying ABS scheme. We
note that although key robustness may be a non-standard property to consider
for SKE schemes, it is an easy property to satisfy. Second, anonymity holds from

5 Our core idea of fixing the witness can also be realized by instead embedding i ∈ I
and a (weak) PRF seed into the ABS signing key, and using a public key encryption
scheme. We provide detailed discussions on our choice of using SKEs in the full
version.

8

the anonymity and semantic security of the SKE scheme and the anonymity of
the ABS scheme. Here, anonymity of an SKE scheme informally states that the
ciphertext does not leak what secret key was used to construct it. Specifically,
if there were two ciphertexts, it must be difficult to tell whether they are an
encryption under the same key or two different keys. These two properties allow
us to argue that the ciphertext cti leaks no information of the group member
identity. Furthermore, the anonymity of the ABS scheme ensures that σABS does
not leak the group member identity as well. Hence the signature σ = (σABS, cti)
remains anonymous.

Interestingly, our construction does not need to explicitly rely on “certifi-
cates” anymore as was done in prior constructions. This is because the signing
key ski||Ki is not only a proving key for the NIZK proof system, but also im-
plicitly a certificate. In particular, since the ABS can be viewed as a variant of
designated prover NIZKs, the fact that a signer was able to construct a valid
signature implicitly implies that the signer was certified by the group manager.
Therefore, there is no need for adding another layer of certificate to our construc-
tion as was done in previous group signature constructions. Finally, we point out
in advance that our actual construction in Section 4 is more complicated than
the above high-level structure due to the fact that we additionally capture CCA
anonymity rather than only CPA anonymity. In CCA anonymity, the adversary
is further provided with an open oracle that opens (i.e., traces) a signature to a
signer. Since in the security proof, the reduction algorithm will no longer hold
the opening key and must simulate the open oracle on its own, extra compli-
cations are incurred compared to the CPA anonymity setting where there is no
such open oracle. This situation is analogous to the difference between CPA and
CCA-encryption schemes.

To the knowledgeable readers, we remark that the above idea is similar to
those of Kim and Wu [KW18] for constructing DP-NIZKs. In particular, the way
we embed a key of an SKE scheme, rather than the witness, to the ABS signing
key is analogous to the way [KW18] embeds the key of an SKE scheme to a
signature of a homomorphic signature scheme [GVW15]. Notably, both schemes
crucially rely on the fact that once some private information has been embedded
into an ABS signing key (resp. a homomorphic signature), the signing key (resp.
signature) can be reused to generate proofs for arbitrary statements.

Constructing ABS with the Desired Properties. We now change the dis-
cussion on how to instantiate the above generic construction. Since we can in-
stantiate SKEs through a combination of relatively standard techniques, we focus
on how to instantiate ABSs from lattices in this overview. A natural way of in-
stantiating the ABS required in our GS construction would be to use the ABS
scheme proposed by Tsabary [Tsa17] proven secure under the SIS assumption,
which is the only known ABS construction from lattices.6 In their paper, two
ABS schemes are proposed. The first scheme is constructed from homomorphic
signatures and the second is a direct construction. We focus on the second con-

6 Actually, the paper proposes constructions of constrained signature (CS), which is
a slightly different primitive from ABS. However, this primitive readily implies ABS.

9

struction here, because the anonymity notion achieved by the first scheme is not
sufficient for our purpose.7 In fact, even the latter scheme does not provide a
sufficient security notion that is required for our purpose, namely, for the proof
of full-traceability. While Tsabary’s ABS scheme achieves selective unforgeabil-
ity where the adversary is forced to declare its target policy with respect to
which it will forge a signature at the beginning of the security game, we re-
quire the ABS to be unforgeable even if the adversary is allowed to adaptively
choose its target policy. The necessity of the adaptiveness of the target policy
can be seen by recalling that a forgery in the full-traceability game is of the form
Σ? = (σ?ABS, ct

?), where ct? is an adaptively chosen ciphertext that specifies the
target policy Cct? . An easy way to resolve this discrepancy is to assume the
subexponential hardness of the SIS problem and prove that Tsabary’s scheme is
adaptively unforgeable via complexity leveraging [BB04b]. This approach leads
us to Theorem 2.

Though the above approach works, it incurs a subexponential security loss,
which is not desirable. At first glance, one may think that the underlying ABS
must be adaptively unforgeable to be used in our generic GS construction; an
adversary can adaptively make arbitrary many key queries and signing queries,
and generate a forgery depending on the answers which it gets from these queries.
Unfortunately, the only known construction of a lattice-based ABS scheme in the
standard model with such a strong security property is provided by complexity
leveraging as described above. However, a more careful observation reveals that
we do not actually require the full power of adaptive unforgeability. First, the
ABS scheme does not have to support an unbounded number of signing keys
since the number of members in the group signature is fixed at setup in the
static setting. Furthermore, we can relax the syntax of the ABS so that the
key generation algorithm takes a user index i as an additional input, since each
signing key in the group signature is associated with a user index. Finally, we
can relax the unforgeability requirement of the ABS so that the adversary is
forced to make all the key queries at the beginning of the security game while
the target policy associated with the forgery can be chosen adaptively. We call
this security notion co-selective unforgeability, since this is somewhat dual to the
selective unforgeability notion where the key queries can be adaptive but the
target policy is required to be declared at the beginning of the game.

Indeed, co-selective unforgeability is enough for instantiating our generic GS
construction, because, in the construction the attributes hardwired to the signing
keys of the ABS are {i‖Ki} independent from the public parameter of the ABS
and can be chosen at the outset of the security game. With this observation in
mind, we define a relaxed version of ABS which we call indexed ABS and provide
a construction which does not resort to complexity leveraging.

7 More specifically, the first scheme only achieves a so-called weakly-hiding property,
where the key attribute is not leaked from a signature, but two signatures that
are signed by the same user can be linked. Translated into the setting of group
signature, this allows an adversary to link two different signatures by the same user,
which trivially breaks anonymity.

10

Constructing Indexed ABS. Our starting point is the observation made by
Tsabary [Tsa17], who showed that a homomorphic signature scheme can be
viewed as a very weak form of an ABS scheme. In light of this observation, we can
view the fully homomorphic signature scheme by Gorbunov, Vaikuntanathan,
and Wichs [GVW15] as a single-user ABS scheme. In the scheme, the master

public key is of the form mpk = (A, ~B = [B1‖ · · · ‖Bk]) where A and Bi are
random matrices over Zn×mq and a secret key skx for an attribute x ∈ {0, 1}k

is a matrix with small entries ~R = [R1‖ · · · ‖Rk] such that ~B = A~R + x ⊗G,
where G is the special gadget matrix whose trapdoor is publicly known. To
sign on a policy F : {0, 1}k → {0, 1} and a message M, the signer uses the
homomorphic evaluation algorithms [BGG+14,GV15] to compute matrices RF

and BF such that BF = ARF + F (x)G from skx, where RF is a matrix with
small entries and BF is a publicly computable matrix. When F (x) = 1, the signer
can compute the trapdoor for the matrix [A‖BF] from RF using the technique
of [ABB10a,MP12] and sample a short vector eF from a Gaussian distribution
such that [A‖BF]eF = 0 using the trapdoor. The signature on (F,M) is the
vector eF . It can be seen that eF does not leak information of x, since the
distribution from which it is sampled only depends on the master public key
and F . Furthermore, the scheme satisfies a relaxed version of the co-selective
unforgeability, where the adversary can corrupt a single user but is not allowed
to make signing queries. To see this, let us assume that there is an adversary who
chooses x at the beginning of the game and generates a forgery eF? for F ? such
that F ?(x) = 0 given (mpk, skx). Then, we can solve the SIS problem using this
adversary. The reduction algorithm is given a matrix A as the problem instance
of SIS and x from the adversary. It then sets ~B = A~R+x⊗G and gives skx := ~R
to the adversary at the beginning of the game. For the forgery eF? output by
the adversary, we have [A‖BF?]eF? = 0. Since BF? = ARF? , we can extract
a short vector z := [I‖RF?]e such that Az = 0, which is a solution to the SIS
problem.

There are two problems with this scheme. First, the scheme can only support
a single user, whereas we need a scheme to support multiple users. It can be seen
that the security of the above scheme can be broken in case the adversary obtains
the keys of two different users. Second, the unforgeability of the scheme is broken
once the adversary is given an access to a signing oracle. Indeed, a valid signature
for a policy-message pair (F,M) is also valid for (F,M′) with different M′ 6= M,
since the above signing and verification algorithms simply ignore the messages
M. In other words, the message is not bound to the signature.

We first address the former problem. In order to accommodate multiple
users in the system, we change the master public key of the scheme to be
(A, {~B(i)}i∈[N]), where N is the number of users. The secret key for a user

i and an attribute x(i) is R(i) such that ~B(i) = A~R(i) + x(i) ⊗ G. To sign

on a message, the user i first computes the trapdoor for [A‖B(i)
F] similarly

to the above single-user construction. It then extends the trapdoor for the

matrix [A‖B(1)
F ‖ · · · ‖B

(N)
F] using the trapdoor extension technique [CHKP10].

