
Indistinguishability Obfuscation Without Multilinear
Maps: New methods for Bootstrapping and Instantiation

Shweta Agrawal?

Abstract. Constructing indistinguishability obfuscation (iO) [17] is a central open
question in cryptography. We provide new methods to make progress towards this
goal. Our contributions may be summarized as follows:

1. Bootstrapping. In a recent work, Lin and Tessaro [71] (LT) show that iO
may be constructed using i) Functional Encryption (FE) for polynomials of
degree L, ii) Pseudorandom Generators (PRG) with blockwise locality L and
polynomial expansion, and iii) Learning With Errors (LWE). Since there exist
constructions of FE for quadratic polynomials from standard assumptions on
bilinear maps [68, 16], the ideal scenario would be to set L = 2, yielding iO
from widely believed assumptions.

Unfortunately, it was shown soon after [73, 18] that PRG with block locality
2 and the expansion factor required by the LT construction, concretely
Ω(n · 2b(3+ε)), where n is the input length and b is the block length, do not
exist. In the worst case, these lower bounds rule out 2-block local PRG with
stretch Ω(n · 2b(2+ε)). While [73, 18] provided strong negative evidence
for constructing iO based on bilinear maps, they could not rule out the
possibility completely; a tantalizing gap has remained. Given the current
state of lower bounds, the existence of 2 block local PRG with expansion
factor Ω(n · 2b(1+ε)) remains open, although this stretch does not suffice for
the LT bootstrapping, and is hence unclear to be relevant for iO.

In this work, we improve the state of affairs as follows.

(a) Weakening requirements on Boolean PRGs: In this work, we show that
the narrow window of expansion factors left open by lower bounds do
suffice for iO. We show a new method to construct FE for NC1 from i)
FE for degreeL polynomials, ii) PRGs of block localityL and expansion
factor Ω̃(n · 2b(1+ε)), and iii) LWE (or RLWE).

(b) Broadening class of sufficient randomness generators: Our bootstrapping
theorem may be instantiated with a broader class of pseudorandom
generators than hitherto considered for iO, and may circumvent lower
bounds known for the arithmetic degree of iO-sufficient PRGs [73, 18];
in particular, these may admit instantiations with arithmetic degree 2,
yielding iO with the additional assumptions of SXDH on Bilinear maps
and LWE. In more detail, we may use the following two classes of PRG:

i. Non-Boolean PRGs: We may use pseudorandom generators whose
inputs and outputs need not be Boolean but may be integers

? IIT Madras, India. Email: shweta.a@cse.iitm.ac.in.

restricted to a small (polynomial) range. Additionally, the outputs
are not required to be pseudorandom but must only satisfy a milder
indistinguishability property1.

ii. Correlated Noise Generators: We introduce an even weaker class of
pseudorandom generators, which we call correlated noise generators
(CNG) which may not only be non-Boolean but are required to
satisfy an even milder (seeming) indistinguishability property than
∆ RG.

(c) Assumptions and Efficiency. Our bootstrapping theorems can be based
on the hardness of the Learning With Errors problem or its ring variant
(LWE/RLWE) and can compile FE for degree L polynomials directly to
FE for NC1. Previous work compiles FE for degree L polynomials to
FE for NC0 to FE for NC1 to iO [72, 68, 12, 45].

Our method for bootstrapping to NC1 does not go via randomized
encodings as in previous works, which makes it simpler and more
efficient than in previous works.

2. Instantiating Primitives. In this work, we provide the first direct candidate
of FE for constant degree polynomials from new assumptions on lattices. Our
construction is new and does not go via multilinear maps or graded encoding
schemes as all previous constructions. Together with the bootstrapping
step above, this yields a completely new candidate for iO (as well as FE
for NC1), which makes no use of multilinear or even bilinear maps. Our
construction is based on the ring learning with errors assumption (RLWE) as
well as new untested assumptions on NTRU rings.

We provide a detailed security analysis and discuss why previously known
attacks in the context of multilinear maps, especially zeroizing and annihi-
lation attacks, do not appear to apply to our setting. We caution that our
construction must yet be subject to rigorous cryptanalysis by the community
before confidence can be gained in its security. However, we believe that the
significant departure from known multilinear map based constructions opens
up a new and potentially fruitful direction to explore in the quest for iO.

Our construction is based entirely on lattices, due to which one may hope for
post quantum security . Note that this feature is not enjoyed by instantiations
that make any use of bilinear maps even if secure instances of weak PRGs, as
identified by the present work, the follow-up by Lin and Matt [69] and the
independent work by Ananth, Jain and Sahai [9] are found.

1 We note that our notion of non Boolean PRGs is qualitatively similar to the notion of ∆ RGs
defined in the concurrent work of Ananth, Jain and Sahai [9]. We emphasize that the methods
of [9] and the present work are very different, but both works independently discover the same
notion of weak PRG as sufficient for building iO.

2

1 Introduction

Indistinguishability Obfuscation. Program obfuscation aims to make a program
“unintelligible” while preserving its functionality. Indistinguishability obfuscation [17]
(iO) is a flavour of obfuscation, which converts a circuit C to an obfuscated circuitO(C)
such that any two circuits that have the same size and compute the same function are
indistinguishable to a computationally bounded adversary.

While it is non-obvious at first glance what this notion is useful for, recent work
has demonstrated the tremendous power of iO. iO can be used to construct almost
any cryptographic object that one may desire – ranging (non-exhaustively) from
classical primitives such as one way functions [63], trapdoor permutations [22], public
key encryption [82] to deinable encryption [82], fully homomorphic encryption [31],
functional encryption [45], succinct garbling schemes [30, 20, 64, 70] and many more.

The breakthrough work of Garg et al. [45] presented the first candidate construction
of iO from the beautiful machinery of graded encoding schemes [43]. This work
heralded substantial research effort towards understanding iO: from cryptanalysis
to new constructions to understanding and weakening underlying assumptions to
applications. On the cryptanalysis front, unfortunately, all known candidate graded
encoding schemes [43, 39, 51] as well as several candidates of iO have been broken
[33, 37, 60, 35, 34, 75, 38, 13]. Given the power of iO, a central question in cryptography
is to construct iO from better understood hardness assumptions.

