Multi-Party Virtual State Channels

Stefan Dziembowski'!, Lisa Eckey?, Sebastian Faust?,
Julia Hesse?, and Kristina Hostakova?

! stefan.dziembowski@crypto.edu.pl; University of Warsaw

2 first.last@crisp-da.de; Technische Universitit Darmstadt

Abstract. Smart contracts are self-executing agreements written in pro-
gram code and are envisioned to be one of the main applications of
blockchain technology. While they are supported by prominent cryp-
tocurrencies such as Ethereum, their further adoption is hindered by
fundamental scalability challenges. For instance, in Ethereum contract
execution suffers from a latency of more than 15 seconds, and the total
number of contracts that can be executed per second is very limited.
State channel networks are one of the core primitives aiming to address
these challenges. They form a second layer over the slow and expen-
sive blockchain, thereby enabling instantaneous contract processing at
negligible costs.

In this work we present the first complete description of a state channel
network that exhibits the following key features. First, it supports virtual
multi-party state channels, i.e. state channels that can be created and
closed without blockchain interaction and that allow contracts with any
number of parties. Second, the worst case time complexity of our pro-
tocol is constant for arbitrary complex channels. This is in contrast to
the existing virtual state channel construction that has worst case time
complexity linear in the number of involved parties. In addition to our
new construction, we provide a comprehensive model for the modular
design and security analysis of our construction.

1 Introduction

Blockchain technology emerged recently as a promising technique for distributing
trust in security protocols. It was introduced by Satoshi Nakamoto in [22] who
used it to design Bitcoin, a new cryptographic currency which is maintained
jointly by its users, and remains secure as long as the majority of computing
power in the system is controlled by honest parties. In a nutshell, a blockchain
is a system for maintaining a joint database (also called the “ledger”) between
several users in such a way that there is a consensus about its state.

In recent years the original ideas of Nakamoto have been extended in several
directions. Particularly relevant to this paper are systems that support so-called
smart contracts [26], also called contracts for short (see Sect. 2.1 for a more
detailed introduction to this topic). Smart contracts are self-executing agree-
ments written in a programming language that distribute money according to
the results of their execution. The blockchain provides a platform where such

contracts can be written down, and more importantly, be executed according
to the rules of the language in which they are encoded. The most prominent
blockchain system that offers support for rich smart contracts is Ethereum, but
many other systems are currently emerging.

Unfortunately, the current approach of using blockchain platforms for exe-
cuting smart contracts faces inherent scalability limitations. In particular, since
all participants of such systems need to reach consensus about the blockchain
contents, state changes are costly and time consuming. This is especially true
for blockchains working in the so-called permissionless setting (like Bitcoin or
Ethereum), where the set of users changes dynamically, and the number of par-
ticipants is typically large. In Ethereum, for example, it can take minutes for
a transaction to be confirmed, and the number of maximum state changes per
second (the so-called transaction throughput) is currently around 15-20 transac-
tions per second. This is unacceptable for many applications, and in particular,
prohibits use-cases such as “microtransactions” or many games that require in-
stantaneous state changes.

Arguably one of the most promising approaches to tackle these problems are
off-chain techniques (often also called “layer-2 solutions”), with one important
example being payment channels [2]. We describe this concept in more detail in
Sect. 2.1. For a moment, let us just say that the basic idea of a payment channel
is to let two parties, say Alice and Bob, “lock” some coins in a smart contract on
the blockchain in such a way that the amount of coins that each party owns in the
contract can be changed dynamically without interacting with the blockchain.
As long as the coins are locked in the contract the parties can then update
the distribution of these coins “off-chain” by exchanging signatures of the new
balance that each party owns in the channel. At some point the parties can decide
to close the channel, in which case the latest signed off-chain distribution of coins
is realized on the blockchain. Besides for creation and closing, the blockchain is
used only in one other case, namely, when there is a dispute between the parties
about the current off-chain balance of the channel. In this case the parties can
send their latest signed balance to the contract, which will then resolve the
dispute in a fair way.

This concept can be extended in several directions. Channel networks (e.g.,
the Lightning network over Bitcoin [24]) are an important extension which allows
to securely “route” transactions over a longer path of channels. This is done in
a secure way, which means that intermediaries on the path over which coins are
routed cannot steal funds. Another extension is known under the name state
channels [1]. In a state channel the parties can not only send payments but
also execute smart contracts off-chain. This is achieved by letting the channel
maintain in addition to the balance of the users a “state” variable that stores
the current state of an off-chain contract. Both extensions can be combined
resulting into so-called state channel networks [10, 7, 5], where simple state
channels can be combined to create longer state channels. We write more about
this in Sect. 2.1.

Before we describe our contribution in more detail let us first recall the termi-
nology used in [10] on which our work relies. Dziembowski et al. [10] distinguish
between two variants of two-party state channels — so-called ledger and virtual
state channels®. Ledger state channels are created directly over the ledger, while
virtual state channels are built over multiple existing (ledger/virtual) state chan-
nels to construct state channels that span over multiple parties. Technically, this
is done in a recursive way by building a virtual state channel on top of two other
state channels. For instance, given two ledger state channels between Alice and
Ingrid, and Ingrid and Bob respectively, we may create a virtual state channel
between Alice and Bob where Ingrid takes the role of an intermediary. Compared
to ledger state channels, the main advantage of virtual state channels is that
they can be opened and closed without interaction with the blockchain.

1.1 Owur Contribution

Our main contribution is to propose a new construction for generalized state
channel networks that exhibit several novel key features. In addition, we present
a comprehensive modeling and a security analysis of our construction. We discuss
further details below. The comparison to related work is presented in Sec. 1.2.

Multi-party state channels. Our main contribution is the first full speci-
fication of multi-party virtual state channels. A multi-party state channel al-
lows parties to off-chain execute contracts that involve > 2 parties. This greatly
broadens the applicability of state channel networks since many use cases such
as online games or exchanges for digital assets require support for multi-party
contracts. Our multi-party state channels are built “on top” of a network of
ledger channels. Any subset of the parties can form multi-party state channels,
where the only restriction is that the parties involved in the multi-party state
channel are connected via a path in the network of ledger channels. This is an
important distinctive feature of our construction because once a party is con-
nected to the network it can “on-the-fly” form multi-party state channels with
changing subsets of parties. An additional benefit of our construction is that
our multi-party state channels are virtual, which allows opening and closing of
the channel without interaction with the blockchain. As a consequence in the
optimistic case (i.e., when there is no dispute between the parties) channels can
be opened and closed instantaneously at nearly zero-costs.

At a more technical level, virtual multi-party state channel are built in a
recursive way using 2-party state channels as a building-block. More concretely,
if individual parties on the connecting path do not wish to participate in the
multi-party state channel, they can be “cut out” via building virtual 2-party
state channels over them.

3 The startup L4 and their project Counterfactual [7] use a different terminology:
virtual channels are called “meta channels”, but the concepts are the same.

Virtual state channels with direct dispute. The second contribution of
our work is to introduce the concept of “direct disputes” to virtual state chan-
nels. To better understand the concept of direct disputes let us recall the basic
idea of the dispute process from [10]. While in ledger state channels disputes
are always directly taken to the ledger, in the 2-party virtual state channels
from [10] disputes are first attempted to be resolved by the intermediary Ingrid
before moving to the blockchain. There are two advantages of such an “indirect”
dispute process. First, it provides “layers of defense” meaning that Alice is forced
to go to the blockchain only if both Bob and Ingrid are malicious. Second, “in-
direct” virtual state channels allow for cross-blockchain state channels because
the contracts representing the underlying ledger state channels always have to
deal with a single blockchain system only.

These features, however, come at the price of an increased worst case time
complexity. Assuming a blockchain finality of A, the virtual channel construc-
tion of [10] has worst case dispute timings of order O(nA) for virtual state
channels that span over n parties. We emphasize that these worst case timing
may already occur when only a single intermediary is corrupt, and hence may
frequently happen in state channel networks with long paths.

In this work we build virtual state channels with direct disputes. Similar to
ledger state channels, virtual state channels with direct dispute allow the mem-
bers of the channel to resolve conflicts in time O(A), and thus, independent of
the number of intermediaries involved. We call our new construction virtual state
channels with direct dispute to distinguish them from their “indirect” counter-
part [10]. To emphasize the importance of this improvement, notice that already
for relatively short channels spanning over 13 ledger channels the worst case
timings reduce from more than 1 day for the dispute process in [10] to less than
25 minutes in our construction. A comparison of the two types of two party state
channels is presented in the following table.

Ledger | Direct Virtual | Indirect Virtual
Creation| on chain | via subchannels via subchannels
Dispute | on chain on chain via subchannels
Closure | on chain | via subchannels via subchannels

Our final construction generalizes the one of [10] by allowing an arbitrary
composition of: (a) 2-party virtual state channels with direct and indirect dis-
putes, and (b) multi-party virtual state channels with direct disputes. We leave
the design of multi-party virtual state channels with indirect dispute as an im-
portant open problem for future work.

Modeling state channel networks. Our final contribution is a comprehensive
security model for designing and analysing complex state channel networks in
a modular way. To this end, we use the Universal Composability framework of
Canetti [3] (more precisely, its global variant [4]), and a recursive composition

4 In Ethereum typically A equal to 6 minutes is assumed to be safe.

approach similar to [10]. One particular nice feature of our modeling approach
is that we are able to re-use the ideal state channel functionality presented
in [10]. This further underlines the future applicability of our approach to design
complex blockchain-based applications in a modular way. Or put differently: our
functionalities can be used as subroutines for any protocol that aims at fast and
cheap smart contract executions.

1.2 Related Work

One of the first constructions of off-chain channels in the scientific literature
was the work of Wattenhofer and Decker [8]. Since then, there has been a vast
number of different works constructing protocols for off-chain transactions and
channel networks with different properties [25, 16, 12, 17, 15, 18]. These pa-
pers differ from our work as they do not consider off-chain execution of arbi-
trary contract code, but instead focus on payments. Besides academic projects,
there are also many industry projects that aim at building state channel net-
works. Particular relevant to our work is the Counterfactual project of L4 [7],
Celer network [5] and Magmo [6]. The whitepapers of these projects typically
do not offer full specification of full state channel networks and instead follow a
more “engineering-oriented” approach that provides descriptions for developers.
Moreover, non of these works includes a formal modeling of state channels nor
a security analysis.