Then, it samples a short vector eF from a Gaussian distribution such that

11

[A‖B(1)
F ‖ · · · ‖B

(N)
F]eF = 0. It can be observed that eF does not reveal the

attribute x nor the user index i since the distribution from which it is sampled
only depends on the master public key and F . Note that the trapdoor exten-
sion step is essential for hiding the user index i. We can prove unforgeability for
the scheme similarly to the single-user case. A key difference here is that, since
there are now N matrices in the master public key, we can embed up to N user
attributes {x(i)}i∈[N] into the master public key as B(i) = AR(i) + x(i) ⊗G.

Next, we address the latter problem. We apply the classic OR-proof tech-
nique [FLS90] and show that a scheme that is unforgeable only when the ad-
versary cannot make signing queries can be generically converted into a scheme
that is unforgeable even when the adversary can make signing queries. To do so,
we introduce a dummy user that is not used in the real system. In the security
proof, the signing queries are answered using the signing key of the dummy user.
In order to enable this proof strategy, a näıve approach would be to change the
scheme so that in order to sign on (F,M), the signer signs on a modified new pol-
icy F ′, which on input x ∈ {0, 1}k outputs F (x) and outputs 1 on input a special
symbol. Then, we associate the attribute of the dummy user with the special
symbol. By the privacy property of the original (no signing query) ABS, the fact
that the signing queries are answered using the dummy key instead of the key
specified by the adversary will be unnoticed. A problem with this approach is
that since the reduction algorithm has the secret key associated with the special
symbol, it can sign on any message and policy. Namely, any forgery output by
the adversary will not be useful for the reduction algorithm since it could have
constructed it on its own to begin with. To resolve this problem, we partition the
space of all possible message-policy pairs into two sets, the challenge set and the
controlled set, using an admissible hash [BB04a,FHPS13]. Then, we associate
the dummy key with an attribute that can sign on any pair in the controlled
set, but not on the challenge set. We then hope that the adversary outputs the
pair that falls into the challenge set, which allows us to successfully finish the
reduction. By the property of the admissible hash, this happens with noticeable
probability and we can prove the security of the resulting scheme.

1.4 Related Works

In the full version, we provide detailed discussions on the different models of
group signatures and constructions based on other assumptions.

2 Preliminaries

2.1 Group Signature

Here, we adopt the definition of group signature schemes from the work of Bel-
lare, Micciancio, and Warinschi [BMW03], with the relaxation regarding the
anonymity suggested by Camenisch and Groth [CG05].

12

Syntax. Let {Mκ}κ∈N be a family of message spaces. In the following, we
occasionally drop the subscript and simply write M when the meaning is clear.
A group signature (GS) scheme is defined by the following algorithms:

GS.KeyGen(1κ, 1N)→ (gpk, gok, {gski}i∈[N]): The key generation algorithm
takes as input the security parameter κ and the number of users N both
in the unary form and outputs the group public key gpk, the opening key
gok, and the set of user secret keys {gski}i∈[N].

GS.Sign(gpk, gski,M)→ Σ: The signing algorithm takes as input the group pub-
lic key gpk, the i-th user’s secret key gski (for some i ∈ [N]), and a message
M ∈Mκ and outputs a signature Σ.

GS.Vrfy(gpk,M, Σ)→ > or ⊥: The verification algorithm takes as input the
group public key gpk, the message M, and a signature Σ and outputs >
if the signature is deemed valid and ⊥ otherwise.

GS.Open(gpk, gok,M, Σ)→ i or ⊥: The opening algorithm takes as input the
group public key gpk, the opening key gok, a message M, a signature Σ and
outputs an identity i or the symbol ⊥.

For GS, we require correctness, CCA-selfless anonymity, and full traceability.

Correctness. We require that for all κ, N ∈ poly(κ), (gpk, gok, {gski}i∈[N]) ∈
GS.KeyGen(1κ, 1N), i ∈ [N], M ∈ Mκ, and Σ ∈ GS.Sign(gpk, gski,M), GS.Vrfy(
gpk,M, Σ) = > holds.

Full Traceability. We now define the full traceability for GS scheme. This
security notion is defined by the following game between a challenger and an
adversary A. During the game, the challenger maintains lists Q and T , which
are set to be empty at the beginning of the game.

Setup: At the beginning of the game, the challenger runs GS.KeyGen(1κ, 1N)→
(gpk, gok, {gski}i∈[N]) and gives (1κ, gpk, gok) to A.

Queries: During the game, A can make the following two kinds of queries un-
bounded polynomially many times.

- Corrupt Query: Upon a query i ∈ [N] from A, the challenger returns
gski to A. The challenger also adds i to T .

- Signing Queries: Upon a query (i,M) ∈ [N]×Mκ from A, the challenger
runs GS.Sign(gpk, gski,M)→ Σ and returns Σ to A. The challenger adds
(i,M) to Q.

Forgery: Eventually, A outputs (M?, Σ?) as the forgery. We say that A wins
the game if:

1. GS.Vrfy(gpk,M?, Σ?)→ >, and

2. either of the following conditions (a) or (b) is satisfied:

(a) GS.Open(gpk, gok,M?, Σ?) = ⊥,
(b) GS.Open(gpk, gok,M?, Σ?) = i? 6∈ T ∧ (i?,M?) 6∈ Q.

We define the advantage of an adversary to be the probability that the adversary
A wins, where the probability is taken over the randomness of the challenger and
the adversary. A GS scheme is said to satisfy full traceability if the advantage
of any PPT adversary A in the above game is negligible for any N = poly(κ).

13

CCA-Selfless Anonymity. We now define CCA-selfless anonymity for a GS
scheme. This security notion is defined by the following game between a chal-
lenger and an adversary A.

Setup: At the beginning of the game, the adversary A is given 1κ as input and
sends i?0, i

?
1 ∈ [N] to the challenger. Then the challenger runs GS.KeyGen(1κ,

1N)→ (gpk, gok, {gski}i∈[N]) and gives (gpk, {gski}i∈[N]\{i?0 ,i?1}) to A.

Queries: During the game, A can make the following two kinds of queries un-
bounded polynomially many times.

- Signing Queries: Upon a query (b,M) ∈ {0, 1} ×Mκ from A, the chal-
lenger runs GS.Sign(gpk, gski?b ,M)→ Σ and returns Σ to A.

- Open Queries: Upon a query (M, Σ) from A, the challenger runs
GS.Open(gpk, gok,M, Σ) and returns the result to A.

Challenge Phase: At some point, A chooses its target message M?. The chal-
lenger then samples a secret coin coin

$← {0, 1} and computes GS.Sign(gpk,
gski?coin ,M

?)→ Σ?. Finally, it returns Σ? to A.

Queries: After the challenge phase, A may continue to make signing and open
queries unbounded polynomially many times. Here, we add a restriction that
A cannot make an open query for (M?, Σ?).

Guess: Eventually, A outputs ĉoin as a guess for coin.

We say that the adversary A wins the game if ĉoin = coin. We define the advan-
tage of an adversary to be |Pr[A wins]−1/2|, where the probability is taken over
the randomness of the challenger and the adversary. A GS scheme is said to be
CCA-selfless anonymous if the advantage of any PPT adversary A is negligible
in the above game for any N = poly(κ).

Remark 3. Note that Camenisch and Groth [CG05] defines selfless anonymity
slightly differently by allowing the adversary to adaptively choose the targets and
corrupt the users other than the targets. However, since the number of users N
is polynomially bounded, these two definitions are equivalent w.l.o.g, and we
chose the above formalization for simplicity of presentation.

2.2 Secret Key Encryption and Other Primitives

We will use some cryptographic primitives such as secret key encryptions (SKE)
and one-time signatures (OTS) to construct a GS scheme. The definitions of
these primitives will appear in the full version. Since we require an SKE to have
some non-standard properties, we provide a brief explanation here. We require
key robustness, which intuitively says that the ciphertext spaces corresponding
to two random secret keys are disjoint with all but negligible probability. In
addition, we require SKE to satisfy INDr-CCA security, which stipulates that a
ciphertext is indistinguishable from a pseudorandom ciphertext that is publicly
samplable, even if the distinguisher is equipped with a decryption oracle.

14

2.3 Admissible Hash Functions

Here, we define the notion of admissible hash, which was first introduced by
[BB04a]. We follow the definition of [FHPS13,BV15] with minor changes.