Functional Encryption. Functional encryption (FE) [81, 80] is a generalization of public
key encryption in which secret keys correspond to programs rather than users. In more
detail, a secret key embeds inside it a circuit, say f , so that given a secret key SKf and
ciphertext CTx encrypting a message x, the user may run the decryption procedure to
learn the value f(x). Security of the system guarantees that nothing beyond f(x) can be
learned from CTx and SKf . Recent years have witnessed significant progress towards
constructing functional encryption for advanced functionalities, even from standard
assumptions [24, 36, 27, 26, 52, 32, 4, 59, 19, 62, 66, 5, 83, 57, 46, 45, 58]. However,
most constructions supporting general functionalities severely restrict the attacker in
the security game: she must request only a bounded number of keys [56, 8, 55], or may
request unbounded number of keys but from a restricted space2 [58, 2]. Schemes that
may be proven secure against a general adversary are restricted to compute linear or
quadratic functions [1, 6, 68, 16].

Constructing iO from FE. Recent work [10, 23, 11] provided an approach for
constructing iO via FE. While we do not have any candidate constructions for FE that
satisfy the security and efficiency requirements for constructing iO (except constructions
that themselves rely on graded encoding schemes or iO [45, 47]), FE is a primitive that
is closer to what cryptographers know to construct and brings iO nearer the realm of
reachable cryptography.

An elegant sequence of works [67, 72, 68, 12, 71] has attempted to shrink the
functionality of FE that suffices for iO, and construct FE for this minimal functionality

2 Referred to in the literature as “predicate encryption”

3

from graded encoding schemes or multilinear maps. Concretely, the question is: what is
the smallest L such that FE supporting polynomials of degree L suffices for constructing
iO? At a high level, these works follow a two step approach described below:

1. Bootstrapping FE to iO. The so called “bootstrapping” theorems have shown that
general purpose iO can be built from one of the following: i) sub-exponentially
secure FE for NC1 [10, 23, 11, 21], or ii) sub-exponentially secure FE for NC0

and PRG in NC0 [72] iii) PRGs with locality L and FE for computing degree L
polynomials [68] or iv) PRGs with blockwise locality L and FE for computing
degree L polynomials [71].
At a high level, all bootstrapping theorems make use of randomized encodings
[61, 14] to reduce computation of a polynomial sized circuit to computation of low
degree polynomials.

2. Instantiating Primitives. Construct FE supporting degree L polynomials based on
graded encodings or multilinear maps [72, 68].

1.1 Bootstrapping, the Ideal.

Since we have candidates of FE for quadratic polynomials from standard assumptions
on bilinear maps [68, 16], a dream along this line of work would be to reduce the degree
required to be supported by FE all the way down to 2, yielding iO, from bilinear maps
and other widely believed assumptions (like LWE and PRG with constant locality). The
recent work of Lin and Tessaro [71] (LT) came closest to achieving this, by leveraging a
new notion of PRG they termed blockwise local PRG. A PRG has blockwise locality L
and block-size b, if when viewing the input seed as a matrix of b rows and n columns,
every output bit depends on input bits in at most L columns. As mentioned above, they
showed that PRGs with blockwise locality L and certain polynomial stretch, along with
FE for computing degree L polynomials and LWE suffice for iO.

Unfortunately, it was shown soon after [73, 18] that PRG with block locality 2 and
the stretch required by the LT construction, concretely Ω(n ·2b(3+ε)), do not exist. In the
worst case, these lower bounds rule out 2-block local PRG with stretch Ω(n · 2b(2+ε)).
On the other hand, these works suggest that 3 block local PRG are likely to exist, thus
shrinking the iO-sufficient degree requirement on FE to 3.

While [73, 18] provided strong negative evidence for constructing iO based on 2 block
local PRG and hence bilinear maps, they could not rule out the possibility completely; a
tantalizing gap has remained. Roughly speaking, the construction of candidate PRG (first
suggested by Goldreich [53]) must choose a hyper-graph with variables on vertices, then
choose predicates that are placed on each hyper-edge of the graph and output the values
of the edge-predicates on the vertex-variables. The lower bounds provided by [73, 18]
vary depending on how the graph and predicates are chosen in the above construction:
in particular whether the graph is chosen randomly or could be constructed in some
arbitrary “worst case” way, whether the predicate is chosen randomly or arbitrarily, and
whether the same predicate is used for each hyper-edge or different predicates may be
used per hyper-edge or output bit. The following table by [73] summarises our current
understanding on the existence of 2 block local PRG:

4

Stretch Worst case
versus Random

Predicate

Worst case
versus Random

Graph

Different
versus Same
Predicate per

output bit

Reference

Ω̃(n · 2b(1+ε)) Random Random Different [18]
Ω̃(n · 2b(2+ε)) Worst Case Worst Case Different [18]
Ω̃(n · 2b(1+ε)) Worst Case Worst Case Same [73]
Ω̃(n · 2b(1+ε)) Worst Case Worst Case Different Open

As we see in the above table, the existence of 2 block local PRG with carefully
chosen graph and predicates with stretch Ω̃(n · 2b(1+ε)) is open. However, even in the
case that these exist, it is not clear whether its even useful, since the Lin-Tessaro compiler
requires larger stretch Ω(n · 2b(3+ε)), which is ruled out by row 2 above. In the current
version of their paper, [71] remark that “Strictly speaking, our results leave a narrow
window of expansion factors open where block-wise PRGs could exist, but we are not
aware whether our approach could be modified to use such low-stretch PRGs.”

Bootstrapping: Our Results. In this work, we show that the narrow window of expansion
factors left open by lower bounds do suffice for iO. Moreover, we define a larger class
of pseudorandomness generators than those considered so far, which may admit lower
degree instantiations. We then show that these generators with the same expansion suffice
for iO. We discuss each of these contributions below.

Weakening requirements on PRGs: We show a new method to construct FE for NC1

from FE for degree L polynomials, sub-exponentially secure PRGs of block locality L
and LWE (or RLWE). Since FE for NC1 implies iO for P/Poly [10, 23, 21], this suffices
for bootstrapping all the way to iO for P/Poly. Our transformation requires the PRG to
only have expansion n · 2b(1+ε) which is not ruled out as discussed above. This re-opens
the possibility of realizing 2 block local PRG with our desired expansion factor (see
below for a detailed discussion), which would imply iO from 2 block local PRG, SXDH
on Bilinear maps and LWE. A summary of the state of art in PRG based bootstrapping is
provided in Figure 1.1.