To the best of our knowledge, most related to our work is [10], which we
significantly extend (as described above), and the recent work of Sprites [21]
and its extensions [20, 19] on building multi-party ledger state channels. At
a high-level in [21, 20, 19] a set of parties can open a multi-party ledger state
channel by locking a certain amount of coins into a contract. Then, the execution
of this contract can be taken “off-chain” by letting the parties involved in the
channel sign the new states of the contract. In case a dispute occurs among
the parties, the dispute is taken on-chain. The main differences to our work are
twofold: first [21, 20, 19] do not support virtual channels, and hence opening and
closing state channels requires interaction with the blockchain. Second, while we
support full concurrent execution of multiple contracts in a single channel, [21,
20, 19] focuses on the off-chain execution of a single contract. Moreover, our
focus is different: while an important goal of our work is formal modeling, [21]
aims at improving the worst case timings in payment channel networks, and [20,
19] focus on evaluating practical aspects of state channels.

2 Overview of Our Constructions

Before we proceed with the more technical part of this work, we provide some
background on the ledger and virtual state channels in Sec. 2.1 (we follow the
formalism of [10]). In Sec. 2.2 we give an overview of our construction for handling
“direct disputes”, while in Sec. 2.3, we describe how we build and maintain multi-
party virtual state channels. Below we assume that the parties that interact with

the contracts own some coins in their accounts on the ledger. We emphasize that
the description in this section is very simplified and excludes many technicalities.

2.1 Background on Contracts and State Channels [10]

Contracts. As already mentioned in Sect. 1, contracts are self-executing agree-
ments written in a programming language. More formally, a contract can be
viewed as a piece of code that is deployed by one of the parties, can receive
coins from the parties, store coins on its account, and send coins to them. A
contract never “acts by itself” — in other words: by default it is in an idle state
and activates only when it is “woken up” by one of the parties. Technically, this
is done by calling a function from its code. Every function call can have some
coins attached to it (meaning that these coins are deduced from the account of
the calling party and added to the contract account).

To be a bit more formal, we use two different terms while referring to a
“contract”: (i) “contract code” C — a static object written in some programming
language (and consisting of a number of functions); and (ii) “contract instance”
v, which results from deploying the contract code C. Each contract instance v
maintains during its lifetime a (dynamically changing) storage, where the current
state of the contract is stored. One of the functions in contract code, called a
constructor, is used to create an instance and its initial storage. These notions
are defined formally in Sect. 3. Here, let us just illustrate them by a simple
example of a contract Cse for selling a pre-image of some fixed function H. More
concretely, suppose that we have two parties: Alice and Bob, and Bob is able
to invert H, while Alice is willing to pay 1 coin for a pre-image of H, i.e., for
any x such that H(x) = y (where y is chosen by her). Moreover, if Bob fails
to deliver x, then he has to pay a “fine” of 2 coins. First, the parties deploy
the contract by depositing their coins into it (Alice deposits 1 coins, and Bob
deposits 2 coins).? Denote the initial storage of the contract instance as Gy. Alice
can now challenge Bob by requesting him to provide a pre-image of y. Let G
be the storage of the contract after this request has been recorded. If now Bob
sends x such that H(xz) = y to the contract, 1 + 2 = 3 coins are paid to Bob,
and the contract enters a terminal state of storage Go. If Bob fails to deliver x
in time, i.e. within some time ¢t > A, and the contract has still storage G1, then
Alice can request the contract to pay the 3 coins to her, and the contract enters
into a terminal state of storage Gj.

The contract code Cee consists of functions used to deploy the contract (see
footnote 5), a function that Alice uses to send y to the contract instance, a
function used by Bob to send x, and a function that Alice calls to get her coins
back if Bob did not send z in time.

Functionality of state channels. State channels allow two parties Alice and Bob to
execute instances of some contract code C off-chain, i.e., without interacting with

5 Technically, this is done by one of the parties, Alice, say, calling a constructor func-
tion, and then Bob calling another function to confirm that he agrees to deploy this
contract instance. To keep our description simple, we omit these details here.

the ledger. These channels offer four sub-protocols that manage their life cycles:
(i) channel create for opening a new channel; (ii) channel update for updating
the state of a channel; (iii) channel execute for executing contracts off-chain; and
finally (iv) channel close for closing a channel when it is not needed anymore.
In [10] the authors consider two types of state channels: ledger state channels
and virtual state channels. The functionality offered by these two variants is
slightly different, which we discuss next.

Ledger state channels. Ledger state channels are constructed directly on the
ledger. To this end, Alice and Bob create the ledger state channel v by deploy-
ing an instance of a state channel contract (denoted SCC) on the ledger. The
contract SCC will take the role of a judge, and resolve disputes when Alice and
Bob disagree (we will discuss disputes in more detail below). During channel
creation, Alice and Bob also lock a certain amount of coins into the contract.
These coins can then be used for off-chain contracts. For instance, Alice and Bob
may each transfer 10 coins to SCC, and hence in total 20 coins are available in
the channel . Once the channel v is established, the parties can update the state
of v (without interacting with the state channel contract). These updates serve
to create new contract instances “within the channel”, e.g., Alice can buy from
Bob a pre-image of H and pay for it using her channel funds by deploying an
instance of the Cq contract in the channel. At the end the channel is closed, and
the coins are transfered back to the accounts of the parties on the ledger. The
state channel contract guarantees that even if one of the parties is dishonest she
cannot steal the coins of the honest party (i.e.: get more coins than she would
get from an honest execution of the protocol). The mechanism behind this is
described a bit later (see “Handling disputes in channels” on page 8).

Virtual state channels. The main novelty of [10] is the design of virtual state
channels. A virtual state channel offers the same interface as ledger state chan-
nels (i.e.: channel creation, update, execute, and close), but instead of being
constructed directly over the ledger, they are built “on top of” other state chan-
nels. Consider a setting where Alice and Bob are not directly connected via a
ledger state channel, but they both have a ledger channel with an intermediary
Ingrid. Call these two ledger state channels « and (3, respectively (see Fig. 1,
page 8). Suppose now that Alice and Bob want to execute the pre-image selling
procedure using the contract Ce according to the same scenario as the one de-
scribed above. To this end, they can create a virtual state channel v with the
help of Ingrid, but without interacting with the ledger. In this process the par-
ties “lock” their coins in channels o and S (so that they cannot be used for any
other purpose until « is closed). The amounts of “locked” coins are as follows:
in « Alice locks 1 coin and Ingrid locks 2 coins, and in 8 Bob locks 2 coins, and
Ingrid locks 1 coin. The requirement that Ingrid locks 2 coins in « and 1 coin
in 8 corresponds to the fact that she is “representing” Bob in channel o and
“representing” Alice in channel 3. Here, by “representing” we mean that she is
ready to cover their commitments that result from executing the contract in ~.

Once 7 is created, it can be used exactly as a ledger state channel, i.e.,
Alice and Bob can open a contract instance v of Cs in v via the virtual state
channel update protocol and execute it. As in the ledger state channels, when
both Alice and Bob are honest, the update and execution of v can be done without
interacting with the ledger or Ingrid. Finally, when + is not needed anymore, it is
closed, where closing is first tried peacefully via the intermediary Ingrid (in other
words: Alice and Bob “register” the latest state of v at Ingrid).

For example: suppose the execution of Cy ends in the way that Alice receives
0 coins, and Bob receives 3 coins. The effect on the ledger channels is as follows:
in channel « Alice receives 0 coins, and Ingrid receives 3 coins, and in channel
B Bob receives 3 coins, and Ingrid receives 0 coins. Note that this is financially
neutral for Ingrid who always gets backs the coins that she locked (although the
distribution of these coins between o« and § can be different from the original
one). This situation is illustrated on Fig. 1. If the peaceful closing fails, the
parties enter into a dispute which we describe next.

1/0 2/3

. Inerid AN
Alice 7o a 27 ngri o \\ﬂ/ 275 Bob

Fig. 1. Virtual channel v built over ledger channels o and 8. The labels “x/y” on the
channels denote the fact that a given party locked x coins for the creation of 7, and
got y coins as a result of closing ~.

Handling disputes in channels. The description above considered the case when
both Alice and Bob are honest. Of course, we also need to take into account
conflicts between the parties, e.g., when Alice and Bob disagree on a state update,
or refuse to further execute a contract instance. Resolving such conflicts in a fair
way is the purpose of the dispute resolution mechanism. The details of this
mechanism appear in [10].

In order to better understand the dispute handling, we start by providing
some more technical details on the state channel off-chain execution mechanism.
Let v be a contract instance of the pre-image selling contract Ceg, say, and denote
by Gy its initial state. To deploy v in the state channel both parties exchange
signatures on (G, 0), where the second parameter in the tuple will be called the
version number. The rest of the execution is done by exchanging signatures on
further states with increasing version number. For instance, suppose that in the
pre-image selling contract Csey (described earlier in this section) the last state
on which both parties agreed on was (G1,1) (i.e., both parties have signatures
on this state tuple), and Bob wants to provide z such that H(z) = y. To this
end, he locally evaluates the contract instance to obtain the new state (Ga,2),
and sends it together with his signature to Alice. Alice verifies the correctness
of both the computation and the signature, and if both checks pass, she replies
with her signature on (Ga, 2).

Let us now move to the dispute resolution for ledger channels and consider
a setting where a malicious Alice does not reply with her signature on (Gaz,2)
(for example because she wants to avoid “acknowledging” that she received x).
In this case, Bob can force the execution of the contract instance v on-chain
by registering in the state channel contract SCC the latest state on which both
parties agreed on. To this end, Bob will send the tuple (G2, 2) together with the
signature of Alice to SCC. Of course, SCC cannot accept this state immediately
because it may be the case that Bob cheated by registering an outdated state.®
Hence, the ledger contract SCC gives Alice time A to reply with a more recent
signed state (recall that in Sec. 1.1 we defined A to be a constant that is suf-
ficiently large so that every party can be sure her transaction is processed by
the ledger within this time). When A time has passed, SCC finalizes the state
registration process by storing the version with the highest version number in its
storage. Once registration is completed, the parties can continue the execution
of the contract instance on-chain.”