Definition 4. Let ` := `(κ) and `′ := `′(κ) be some polynomials. We define the
function WldCmp : {0, 1}` × {0, 1}` × {0, 1}` → {0, 1} as

WldCmp(y, z, w) = 0⇔ ∀i ∈ [`]
(
(yi = 0) ∨ (zi = wi)

)
where yi, zi, and wi denote the i-th bit of y, z, and w respectively. Intuitively,
WldCmp is a string comparison function with wildcards where it compares z and
w only at those points where yi = 1. Let {Hκ : {0, 1}`′(κ) → {0, 1}`(κ)}κ∈N be
a family of hash functions. We say that {Hκ}κ is a family of admissible hash
functions if there exists an efficient algorithm AdmSmp that takes as input 1κ

and Q ∈ N and outputs (y, z) ∈ {0, 1}` × {0, 1}` such that for every polynomial
Q(κ) and all X?, X(1), . . . X(Q) ∈ {0, 1}`′(κ) with X? 6∈ {X(1), . . . , X(Q)}, we
have

Pr
(y,z)

[
WldCmp(y, z,H(X?)) = 0 ∧

(
∧j∈[Q]WldCmp(y, z,H(X(j))) = 1

)]
≥ ∆Q(κ),

for a noticeable function ∆Q(κ), where the probability above is taken over the

choice of (y, z)
$← AdmSmp(1κ, Q).

As shown in previous works [Lys02,FHPS13], a family of error correcting
codes {Hκ : {0, 1}`′(κ) → {0, 1}`(κ)}κ∈N with constant relative distance c ∈
(0, 1/2) is an admissible hash function. Explicit and efficient constructions of
such codes are given in [SS96,Zém01,Gol08] to name a few.

3 Indexed Attribute-Based Signatures

In this section, we define the syntax and the security notion of indexed attribute-
based signature (indexed ABS). We require indexed ABS to satisfy unforgeability
and privacy. For the former, we consider two kinds of security notions that we call
co-selective unforgeability and no-signing-query unforgeability. While the latter
notion of unforgeability is weaker, we will show that an indexed ABS scheme
that only satisfies this weaker security notion can be converted into a scheme
with the stronger security notion without loosing privacy.

3.1 Indexed Attribute-Based Signature

Syntax. Let {Cκ}κ∈N be a family of circuits, where Cκ is a set of circuits with

domain {0, 1}k(κ) and range {0, 1}, and the size of every circuit in Cκ is bounded
by poly(κ). Let also {Mκ}κ∈N be a family of message spaces. In the following, we
occasionally drop the subscript and simply write C and M when the meaning
is clear. An indexed attribute-based signature (indexed ABS) scheme for the
circuit class C is defined by the following algorithms:

15

ABS.Setup(1κ, 1N)→ (mpk,msk): The setup algorithm takes as input the secu-
rity parameter κ and the bound on the number of users N both in the unary
form and outputs the master public key mpk and the master secret key msk.

ABS.KeyGen(msk, i, x)→ skx: The key generation algorithm takes as input the
master secret key msk, the user index i ∈ [N], and the attribute x ∈ {0, 1}k
and outputs the user secret key skx. We assume that i and x are implicitly
included in skx.

ABS.Sign(mpk, skx,M, C)→ σ: The signing algorithm takes as input the master
public key mpk, the secret key skx associated to x, a message M ∈Mκ, and
a policy C ∈ Cκ and outputs the signature σ.

ABS.Vrfy(mpk,M, C, σ)→ > or ⊥: The verification algorithm takes as input the
master public key mpk, a message M, a policy C, and a signature σ. It
outputs > if the signature is deemed valid and ⊥ otherwise. We assume that
the verification algorithm is deterministic.

We require correctness, privacy, and co-selective unforgeability.

Correctness. We require correctness: that is, for all κ, N ∈ poly(κ), (mpk,
msk) ∈ ABS.Setup(1κ, 1N), i ∈ [N], x ∈ {0, 1}k, C ∈ Cκ such that C(x) =
1, M ∈ Mκ, skx ∈ ABS.KeyGen(msk, i, x), and σ ∈ ABS.Sign(mpk, skx,M, C),
ABS.Vrfy(mpk,M, C, σ) = > holds.

Perfect Privacy. We say that the ABS scheme has perfect privacy if for all

κ, N ∈ poly(κ), (mpk,msk) ∈ ABS.Setup(1κ, 1N), x0, x1 ∈ {0, 1}k, i0, i1 ∈ [N],
C ∈ Cκ satisfying C(x0) = C(x1) = 1, M ∈ M, skx0

∈ ABS.KeyGen(msk, i0, x0),
and skx1

∈ ABS.KeyGen(msk, i1, x1), the following distributions are the same:

{σ0 $← ABS.Sign(mpk, skx0
,M, C)} ≈ {σ1 $← ABS.Sign(mpk, skx1

,M, C)}.

Co-Selective Unforgeability. We now define the co-selective unforgeability
for ABS scheme. This security notion is defined by the following game between
a challenger and an adversary A. During the game, the challenger maintains a
list Q, which is set to be empty at the beginning of the game.

Key Queries: At the beginning of the game, the adversary A is given 1κ as
input. It then sends 1N , {(i, x(i))}i∈[N], and S ⊆ [N] such that x(i) ∈ {0, 1}k
for all i ∈ [N] to the challenger.

Setup: The challenger runs ABS.Setup(1κ, 1N)→ (mpk,msk) and ABS.KeyGen(
msk, i, x(i))→ skx(i) for i ∈ [N]. It then gives mpk and {skx(i)}i∈[S] to A.

Signing Queries: During the game, A can make signing queries unbounded
polynomially many times. When A queries (M, C, i) such that M ∈M, C ∈ C,
i ∈ [N], and C(x(i)) = 1, the challenger runs ABS.Sign(mpk, skx(i) ,M, C)→
σ and returns σ to A. The challenger then adds (M, C) to Q.

Forgery: Eventually, A outputs (M?, C?, σ?) as the forgery. We say that A wins
the game if:
1. C? ∈ C,
2. ABS.Vrfy(mpk,M?, C?, σ?)→ >,
3. C?(x(i)) = 0 for i ∈ S,
4. (M?, C?) 6∈ Q.

16

We define the advantage of the adversary to be the probability that the adver-
sary A wins in the above game, where the probability is taken over the coin
tosses made by A and the challenger. We say that a scheme satisfies co-selective
unforgeability if the advantage of any PPT adversary A in the above game is
negligible in the security parameter.

No-Signing-Query Unforgeability. We now define a weaker definition of
unforgeability. We define the no-signing-query unforgeability game by modifying
the co-selective unforgeability game above by adding some more restrictions on
A. Namely, we prohibit A from making any signing queries and require S 6= ∅.
We do not change the winning condition of the game and define the advantage
of A as the probability that A wins. Note that Item 4 becomes vacuous because
we will always have Q = ∅. We say that a scheme satisfies no-signing-query
unforgeability if the advantage of any PPT adversary A in the game is negligible.

Remark 5 (Comparing indexed ABS with standard ABS). The syntax of the
indexed ABS is a relaxation of the standard ABS [MPR11,OT11,SAH16]: the
setup algorithm takes 1N as an additional input and the key generation algorithm
takes an index i as an additional input. It is easy to check that standard ABS
can be used as indexed ABS by simply ignoring the additional inputs.

3.2 From No-Signing-Query to Co-selective Unforgeability

Here, we show that an indexed ABS scheme ABS = (ABS.Setup,ABS.KeyGen,
ABS.Sign,ABS.Vrfy) that is no-signing-query unforgeable can be generically con-
verted into a new indexed ABS scheme ABS′ = (ABS′.Setup,ABS′.KeyGen,
ABS′.Sign,ABS′.Vrfy) that is co-selective unforgeable. If ABS is perfectly pri-
vate, so is ABS′. To enable the resulting scheme ABS′ to deal with function class
C = {Cκ}κ∈N, where Cκ is a set of circuits C such that C : {0, 1}k(κ) → {0, 1},
we require ABS to be able to deal with a (slightly) more complex function class
F = {Fκ}κ∈N. We define Fκ as

Fκ =
{
F [M̃, C] : {0, 1}k(κ)+2`(κ)+1 → {0, 1}

∣∣∣ M̃ ∈ {0, 1}`(κ), C ∈ Cκ} , (1)

where F [M̃, C] is defined in Fig. 1. We assume that the circuit F [M̃, C] is de-

terministically constructed from M̃ and C in a predetermined way. Let {Hκ}κ
be a family of collision resistant hash functions where an index h ∈ Hκ spec-
ifies a function h : {0, 1}∗ → {0, 1}`′(κ), where {0, 1}`′(κ) is the input space of
an admissible hash function Hκ : {0, 1}`′(κ) → {0, 1}`(κ). We construct ABS′ as
follows.

ABS′.Setup(1κ, 1N) : It runs ABS.Setup(1κ, 1N+1) → (mpk,msk) and samples a

random index of collision resistant hash function h
$← Hκ. It then outputs the

master public key mpk′ = (mpk, h) and the master secret key msk′ := msk.
ABS′.KeyGen(msk, i, x): It runs ABS.KeyGen(msk, i, x‖02`+1) → skx‖02`+1 and

returns sk′x := skx‖02`+1 .