Broadening class of sufficient PRGs: Our bootstrapping theorem may be instantiated
with a broader class of pseudorandom generators than hitherto considered for iO, and
may circumvent lower bounds known for the arithmetic degree of iO-sufficient PRGs
[73, 18]; in particular, these may admit instantiations with arithmetic degree 2, yielding
iO along with the additional assumptions of SXDH on Bilinear maps and LWE. In more
detail, we may use the following two classes of PRG:

1. Non-Boolean PRGs: We may use pseudorandom generators whose inputs and
outputs need not be Boolean but may be integers restricted to a small (polynomial)
range. Additionally, the outputs are not required to be pseudorandom but must only

5

satisfy a milder indistinguishability property3. We tentatively propose initializing
these PRGs using the multivariate quadratic assumption MQ which has been widely
studied in the literature [74, 84, 41] and against the general case of which, no
efficient attacks are known.

2. Correlated Noise Generators: We introduce an even weaker class of pseudorandom
generators, which we call correlated noise generators (CNG) which may not only be
non-Boolean but are required to satisfy an even milder (seeming) indistinguishability
property.

Assumptions and Efficiency. Our bootstrapping theorems can be based on the hardness
of LWE or its ring variant RLWE and compiles FE for degree L polynomials directly
to FE for NC1. Our method for bootstrapping to NC1 does not go via randomized
encodings as in previous works. Saving the transformation to randomized encodings
makes bootstrapping to NC1 more efficient than in previous works. For instance, [71]
require the encryptor to choose Q PRG seeds, where Q is the (polynomial) length of
random tapes needed by the randomized encodings. On the other hand we only need 2
PRG seeds, since we avoid using randomized encodings, yielding a ciphertext that is
shorter by a factor of Q, as well as (significantly) simpler pre-processing.

L block-local PRG FE for deg L poly

FE for NC0

FE for NC1

iO for P/Poly

Uses randomized

polys [AIK11, LV16]

[LT17, Lin17, AS17]

[AJ15, BV15, BNPW16]

Need PRG with

expansion Ω(n 2b(3+ε)),

LV17, BBKK17 rule out

2 block local PRG with

expansion Ω(n 2b(2+ε)).

Instantiable for L=2

assuming SXDH on

bilinear maps

[Lin17,BCFG17]

L block-local PRG FE for deg L poly

FE for NC1

iO for P/Poly

This. New proof

technique not using

randomizing polys.

[AJ15, BV15, BNPW16]

Need PRG with

expansion Ω(n 2b(1+ε)),

NOT ruled out for L=2

by LV17, BBKK17 in

worst case

Instantiable for L=2

assuming SXDH on

bilinear maps

[Lin17, BCFG17]

Lin-Tessaro, Crypto 17 This Work

Fig. 1.1. State of the Art in Bootstrapping FE to iO. In the present work, we may bootstrap
directly to FE for NC1 without going through NC0.

3 For the knowledgeable reader, we do not require the polynomials computing our PRGs to be
sparse and hence the general attack of [18] does not rule out existence of degree 2 instantiations
to the best of our knowledge.

6

1.2 Instantiation: the Ideal.
To instantiate iO via FE for constant degree polynomials, [71] rely on the FE for degree
L polynomials constructed by Lin [68], which relies on SXDH on noiseless algebraic
multilinear maps of degree L, for which no candidates of degree greater than 2 are known
to exist. As discussed by [68], instantiating her construction with noisy multilinear maps
causes the proof to fail, in addition to the SXDH assumption itself being false on existing
noisy multilinear map candidates. We refer the reader to [71, 68] for a detailed discussion.

Evidently, one ideal instantiation for iO would be to construct noiseless multilinear
maps of degree at least 34, on which the SXDH assumption is believed to hold. At the
moment, we have no evidence that such objects exist. Another ideal instantiation would
be to provide a direct construction of FE for constant degree polynomials from well
understood hardness assumptions, satisfying the requisite compactness properties for
implication to iO. Constructing FE from well-understood hardness assumptions has
received significant attention in recent years, and for the moment we do not have any
constructions that suffice for iO excepting those that themselves rely on multilinear maps
or iO.

Thus, at present, all concrete instantiations of the FE to iO compiler must go via
noisy multilinear maps on which SXDH fails.

Instantiation: Our Results. In our work, we take a different approach to the question of
instantiation. We propose to construct FE directly, without going through multilinear
maps or graded encoding schemes, and use this FE to instantiate the transformation to
iO. We believe this new approach has the following advantages:

1. May be Simpler: Construction of iO-sufficient FE might not need the full power of
asymmetric multilinear maps, since FE is not known to imply asymmetric multilinear
maps equipped with SXDH to the best of our knowledge 5. Hence, constructing FE
directly may be simpler.

2. Yield new and possibly more robust assumptions: Attempts to construct FE
directly for low degree polynomials yield new hardness assumptions which are
likely different from current assumptions on noisy multilinear maps. This direction
may yield more resilient candidates than those that go via multilinear maps.

In this work, we provide the first direct candidate of symmetric key FE for constant
degree polynomials from new assumptions on lattices. Let F be the class of circuits
with depth d and output length `. Then, for any f ∈ F , our scheme achieves
Time(KeyGen) = O

(
poly(κ, |f |)

)
, and Time(Enc) = O(|x| · 2d · poly(κ)) where

κ is the security parameter. This suffices to instantiate the bootstrapping step above.
Our construction is based on the ring learning with errors assumption (RLWE) as well
as new untested assumptions on NTRU rings. We provide a detailed security analysis
and discuss why currently known attacks in the multilinear map setting do not appear

4 Ideally degree 5, so as to remove the reliance on even blockwise local PRG and rely directly on
5 local PRG which are better understood.

5 A line of work can traverse the route of FE to iO to PiO (probabilistic iO) to symmetric
multilinear maps (see [42] and references therein) using multiple complex subexponential
reductions, still not yielding asymmetric multilinear maps with SXDH.

7

to apply. We also provide a proof in a restricted security game where the adversary is
allowed to request only one ciphertext, based on a new assumption. While such a security
game is too limited to be reasonable, we view this as a first step to provable security. We
caution that the assumptions underlying our construction must yet be subject to rigorous
cryptanalysis by the community. However, our approach is fundamentally different and
we hope it inspires other candidates.

1.3 Our Techniques: Bootstrapping

Let us start by restating the goal: we wish to construct FE for the function class NC1

such that the size of the ciphertext depends only sublinearly on the size of the function.
Previous work [10, 23] shows that such an FE suffices to construct iO. At a high level, to
compute f(x), our FE scheme will make use of a fully homomorphic encryption scheme
(FHE) to evaluate the function f on the FHE ciphertext CTx of x to obtain a “functional”
ciphertext CTf(x) and then perform FHE decryption on CTf(x) to obtain f(x).