The dispute process for virtual state channels is much more complex than the
one for the ledger channels. In particular, in a virtual state channel Alice and Bob
first try to resolve their conflicts peacefully via the intermediary Ingrid. That is,
both Alice and Bob first send their latest version to Ingrid who takes the role of
the judge, and attempts to resolve the conflict. If this does not succeed because
a dishonest Ingrid is not cooperating, then the parties resolve their dispute on-
chain using the underlying ledger state channels o and 3 (and the virtual state
channel contracts VSCC).

Longer virtual state channels via recursion. So far, we only considered virtual
state channels that can be built on top of 2 ledger state channels. The authors
of [10] show how virtual state channels can be used in a recursive way to build
virtual state channels that span over n ledger state channels. The key feature
that makes this possible is that the protocol presented in [10] is oblivious of
whether the channels o« or § underlying ~ are ledger or virtual state channels.
Hence, given a virtual state channel a between Py and P,/ and a virtual state
channel 3 between parties P,/ and P,, we can construct v, where P, takes
the role of Ingrid.

As discussed in the introduction, one main shortcoming of the recursive ap-
proach used by [10] is that even if only one intermediary is malicious®, the
worst-case time needed for dispute resolution is significantly prolonged. Con-
cretely, even a single intermediary that works together with a malicious Alice
can delay the execution of a contract instance in « for up to 2(nA) time before
it eventually is resolved on the ledger.

5 Notice that SCC is oblivious to what happened inside the ledger state channel ~ after
it was created.

7 In the example that we considered, Bob can now force Alice bear the consequences
that he revealed = to the contract instance.

8 While it is sufficient that only one intermediary is malicious, it has to be the inter-
mediary that was involved in the last step of the recursion, i.e., in the example from
above: party P, /.

2.2 Virtual State Channel with Direct Dispute

The first contribution of this work is to significantly reduce the worst case timings
of virtual state channels. To this end, we introduce virtual state channels with
direct dispute, where in case of disagreement between Alice and Bob the parties do
not contact the intermediaries over which the virtual state channel is constructed,
but instead directly move to the blockchain. This reduces worst case timings for
dispute resolution to O(A), and hence makes it independent of the number of
parties over which the virtual channel is spanned. Let us continue with a high-
level description of our construction, where we call the virtual state channels
constructed in [10] virtual state channels with indirect dispute or indirect virtual
state channels to distinguish them from our new construction.

Overview of virtual state channels with direct dispute. The functionality offered
by virtual state channels with direct dispute can be described as a “hybrid”
between ledger and indirect virtual state channels. On the one hand — similar to
virtual state channels from [10] — creation and closing involves interaction with
the intermediary over which the channel is built. On the other hand — similar
to ledger state channels — the update and execution, in case of dispute between
the end parties, is directly moved to the ledger. The latter is the main differ-
ence to indirect virtual state channels, where dispute resolution first happens
peacefully via an intermediary. The advantage of our new approach is that the
result of a dispute is visible to all parties and contracts that are using the same
ledger. Hence, the other contracts can use the information about the result of
this dispute in order to speed up the execution of their own dispute resolution
procedure. This process is similar to the approach used in the Sprites paper [21],
but we extend it to the case of virtual (multi-party) channels.

Before we describe in more detail the dispute process, we start by giving a
high-level description of the creation process. To this end, consider an initial
setting with two indirect virtual state channels a and . Both a and § have
length n/2, where « is spanned between parties Py and P, /5, while 3 is spanned
between parties P, /o and P, (assume that n is a power of 2). Using the channels
«a and B, parties Py and P, can now create a direct virtual state channel ~ of
length n. At a technical level this is done in a very similar way to creating an
indirect virtual state channel. In a nutshell, with the help of the intermediary
P, /5 the parties update their subchannels o and 8 by opening instances of a
special so-called direct virtual state channel contract dVSCC. The role of dVSCC is
similar to the role of the indirect virtual state channel contract presented in [10].
It (i) guarantees balance neutrality for the intermediary (here for P, /5), i.e., an
honest P, /, will never loose money; and (ii) it ensures that what was agreed
on in v between the end users Py and P, can be realized in the underlying
subchannels « and § during closing or dispute.

Once 7 is successfully created Py and P, can update and execute contract
instances in 7y using a 2-party protocol, which is similar to the protocol used for
ledger state channels (i.e., using the version number approach outlined above) as

10

long as Py and P, follow the protocol. The main difference occurs in the dispute
process, which we describe next.

Direct dispute via the dispute board. Again, suppose that Py and P, want to
execute the pre-image selling procedure. Similarly to the example on page 8
suppose that during the execution of the contract Py (taking the role of Alice)
refuses to acknowledge that P, (taking the role of Bob) revealed the pre-image.
Unlike in indirect virtual state channels, where P, would first try to resolve
his conflict peacefully via P, /s, in our construction P, registers his latest state
directly on the so-called dispute board — denoted by D. Since the dispute board
D is a contract running directly on the ledger whose state can be accessed by
anyone, we can reduce timings for dispute resolution from O(nA) to O(A). At
a technical level, the state registration process on the dispute board is similar
to the registration process for ledger channels described above. That is, when
P, registers his latest state regarding channel v on D, Py gets notified and is
given time A to send her own version to D. While due to the global nature of D
all parties can see the final result of the dispute, only the end parties of v can
dispute the state of v on D. Our construction for direct virtual state channels
uses this novel dispute mechanism also as subroutine during the update. This
enables us to reduce the worst case timings of these protocols from O(nA) in
indirect virtual state channels to O(A).

The above description omits many technical challenges that we have to ad-
dress in order to make the protocol design work. In particular, the closing proce-
dure of direct virtual state channels is more complex because sometimes it needs
to refer to contents on the public dispute board. Concretely, during closing of
channel 7, the end parties Py and P, first try to close v peacefully via the inter-
mediary. To this end, Py and P, first attempt to update the channels « and 3,
respectively, in such a way that the updated channels will reflect the last state of
7. If both update requests come with the same version of v then P, /5 confirms
the update request, and the closing of «y is completed peacefully. Otherwise P, /o
gives the end parties some time to resolve their conflict on the dispute board
D, and takes the final result of the state registration from D to complete the
closing of . Of course, also this description does not present all the details. For
instance, how to handle the case when both Py and P, are malicious and try
to steal money from P, /5, or a malicious P, /, that does not reply to a closing
attempt. Our protocol addresses these issues.

Interleaving direct and indirect virtual state channels. A special feature of our
new construction is that users of the system can mix direct and indirect virtual
state channels in an arbitrary way. For example, they may construct an indirect
virtual v over two subchannels « and § which are direct (or where « is direct
and § is indirect). This allows them to combine the benefits of both direct
and indirect virtual channels. If, for instance, v is indirect and both « and S
are direct, then in case of a dispute, Py and P, will first try to resolve it via
the intermediary P, /7, and only if this fails they use the dispute board. The
advantage of this approach is that, as long as P,/ is honest, disputes between

11

Py and P, can be resolved almost instantaneously off-chain (thereby saving
fees and time). On the other hand, even if P, 5 is malicious, then disputes can
be resolved fast, since the next lower level of subchannels a and § are direct,
and hence a dispute with a malicious P,/ will be taken directly to the ledger.
We believe that the optimal composition of direct and indirect virtual channels
highly depends on the use-case and leave a detailed discussion on this topic for
future research.

2.3 Multi-Party Virtual State Channels

The main novelty of this work is a construction of multi-party virtual state
channels. As already mentioned in Sec. 1, multi-party virtual state channels are
a natural generalization of 2-party channels presented in the previous sections
and have two distinctive features. First, they are multi-party, which means that
they can execute contracts involving multiple parties. Consider for instance a
multi-party extension of Cgey — denoted by Cpsen — where parties Py, ... P
each pay 1 coin to P; for a pre-image of a function H, but if P; fails to deliver
a pre-image, P; has to pay a “fine” of 2 coins to each of Pj,...,P,_; (and
the contract stops). Our construction allows the parties to create an off-chain
channel for executing this contract, pretty much in the same way as the standard
(bilateral) channels are used for executing Cee. The second main feature of our
construction is that our multi-party channels are virtual. This means that they
are built over 2-party ledger channels, and thus their creation process does not
require interaction with the ledger. Our construction has an additional benefit
of being highly flexible. Given ledger channels between parties P; and P;y; for
i €{0,...,n— 1}, we can build multi-party state channels involving any subset
of parties. Technically, this is achieved by cutting out individual parties P; that
do not want to participate in the multi-party state channel by building 2-party
virtual state channels “over them”. Moreover, we show how to generalize this
for an arbitrary graph (V| E) of ledger channels, where the vertices V' are the
parties, and the edges E represent the ledger channels connecting the parties.

An example: a 4-party virtual state channel. To get a better understanding of
our construction, we take a look at a concrete example, which is depicted in
Fig. 2. We assume that five parties Py, ..., P, are connected by ledger state
channels (P, & P, & P; & Py & Ps). Suppose Py, P3, Py and Ps; want to
create a 4-party virtual state channel . Party P; will not be part of the channel
7 but is needed to connect P, and Ps. In order to ”cut out” P, parties P, and
Ps5 first construct a virtual channel denoted by P; <> Ps.

Now the channel + can be created on top of the subchannels P; < Pj,
P; & P, and P, < Ps.° Assume for simplicity that each party invests one coin
into 7. Now in each subchannel, they open an instance of the special “multi-
party virtual state channel contract” denoted as mpVSCC, which can be viewed

9 To keep things simple we do not allow the recursion to build virtual channels on
top on n-party channels for n > 2. We leave describing this extension as a possible
future research direction.

12

1/0_ImpVSCC [_3/4
2/0 2/4 3/0 1/4
Py P P3; <— mpVSCC Py mpVSCC Ps

Fig. 2. Example of a multi-party virtual state channel v between parties Py, P3, Py and
Ps. In each subchannel a contract instance of mpVSCC is opened. Initially every party
invests one coin and when the channel is closed, party Ps owns all coins. The figure
depicts the initial/final balance of parties in each of these contract instances.

as a “copy” of v in the underlying subchannels. Note, that some parties have to
lock more coins into the subchannel mpVSCC contract instances than others. For
example in the channel Py < Ps5, party P, has to lock three coins while P5 only
locks one coin. This is necessary, since P; additionally takes over the role of the
parties P; and P5 in this subchannel copy of «y. In other words, we require that
in each mpVSCC contract instance, each party has to lock enough coins to match
the sum of the investments of all “represented” parties.