17

ABS′.Sign(mpk′, sk′x,M, C): It first parses mpk′ → (mpk, h) and sk′x → skx‖02`+1

and computes M̃ = H(h(M‖C)). It then constructs a circuit F [M̃, C] that is

defined as in Fig. 1. It finally runs ABS.Sign(mpk, skx‖02`+1 ,M, F [M̃, C])→ σ
and outputs σ′ := σ.

ABS′.Vrfy(mpk′,M, C, σ): It first parses mpk′ → (mpk, h). It then computes M̃ =

H(h(M‖C)) and constructs a circuit F [M̃, C] that is defined as in Fig. 1. It

then outputs ABS.Vrfy(mpk,M, F [M̃, C], σ).

F [M̃, C](x‖y‖z‖b)
Hardwired constants: A bit string M̃ ∈ {0, 1}` and a circuit C : {0, 1}k → {0, 1}.

1. Parse the input to retrieve x ∈ {0, 1}k, y, z ∈ {0, 1}`, and b ∈ {0, 1}.
2. If b = 0, output C(x).

3. If b = 1, output WldCmp(y, z, M̃) ∈ {0, 1}.

Fig. 1. Description of the circuit F [M̃, C].

Correctness. We observe that if C(x) = 1, we have F [M̃, C](x‖02`+1) = C(x) =

1 by the definition of F [M̃, C]. The correctness of ABS′ therefore follows from
that of ABS.

Perfect Privacy. The following addresses the privacy of ABS′.

Theorem 6. If ABS is perfectly private, so is ABS′.

Proof. If C(x0) = C(x1) = 1, we have F [M̃, C](x0‖02`+1) = C(x0) = 1 and

F [M̃, C](x1‖02`+1) = C(x1) = 1 by the definition of F [M̃, C]. The theorem
therefore follows from the perfect privacy of ABS.

Co-selective Unforgeability. The following theorem addresses the co-selective

unforgeability of ABS′. The proof will appear in the full version.

Theorem 7. If ABS is no-signing-query unforgeable and perfectly private, Hκ
is a family of collision resistant hash functions, and Hκ is an admissible hash
function, then ABS′ is co-selective unforgeable.

4 Generic Construction of Group Signatures

In this section, we give a generic construction of a GS scheme from three building
blocks: an indexed ABS, an OTS, and an SKE. As we will show in Sec. 7, by
appropriately instantiating the building blocks, we obtain the first lattice-based
GS scheme in the standard model.

18

Ingredients. Here, we give a generic construction of a GS scheme GS =
(GS.KeyGen,GS.Sign,GS.Vrfy,GS.Open) from an indexed ABS scheme ABS =
(ABS.Setup,ABS.KeyGen,ABS.Sign,ABS.Vrfy) with perfect privacy and co-
selective unforgeability, an OTS scheme OTS = (OTS.KeyGen,OTS.Sign,
OTS.Vrfy) with strong unforgeability, and an SKE scheme SKE =
(SKE.Gen,SKE.Enc,SKE.Dec) with key robustness and INDr-CCA security. We
require the underlying primitives to satisfy the following constraints:

– SKE.Mκ ⊇ [N + 1]×{0, 1}`1(κ), where SKE.Mκ denotes the plaintext space
of SKE and `1(κ) denotes the upper-bound on the length of ovk that is output
by OTS.Setup(1κ).

– We require the underlying indexed ABS scheme to be able to deal with
function class C = {Cκ}κ∈N, where Cκ is defined as

Cκ =
{
C[ovk, ct]

∣∣∣ ovk ∈ {0, 1}`1(κ), ct ∈ {0, 1}`2(κ) } , (2)

where C[ovk, ct] is defined in Fig. 2 and `2(κ) is the upper bound
on the length of a ciphertext ct output by SKE.Enc(K,M) for K ∈
SKE.Gen(SKE.Setup(1κ)) and M ∈ SKE.Mκ.

– We require OTS.Mκ = {0, 1}∗, where OTS.Mκ denotes the message space
of OTS. Note that any OTS scheme with sufficiently large message space can
be modified to satisfy this condition by applying a collision resistant hash
to a message before signing.

Construction. We construct GS as follows.

GS.KeyGen(1κ, 1N) : It first samples pp
$← SKE.Setup(1κ) and (mpk,msk)

$←
ABS.Setup(1κ, 1N+1). It then samples Ki

$← SKE.Gen(pp) and ski‖Ki
$←

ABS.KeyGen(msk, i, i‖Ki) for i ∈ [N]. Finally, it outputs

gpk := (pp, mpk) , gok := { Ki }i∈[N] ,
{
gski :=

(
i, Ki, ski‖Ki

) }
i∈[N]

.

GS.Sign(gski,M) : It first samples (ovk, osk)
$← OTS.KeyGen(1κ) and computes

ct
$← SKE.Enc(Ki, i‖ovk). It then runs

ABS.Sign(mpk, ski‖Ki , C[ovk, ct],M)→ σ,

where the circuit C[ovk, ct] is defined in Fig. 2. It further runs
OTS.Sign(osk,M‖σ)→ τ . Finally, it outputs Σ := (ovk, ct, σ, τ).

GS.Vrfy(gpk,M, Σ) : It first parses Σ → (ovk, ct, σ, τ). It then outputs > if

ABS.Vrfy(mpk,M, C[ovk, ct], σ) = > ∧ OTS.Vrfy(ovk,M‖σ, τ) = >,

where C[ovk, ct] is defined in Fig. 2. Otherwise, it outputs ⊥.
GS.Open(gpk, gok,M, Σ) : It first runs GS.Vrfy(gpk,M, Σ) and returns ⊥ if the

verification result is ⊥. Otherwise, it parses Σ → (ovk, ct, σ, τ). It then com-
putes di ← SKE.Dec(Ki, ct) for i ∈ [N] and outputs the smallest index i such
that di 6= ⊥. If there is not such i, it returns ⊥.

19

C[ovk, ct](i‖K)

Hardwired constants: A verification key ovk of OTS and a ciphertext ct of SKE.

1. Parse the input to retrieve i ∈ [N + 1] and K. If the input does not conform
to the format, output 0.

2. If i = N + 1, output 1.
3. Compute SKE.Dec(K, ct) = i′‖ovk′. If i′ = i and ovk′ = ovk, output 1.

Otherwise, output 0.

Fig. 2. Description of the circuit C[ovk, ct].

Remark 8 (Construction Using Public Key Encryption). We remark that we
may be able to obtain an alternative construction using a public key encryption
(PKE) instead of an SKE. See full version for further discussion.

Correctness. We show that correctly generated signature Σ = (ovk, ct, σ, τ)
passes the verification. We have OTS.Vrfy(ovk,M‖σ, τ) = > by the correct-
ness of OTS. Furthermore, we have ABS.Vrfy(mpk,M, C[ovk, ct], σ) = > since
C[ovk, ct](i‖Ki) = 1, which follows from SKE.Dec(Ki, ct) = i‖ovk by the correct-
ness of SKE.

CCA-Selfless Anonymity. The following theorem addresses the CCA-
selfless anonymity of the above GS scheme. The proof will appear in the full
version.

Theorem 9. If ABS is perfectly private and co-selective unforgeable, OTS is
strongly unforgeable, and SKE is INDr-CCA-secure and key robust, then GS con-
structed above is CCA-selfless anonymous.

Traceability. The following addresses the traceability of the above GS scheme.

Theorem 10. If ABS is co-selective unforgeable and SKE has key robustness,
then GS constructed above has full traceability.

Proof. Let us fix a PPT adversary A and consider the full traceability
game played between A and a challenger. Let (M?, Σ?) be a forgery out-
put by A. We define F1 to be the event that A wins the game and
GS.Open(gpk, gok,M?, Σ?) = ⊥ holds, and F2 be the event that A wins the game
and GS.Open(gpk, gok,M?, Σ?) = i? holds for i? such that i? 6∈ T . Since both
F1 and F2 are collectively exhaustive events of a successful forgery, it suffices to
prove Pr[F1] = negl(κ) and Pr[F2] = negl(κ).

Lemma 11. If ABS is co-selective unforgeable, we have Pr[F1] = negl(κ).

Proof. For the sake of the contradiction, let us assume that F1 happens with
non-negligible probability ε. We then construct an adversary B that breaks the

20

co-selective unforgeability of ABS with the same probability. The adversary B
proceeds as follows.