Agrawal and Rosen [8] show how to instantiate the above blueprint from the LWE
assumption, but incur large ciphertext size that does not suffice for bootstrapping to iO.
Their construction is the starting point of our work. Below, we assume familiarity of the
reader with RLWE and Regev’s public key encryption scheme [79, 52]. Although our
bootstrapping can also be based on standard LWE, we describe it using RLWE here since
it is simpler.

“FE-compatible” Homomorphic Encryption by [8]. The main technical contribution of
[8] may be seen as developing a special “FE-compatible” FHE scheme that lends itself
to the constrained decryption required by FE. Note that FHE enables an evaluator to
compute arbitrary functions on the ciphertext. In contrast, FE requires that given a a
ciphertext CTx, decryption is constrained to some function f for which the decyptor
possess a secret key SKf . Thus, decryption must reveal f(x) alone, and leak no other
function of x.

To address this issue, [8] design new algorithms for FHE encryption and ciphertext
evaluation, inspired by an FHE by Brakerski and Vaikuntanathan [29]. The evalua-
tor/decryptor, given the encoding of some input x and some (arithmetic) circuit f ∈ NC1

can execute the ciphertext evaluation algorithm, which we denote by EvalCT, to compute
a “functional” ciphertext CTf(x) that encodes f(x). The functional ciphertext can then
by decrypted by SKf alone, to reveal f(x) and nothing else.

The encryption algorithm of [8] is “levelled” in that given input x, it outputs a
set of encodings Ci for i ∈ [d] where d is the depth of the circuit being computed.
The functional ciphertext CTf(x) = EvalCT(∪

i∈[d]
Ci, f) of [8] has the following useful

structure:
CTf(x) = 〈Linf , Cd〉+ Polyf (C1, . . . , Cd−1)

for some f -dependent linear function Linf and polynomial Polyf . Moreover, upon
decrypting CTf(x), we get

f(x) + noisef(x) = 〈Linf , Md〉+ Polyf (C1, . . . , Cd−1) (1.1)

8

whereMd is the message vector encoded in level d encodings Cd. Here, f(x) ∈ Rp0 for
some ring Rp0 and noisef(x) is the noise term that results from FHE evaluation which
may be removed using standard techniques to recover f(x) as desired.

Using Linear FE and Noise Flooding. Given the above structure, an approach to compute
f(x) is to leverage functional encryption for linear functions [1, 6], denoted by LinFE to
compute the term 〈Linf , Md〉. Recall the functionality of LinFE: the encryptor provides
a ciphertext CTz for some vector z ∈ Rn, the key generator provides a key SKv for some
vector v ∈ Rn and the decryptor learns 〈z,v〉 ∈ R. Thus, we may use LinFE to enable
the decryptor to compute 〈Linf , Md〉, let the decryptor compute Polyf (C1, . . . , Cd−1)
herself to recover f(x) + noisef(x). Surprisingly, constrained decryption of a linear
function on secret values suffices, along with additional public computation, to perform
constrained decryption of a function in NC1.

Unfortunately, this approach is insecure as is, as discussed in [8]. For bounded
collusion FE, the authors achieve security by having the encryptor encode a fresh,
large noise term noisefld for each requested key f which “floods” noisef(x). This noise is
forcibly added to the decryption equation so that the decryptor recovers f(x)+noisef(x)+
noisefld, which by design is statistically indistinguishable from f(x) + noisefld. [8] show
that with this modification the scheme can be shown to achieve strong simulation style
security, by relying just on security of LinFE. However, encoding a fresh noise term per
key causes the ciphertext size to grow at least linearly with the number of function keys
requested, or in the case of single key FE, with the output length of the function. As
noted above, this renders their FE insufficient for iO.

Noisy Linear Functional Encryption. In this work, we show that the approach of [8]
can be extended to construct a single key FE for NC1 with ciphertext size sublinear
in the output length, by replacing linear functional encryption LinFE with noisy linear
functional encryption, denoted by NLinFE. Noisy linear functional encryption is like like
regular linear functional encryption [1, 6], except that the function value is recovered
only up to some bounded additive error/noise, and indistinguishability holds even if
the challenge messages evaluated on any function key are only “approximately” and
not exactly equal. The functionality of NLinFE is as follows: given a ciphertext CTz

which encodes vector z ∈ Rn and a secret key SKv which encodes vector v ∈ Rn,
the decryptor recovers 〈z, v〉+ noisez,v where noisez,v is specific to the message and
function being evaluated.

Let f ∈ NC1 and let the output of f be of size `. Let f1, . . . , f` be the functions
that output the ith bit of f for i ∈ [`]. At a high level, our FE for NC1 will enable
the decryptor to compute 〈Linfi , Md〉 + noisefldi as in [8] but instead of having the
encryptor encode ` noise terms during encryption, we use NLinFE to compute and
add noise terms noisefldi into the decryption equation. Given NLinFE with sublinear
ciphertext size, we can then construct FE for NC1 with sublinear ciphertext size, which
suffices for bootstrapping to iO. In more detail, we show:

Theorem 1.1. (Informal) There exists an FE scheme for the circuit class NC1 with
sublinear ciphertext and satisfying indistinguishability based security, assuming:

9

– A noisy linear FE scheme NLinFE with sublinear ciphertext satisfying indistin-
guishability based security.

– The Learning with Errors (LWE) Assumption.
– A pseudorandom generator (PRG). 6

The formal theorem is provided in Section 4. Note that while [8] argue simulation
based security of FE for NC1 using simulation security of LinFE in the bounded key
setting, we must argue indistinguishability based security of FE for NC1 assuming
indistinguishability based security NLinFE. This is significantly more complex and
requires new proof techniques, which we develop in this work. Please see Section 4 for
details.

The key question that remains is how does NLinFE construct the noise term to be
added to the decryption equation? As discussed next, NLinFE is a primitive flexible
enough to admit multiple instantiations, which in turn yield FE for NC1 from diverse
assumptions, improving the state of art.

Constructing NLinFE. Next, we discuss multiple methods to construct NLinFE, which
imply FE for NC1 from various assumptions. Together with the bootstrapping of NLinFE
to FE for NC1 described above, this suffices for applying the FE to iO compiler of
[10, 23]. Before we describe our constructions, we provide a summary via the following
theorem:

Theorem 1.2. (Informal) Noisy linear functional encryption (NLinFE) with sublinear
ciphertext and satisfying indistinguishability based security may be constructed using:

1. i) An FE scheme supporting evaluation of degree L polynomials and satisfying
indistinguishability based security, ii) sub-exponentially secure PRG with block
locality L and expansion n · 2b(1+ε), where n is the input length and b is the block
length, and iii) LWE (or RLWE).