After v was successfully created, the parties P;, P3, Py and Ps can open and
execute multiple contracts v in v without talking to P». Let us assume that at
the end of the channel lifetime party Ps is the rightful owner of all four coins.
Then after ~ is successfully closed, the coins locked in the contract instances
mpVSCC in the subchannels are unlocked in a way that reflects the final balance
of 7. This means, for example, that all coins locked in subchannel P, < P;
go to Ps. Since party P4 now lost 3 coins in this subchannel, she needs to be
compensated in the subchannel Ps < P;. Hence, the closing protocol guarantees
that all four coins locked in P3 < P, go to Py. Since P, initially locked 2+3 =5
coins in the subchannels and received 4+ 0 = 4 coins at the closing of -, she lost
1 coin which corresponds to the final distribution in 7. As shown in Fig. 2 this
process is repeated for the other subchannel P; < P3 as well.

Key ideas of the multi-party state channel update and execution. As for 2-party
channels, our multi-party construction consists of 4 sub-protocol and a state reg-
istration process that is used by the parties in case of dispute. For registration
our construction uses the direct dispute process outlined in Sec. 2.2, where all
involved parties can register their latest state on the dispute board. One of the
main differences between the 2-party and multi-party case is the way in which
they handle state channel updates. Recall that in the two party case the initiat-
ing party sends an update request to the other party of the state channel, who
can then confirm or reject the update request. Hence, in the two-party case it
is easy for two honest parties to reach agreement whether an update was suc-

13

cessfully completed or not.'% In the multi-party case the protocol is significantly
more complex. When the initiating party, say P;, requests an update, she sends
her update request to all other parties Ps, P, and Ps. The challenge is now that
a malicious P; may for instance send a different update request to P; and P;.
At this point honest P3 and P4 have a different view on the update request. To
resolve this inconsistency we may use standard techniques from the literature on
authenticated broadcast protocols [9]. The problem with such an approach, how-
ever, is that it is well known [13] that broadcast has communication complexity
of O(n) in case most parties are dishonest. Our protocol circumvents this impos-
sibility by a simple approach, where agreement can be reached in O(1) rounds
by relying on the ledger as soon as an honest party detects inconsistencies.

Let us now consider the contract execution protocol. The first attempt for
constructing a protocol for multi-party state channel execution might be to use
a combination of our new update protocol from above together with the con-
tract execution protocol for the 2-party setting. In this case the initiating party
P would locally execute the contract instance, and request an update of the
multi-party state channel « according to the new state of the contract instance.
Unfortunately, this naive solution does not take into account a concurrent exe-
cution from two or more parties. For example, it may happen that P; and Py
simultaneously start different contract instance executions, thereby leading to a
protocol deadlock. For 2-party state channels this was resolved by giving each
party a different slot when it is allowed to start a contract instance execution.
In the multi-party case this approach would significantly decrease the efficiency
of our protocol and in particular make its round complexity dependent on the
number of involved parties. Our protocol addresses this problem by introduc-
ing a carefully designed execution scheduling, which leads to a constant time
protocol.

Combining different state channel types. Finally, we emphasize that due to our
modular modeling approach, all different state channel constructions that we
consider in this paper can smoothly work together in a fully concurrent man-
ner. That is, given a network of ledger state channels, parties may at the same
time be involved in 2-party virtual state channels with direct or indirect dis-
pute, while also being active in various multi-party state channels. Moreover,
our construction guarantees strong fairness and efficiency properties in a fully
concurrent setting where all parties except for one are malicious and collude.

3 Definitions and Notation

We formally model security of our construction in the Universal Composability
framework [3]. Coins are handled by a global ledger £(A), where A is an upper
bound for the blockchain delay. We will next present the general notation used

10 Tn case one party behaves maliciously, an agreement is reached via the state regis-
tration process.

14

in this paper. More details about our model and background on it can be found
in the full version of this paper [11].

We assume that the set P = {Py,..., Py} of parties that use the system is
fixed. In addition, we fix a bijection Orderp: P — [m] which on input a party
P; € P returns its “order” ¢ in the set P. Following [10, 12] we present tuples
of values using the following convention. The individual values in a tuple T are
identified using keywords called attributes, where formally an attribute tuple is a
function from its set of attributes to {0, 1}*. The value of an attribute identified
by the keyword attr in a tuple T (i.e. T'(attr)) will be referred to as T.attr. This
convention will allow us to easily handle tuples that have dynamically changing
sets of attributes. We assume the existence of a signature scheme (Gen, Sign, Vrfy)
that is existentially unforgeable against a chosen message attack (see, e.g., [14]).
The ECDSA scheme used in Ethereum is believed to satisfy this definition.

3.1 Definitions of Multi-Party Contracts and Channels

We now present our syntax for describing multi-party contracts and state chan-
nels (it has already been introduced informally in Sect. 2.1). We closely follow
the notation from [10, 12].

Contracts. Let n be the number of parties involved in the contract. A con-
tract storage is an attribute tuple o that contains at least the following at-
tributes: (1) o.users: [n] — P that denotes the users involved in the contract
(sometimes we slightly abuse the notation and understand o.users as the set
{o.users(1),...,o.users(n)}), (2) o.locked € R>(that denotes the total amount
of coins that is locked in the contract, and (3) o.cash: o.users — R that de-
notes the amount of coins assigned to each user. It must hold that o.locked >
Y Peo.users 7-Cash(P). Let us explain the above inequality on the following con-
crete example. Assume that three parties are playing a game where each party
initially invests 5 coins. During the game, parties make a bet, where each party
puts 1 coin into the “pot”. The amount of coins locked in the game did not
change, it is still equal to 15 coins. However, the amount of coins assigned to
each party decreased (each party has only 4 coins now) since it is not clear yet
who wins the bet.

We say that a contract storage o is terminated if o.locked = 0. Let us empha-
size that a terminated o does not imply that o.cash maps to zero for every user.
In fact, the concept of a terminated contract storage with non-zero cash values
is important for our work since it represents “payments” performed between the
users. Consider, for example, a terminated three party contract storage o with
o.cash(Py) = 1, o.cash(P,) = 1 and o.cash(P;) = —2. This means that both P;
and P, paid one coin to Pj.

A contract code consists of constructors and functions. They take as input:
a contract storage o, a party P € o.users, round number 7 € N and input
parameter z € {0,1}*, and output: a new contract storage &, information about
the amount of unlocked coins add: o.users — R>(and some additional output
message m € {0, 1}*. Importantly, no contract function can ever change the set

15

of users or create new coins. More precisely, it must hold that o.users = &.users
and o.locked — 7.locked > 3 p cors 3dd(P).

As described already in Sec. 2.1, a contract instance represents an instan-
tiation of a contract code. Formally, a contract instance is an attribute tuple
v consisting of the contract storage v.storage and the contract code v.code. To
allow parties in the protocol to update contract instances off-chain, we also de-
fine a signed contract instance version of a contract instance which in addition
to v.storage and v.code contains two additional attributes v.version and v.sign.
The purpose of v.version € N is to indicate the version of the contract instance.
The attribute v.sign is a function that on input P € v.storage.users outputs the
signature of P on the tuple (v.storage, v.code, v.version).

Two-party ledger and virtual state channels. Formally, a two-party state channel
is an attribute tuple v = (y.id, v.Alice, v.Bob, y.cash, vy.cspace, v.length, 7.Ingrid,
~v.subchan, «y.validity, .dispute). The attribute 7.id € {0,1}* is the identifier of
the two-party state channel. The attributes +.Alice € P and ~.Bob € P identify
the two end-parties using . For convenience, we also define the set y.end—users :=
{v.Alice,v.Bob} and the function v.other—party as .other—party(~y.Alice) := ~.Bob
and ~y.other—party(y.Bob) := v.Alice. The attribute v.cash is a function mapping
the set «y.end—users to R>(such that y.cash(T") is the amount of coins the party
T € ~.end-users has locked in . The attribute ~y.cspace is a partial function that
is used to describe the set of all contract instances that are currently open in
this channel. It takes as input a contract instance identifier cid € {0,1}* and
outputs a contract instance v such that v.storage.users = ~.end—users. We refer
to 7.cspace(cid) as the contract instance with identifier cid in ~. The attribute
~.length € N denotes the length of the two-party state channel.

If v.length = 1, then we call v a two-party ledger state channel. The attributes
~.Ingrid and ~.subchan do not have any meaning in this case and it must hold
that ~y.validity = oo and ~y.dispute = direct. Intuitively, this means that a ledger
state channel has no intermediary and no subchannel, there is no a priory fixed
round in which the channel must be closed, and potential disputes between the
users are resolved directly on the blockchain.