At the beginning of the game, B is given 1κ from its challenger. B then
samples pp

$← SKE.Setup(1κ) and Ki
$← SKE.Gen(pp) for i ∈ [N] and sub-

mits 1N , {(i, i‖Ki)}i∈[N], and S = [N] to its challenger. Then, B receives mpk
and {ski‖Ki}i∈[N] from the challenger. It then gives 1κ, gpk := (pp,mpk), and
gok := {Ki}i∈[N] to A and keeps {gski := (i,Ki, ski‖Ki)}i∈[N] secret. During the
game, A makes signing and corrupt queries. These queries are trivial to han-
dle because B has {gski}i∈[N]. In particular, B can handle all signing queries
from A without making signing query to its challenger. Eventually, A will out-
put a forgery (M?, Σ? = (ovk?, ct?, σ?, τ?)). If GS.Vrfy(gpk,M?, Σ?) = > and
GS.Open(gpk, gok,M?, Σ?) = ⊥ hold, B outputs (M?, C[ovk?, ct?], σ?) as its
forgery. Otherwise, B aborts.

We claim that B wins the game whenever F1 happens. To prove this, we first
observe that ABS.Vrfy(mpk, C[ovk?, ct?], σ?) = > holds because GS.Vrfy(gpk,M?,
Σ?) = >. We then show that B has not made any prohibited key query. Namely,
we show C[ovk?, ct?](i‖Ki) = 0 for all i ∈ [N]. This follows since otherwise we
have SKE.Dec(Ki, ct

?) 6= ⊥ for some i, which contradicts GS.Open(gpk, gok,M?,
Σ?) = ⊥. We also note that B has not made any signing query. Since B’s simu-
lation is perfect, we can conclude that B wins the game with probability ε. This
concludes the proof of the lemma.

Lemma 12. If ABS is co-selective unforgeable and SKE has key robustness, we
have Pr[F2] = negl(κ).

Proof. For the sake of the contradiction, let us assume that F2 happens with
non-negligible probability ε. We then construct an adversary B that breaks the
co-selective unforgeability of ABS with non-negligible probability. We show this
by considering the following sequence of games. In the following, let Ei denote
the probability that F2 occurs and the challenger does not abort in Game i.

Game 0: We define Game 0 as the ordinary full traceability game between A and
the challenger. By assumption, we have Pr[E0] = ε.

Game 1: In this game, the challenger samples j?
$← [N] at the beginning of the

game and aborts if j? 6= i? at the end of the game. Since the view of A
is independent from j? and GS.Open does not output any symbol outside
[N] ∪ {⊥}, we have Pr[E1] = ε/N .

Game 2: In this game, the challenger aborts the game as soon as j? 6= i? turns
out to be true. Namely, it aborts if A makes a corruption query for j?, or
i? defined at the end of the game does not equal to j?. Since this is only a
conceptual change, we have Pr[E2] = Pr[E3].

Game 3: In this game, we change the previous game so that the challenger
aborts at the end of the game if |{i ∈ [N] : SKE.Dec(Ki, ct

?) 6= ⊥}| 6= 1
for (M?, Σ? = (ovk?, ct?, σ?, τ?)) output by A as the forgery. We claim
that the probability that F2 and |{i ∈ [N] : SKE.Dec(Ki, ct

?) 6= ⊥}| 6= 1
occur at the same time is negligibly small. Note that by the definition of
GS.Open, F2 implies SKE.Dec(Ki? , ct

?) 6= ⊥ for i? ∈ [N]. We therefore have

21

|{i ∈ [N] : SKE.Dec(Ki, ct
?) 6= ⊥}| ≥ 2. However, the probability of this

occurring is bounded by

Pr [|{i ∈ [N] : SKE.Dec(Ki, ct
?) 6= ⊥}| ≥ 2]

≤ Pr

 pp
$← SKE.Setup(1κ), Kj

$← SKE.Gen(pp) for j ∈ [N] :
∃ct? ∈ {0, 1}∗, ∃i, i? ∈ [N]

s.t. i 6= i? ∧ SKE.Dec(Ki, ct
?) 6= ⊥ ∧ SKE.Dec(Ki? , ct

?) 6= ⊥


≤

∑
i,i?∈[N] s.t. i 6=i?

Pr

 pp
$← SKE.Setup(1κ), Ki,Ki?

$← SKE.Gen(pp) :
∃ct? ∈ {0, 1}∗

s.t. SKE.Dec(Ki, ct
?) 6= ⊥ ∧ SKE.Dec(Ki? , ct

?) 6= ⊥


≤ N(N − 1)/2 · negl(κ)

= negl(κ),

where the second inequality is by the union bound and the third inequality is
by the key robustness of SKE. Therefore, we have |Pr[E2]−Pr[E3]| = negl(κ).

We then replace the challenger in Game 3 with an adversary B against the co-
selective unforgeability of ABS with advantage Pr[E3]. The adversary B proceeds
as follows.

At the beginning of the game, B is given 1κ from its challenger. Then, B
chooses its guess j?

$← [N] for i?, samples pp
$← SKE.Setup(1κ) and Ki

$←
SKE.Gen(pp) for i ∈ [N], and sends 1N , {(i, i‖Ki)}i∈[N], and S = [N]\{j?} to
the challenger. Then, B receives mpk and {ski‖Ki}i∈[N]\{j?} from the challenger.
It then sets gpk := (pp,mpk), gski := (i,Ki, ski‖Ki) for i ∈ [N]\{j?}, and gok :=
{Ki}i∈[N] and gives 1κ, gpk, and gok to A. During the game, A makes two kinds
of queries. B answers the queries as follows.

– When A makes a corrupt query for i ∈ [N], B proceeds as follows. If i = j?,
B aborts. Otherwise, it gives gski to A.

– When A makes a signing query for (i,M), B answers the query using gski if

i 6= j?. If i = j?, B first samples (ovk, osk)
$← OTS.KeyGen(1κ) and computes

ct
$← SKE.Enc(Kj? , j

?‖ovk). It then makes a signing query (M, C[ovk, ct], j?)
to its challenger, who returns σ to B. Then, it runs OTS.Sign(osk,M‖σ)→ τ
and returns Σ := (ovk, ct, σ, τ) to A.

Eventually, A will output a forgery (M?, Σ? = (ovk?, ct?, σ?, τ?)). If
either of GS.Vrfy(gpk,M?, Σ?) = > or i? = j? does not hold, where
i? := GS.Open(gpk, gok,M?, Σ?), B aborts. It also aborts if |{i ∈ [N] :
SKE.Dec(Ki, ct

?) 6= ⊥}| 6= 1. Otherwise, B outputs (M?, C[ovk?, ct?], σ?) as its
forgery.

We claim that B wins the game whenever E3 occurs. To see this,
we first observe that we have ABS.Vrfy(mpk, C[ovk?, ct?], σ?) = > by
GS.Vrfy(gpk,M?, Σ?) = >. We then prove that B has never made pro-
hibited corrupt queries. Namely, we show C[ovk?, ct?](i‖Ki) = 0 for all
i ∈ [N]\{i?}. This follows since we have |{i ∈ [N] : SKE.Dec(Ki, ct

?) 6=

22

⊥}| = 1 and SKE.Dec(Ki? , ct
?) 6= ⊥, where the latter follows from

GS.Open(gpk, gok,M?, Σ?) = i?. Finally, we show that B has never made pro-
hibited signing queries. Recall that B has only made signing queries of the form
(M, C[ovk, ct], i?) and all such queries are made in order to answer the sign-
ing query (i?,M) made by A. Because A has won the game, we have M? 6= M,
which implies (M?, C[ovk?, ct?]) 6= (M, C[ovk, ct]) as desired. Since B simulates
Game 3 perfectly, we have that the winning probability of B is exactly Pr[E3].
This concludes the proof of the lemma.

5 Construction of Indexed ABS from Lattices

In this section, we give a new construction of indexed ABS scheme from the SIS
assumption. Combined with an appropriate SKE scheme and OTS scheme, we
can instantiate the generic construction of GS in Sec. 4 to obtain the first lattice-
based GS scheme in the standard model. We refer Sec. 7 to more discussions.

5.1 Preliminaries on Lattices

Here, we recall some facts on lattices that are needed for the exposition of
our construction. Throughout this section, n, m, and q are integers such that
n = poly(κ) and m ≥ ndlog qe. In the following, let SampZ(γ) be a sampling al-
gorithm for the truncated discrete Gaussian distribution over Z with parameter
γ > 0 whose support is restricted to z ∈ Z such that |z| ≤

√
nγ.8

Definition 13 (The SIS Assumption). Let n,m, q, β be integer parameters.
We say that the SIS(n,m, q, β) hardness assumption holds if for any PPT ad-
versaries A we have

Pr[A · z = 0 ∧ 0 < ‖z‖∞ ≤ β(κ) : A
$← Zn(κ)×m(κ)

q(κ) , z← A(1κ,A)] ≤ negl(κ).

We also say that the SIS(n,m, q, β) problem is subexponentially hard if the above
probability is bounded by 2−O(nε) · negl(κ) for some constant 0 < ε < 1.