2. i) An FE scheme supporting evaluation of degree L polynomials and satisfying
indistinguishability based security, ii) sub-exponentially secure weak randomness
generators called “Correlated Noise Generators” (CNG) iii) LWE (or RLWE).

3. i) An FE scheme supporting evaluation of degree L polynomials and satisfying
indistinguishability based security, ii) sub-exponentially secure weak randomness
generators called “non-Boolean PRG” iii) LWE (or RLWE).

4. New lattice assumptions on NTRU rings.

Note that the above instantiations of NLinFE have several desirable features as
discussed below:

1. The first instantiation uses a block local PRG with smaller expansion factor than
that required by the Lin-Tessaro compiler [71]. More importantly, 2-local PRG with
the above expansion factor is not ruled out in the worst case by [18, 73]. Thus, if
PRG with block locality 2 and the above expansion factor exist, we may instantiate
FE for L = 2 using SXDH on bilinear maps [68].

6 We actually only need a randomness generator that is weaker than a standard PRG but do not
discuss this here. for the formal statement.

10

2. The notion of correlated noise generators CNG is new to our work, and appears
significantly weaker than a standard Boolean PRG, as discussed below. Prior to our
work, the only notions of PRG that were used to construct iO are standard Boolean
PRG and block local PRG [71].

3. Our notion of non-Boolean PRG interpolates CNG and standard Boolean PRG. This
notion is qualitatively the same as the notion of ∆-RG discovered concurrently and
independently by [9].

4. Our direct construction of NLinFE makes no use of bi/multi-linear maps, and
provides a candidate for post quantum iO. We note that most (if not all) candidates
of iO are vulnerable in the post quantum setting [77].

The “Right” Abstraction. Noisy linear functional encryption provides the right
abstraction (in our opinion) for the smallest functionality that may be bootstrapped
to FE for NC1 using our methods. NLinFE captures the precise requirements on noise
that is required for the security of FE for NC1 and integrates seamlessly with our new
proof technique. Moreover, as discussed above, NLinFE may be constructed in different
ways from different assumptions, and properties such as ciphertext size and collusion
resistance achieved by NLinFE are inherited by FE for NC1. We remark that the follow
up work by Lin and Matt [69] also uses our notion of NLinFE in essentially the same
manner for their overall construction.

Put together, an overview of our transformation is provided in Figure 1.2.

Fig. 1.2. Overview of our transformation. Above, FH refers to function hiding.

Weaker Requirements on PRG Next, we discuss the requirements on the PRG used
by the first three instantiations of NLinFE discussed above.

11

PRG with smaller expansion factor. Our first method makes use of a compact FE scheme
which is powerful enough to compute PRG/blockwise local PRG [71]. Let PrgFE be a
functional encryption scheme that supports evaluation of a PRG with polynomial stretch.
Then, we may construct NLinFE and hence FE for NC1 by leveraging PrgFE to compute
the the noise to be added by NLinFE as the output of a PRG.

In more detail, by the discussion above, we would like the decryptor to compute:

f(x) + noisef(x) + noisefld = 〈Linf , Md〉+ noisefld + Polyf (C1, . . . , Cd−1)

where noisef(x) + noisefld is indistinguishable from noisefld. Say that the norm of
noisef(x) may be bounded above by value Bnse. Then, it suffices to sample a uniformly
distributed noise term noisefld of norm bounded by Bfld, where Bfld is superpolynomially
larger than Bnse for the above indistinguishability to hold. This follows from security
of PRG and a standard statistical flooding argument. We will use PrgFE to compute
noisefld.

In more detail, let G be a PRG with polynomial stretch which outputs ` uniform ring
elements of norm bounded by Bfld, and let Gi be the function that selects the ith output
symbol of G, namely Gi(seed) = G(seed)[i] where seed is the seed of the PRG. Then,

1. The encryptor may provide PrgFE encryptions of (Md, seed) along with encodings
∪

i∈[d−1]
Ci,

2. The key generator may provide a PrgFE secret key for polynomial Pi(z1, z2) =
〈Linfi , z1〉+Gi(z2)

3. The decryptor may compute 〈Linfi , Md〉+Gi(seed) as well as Polyf (C1, . . . , Cd−1),
to recover f(x) + noisef(x) +Gi(seed) by Equation 1.1 as desired.

It is crucial to note that the degree of the polynomial Pi is equal to the degree required
to compute Gi, because Linfi is a linear function. Moreover, the degree is unchanged
even if we make use of a standard PRG with binary range. To see this, take a binary
PRG that requires degree L to compute, and apply the standard (linear) powers of two
transformation to convert binary output to larger alphabet.

Thus, an FE scheme that supports polynomials of degree L, where L is the degree
required to compute a PRG, suffices to construct NLinFE and hence FE for NC1.
Moreover, we may pre-process the seed of the PRG as in [71] to leverage “blockwise
locality”; our construction allows the PRG to have smaller expansion factor than that
required by the Lin-Tessaro construction, as discussed next.

Analyzing the Expansion Factor of the PRG. Above, the polynomial Pi we are
required to construct must compute a function that is degree 1 in the PRG output plus
an additional linear function of the encoded messages. By comparison, the underlying
degree L FE in [72, 68, 71] must natively compute a polynomial which has degree 3
in output of a PRG. In more detail, the FE of [68, 71] must compute a randomizing
polynomial [15], which contains terms of the form rirjrk where ri, rj , rk are random
elements, each computed using a PRG. Thus, if L is the locality of the PRG, the total
degree of the polynomial is 3L, which is reduced to L using a clever precomputing
trick developed by Lin [68]. In contrast, our FE must compute a polynomial of the form
〈Linf , Md〉+ PRG(seed) as discussed above, thus natively yielding a polynomial of
degree L.

12

Further, Lin and Tessaro [71] construct a method to leverage the blockwise locality
L of the PRG, which is believed to be smaller than locality as discussed above. Recall
that the PRG seed is now a matrix of b rows and n columns, and each output bit depends
on input bits in at most L columns. Then, to begin, [71] suggest computing all possible
monomials in any block, for all blocks, resulting in O(n · 2b) total monomials. At this
point, the output of a PRG can be computed using a degree L polynomial. However, since
the final polynomial has degree 3 in the PRG outputs, LT further suggest precomputing
all degree 3 products of the monomials constructed so far, leading to a total of O(n · 23b)
terms. To maintain ciphertext compactness then, the expansion of the PRG must be at
least Ω(n · 2b(3+ε)). We refer the reader to [18, Appendix B] for an excellent overview
of the LT construction, and to [71] for complete details.