If ~v.length > 1, then we call v a two-party virtual state channel and the
remaining attributes have the following meaning. The attribute ~y.Ingrid € P
denotes the identity of the intermediary of the virtual channel 7. For con-
venience, we also define the set v.users := {~.Alice,v.Bob,~.Ingrid}. The at-
tribute ~.subchan is a function mapping the set y.end—users to channel identi-
fiers {0,1}*. The value of ~y.subchan(y.Alice) refers to the identifier of the two-
party state channel between ~yv.Alice and ~y.Ingrid. Analogously, for the value of
~.subchan(y.Bob). The attribute v.validity € N denotes the round in which the
virtual state channel v will be closed. Intuitively, the a priory fixed closure
round upper bounds the time until when party ~.Ingrid has to play the role
of an intermediary of v.!' At the same time, the 7.validity lower bounds the

11 In practice, this information would be used to derive fees charged by the intermediary
for its service.

16

time for which the end-users can freely use the channel. Finally, the attribute
~.dispute € {direct,indirect} distinguishes between virtual state channel with
direct dispute, whose end-users contact the blockchain immediately in case they
disagree with each other, and virtual state channel with indirect dispute, whose
end-users first try to resolve disagreement via the subchannels of .12

Multi-party virtual state channel. Formally, an n-party virtual state channel ~
is a tuple v := (v.id,~.users,~.E, v.subchan, v.cash, v.cspace, 7.length, v.validity,
~.dispute). The pair of attributes (y.users,y.E) defines an acyclic connected undi-
rected graph, where the set of vertices «y.users C P contains the identities of the
n parties of v, and the set of edges v.E denotes which of the users from ~y.users
are connected with a two-party state channel. Since (v.users,v.E) is an undi-
rected graph, elements of +.E are unordered pairs {P, @} € ~.E. The attribute
~.subchan is a function mapping the set v.E to channel identifiers {0, 1}* such
that y.subchan({P, Q}) is the identifier of the two-party state channel between
P and Q. For convenience, we define the function ~.other—party which on input
P € ~.users outputs the set v.users \ {P}, i.e., all users of v except for P. In
addition, we define a function .neighbors which on input P € ~.users outputs
the set consisting of all @ € ~v.users for which {P,Q} € ~.E. Finally, we define
a function ~.split which, intuitively works as follows. On input the ordered pair
(P,Q), where {P,Q} € ~.E, it divides the set of users .users into two subsets
Vp,Vg. The set Vp contains P and all nodes that are “closer” to P than to
Q@ and the set Vg contains) and all nodes that are “closer” to @ than to P.
See the full version of this paper [11] for the formal definition. The attribute
~v.cash is a function mapping .users to R>g such that y.cash(P) is the amount
of coins the party P € «y.users possesses in the channel . The attributes .length,
~.cspace and +y.validity are defined as for two-party virtual state channels. The
value ~y.dispute for multi-party channels will always be equal to direct, since we
do not allow indirect multi-party channels. We leave adding this feature to future
work. In the following we will for brevity only write multi-party channels instead
of virtual multi-party state channels with direct dispute. Additionally, we note
that since multi-party channels cannot have intermediaries, the sets ~.users and
~.end—users are equal.

We demonstrate the introduced definitions on two concrete examples de-
picted in Fig. 3. In the 6-party channel on the left, the neighbors of party
P, are ~v.neighbors(Py) = {Ps, Ps, Ps} and ~v.split({Ps, P1}) = ({P1, P, Ps},
{Py, P5,Ps}). In the 4-party channel on the right, the neighbors of P, are
7.neighbors(Py) = {Py, P5, P} and ~v.split({P1, P1}) = ({P1}, {Ps, P5, Pe}).

12 Recall from Sec. 2 that disagreements in channels with indirect dispute might require
interaction with the blockchain as well. However this happen only in the worst case
when all parties are corrupt.

17

P < P, < P3; <= P, < P5 P <= P, <= P3 <= P, < P5

Fig. 3. Examples of multi-party channel setups: A 6-party channel on top of 5 ledger
channels (left) and a 4-party channel on 2 ledger and a virtual channel 73 (right).

3.2 Security and Efficiency Goals

In the previous section, we formally defined what state channels are. Let us now
give several security and efficiency goals that we aim for when designing state
channels. The list below can be seen as an extension of the one from [10].

Security goals. We define security goals that guarantee that an adversary cannot
steal coins from honest parties, even if he corrupts all parties except for one.

(S1) Consensus on creation: A state channel v can be successfully created only
if all users of v agree with its creation.

(S2) Consensus on updates: A contract instance in a state channel v can be
successfully updated (this includes also creation of the contract instances)
only if all end-users of v agree with the update.

(S3) Guarantee of execution: An honest end-user of a state channel v can
execute a contract function f of an opened contract instance in any round
7o < «y.validity on an input value z even if all other users of v are corrupt.

(S4) Balance security: If the channel v has an intermediary, then this interme-
diary never loses coins even if all end-users of v are corrupt and collude.

Let us stress that while creation of a state channel has to be confirmed by all
users of the channel, this includes the intermediary in case of a two-party virtual
state channel, the update of a contract instance needs confirmation only from the
end-users of the state channel. In other words, the intermediary of a two-party
virtual state channel has the right to refuse being an intermediary but once he
agrees, he can not influence how this channel is being used by the end-users.
Let us also emphasize that the last property, (S4), talks only about two-party
virtual state channels since, by definition, ledger and multi-party channels do
not have any intermediary.

Efficiency goals. We identify four efficiency requirements. Table 1 defines which
property is required from what type of channel.

(E1) Creation in O(1) rounds: Successful creation of a state channel v takes a
constant number of rounds.

(E2) Optimistic update/execute in O(1) rounds: In the optimistic case when
all end-users of a state channel v are honest, they can update/execute a
contract instance in v within a constant number of rounds.

18

(E3) Pessimistic update/execute in O(A) rounds: In the pessimistic case
when some end-users of a state channel + are dishonest, the time complexity
of update/execution of a contract instance in v depends only on the ledger
delay A but is independent of the channel length.

(E4) Optimistic closure in O(1) rounds: In the optimistic case when all users
of 7.users are honest, the channel v is closed in round ~.validity + O(1).

Ledger Virtual
Direct [Indirect [MP
(E1) Creation in O(1) v v v
(E2) Opt. update/execute in O(1) v v v v
(E3) Pess. update/execute in O(A) v v v
(E4) Opt. closing in O(1) v v v

Table 1. Summary of the efficiency goals for state channels. Above, “Ledger” stands
for ledger state channels, “Direct/Indirect” stand for a two party virtual state channels
with direct/indirect dispute and “MP” stands for multi-party channels.

It is important to note that in the optimistic case when all users of any wvirtual
state channel (i.e. multi-party, two-party with direct/indirect dispute) are hon-
est, the time complexity of channel creation, update, execution and closure must
be independent of the blockchain delay; hence in this case there cannot be any
interaction with the blockchain during the lifetime of the channel.

4 State Channels ideal functionalities

Recall that the main goal of this paper is to broaden the class of virtual state
channels that can be constructed. Firstly, we want virtual state channels to sup-
port direct dispute meaning that end-users of the channel can resolve disputes
directly on the blockchain, and secondly, we want to design virtual multi-party
state channels that can be built on top of any network of two-party state chan-
nels. In order to formalize these goals, we define an ideal functionality F. ri(;:)h (z,C)
which describes what it means to create, maintain and close multi-party as well
as two-party state channels of length up to ¢ in which contract instances from the
set C can be opened. The functionality has access to a global ledger functionality
L(A) keeping track of account balances of parties in the system.

The first step towards defining fiﬁ}b(i,(}) has already been done in [10],

where the authors describe an ideal functionality,]-'C,EA)(Z',C), for ledger state
channels and two-party virtual state channels with indirect dispute. The second
step is to extend the ideal functionality F-(“’(i,C) such that it additionally
describes how virtual state channels with direct dispute are created, maintained
and closed. We denote this extended functionality F;’ (i,C) and describe it in
more detail in Sec. 4.1. As a final step, we define how multi-party channels are

created, maintained and closed. This is discussed in Sec. 4.2.

19

Before we proceed with the description of the novel ideal functionalities, let
us establish the following simplified notation. In the rest of this paper, we write
F instead of F=, for F € {Fen, Fach, Fmpch }-

4.1 Virtual State Channels with Direct Dispute

In this section we introduce our ideal functionality Fy.;(i,C) that allows to build
any type of two party state channel (ledger state channel, virtual state channel
with direct dispute and virtual state channel with indirect dispute) of length
up to ¢ in which contract instances with code from the set C can be opened.
The ideal functionality Fy.p (i, C) extends the ideal functionality F.;(¢,C) in the
following way:

— Messages about ledger state channels and virtual state channels with indirect
dispute are handled as in F.p(4,C).

— Virtual state channels with direct dispute are created (resp. closed) using
the procedure of F.;(i,C) for creating (resp. closing) virtual channels with
indirect dispute.

— Update (resp. execute) requests of contract instances in channels with di-
rect dispute are handled as F.(i,C) handles such queries for ledger state
channels.

Hence, intuitively, a virtual state channel v with direct dispute is a “hybrid”
between a ledger state channel and a virtual state channel with indirect dispute,
meaning that it is created and closed as a virtual state channel with indirect
dispute and its contract instances are updated and executed as if v would be a
ledger state channel. In the remainder of this section, we explain how Fg.p (¢, C)
works in more detail and argue that it satisfies all the security and efficiency
goals listed in Sec. 3.2. The formal description of the ideal functionality can be
found in the full version of this paper [11].

If Faen(i,C) receives a message about a ledger state channel or a virtual state
channel with indirect dispute, then Fy.,(i,C) behaves exactly as Fep(i,C). Since
Fen(i,C) satisfies all the security goals and the efficiency goals (E1) — (E2) (see
[10]), Faen(i,C) satisfies them as well in this case. It is thus left to analyze the
properties in the novel case, i.e., for virtual state channels with direct dispute.

Create and close a virtual state channel with direct dispute. The users of the
virtual state channel v, which are the end-users of the channel ~.Alice and
~v.Bob and the intermediary ~.Ingrid, express that they want to create ~ by
sending the message (create,”y) to Fyen(i,C). Once Fuen(i,C) receives such a
message, it records it into the memory and locks coins in the corresponding sub-
channel. For example, if the sender of the message is v.Alice, Fgcp(4,C) locks
~.cash(v.Alice) coins of 7.Alice and ~y.cash(v.Bob) coins of «.Ingrid in the sub-
channel «y.subchan(~y.Alice). If Fycp(4,C) records the message (create,~y) from all
three parties within three rounds, then the channel « is created. The ideal func-
tionality informs both end-users of the channel about the successful creation by

20

sending the message (created,) to them. Since all three parties have to agree
with the creation of v, the security goal (S1) is clearly met. The successful cre-
ation takes 3 rounds, hence (E1) holds as well.

Once the virtual state channel is successfully created, v.Alice and ~.Bob can
use it (open and execute contract instance) until round ~.validity when the clos-
ing of the channel 7 begins. In round ~.validity, F4. (¢, C) first waits for 7 rounds,
where 7 = 3 if all users of v are honest and is set by the adversary otherwise,!?
and then distributes the coins locked in the subchannels according to the final
state of the channel ~y. It might happen that the final state of v contains unter-
minated contract instances, i.e. contract instances that still have locked coins,
in which case it is unclear who owns these coins. In order to guarantee the bal-
ance security for the intermediary, the property (S4), Faen (4, C) gives all of these
locked coins to 7.Ingrid in both subchannels. The goal (E4) is met because 7 is
closed in round +.validity + 3 in the optimistic case.