For any n = poly(κ), any m = poly(n), any β(n) > 0, and q ≥ β
√
n · ω(log n),

it is known that the SIS(n,m, q, β) problem is as hard as certain worst case
lattice problems with approximation factor β(n) · poly(n). We abuse the term
and refer to SIS(n,m, q, β) with β ≤ poly(κ) as the SIS problem with polynomial
approximation factor.

Trapdoors. Let A ∈ Zn×mq . For all V ∈ Zn×m′

q , we let A−1γ (V) be an output

distribution of SampZ(γ)m×m
′

conditioned on A ·A−1γ (V) = V. A γ-trapdoor
for A is a trapdoor that enables one to sample from the distribution A−1γ (V) in
time poly(n,m,m′, log q), for any V. We slightly overload notation and denote
a γ-trapdoor for A by A−1γ . We also define the special gadget matrix G ∈
8 During construction, we fix n and consider this very weak bound for one-dimensional

discrete Gaussian samples for simplicity of analysis.

23

Zn×mq as the matrix obtained by padding In ⊗ (1, 2, 4, 8, . . . , 2dlog qe) with zero-
columns. The following properties had been established in a long sequence of
works [GPV08,CHKP10,ABB10a,ABB10b,MP12,BLP+13].

Lemma 14 (Properties of Trapdoors). Lattice trapdoors exhibit the follow-
ing properties.

1. Given A−1γ , one can obtain A−1γ′ for any γ′ ≥ γ.

2. Given A−1γ , one can obtain [A‖B]−1γ and [B‖A]−1γ for any B.
3. For all A ∈ Zn×mq and R ∈ Zm×m, one can obtain [AR + G‖A]−1γ for

γ = m · ‖R‖∞ · ω(
√

logm).
4. There exists an efficient procedure TrapGen(1n, 1m, q) that outputs (A,A−1γ0)

where A ∈ Zn×mq for some m = O(n log q) and is 2−n-close to uniform,

where γ0 = ω(
√
n log q logm).

Lemma 15 (Fully Homomorphic Computation [GV15]). There exists a
pair of deterministic algorithms (PubEval,TrapEval) with the following proper-
ties.

– PubEval(~B, F) → BF . Here, ~B = [B1‖ · · · ‖Bk] ∈ (Zn×mq)k and F :

{0, 1}k → {0, 1} is a circuit.

– TrapEval(~R, F, x)→ RF,x. Here, ~R = [R1‖ . . . ‖Rk] ∈ (Zn×mq)k, ‖Ri‖∞ ≤ δ
for i ∈ [k], x ∈ {0, 1}k, and F : {0, 1}k → {0, 1} is a circuit with depth

d. We have PubEval(A~R + x ⊗ G) = ARF,x + F (x)G where we denote
[x1G‖ · · · ‖xkG] by x⊗G. Furthermore, we have ‖RF,x‖∞ ≤ δ ·m · 2O(d).

– The running time of (PubEval,TrapEval) is bounded by poly(k, n,m, 2d, log q).

The above algorithms are taken from [GV15], which is a variant of a similar
algorithms proposed by Boneh et al. [BGG+14]. The algorithms in [BGG+14]
work for any polynomial-sized circuit F , but ‖RF,x‖∞ becomes super-polynomial
even if the depth of the circuit is shallow (i.e., logarithmic depth). On the other
hand, the above algorithm runs in polynomial time only when F is of logarith-
mic depth, but ‖RF,x‖∞ can be polynomially bounded. The latter property is
useful since our main focus is on the constructions of GS schemes from the SIS
assumption with polynomial approximation factors.

5.2 Construction

Here, we show our construction of indexed ABS. The scheme satisfies no-signing-
query unforgeability. By applying the conversion in Sec. 3.2 to the scheme, we can
obtain a scheme with co-selective unforgeability. Note that the signing and the
verification algorithm below ignore the input message M. This is not a problem
because the no-signing-query security does not require non-malleability with
respect to the message.

We denote the circuit class that is dealt with by the scheme by {Fκ}κ, where
Fκ is a set of circuits F such that F : {0, 1}k(κ) → {0, 1} and with depth at
most dF = O(log κ).

24

ABS.Setup(1κ, 1N): On input 1κ and 1N , it sets the parameters n, m, q, γ0, γ,
and β as specified later in this section, where q is a prime number. Then,

it picks random matrices B
(i)
j

$← Zn×mq for i ∈ [N], j ∈ [k]. We denote

~B(i) = [B
(i)
1 ‖ · · · ‖B

(i)
k]. It also picks (A,A−1γ0)

$← TrapGen(1n, 1m, q) such

that A ∈ Zn×mq and a random vector r
$← {0, 1}m. It then computes u :=

Ar ∈ Znq . It finally outputs

mpk =
(

A, {~B(i)}i∈[N], u,
)

and msk =
(

A−1γ0 , {~B
(i)}i∈[N]

)
.

ABS.KeyGen(msk, i, x): On input msk = (A−1γ0 , {~B
(i)}i∈[N]), i ∈ [N], and x ∈

{0, 1}k, it samples ~R(i) $← A−1γ0
(
~B(i) − x ⊗G

)
where ~R(i) ∈ Zm×mk using

A−1γ0 . Note that ~B(i) = A~R(i) + x ⊗G and ‖~R(i)‖∞ ≤ γ0
√
n holds by the

definition of the distribution A−1γ0 (~B(i) − x ⊗ G). It then outputs skx :=

(i, ~R(i)).
ABS.Sign(mpk, skx,M, F): It outputs ⊥ if M 6∈ Mκ, F 6∈ F , or F (x) = 0. Other-

wise, it first parses skx → (i, ~R(i)). It then computes B
(i)
F := PubEval(~B(i), F)

and R
(i)
F,x := TrapEval(~R(i), F, x) such that ‖R(i)

F,x‖∞ ≤ γ. By Lemma

15 and since F (x) = 1, we have B
(i)
F = AR

(i)
F,x + G. It then computes

[A‖B(i)
F]−1β from R

(i)
F,x (see Item 3 in Lemma 14) and further computes[

A‖B(1)
F ‖ · · · ‖B

(N)
F

]−1
β

from [A‖B(i)
F]−1β (see Item 2 in Lemma 14). Fi-

nally, it samples e
$← [A‖B(1)

F ‖ · · · ‖B
(N)
F]−1β (u) and outputs the signature

σ := e ∈ Zm(N+1).
ABS.Vrfy(mpk,M, σ, F): It outputs ⊥ if F 6∈ F or σ = e 6∈ Zm(N+1). Otherwise,

it first computes B
(i)
F = PubEval(F, ~B(i)) for i ∈ [N]. It then checks whether

‖e‖∞ ≤
√
nβ and

[
A‖B(1)

F ‖ · · · ‖B
(N)
F

]
e = u. If they hold, it outputs > and

otherwise ⊥.

Correctness. The correctness of the scheme can be seen by observing that
the verification equation and ‖e‖∞ ≤

√
nβ follow from the definition of the

distribution [A‖B(1)
F ‖ · · · ‖B

(N)
F]−1β (u) from which e is sampled.

Parameter Selection. As long as the maximum depth of the circuit class Fκ is
bounded by O(log κ), we can set all of n, m, γ0, γ, β, and q to be polynomial in κ.
Notably, this allows us to reduce the security of the scheme to SIS(n,m, q, βSIS)
with βSIS = poly(κ). We refer to the full version for the precise requirements for
these parameters and a concrete selection.

5.3 Security Proofs

Theorem 16. Our ABS scheme is perfectly private.

Proof. It can be seen that the signature σ = e for (F,M) is chosen from the

distribution [A‖B(1)
F ‖ · · · ‖B

(N)
F]−1β (u), which only depends on mpk and F . The

theorem readily follows.

25

Theorem 17. Our ABS scheme satisfies no-signing-query unforgeability assum-
ing SIS(n,m, q, βSIS) is hard.

The proof will appear in the full version.

6 Instantiating SKE

Here, we discuss how to instantiate the SKE required for the generic construction
of GS in Sec. 4. Since this can be done by a combination of known results and
standard techniques, we only give a high level overview here and refer to the full
version for the details. We require the SKE to be INDr-CCA secure and to have
key robustness and a decryption circuit with O(log κ)-depth. The requirement
for the depth of the circuit is needed to combine it with our indexed ABS scheme
in Sec. 5.2, which can only deal with circuits with logarithmic depth.

To obtain such a scheme, we follow the MAC-then-Encrypt paradigm and
show a generic construction of such an SKE from another SKE and a MAC. For
the latter SKE, we require INDr-CPA security, key robustness, and a decryption
circuit with O(log κ)-depth. For the MAC, we require strong unforgeability and
a verification circuit with O(log κ)-depth. Although an insecure example of the
MAC-then-Encrypt approach is known [BN00], we avoid the pitfall by authenti-
cating a part of the ciphertext in addition to the plaintext using the MAC. We
also note that the Encrypt-then-MAC approach may not work in our setting,
because the MAC part may reveal the information about the user and destroy
the INDr-CCA security (in particular, anonymity) of the resulting SKE scheme.