Since the polynomial in our FE must compute has degree only 1 rather than 3 in
PRG output, we need not compute degree 3 products in O(n · 2b) monomials as required
by [71], thus requiring to encode a total number of O(n · 2b) monomials. Hence, to
maintain ciphertext compactness (which is necessary for implication to iO [10, 23]),
the expansion of the PRG in our case must be Ω(n · 2b(1+ε)). Thus, our transformation
requires a lower expansion factor than that of [71]. Moreover, by sidestepping the need to
compute randomized encodings, our bootstrapping becomes simpler and more efficient
than that of [72, 68, 71].

Correlated Noise Generators. As discussed above, FE for implementing PRG suffices to
construct NLinFE and hence FE for NC1. However, examining carefully the requirements
on the noise that must be added to decryption by NLinFE, reveals that using a PRG
to compute the noise is wasteful; a weaker object appears to suffice. Specifically, we
observe that the noise terms noisefi(x) for i ∈ [`], which must be flooded are low entropy,
correlated random variables, constructed as polynomials in O(L) noise terms where
L = | ∪

k∈[d]
Ck|. A PRG mimics ` i.i.d noise terms where ` > L, i.e. O(`) bits of entropy,

whereas the random variables that must be flooded have only O(L) bits of entropy.
Indeed, even to flood ` functions on L noise terms statistically, only L fresh noise

terms are needed. For instance, let us say that we are required to flood (fi(µ))i∈[`] for
µ ∈ RL. Then, it suffices to choose β ∈ RL such that β is superpolynomially larger
than µ to conclude that

SD
(
β, β + µ

)
= negl(κ)

This implies that

SD
((
f1(β), . . . , f`(β)

)
,
(
f1(β + µ), . . . , f`(β + µ)

))
= negl(κ)

Considering that we must only generate O(L) bits of pseudoentropy, can we make do
with something weaker than a PRG?

To make this question precise, we define the notion of a correlated noise generator,
denoted by CNG. A CNG captures computational flooding of correlated noise, to mimic
statistical flooding described above. In more detail, we will use a CNG to generate
flooding terms g1(β), . . . , g`(β) such that to any computationally bounded adversary

13

Adv, it holds that(
g1(β), . . . , g`(β)

) c
≈
(
(g1(β) + f1(µ), . . . g`(β) + f`(µ)

)
Note that if we denote by gi the function for computing the ith element of the

PRG output, then by choosing the range of PRG superpolynomially larger than |fi(µ)|,
the above condition is satisfied. Thus, a PRG implies a CNG. However, implication
in the other direction does not hold, since CNG only generates strictly fewer bits of
pseudoentropy than a PRG.

Moreover, matters are even nicer in the case of CNG, because gi can be chosen after
seeing fi, and the distribution of µ is known at the time of choosing gi. So each gi can
be different depending on what it needs to “swallow”. Additionally, we may leverage
the fact that a CNG posits that a distribution must be indistinguishable from itself plus a
fixed function, not indistinguishable from uniform.

Our hope is that since a CNG appears weaker than a PRG, it may sidestep the lower
bounds known for the blockwise-locality of polynomial stretch PRGs, thereby providing
a new route to iO from bilinear maps. Suggesting candidates for CNG that have lower
degree than PRG is outside the scope of this work but we believe it is useful to identify
the weakest object that suffices for bootstrapping to iO. For the precise definition of
CNG, please see Section 3.

Non Boolean PRG. A notion of randomness generators that interpolates CNG and
Boolean PRG is that of non-Boolean PRG, which allows the inputs and outputs to lie
in a bounded (polynomial) sized interval over the integers and must only satisfy the
computational flooding property described above. Taking a step back, we note that in
prior work [68, 71, 12], Boolean PRGs were required in order to compute the binary
randomness needed for constructing randomizing polynomials. In our case, the PRG
output need not be binary since we do not require these as input to randomized encodings.
Additionally, they must satisfy a much weaker property than indistinguishability to
uniform i.i.d random variables as discussed above. In more detail, say we can bound
|fi(µ)| ≤ ε for i ∈ [`]. Then we require the PRG output Gi(β) to computationally flood
fi(µ) for i ∈ [`], i.e. Gi(β) + fi(µ) must be computationally indistinguishable from
Gi(β).

We note that the above notion of non Boolean PRGs is qualitatively the same as the
notion of ∆RGs defined in the concurrent work of Ananth et al. [9] except that ∆RG
are weaker, in that they allow the adversary to win the game with 1/ poly probability
whereas we require that the adversary only wins with standard negligible probability. By
relying on the security amplification theorem of [9], our notion can be weakened and
made equivalent to ∆RG.

1.4 Related Work: Bootstrapping

In this section, we provide a detailed comparison with works that are most closely related
to ours.

14

Predicate encryption [58, 2, 28] and reusable garbled circuits [54, 2]. A successful
approach to constructing functional encryption schemes from standard assumptions is the
predicate encryption scheme by Gorbunov et al. [58] and its extensions [2, 28]. Roughly
speaking, these schemes make use of an attribute based encryption (ABE) scheme for
circuits [57, 25] in conjunction with a fully homomorphic encryption scheme to achieve
a system where the input x is hidden only as long as the adversary’s key requests obey
a certain “one sided” restriction w.r.t the challenge messages. In more detail, security
holds as long as the adversary does not obtain keys SKf for any circuit f such that
f(x) = 0. Given an adversary who obeys this “one sided” restriction, functionality is
general, i.e. the adversary may request for a key corresponding to any polynomial sized
circuit. However, in the general “two sided” security game, the schemes are shown to
be insecure [58, 2]. The reusable garbled schemes of [54, 2] satisfy general two sided
security but do not achieve compact ciphertext required for bootstrapping to iO.