Update a contract instance. A party P that wants to update a contract instance
with identifier cid in a virtual state channel 7 sends the message (update,y.id,
cid,0,C) to Fyen(i,C). The parameter o is the proposed new contract instance
storage and the parameter C is the code of the contract instance. Fgep(i,C)
informs the party @ := ~.other—party(P) about the update request and com-
pletes the update only if @) confirms it. If the party @ is honest, then it has to
reply immediately. In case @ is malicious, Fy.x(¢,C) expects the reply within
3A rounds. Let us emphasize that the confirmation time is independent of the
channel length. This models the fact that disputes are happening directly on
the blockchain and not via the subchannels. In the optimistic case the update
procedure takes 2 rounds and in the pessimistic case 2 + 3A rounds; hence both
update efficiency goals (E2) and (E3) are satisfied. The security property (S2)
holds as well since without Q)’s confirmation the update fails.

Ezecute a contract instance. When a party P wants to execute a contract in-
stance with identifier cid in a virtual state channel v on function f and input
parameters z, it sends the message (execute,~.id, cid, f,z) to Faen(i,C). The
ideal functionality waits for 7 rounds, where 7 < 5 in case both parties are
honest and 7 < 4A + 5 in case one of the parties is corrupt. The exact value
of 7 is determined by the adversary. Again, let us stress that the pessimistic
time complexity is independent of channel length which models the fact that
registration and force execution takes place directly on the blockchain. After
the waiting time is over, Fg.(4,C) performs the function execution and in-
forms both end-users of the channel about the result by outputting the message
(execute, v.id, cid, &, add, m). Here & is the new contract storage after the exe-
cution, add contains information about the amount of coins unlocked from the
contract instance and m is some additional output message. Since the adversary
can not stop the execution, and only delay it, the guarantee of execution, se-

13 The value of 7 can be set by the adversary as long as it is smaller than some upper
bound T which is of order O(~y.length - A) .

21

curity property (S3), is satisfied by Fgcp (4, C). From the description above it is
clear that the two execute efficiency goals (E2) and (E3) are fulfilled as well.

Two-party state channels of length one. Before we proceed to the description
of the ideal functionality Fpen(i,C), let us state one simple but important
observation which follows from the fact that the minimal length of a virtual
state channel is 2 and the ideal functionality F4.,(1,C) accepts only messages
about a state channel of length 1.

Observation 1 For any set of contract codes C it holds that Fa.,(1,C) is equiv-
alent to Fep(1,C).

4.2 Virtual Multi-Party State Channels

We now introduce the functionality Fpen (7, C) which allows to create, maintain
and close multi-party as well as two-party state channels of length up to 7 in
which contract instances from the set C can be opened. The formal definition
of the ideal functionality can be found in the full version of this paper. Here we
provide its high level description and argue that all security and efficiency goals
identified in Sec. 3.2 are met.

The ideal functionality Fipen (4, C) extends the functionality Fyep (4, C), which
we described in Sec. 4.1, in the following way. In case Fypen (4, C) receives a mes-
sage about a two-party state channel, then it behaves exactly as the function-
ality Fgen(i,C). Since the functionality Fyep(i,C) satisfies all the security and
efficiency goals for two-party state channels, these goals are met by Fpen (4, C)
as well. For the rest of this informal description, we focus on the more interesting
case, when Fype (4, C) receives a message about a multi-party channel.

Create and close a multi-party channel Parties express that they want to cre-
ate the channel v by sending the message (create,v) to the ideal function-
ality Foupen (4,C). Once the functionality receives such message from a party
P € ~.users, it locks coins needed for the channel ~ in all subchannels of
v party P is participating in. Let us elaborate on this step in more detail.
For every Q € ~.neighbors(P) the ideal functionality proceeds as follows. Let
(Vp,Vg) := v.split({ P, Q}) which intuitively means that Vp contains all the user
of v that are “closer” to P than to Q. Analogously for V. Then } ;... v.cash(T)
coins of party P and ZTGVQ v.cash(T') coins of party @ are locked in the sub-
channel between P and @) by the ideal functionality. If the functionality receives
the message (create,) from all parties in +.users within 4 rounds, then the chan-
nel « is created. The ideal functionality informs all parties about the successful
creation by outputting the message (created,). Clearly, the security goal (S1)
and the efficiency goal (E1) are both met.

Once the multi-party channel is successfully created, parties can use it (open
and execute contract instances in it) until the round ~y.validity comes. In round
v.validity, the ideal functionality first waits for 7 rounds, where 7 = 3 if all parties

22

are honest and is set by the adversary otherwise,'* and then unlocks the coins
locked in the subchannels of «. The coin distribution happens according to the
following rules (let 4 denote the final version of v): If there are no unterminated
contract instances in 4.cspace, then the ideal functionality simply distributes the
coins back to the subchannels according to the function 4.cash. The situation is
more subtle when there are unterminated contract instances in 4.cspace. Intu-
itively, this means that some coin of the channel are not attributed to any of the
users. Our ideal functionality distributes the unattributed coins equally among
the users'® and the attributed coins according to 4.cash. Once the coins are dis-
tributed back to the subchannels, the channel v is closed which is communicated
to the parties via the message (closed,v.id). Since in the optimistic case, v is
closed in round ~.validity + 3, the goal (E4) is clearly met.

Update/Execute a contract instance The update and execute parts of the ideal
functionality F,pen(4,C) in case of multi-party channels are straightforward gen-
eralizations of the update and execute parts of the ideal functionality Faep(2,C)
in case of two-party virtual state with direct dispute (see Sec. 4.1).

Towards realizing the ideal functionality For the rest of the paper, we focus on
realization of our novel ideal functionality Fupen (7, C). Our approach of realizing
the ideal functionality Fypen(i,C) closely follows the modular way we use for
defining it. On a very high level, we first show how to construct any two party
state channel, in other words, how to realize the ideal functionality Fg.,. This
is done in Sec. 5. Thereafter, in Sec. 6, we design a protocol for multi-party
channels using two party state channels in a black box way.

5 Modular Approach

In this section, we introduce our approach of realizing F .1 (%, C). We do not want
to realize Fyep (i,C) from scratch, but find a modular approach which lets us reuse
existing results. We give a protocol IT4.,(i,C,) for building two-party state
channels supporting direct dispute which uses three ingredients: (1) a protocol ©
for virtual state channels with indirect dispute up to length 4, which was shown
in [10] how to build recursively from subchannels, (2) the ideal functionality Fcp,
for virtual channels with direct dispute up to length i—1 and (3) an ideal dispute
board. 4., (i,C,) can roughly be described by distinguishing three cases:

Case 1: If a party receives a message about a two-party state channel of length
j < t, then it forwards the request to Fycp,.

14 In case at least one user is corrupt, the value of 7 can be set by the adversary as
long as it is smaller that some upper bound T" which is of order O(~.length - A).

15 Let us emphasize that this design choice does not necessarily lead to a fair coin
distribution. For example, when users of the multi-party channel play a game and
one of the users is “about to win” all the coins when round ~.validity comes. Hence,
honest parties should always agree on new contract instances only if they can enforce
contract termination before time ~y.validity or if they are willing to take this risk.

23

Case 2: If a party receives a message about a virtual state channel with indirect
dispute and of length exactly ¢, then it behaves as in the protocol 7.

Case 3: For the case when a party receives a message about a virtual state
channel v with direct dispute of length exactly ¢, we describe a new protocol
using Fgcp, and an ideal dispute board Fpp which we will detail shortly.
Central element of the new protocol will be a special contract dVSCC used
for creating and closing ~.

The protocol is formally described in the full version of this paper [11]. In par-
ticular, there we describe the special contract dVSCC whose instances are opened
in the subchannels of v during the creation process and guarantee that the final
state of v will be correctly reflected to the subchannels.

Ideal dispute board. Let us now informally describe our ideal functionality Fpg(C)
for directly disputing about contract instances whose code is in some set C. On
a high level, the functionality models an ideal judge which allows the users to
achieve consensus on the latest valid version of a contract instance. For this,
Fpp(C) maintains a public “dispute board”, which is a list of contract instances
available to all parties. Fpg(C) admits two different procedures: registration of
a contract instance and execution of a contract instance. The registration proce-
dure works as follows: whenever a party determines a dispute regarding a specific
instance whose code is in the set C, it can register this contract instance by send-
ing its latest valid version to Fpp(C). The dispute board gives the other party!®
of the contract instance some time to react and send her latest version. Fpg(C)
compares both versions and adds the latest valid one to the dispute board. Once
a contract instance is registered on the dispute board, a user of the contract in-
stance can execute it via Fpp(C). Upon receiving an execution request, Fpp(C)
executes the called function and updates the contract instance on the dispute
board according to the outcome. We stress that the other party of the contract
instance cannot interfere and merely gets informed about the execution.

Unfortunately, we cannot simply add an ideal dispute board as another hy-
brid functionality next to one for constructing shorter channels. In a nutshell,
the reason is that the balances of virtual channels that are created via subchan-
nels might be influenced by contracts that are in dispute. Upon closing these
virtual channel, the dispute board needs to be taken into account. However, in
the standard UC model it is not possible that ideal functionalities communicate
their state. Thus, we will artificially allow state sharing by merging both ideal
functionalities. Technically, this is done by putting a wrapper Wy, around both
functionalities, which can be seen just as a piece of code distributing queries to
the wrapped functionalities. The formal descriptions of the wrapper as well as
the dispute board can be found in the full version of this paper [11].

Now that we described all ingredients, we formally state what our protocol
11 4.1, achieves and what it assumes. On a high level, our protocol gives a method
to augment a two-party state channel protocol m with indirect dispute, to also

16 For simplicity, we describe here how Fpp handles a dispute about a two-party con-
tract. Fpp handles disputes about multi-party contracts in a similar fashion.

24

support direct dispute. Our transformation is case-tailored for channel protocols
7 that are build recursively out of shorter channels. That is, we do not allow
an arbitrary protocol 7 for channels up to length 4, but only one that is itself
recursively build out of shorter channels.!”