It remains to show how to instantiate the inner SKE and MAC. For the SKE,
we use a secret key variant of the Regev encryption scheme [Reg05], where we pad
the message with zeroes before encrypting it and the decryption algorithm re-
turns ⊥ to a ciphertext that does not conform to this format. The padding makes
the ciphertext somewhat redundant, and due to this redundancy, we can prove
key robustness of the scheme by a standard counting argument. The INDr-CPA
security of the scheme is proven from the LWE assumption by a straightfor-
ward reduction. The decryption circuit of the scheme can be implemented by an
O(log κ)-depth circuit, since the decryption algorithm only involves basic alge-
braic operations such as the computation of an inner-product, modulo reduction,
and comparison, all of which are known to be in NC1. We then discuss how to
instantiate the MAC. We need the MAC scheme to have strong unforgeabil-
ity and a decryption circuit with O(log κ)-depth. To obtain such a scheme, we
downgrade the (public key) signature scheme proposed by Micciancio and Peik-
ert [MP12] to a MAC scheme. Since the scheme satisfies strong unforgeability
as a signature scheme, it is trivial to see that the scheme is strongly unforgeable
as a MAC as well. The verification circuit of the scheme can be implemented
by an O(log κ)-depth circuit, since the verification algorithm only involves basic
algebraic operations, similarly to the decryption algorithm of the above SKE.

We finally remark that another way of obtaining the SKE required for the
generic construction in Sec. 4 may be to downgrade the CCA-secure public

26

key encryption scheme by Micciancio and Peikert [MP12] to an SKE scheme.
However, this approach requires the LWE assumption with larger approximation
factor than our approach described above.

7 New Group Signature Constructions

By combining all the results in the previous sections, we obtain the first lattice-
based group signatures in the standard model. We show two instantiations, which
provide tradeoffs between the security assumption and efficiency. The first in-
stantiation leads to a scheme that is proven secure under the SIS and LWE
assumption with polynomial approximation factors, but has long group public
key and signatures that are linear in the number of users N . The second instan-
tiation is more efficient and these parameters do not depend on N . However, in
order to prove security, we have to assume the subexponential hardness of the
SIS problem (with polynomial approximation factors).

First Instantiation. The generic construction of GS schemes in Sec. 4 re-
quires an OTS scheme, an SKE scheme, and an indexed ABS scheme. We instan-
tiate the OTS by the scheme proposed by Mohassel [Moh11], which is strongly
unforgeable under the SIS assumption with polynomial approximation factors.
We instantiate the SKE by the scheme that is sketched in Sec. 6 (and described in
full details in the full version. The scheme satisfies INDr-CCA security under the
LWE assumption with polynomial approximation factors, key-robustness, and
can have arbitrarily large message space, which are the required properties for the
generic construction. Furthermore, the maximum depth of the decryption circuit
of the SKE, which is denoted by dDec hereafter, is O(log κ). We now consider how
to instantiate the indexed ABS scheme. In addition to the perfect privacy and
co-selective unforgeability, we require the indexed ABS to be capable of dealing
with the circuit class Cκ defined in Eq. (2). It is easy to see that we can bound the
maximum depth dC of circuits in Cκ by dC = O(logN+log `1 +dDec) = O(log κ).
To obtain such an indexed ABS scheme, we apply the conversion in Sec. 3.2 to
our indexed ABS scheme in Sec. 5.2, whose no-signing-query unforgeability is
shown under the SIS assumption with polynomial approximation factors. Note
that the conversion requires a collision resistant hash, which is known to be im-
plied by the same SIS assumption [MR04]. In order to make sure that the ABS
scheme obtained through this conversion can deal with the circuit class Cκ, we
require the original indexed ABS to be capable of dealing with a circuit class Fκ
defined in Eq. (1). It is easy to see that the function WldCmp can be implemented
by an O(log `)-depth circuit and thus we can bound the maximum depth dF of
the circuit class Fκ by dF = dC + O(log `) = O(log κ). Since dF = O(log κ), we
can instantiate the latter indexed ABS by the construction in Sec. 5.2. Summing
up the above discussion, we have the following theorem:

Theorem 18 (Theorem 1 restated). Under the hardness of the SIS and LWE
with polynomial approximation factors, we have a group signature scheme with
CCA-selfless anonymity and full traceability in the standard model whose sizes
of the public parameters and signatures are linear in the number of users N .

27

Second Instantiation. Here, we show another way of instantiating our
generic construction in Sec. 4. We use the same SKE as the first instantiation
above, but we instantiate the indexed ABS scheme with the scheme proposed
by Tsabary [Tsa17]. To do so, we first state the following theorem.

Theorem 19 (Adapted from Sec. 6 of [Tsa17]). There is an indexed ABS
scheme for the circuit class Cκ defined in Eq. (2) with perfect privacy and co-
selective unforgeability whose master public key and signature sizes are bounded
by poly(κ), i.e., independent of the number of users N , assuming the subexpo-
nential hardness of the SIS problem with polynomial approximation factors.

The above theorem is obtained by the result by [Tsa17], but some adaptations
are required. We refer to the full version for discussions.

We then combine the ABS scheme given by Theorem 19 with the SKE scheme
used in the first instantiation. We then obtain the following theorem.

Theorem 20 (Theorem 2 restated). Under the hardness of the LWE prob-
lem and the subexponential hardness of the SIS problem with polynomial approx-
imation factors, there exists a group signature scheme with full-traceability and
CCA-selfless anonymity whose sizes of the public parameters and signatures are
poly(κ), i.e., independent of the number of users N .

Acknowledgement. The authors would like to thank Yusuke Sakai and Ai
Ishida for helpful discussions and anonymous reviewers of Eurocrypt 2019 for
their valuable comments. The first author was partially supported by JST
CREST Grant NumberJPMJCR1302 and JSPS KAKENHI Grant Number
17J05603. The second author was supportedby JST CREST Grant No. JP-
MJCR1688 and JSPS KAKENHI Grant Number 16K16068.

References

ABB10a. S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard
model. In EUROCRYPT, pages 553–572, 2010.

ABB10b. S. Agrawal, D. Boneh, and X. Boyen. Lattice basis delegation in fixed
dimension and shorter-ciphertext hierarchical IBE. In CRYPTO, pages 98–
115, 2010.

ACJT00. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and prov-
ably secure coalition-resistant group signature scheme. In CRYPTO, pages
255–270, 2000.

BB04a. D. Boneh and X. Boyen. Secure identity based encryption without random
oracles. In CRYPTO, pages 443–459, 2004.

BB04b. D. Boneh and X. Boyen. Efficient Selective-ID Secure Identity-Based En-
cryption Without Random Oracles. In EUROCRYPT, pages 223–238, 2004.

BBS04. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In CRYPTO,
pages 41–55, 2004.

Boy10. X. Boyen. Lattice Mixing and Vanishing Trapdoors: A Framework for Fully
Secure Short Signatures and More. In PKC, pages 499–517, 2010.

BCC+16. J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, and J. Groth. Foundations of
fully dynamic group signatures. In ACNS 16, pages 117–136, 2016.

28

BCH86. P. Beame, S. A. Cook, and H. J. Hoover. Log depth circuits for division
and related problems. SIAM J. Comput., 15(4):994–1003, 1986.

BF14. M. Bellare and G. Fuchsbauer. Policy-based signatures. In PKC, pages
520–537, 2014.

BGG+14. D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev,
V. Vaikuntanathan, and D. Vinayagamurthy. Fully key-homomorphic en-
cryption, arithmetic circuit ABE and compact garbled circuits. In EURO-
CRYPT, pages 533–556, 2014.

BLP+13. Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical
hardness of learning with errors. In STOC, pages 575–584, 2013.

BMW03. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signa-
tures: Formal definitions, simplified requirements, and a construction based
on general assumptions. In EUROCRYPT, pages 614–629, 2003.

BN00. M. Bellare and C. Namprempre. Authenticated encryption: Relations among
notions and analysis of the generic composition paradigm. In ASIACRYPT,
pages 531–545, 2000.

BS04. D. Boneh and H. Shacham. Group signatures with verifier-local revocation.
In ACM CCS, pages 168–177, 2004.

BSZ05. M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The
case of dynamic groups. In CT-RSA, pages 136–153, 2005.

BV15. Z. Brakerski and V. Vaikuntanathan. Constrained key-homomorphic PRFs
from standard lattice assumptions - or: How to secretly embed a circuit in
your PRF. In TCC 2015, Part II, pages 1–30, 2015.

BW06. X. Boyen and B. Waters. Compact group signatures without random oracles.
In EUROCRYPT 2006, pages 427–444, 2006.