The techniques of the aforementioned line of work and the present work are
fundamentally different. While [58, 55] also use FHE in order to hide the attributes
in an FE scheme, the building block of ABE necessitates the restriction of one sided
security due to the basic structure of ciphertexts and secret keys. As discussed in [2], if
the predicate encryption scheme [58] is subject to a general two sided adversary, the
adversary may requests keys for related functions which can lead to the recovery of
a secret lattice basis, leading to a complete break in security. We emphasize that this
attack exploits the structure of the secret keys and ciphertext in the underlying ABE
scheme and is in distinct from the attack implied by the leakage of the FHE noise learnt
by the attacker upon decryption – indeed, the follow-up work of [28] shows how to
construct predicate encryption that does not contain the FHE noise leakage. Thus, despite
supporting powerful functionality, current techniques for generalizing ABE to FE get
stuck in the quicksand of one sided security.

To overcome this challenge, we insist on a two sided adversary at any cost to
functionality. We follow the approach of [8] which starts with the modest functionality of
linear functional encryption [1, 6] satisfying two sided security, and makes use of special
properties of the FHE scheme of Brakerski and Vaikuntanathan [29] to decompose
function computation into a “deep” public computation performed using FHE and a
“shallow” (linear) private computation, performed using linear FE [1, 6]. The public FHE
computation is performed by the decryptor outside any FE scheme, namely, without
any guarantee of constrained decryption. This is in contrast to [58, 2, 28] where the
entire function evaluation is performed within the confines of the ABE evaluation, which
constrains decryption of the final FHE ciphertext and renders futile any attempts to
tamper with the functionality. However, in [8] the only constrained decryption is via the
modest functionality of linear FE but the authors argue that constraining a linear function
suffices to constrain computation in NC1, at the cost of non-compact ciphertext.

In the present work, to achieve security as well as succinct ciphertext, we look
at the mildest possible strengthening of this functionality, namely one that supports
computation of linear functions plus a noise term which satisfies a relatively mild
statistical property, as formalized via the notion of noisy linear functional encryption
(NLinFE). We then show that this notion of NLinFE may be bootstrapped all the way to
iO. Our bootstrapping uses NLinFE in a black box way, and when NLinFE is instantiated

15

using bilinear maps, the results in an interesting “hybrid” scheme which uses FHE to
perform deep computation in the clear and then performs a careful FHE decryption in
the exponent.

Comparison with [8]. Even though the present work uses the ciphertext and public
key evaluation algorithms developed by Agrawal and Rosen [8], our construction of FE
for NC1 and particularly our proof technique are quite different. Firstly, [8] is in the
bounded collusion setting with non-compact ciphertext, and achieves a simulation based
security which is known to be impossible in our setting where compact ciphertext is
crucial. Hence, we must give an indistinguishability style proof which is significantly
harder, and requires using a new proof technique developed in this work. Moreover,
[8] adds statistical large flooding noise which is oblivious of the distribution of noise it
needs to drown, whereas we will analyze and leverage the distribution carefully. Most
importantly, [8] can make do with linear FE whereas we crucially need noisy linear
FE7. Finally, we give many instantiations of NLinFE using bilinear maps and weak
randomness generators as well as directly using new assumptions.

Independent and concurrent work. In an independent and concurrent work, Ananth,
Jain and Sahai [9] also provide an approach to construct iO without multilinear maps.
They rely on (subexponentially-secure) bilinear maps, LWE, block-locality 3 PRGs, and
a new type of randomness generator, which they call perturbation resilient generator,
denoted as ∆RG. Their techniques and overall construction are extremely different from
ours. However, we find it very interesting that both works intersect in identifying a very
similar new type of PRG as sufficing to fill the gap between assumptions we believe and
iO. Their notion of ∆RG is almost exactly the same as the non-Boolean PRG that (is
one of the types of PRGs) we identify – both notions require the generation of some
noise N such that N is indistinguishable from N + e for some bounded e. However,
they only require a weak form of indistinguishability, namely the adversary is allowed
to distinguish between N and N + e with 1/ poly probability in their case, whereas
we require standard negligible distinguishing probability. They also provide a generic
security amplification theorem, which transforms FE for NC1 which satisfies this weak
indistinguishability to FE with standard indistinguishability. Their security amplification
theorem can be used black box in our construction to also rely on ∆RG (or the weaker
notion of CNG) with similar weak indistinguishability.

We may also use their security amplification theorem to weaken the requirement
on the underlying quadratic FE scheme so that it can be instantiated using existing
constructions [68, 16]. In more detail, we use quadratic FE to compute a noise term
which must be natively superpolynomial in size to argue security. However, existing
constructions of quadratic functional encryption schemes [68, 16] perform decryption
“brute force”, by computing a discrete logarithm in the end, restricting the space of
decryptable values to be polynomial in size. To align with known constructions of

7 We remark that a weak version of NLinFE in the bounded collusion setting was developed
in an earlier version of [8] (see [7]) but was found to be redundant and was subsequently
removed. The current, published version of [8] relies on LinFE alone. Our definition of NLinFE
is significantly more general.

16

quadratic FE, we choose our flooding noise to be polynomial in size – this overcomes
the above issue but results in 1/poly advantage to the adversary. This advantage can be
made negligible by leveraging the security amplification theorem of [9] in a black box
manner.

Aside from significantly different techniques, the final results obtained by the two
works are also different. First, we define the abstraction of noisy linear FE, and bootstrap
this to iO. The instantiation of noisy linear FE using bilinear maps and ∆RG is only
one of the ways of achieving iO; we also define an even weaker type of PRG, namely
correlated noise generators (denoted by CNG, please see Section 3) which suffices for
iO. On the other hand, their security requirement from their randomness generators is
significantly weaker – they only require 1/ poly security as discussed above. Moreover,
they provide a general security amplification theorem which we do not. The details of
the techniques in the two works are vastly different: [9] define and instantiate the notion
of tempered cubic encodings which do not have any analogue in our work. Also, we
provide a direct construction of NLinFE from new lattice assumptions, which they do
not. In our instantiation that uses bilinear maps, we rely on the SXDH assumption in the
standard model, whereas they argue security in the generic bilinear map model.

We remark that in [9], the special PRG, namely ∆RG needs to be computable by a
cubic polynomial that degree 1 in a public seed component and degree 2 in the secret
seed components. In the present work, as well as [69], the special PRG output must be
computed using quadratic polynomials.