Theorem 1. Let Cy be a set of contract codes, leti > 1 and A € N. Suppose the
underlying signature scheme is existentially unforgeable against chosen message
attacks. Let ™ be a protocol that realizes the ideal functionality Fp(i,Co) in the
Fen(i—1,Cl)-hybrid world. Then protocol Il 4cp (i, Co,) (cf. [11]) working in the
Weaen (i — 1,C1, Co)-hybrid model, for C1 := Cy UC{y U dVSCC;, emulates the ideal
functionality Faepn(i,Cq).

Remaining technicalities. Remember that our goal is to add direct dispute to
a two-party state channel protocol that is itself recursively build from shorter
subchannels. We still need to solve two technicalities. Firstly, note that Thm. 1
yields a protocol realizing F4.p, for length up to ¢, while it requires a wrapped Fgcp,
of length up to ¢ — 1. Thus, to be able to apply Thm. 1 recursively, we introduce
a technical Lemma 2 which shows how to modify the protocol 1. (i, Co,)
so that it realizes the wrapped Fgcn. Secondly, we can apply Thm. 1 on any
level except for ledger channels. In a nutshell, the reason is that Thm. 1 heavily
relies on using subchannels, which simply do not exist in case of ledger channels.
Fortunately, this can quite easily be resolved by adding our dispute board to a
protocol for ledger channels and to its hybrid ideal functionality. In Lemma 1 we
show how to do this with a protocol 7y from [10]. Their ledger channel protocol
assumes an ideal functionality F,.. which models state channel contracts on the
blockchain.'® The description of functionality and protocol wrappers as well as
the proofs of both lemmas can be found in the full version of this paper [11].

Lemma 1 (The Blue Lemma). Let C and Cy be two arbitrary sets of contract
codes and let w1 be a protocol that UC-realizes the ideal functionality Fen(1,C)
in the Fsee(C)-hybrid world. Then the protocol Wyrot(1,Co, II1) UC-realizes the
ideal functionality Wep(1,C,Co) in the Ws..(C,Co)-hybrid world.

Lemma 2 (The Red Lemma). Let i > 2 and let C be a set of contract
codes. Let II; be a protocol that UC-realizes the ideal functionality Facp(i,C)
in the Wyen (i — 1,C’,C)-hybrid world for some set of contract codes C'. Then
for every Co C C the protocol Wyrot (i, Co, II;) UC-realizes the ideal functionality
Waen(i,C,Co) in the Wyen (i — 1,C’,C)-hybrid world.

We finish this section with the complete picture of our approach of building
any two-party state channel of length up to 3 (Fig. 4). The picture demonstrates

17 For the sake of correctness, in this section we include details about contract sets that
each channel is supposed to handle. In order to understand our modular approach,
their relations can be ignored. The reader can just assume that each subchannel can
handle all contracts required for building all the longer channels.

18 Adding the dispute board to any functionality again works by wrapping functionality
Fz and Fpp within a wrapper W;.

25

how we recursively realize Fy.; functionalities of increasing length, as well as
their wrapped versions W, which additionally comprise the ideal dispute board
functionality. While already being required for recursively constructing Fycp,
Waen will also serve us as a main building block for our protocol for multi-party
channels in the upcoming section.

N
. N
Theorem 1 N

Indirect Virtual
3 State Channels

Wacn (2, C1, Co)

Facn(2,C1) | ’]"UB(CO) ‘

D
| Feee(C
Waall o e =

l Facn(1,C2) l l Fpp(C1) l

Obs. 1§ AN
Waen(1,C2,C1) ~ [Whrot (1,C1, 1) N
|]"ch(17(32) | ’ Fpp(C1) ‘
Legend
~ is (UC-)realized by
— accesses hybrid functionality Wiee(C2,C1)
< equivalent functionalities
== implication | -Fscc(c2) | ’ FpB (Cl) ‘

Fig. 4. The complete approach of building virtual state channels with direct dispute
of length up to 3 (top left), from channels with indirect dispute (gray background).
Thm. 1 and Lemma 1 allow to add direct dispute to channels. Note that the resulting
recursion chain for building longer channels is disconnected due to Thm. 1 requiring
Fpp. Lemma 2 then reconnects the recursion chain. Cy is an arbitrary contract set.
To build longer channels recursively, we have to allow the necessary channel contracts
in each level. Thus, C1 := Co U C’, where C’ is a special contract used for opening our
target channel (i.e., longer channel supporting direct dispute, or multi-party channel).
Similarly, C2 := C1 UC”, where again C” is a special contract that is needed for the
target channel. Note that it holds that Co C C1 C C2, and also that the length of the
channels as well as the target contract set have to be known in advance.

26

6 Protocol for Multi-Party Channels

In this section we describe a concrete protocol that realizes the ideal functionality
Fnpeh(1,Co) for i € N and any set of contract codes Cy in the Wy (¢,Cq,Co)-
hybrid world. Recall that Wy (4,C1,Cp) is a functionality wrapper (cf. Sec. 5)
combining the dispute board Fpp(Cp) and the ideal functionality Fg.p(4,Cy) for
building two-party state channels of length up to ¢ supporting contract instances
whose codes are in C;. Our strategy of constructing a protocol ITp,pcn (i, Co) for
multi-party channels is to distinguish two cases. These cases also outline the
minimal requirements on the set of supported contracts Cy:

Case 1: If a party receives a message about a two-party state channel, it for-
wards the request to the hybrid ideal functionality. Thus, we require Cy C Cy.

Case 2: For the case when a party receives a message about a multi-party
channel -, we design a new protocol that uses (a) the dispute board for fair
resolution of disagreements between the users of v and (b) two-party state
channels as a building block that provides monetary guarantees. For (b) we
need the subchannels of v to support contract instances of a special code
mpVSCC,; hence, mpVSCC, € C;.

We now discuss case 2 in more detail, by first describing the special contract code
mpVSCC, and then the protocol for multi-party channels. Since case 1 is rather
straightforward, we refer the reader to the full version of this paper [11] where
also the formal description of our protocol can be found.

6.1 Multi-Party Channel Contract

In order to create a multi-party channel -, parties of the channel need to open a
special two-party contract instance in each subchannel of v (recall the example
depicted in Fig. 2 in Sec. 2.3). We denote the code of these instances mpVSCC,,
where ¢ € N is the maximal length of the channel in which an instance of mpVSCC,
can be opened. A contract instance of mpVSCC, in a subchannel of v between two
parties P and @) can be understood as a “copy” of v, where P plays the role of
all parties from the set Vp and @ plays the role of parties from the set V5, where
(Vp,Vg) :=v.split({P, Q}). The purpose of the mpVSCC, contract instances is to
guarantee to every user of v that he gets the right amount of coins back to his
subchannels when ~ is being closed in round +.validity. And this must be true
even if all other parties collude.'®

The contract has in addition to the mandatory attributes users, locked, cash
(see Sec. 3.1) one additional attribute virtual-channel storing the initial version
of the multi-party channel 4. The contract has one constructor Init}® which
given a multi-party channel v and identities of two parties P and () as input,
creates a “copy” of v as described above. The only contract function, Close;",
is discussed together with the protocol IT4.;(i,Co,) later in this section.

19 This statement assumes that the only contract instances that can be opened in the
multi-party channel are the ones whose code allows any user to enforce termination
before time ~y.validity.

27

6.2 Protocol Description

Create a multi-party channel. Parties are instructed by the environment to create
a multi-party channel v via the message (create,y). As already explained before,
parties have to add an instance of mpVSCC; to every subchannel of . This is, on
high level, done as follows. Let P and @ be the two parties of a two party channel
o which is a subchannel of «y. Let us assume for now that Orderp (P) < Orderp(Q)
(see Sec. 3.1 for the definition of Orderp). If P receives the message (create,)
in round T7p, it requests an update of a contract instance in the state channel
a via the hybrid ideal functionality. As parameters of this request, P chooses
the channel identifier cid := P||Q||7.id, the contract storage Init;* (P, Q,7o,7)
and contract code mpVSCC,. Recall that Init;® is the constructor of the special
contract mpVSCC;. If the party @ also received the message (create,) in round
To, it knows that it should receive an update request from the hybrid ideal
functionality in round 7 + 1. If this is indeed the case, @) inspects P’s proposal
and confirms the update.

Assume that the environment sends (create,) to all users of « in the same
round 7p. If all parties follow the protocol, in round 7y + 2 all subchannels of ~y
should contain a new contract instance with the contract code mpVSCC,. However,
note that a party P € ~y.users only has information about subchannels it is part
of, i.e. about subchannels Sp := {a@ € v.subchan | P € a.end-users}. To this
end, every honest party P sends a message “create—ok” to every other party if
all subchannels in Sp contain a new mpVSCC; instance in round 79 + 2. Hence, if
all parties are honest, latest in round 7y + 3 every party knows that the creation
process of 7y is completed successfully. However, if there is a malicious party P
that sends the “create—ok” to all parties except for one, let us call it @), then in
round 79+ 3 only @ thinks that creation failed. In order to reach total consensus
on creation among honest parties, () signals the failure by sending a message
“create—not—ok” to all other parties.

To conclude, an honest party outputs (created,~y) to the environment if (1)
it received “create-ok” from all parties in round 79 + 3 and (2) did not receive
any message “create—not—ok” in round 7y + 4.

Register a contract instance in a multi-party channel. As long as users of the
multi-party channel v behave honestly, they can update/execute contract in-
stances in the channel v by communicating with each other. However, once the
users disagree, they need some third party to fairly resolve their disagreement.
The dispute board, modeled by the hybrid ideal functionality Wgcp (2, C1, Co),
plays the role of such a judge.

Parties might run into dispute when they update/execute the contract in-
stance or when they are closing the channel . In order to avoid code repetition,
we define the dispute process as a separate procedure mpRegister(P,id, cid).
The input parameter P denotes the initiating party of the dispute process, the
parameter id identifies the channel « and cid is the identifier of the contract
instance parties disagree on. The initiating party submits its version of the con-
tract instance, v, to the dispute board which then informs all other parties

28

about P’s registration request. If a party @ has a contract instance version with
higher version number, i.e. v%.version > v* .version, then @ submits this to the
dispute board. After a certain time, which is sufficient for other parties to re-
act to P’s registration request, any party can complete the process by sending
“finalize” to the dispute board which then informs all parties about the result.