BW07. X. Boyen and B. Waters. Full-domain subgroup hiding and constant-size
group signatures. In PKC, pages 1–15, 2007.

BY93. M. Bellare and M. Yung. Certifying cryptographic tools: The case of trap-
door permutations. In CRYPTO, pages 442–460, 1993.

CG05. J. Camenisch and J. Groth. Group signatures: Better efficiency and new
theoretical aspects. In SCN 04, pages 120–133, 2005.

CH85. S. A. Cook and H. J. Hoover. A depth-universal circuit. SIAM J. Comput.,
14(4):833–839, 1985.

CHKP10. D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to
delegate a lattice basis. In EUROCRYPT, pages 523–552, 2010.

CL02. J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application
to efficient revocation of anonymous credentials. In CRYPTO, pages 61–76,
2002.

CL04. J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous cre-
dentials from bilinear maps. In CRYPTO, pages 56–72, 2004.

Cv91. D. Chaum and E. van Heyst. Group signatures. In EUROCRYPT, pages
257–265, 1991.

DFN06. I. Damg̊ard, N. Fazio, and A. Nicolosi. Non-interactive zero-knowledge from
homomorphic encryption. In TCC, pages 41–59, 2006.

DMP88. A. De Santis, S. Micali, and G. Persiano. Non-interactive zero-knowledge
proof systems. In CRYPTO, pages 52–72, 1988.

DRS04. Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. In EUROCRYPT, pages
523–540, 2004.

29

FHPS13. E. S. V. Freire, D. Hofheinz, K. G. Paterson, and C. Striecks. Programmable
hash functions in the multilinear setting. In CRYPTO 2013, Part I, pages
513–530, 2013.

FLS90. U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowl-
edge proofs based on a single random string (extended abstract). In FOCS,
pages 308–317, 1990.

FS87. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In CRYPTO’86, pages 186–194, 1987.

GKV10. S. D. Gordon, J. Katz, and V. Vaikuntanathan. A group signature scheme
from lattice assumptions. In ASIACRYPT, pages 395–412, 2010.

Gol04. O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, 2004.

Gol08. O. Goldreich. Computational complexity - a conceptual perspective. Cam-
bridge University Press, 2008.

GOS06. J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero knowledge
for NP. In EUROCRYPT, pages 339–358, 2006.

GPV08. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, pages 197–206, 2008.

Gro07. J. Groth. Fully anonymous group signatures without random oracles. In
ASIACRYPT, pages 164–180, 2007.

GS08. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear
groups. In EUROCRYPT, pages 415–432, 2008.

GV15. S. Gorbunov and D. Vinayagamurthy. Riding on asymmetry: Efficient ABE
for branching programs. In ASIACRYPT 2015, Part I, pages 550–574, 2015.

GVW15. S. Gorbunov, V. Vaikuntanathan, and D. Wichs. Leveled fully homomorphic
signatures from standard lattices. In STOC, pages 469–477, 2015.

HLLR12. J. Herranz, F. Laguillaumie, B. Libert, and C. Ràfols. Short attribute-based
signatures for threshold predicates. In CT-RSA 2012, pages 51–67, 2012.

KW18. S. Kim and D. J. Wu. Multi-theorem preprocessing NIZKs from lattices. In
CRYPTO 2018, Part II, pages 733–765, 2018.

KY06. A. Kiayias and M. Yung. Secure scalable group signature with dynamic
joins and separable authorities. IJSN, 1(1/2):24–45, 2006.

LLLS13. F. Laguillaumie, A. Langlois, B. Libert, and D. Stehlé. Lattice-based group
signatures with logarithmic signature size. In ASIACRYPT 2013, Part II,
pages 41–61, 2013.

LLM+16a. B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang. Signature
schemes with efficient protocols and dynamic group signatures from lattice
assumptions. In ASIACRYPT 2016, Part II, pages 373–403, 2016.

LLM+16b. B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang. Zero-
knowledge arguments for matrix-vector relations and lattice-based group
encryption. In ASIACRYPT 2016, Part II, pages 101–131, 2016.

LLNW14. A. Langlois, S. Ling, K. Nguyen, and H. Wang. Lattice-based group signa-
ture scheme with verifier-local revocation. In PKC, pages 345–361, 2014.

LLNW16. B. Libert, S. Ling, K. Nguyen, and H. Wang. Zero-knowledge arguments
for lattice-based accumulators: Logarithmic-size ring signatures and group
signatures without trapdoors. In EUROCRYPT 2016, Part II, pages 1–31,
2016.

LNW15. S. Ling, K. Nguyen, and H. Wang. Group signatures from lattices: Simpler,
tighter, shorter, ring-based. In PKC, pages 427–449, 2015.

LNWX17. S. Ling, K. Nguyen, H. Wang, and Y. Xu. Lattice-based group signatures:
Achieving full dynamicity with ease. In ACNS 17, pages 293–312, 2017.

30

LNWX18. S. Ling, K. Nguyen, H. Wang, and Y. Xu. Constant-size group signatures
from lattices. In PKC 2018, Part II, pages 58–88, 2018.

Lys02. A. Lysyanskaya. Unique signatures and verifiable random functions from
the DH-DDH separation. In CRYPTO, pages 597–612, 2002.

Moh11. P. Mohassel. One-time signatures and chameleon hash functions. In SAC
2010, pages 302–319, 2011.

MP12. D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In EUROCRYPT, pages 700–718, 2012.

MPR11. H. K. Maji, M. Prabhakaran, and M. Rosulek. Attribute-based signatures.
In CT-RSA, pages 376–392, 2011.

MR04. D. Micciancio and O. Regev. Worst-case to average-case reductions based
on Gaussian measures. In FOCS, pages 372–381, 2004.

Nao91. M. Naor. Bit commitment using pseudorandomness. Journal of Cryptology,
4(2):151–158, 1991.

NZZ15. P. Q. Nguyen, J. Zhang, and Z. Zhang. Simpler efficient group signatures
from lattices. In PKC, pages 401–426, 2015.

OT11. T. Okamoto and K. Takashima. Efficient attribute-based signatures for non-
monotone predicates in the standard model. In PKC, pages 35–52, 2011.

Pei09. C. Peikert. Public-key cryptosystems from the worst-case shortest vector
problem: extended abstract. In STOC, pages 333–342, 2009.

PLS18. R. Del Pino, Va. Lyubashevsky, and G. Seiler. Lattice-based group sig-
natures and zero-knowledge proofs of automorphism stability. ACM-CCS,
2018 (To appear).

PsV06. R. Pass, a. shelat, and V. Vaikuntanathan. Construction of a non-malleable
encryption scheme from any semantically secure one. In CRYPTO, pages
271–289, 2006.

PV08. C. Peikert and V. Vaikuntanathan. Noninteractive statistical zero-
knowledge proofs for lattice problems. In CRYPTO, pages 536–553, 2008.

Reg05. O. Regev. On lattices, learning with errors, random linear codes, and cryp-
tography. In STOC, pages 84–93, 2005.

Rom90. J. Rompel. One-way functions are necessary and sufficient for secure signa-
tures. In STOC, pages 387–394, 1990.

SAH16. Y. Sakai, N. Attrapadung, and G. Hanaoka. Attribute-based signatures for
circuits from bilinear map. In PKC 2016, Part I, pages 283–300, 2016.

SEH+13. Y. Sakai, K. Emura, G. Hanaoka, Y. Kawai, T. Matsuda, and K. Omote.
Group signatures with message-dependent opening. In PAIRING, pages
270–294, 2013.

SS96. M. Sipser and D. A. Spielman. Expander codes. IEEE Trans. Information
Theory, 42(6):1710–1722, 1996.

SSE+12. Y. Sakai, J. C. N. Schuldt, K. Emura, G. Hanaoka, and K. Ohta. On the
security of dynamic group signatures: Preventing signature hijacking. In
PKC, pages 715–732, 2012.

ST01. A. Shamir and Y. Tauman. Improved online/offline signature schemes. In
CRYPTO, pages 355–367, 2001.

Tsa17. R. Tsabary. An equivalence between attribute-based signatures and homo-
morphic signatures, and new constructions for both. In TCC 2017, Part II,
pages 489–518, 2017.

Zém01. G. Zémor. On expander codes. IEEE Trans. Information Theory, 47(2):835–
837, 2001.

	 Group Signatures without NIZK: From Lattices in the Standard Model
	Introduction
	Background
	Our Contribution
	Overview of Our Technique
	Related Works

	Preliminaries
	Group Signature
	Secret Key Encryption and Other Primitives
	Admissible Hash Functions

	Indexed Attribute-Based Signatures
	Indexed Attribute-Based Signature
	From No-Signing-Query to Co-selective Unforgeability

	Generic Construction of Group Signatures
	Construction of Indexed ABS from Lattices
	Preliminaries on Lattices
	Construction
	Security Proofs

	Instantiating SKE
	New Group Signature Constructions