Update a contract instance in a multi-party channel. In order to update the stor-
age of a contract instance in a multi-party channel from o to &, the environment
sends the message (update, id, cid, &,C) to one of the parties P, which becomes
the initiating party. Let 79 denote the round in which P receives this message.
On a high level the update protocol works as follows. P sends the signed new
contract storage & to all other parties of . Each of these parties @) € y.other—
party(P) verifies if the update request is valid (i.e., if P’s signature is correct)
and outputs the update request to the environment. If the environment confirms
the request, @ also signs the new contract storage ¢ and sends it as part of the
“update—ok” message to the other channel parties. In case the environment does
not confirm, @ sends a rejection message “update—not—ok” which contains @Q’s
signature on the original storage o but with a version number that is increased
by two, i.e., if the original version number was w, then @ signs o with w + 2.

If in round 7y + 2 a party P € ~y.users is missing a correctly signed reply from
at least one party, it is clear that someone misbehaved. Thus, P initiates the
registration procedure to resolve the disagreement via the dispute board.

If P received at least one rejection message, it is unclear to P if there is
a malicious party or not. Note that from P’s point of view it is impossible to
distinguish whether (a) one party sends the “update-not—ok” message to P and
the message “update—ok” to all other parties, or (b) one honest party simply
does not agree with the update and sends the “update—not—ok” message to
everyone. To resolve this uncertainty, P communicates to all other parties that
the update failed by sending the signed message (update—not—ok, o, w + 2) to all
other parties. If all honest parties behave as described above, in round 75 + 3
party P must have signatures of all parties on the original storage with version
number w + 2; hence, consensus on rejection is reached. If P does not have all
the signatures at this point, it is clear that at least one party is malicious. Thus,
P initiates the registration which enforces the consensus via the dispute board.

If P receives a valid “update—ok” from all parties in round 7 + 2, she knows
that consensus on the updated storage ¢ will eventually be reached. This is
because in worst case, P can register & on the dispute board. Still, P has to wait
if no other party detects misbehavior and starts the dispute process or sends a
reject message in which case P initiates the dispute. If none of this happens, all
honest parties output the message “updated” in round 7y + 3. Otherwise they
output the message after the registration is completed.

FEzecute a contract instance in a multi-party channel. The environment triggers
the execution process by sending the instruction (execute, id, cid, f, z) to a party
P in round 7y. P first tries to perform the execution of the contract instance with
identifier cid in a channel v with identifier id peacefully, i.e. without touching

29

the blockchain. An intuitive design of this process would be to let P compute
f(2) locally and send her signature on the new contract storage (together with
the environment’s instruction) to all other users of . Every other user @ would
verify this message by recomputing f(z) and confirm the new contract storage
by sending her signature on it to the other users of ~.

It is easy to see that this intuitive approach fails when two (or more) parties
want to peacefully execute the same contract instance cid in the same round.
While in two party channels this can be solved by assigning “time slots” for each
party, this idea cannot be generalized to the n-party case, without blowing up
the number of rounds needed for peaceful execution from O(1) to O(n). To keep
the peaceful execution time constant, we let each contract instance have its own
execution period which consists of four rounds:

Round 1: If P received (execute, id, cid, f, z) in this or the previous 3 rounds,
it sends (peaceful-request, id, cid, f, z, 7o) to all other parties.

Round 2: P locally sorts?® all requests it received in this round (potentially in-
cluding its own from the previous round), locally performs all the executions
and sends the signed resulting contract storage to all other parties.

Round 3: If P did not receive valid signatures on the new contract storage
from all other parties, it starts the registration process.

Round 4: Unless some party started the registration process, P outputs an
execution success message.

If the peaceful execution fails, i.e. one party initiates registration, all execution
requests of this period must be performed forcefully via the dispute board.

Close a multi-party channel. The closing procedure of a multi-party channel
begins automatically in round ~y.validity. Every pair of parties {P, Q} € .E tries
to peacefully update the mpVSCC, contract instance, let us denote its identifier
cid, in their subchannel « := ~.subchan({P, @}). More precisely, both parties
locally execute the function Close® of contract instance cid with input param-
eter z := y.cspace — the tuple of all contract instances that were ever opened in
7. The function Close;® adjusts the balances of users in cid according to the
provided contract instances in z and unlocks all coins from cid back to «.

If the peaceful update fails, then at least one party is malicious and either
does not communicate or tries to close the channel v with a false view on the
set ~v.cspace. In this case, users have to register all contract instances of v on
the dispute board. This guarantees a fixed global view on ~.cspace. Once the
registration process is over, the mpVSCC, contract instances in the subchannels
can be terminated using the execute functionality of Wy (i,C1,Co) on func-
tion Close;". Since the set 7.cspace is now publicly available on the dispute
board, the parameter z will be the same in all the mpVSCC, contract instance
executions in the subchannels. Technically, this is taken care of by the wrapper
Wen(i,C1,Co) which overwrites the parameter z of every execution request with
function Close;" to the relevant content of the dispute board.

20 We assume a fixed ordering on peaceful execution requests.

30

Let us emphasize that the high level description provided in this section
excludes some technicalities which are explained in the full version of the paper.

Theorem 2. Suppose the underlying signature scheme is existentially unforge-
able against chosen message attacks. For every set of contract codes Cy, every
i > 1 and every A € N, the protocol Il (%,Co) in the Waen (4, C1, Co)-hybrid
model emulates the ideal functionality Fppen (4, Co).

7 Conclusion

We presented the first full specification and construction of a state channel net-
work that supports multi-party channels. The pessimistic running time of our
protocol can be made constant for arbitrary complex channels. While we be-
lieve that this is an important contribution by it self, we also think that it is
very likely that the techniques developed by us will have applications beyond
the area of off-chain channels. In particular, the modeling of multiparty state
channels that we have in this paper can be potentially useful in other types of
off-chain protocols, e.g., in Plasma [23]. We leave extending our approach to such
protocols as an interesting research direction for the future.

Acknowledgments. This work was partly supported by the German Research
Foundation (DFG) Emmy Noether Program FA 1320/1-1, the DFG CRC 1119
CROSSING (project S7), the Ethereum Foundation grant Off-chain labs: for-
mal models, constructions and proofs, the Foundation for Polish Science (FNP)
grant TEAM/2016-1/4, the German Federal Ministry of Education and Research
(BMBF) iBlockchain project, by the Hessen State Ministry for Higher Educa-
tion, Research and the Arts (HMWK) and the BMBF within CRISP, and by
the Polish National Science Centre (NCN) grant 2014/13/B/ST6,/03540.

References

[1] I. Allison. Ethereum’s Vitalik Buterin explains how state channels address
privacy and scalability. 2016.

[2] Bitcoin Wiki: Payment Channels. https : //en . bitcoin . it / wiki /
Payment_channels. 2018.

[3] R. Canetti. “Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols”. In: 42nd FOCS. 2001.

[4] R. Canetti et al. “Universally Composable Security with Global Setup”.
In: TCC 2007. 2007.

[5] Celer Network. https://wuw.celer.network. 2018.

[6] T. Close. Nitro Protocol. Cryptology ePrint Archive, Report 2019/219.
https://eprint.iacr.org/2019/219. 2019.

[7] Counterfactual. https://counterfactual.com. 2018.

31

[8]

[10]

[16]

[17]

(18]

[19]

C. Decker and R. Wattenhofer. “A Fast and Scalable Payment Network
with Bitcoin Duplex Micropayment Channels”. In: Stabilization, Safety,
and Security of Distributed Systems. 2015.

D. Dolev and H. R. Strong. “Authenticated Algorithms for Byzantine
Agreement”. In: SIAM J. Comput. 4 (1983).

S. Dziembowski et al. “General State Channel Networks”. In: ACM CCS
18. 2018.

S. Dziembowski et al. Multi-Party Virtual State Channels. Cryptology
ePrint Archive. https://eprint.iacr.org/2019. 2019.

S. Dziembowski et al. Perun: Virtual Payment Hubs over Cryptographic
Currencies. conference version accepted to the 40th IEEE Symposium on
Security and Privacy (IEEE S&P) 2019. 2017.

J. A. Garay et al. “Round Complexity of Authenticated Broadcast with a
Dishonest Majority”. In: 48th FOCS. 2007.

J. Katz and Y. Lindell. Introduction to Modern Cryptography (Chapman
& Hall/Cre Cryptography and Network Security Series). 2007.

R. Khalil and A. Gervais. NOCUST - A Non-Custodial 2nd-Layer Finan-
cial Intermediary. Cryptology ePrint Archive, Report 2018/642. https:
//eprint.iacr.org/2018/642. 2018.

R. Khalil and A. Gervais. “Revive: Rebalancing Off-Blockchain Payment
Networks”. In: ACM CCS 17. 2017.

J. Lind et al. “Teechain: Reducing Storage Costs on the Blockchain With
Offline Payment Channels”. In: Proceedings of the 11th ACM International
Systems and Storage Conference, SYSTOR 2018. 2018.

G. Malavolta et al. “Concurrency and Privacy with Payment-Channel Net-
works”. In: ACM CCS 17. 2017.

P. McCorry et al. Pisa: Arbitration Outsourcing for State Channels. Cryp-
tology ePrint Archive, Report 2018/582. https://eprint . iacr.org/
2018/582. 2018.

P. McCorry et al. “You sank my battleship ! A case study to evaluate state
channels as a scaling solution for cryptocurrencies”. In: 2018.

A. Miller et al. “Sprites: Payment Channels that Go Faster than Light-
ning”. In: CoRR (2017).

S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. http://
bitcoin.org/bitcoin.pdf. 2009.

J. Poon and V. Buterin. Plasma: Scalable Autonomous Smart Contracts.
2017.

J. Poon and T. Dryja. The Bitcoin Lightning Network: Scalable Off-Chain
Instant Payments. Draft version 0.5.9.2, available at https://lightning.
network/lightning-network-paper.pdf. 2016.

S. Roos et al. “Settling Payments Fast and Private: Efficient Decentralized
Routing for Path-Based Transactions”. In: NDSS. 2018.

N. Szabo. Smart Contracts: Building Blocks for Digital Markets. Extropy
Magazine. 1996.

32