Follow-up work. In a follow-up work8, Lin and Matt [69] leverage our techniques to
provide a different construction of iO from bilinear maps, LWE and weak pseudorandom
objects, which they term Pseudo Flawed-smudging Generators (PFG). The high level
structure of their construction is very similar to ours: they also use special properties of
the FHE scheme of Brakerski and Vaikuntanathan [29] to split the functional computation
into a deep public computation and a shallow private computation, the former being
done by the decryptor in the clear, and the latter being performed in the exponent of a
bilinear group using quadratic operations. To argue security, they must, similarly to us,
perform noise flooding in the exponent. The main difference from our work is that the
choice of noise in our setting is natively super-polynomial as discussed above, and we
must use security amplification to make do with polynomial noise. On the other hand,
[69] can make do with polynomial noise via their notion of Pseudo Flawed-smudging
Generators (PFG). We remark that in contrast to the present work, [69] construct FE for
NC0 and then rely on randomized encodings to bootstrap this to FE for NC1, as in prior
work [72, 68, 71]. On the other hand, we use techniques from [29] in a non blackbox
way to bootstrap all the way to NC1 directly.

1.5 Our Techniques: Direct Construction of NLinFE

Next, we provide a direct construction of NLinFE based on new (untested) assumptions
that strengthen ring learning with errors (RLWE) and NTRU. Our construction is quite

8 We had shared an earlier version with the authors several months ago.

17

different from known constructions and does not rely on multilinear maps or graded
encoding schemes.

As discussed above, flooding correlated noise terms appears qualitatively easier
than generating uniform pseudorandom variables. Recall that ` is the output length of
the function and L is sublinear in `. In this section, we discuss a method to provide L
encodings of a seed vector β in a way that the decryptor can compute ` encodings of
{gi(β)}i∈[`] on the fly. The careful reader may suspect that we are going in circles: if
we could compute encodings of gi(β) on the fly, could we not just compute encodings
of fi(x) on the fly?

We resolve this circularity by arguing that the demands placed on noise in lattice
based constructions are significantly weaker than the demands placed on messages. In
particular, while computation on messages must maintain integrity, noise need only
create some perturbation, the exact value of this perturbation is not important. Therefore
if, in our attempt to compute an encoding gi(β), we instead compute an encoding
of g′i(β

′), this still suffices for functionality. Intuitively g′i(β
′) will be a polynomial

equation of β designed to flood fi(µ).
In order to construct FE that supports the computation of noisy linear equations,

we begin with an FE that supports computation of linear equations, denoted by LinFE,
provided by [1, 6]. All our constructions use the blueprint provided in [6] to support
linear equations, and develop new techniques to add noise. In order to interface with the
LinFE construction of [6], we are required to provide encodings of noise terms β such
that:

1. Given encodings of β and gi the decryptor may herself compute on these to construct
an encoding of gi(β).

2. The functional encoding of gi(β) must have the form hg,i · s + noiseg,i + gi(β)
where hg,i is computable by the key generator given only the public/secret key and
the function value. In particular, hg,i should not depend on the ciphertext.

In order to compute efficiently on encodings of noise, we introduce a strengthening
of the RLWE and NTRU assumptions. Let R = Z[x]/〈xn + 1〉 and Rp1 = R/(p1 ·R),
Rp2 = R/(p2 · R) for some primes p1 < p2. Then, the following assumptions are
necessary (but not sufficient) for security of our scheme:

1. We assume that the NTRU assumption holds even if multiple samples have the same
denominator. This assumption has been discussed by Peikert [76, 4.4.4], denoted as
the NTRU learning problem and is considered a reasonable assumption. Moreover,
this assumption is also used in the multilinear map constructions [44] and has never
been subject to attack despite extensive cryptanalysis.
In more detail, for i ∈ {1, . . . , w}, sample f1i, f2i and g1, g2 from a discrete
Gaussian over ring R. If g1, g2 are not invertible over Rp2 , resample. Set

h1i =
f1i
g1
, h2i =

f2i
g2
∈ Rp2

We assume that the samples {h1i, h2j} for i, j ∈ [w] are indistinguishable from
random. Note that NTRU requires the denominator to be chosen afresh for each

18

sample, i.e. h1i (resp. h2i) should be constructed using denominator g1i (resp. g2i),
for i ∈ [w].

2. We assume that RLWE with small secrets remains secure if the noise terms in RLWE
samples live in some secret ideal. In more detail, for i ∈ [w], let D̂(Λ2), D̂(Λ1) be
discrete Gaussian distributions over lattices Λ2 and Λ1 respectively. Then, sample

e1i ← D̂(Λ2), where Λ2 , g2 ·R. Let e1i = g2 · ξ1i ∈ small,

e2i ← D̂(Λ1), where Λ1 , g1 ·R. Let e2i = g1 · ξ2i ∈ small,

Above, small is a place-holder term that implies the norm of the relevant element
can be bounded well below the modulus size, p2/5, say. We use it for intuition when
the precise bound on the norm is not important. Hence, for i, j ∈ [w], it holds that:

h1i · e2j = f1i · ξ2j , h2j · e1i = f2j · ξ1i ∈ small

Now, sample small secrets t1, t2 and for i ∈ [w], compute

d1i = h1i · t1 + p1 · e1i ∈ Rp2
d2i = h2i · t2 + p1 · e2i ∈ Rp2

We assume that the elements d1i, d2j for i, j ∈ [w] are pseudorandom. The powerful
property that this assumption provides is that the product of the samples d1i · d2j do
not suffer from large cross terms for any i, j ∈ [w] – since the error of one sample is
chosen to annihilate with the large element of the other sample, the product yields a well
behaved RLWE sample whose label is a product of the original labels. In more detail,

d1i · d2j =
(
h1i · h2j

)
· (t2 t2) + p1 · noise

where noise = p1 ·
(
f1i · ξ2j · t1 + f2j · ξ1i · t2 + p1 · g1 · g2 · ξ1i · ξ2j

)
∈ small

If we treat each d1i, d2j as an RLWE sample, then we may use these samples to
encode noise terms so that direct multiplication of samples is well behaved. Note that the
noise terms we wish to compute on, are the messages encoded by the “RLWE sample”
d1i, hence d1i must contain two kinds of noise: the noise required for RLWE security
and the noise that behaves as the encoded message. This requires some care, but can be
achieved by nesting these noise terms in different ideals as:

d1i = h1i · t1 + p1 · ẽ1i + p0 · e1i ∈ Rp2
d2i = h2i · t2 + p1 · ẽ2i + p0 · e2i ∈ Rp2

Here, (p1 · ẽ1i, p1 · ẽ2i) behave as RLWE noise and (p0 · e1i, p0 · e2i) behave as the
encoded messages. Both ẽ1i, e1i as well as ẽ2i, e2i are chosen from special ideals as
before. Now, we may compute quadratic polynomials on the encodings “on-the-fly” as∑
i,j

d1id2j to obtain a structured-noise RLWE sample whose label is computable by the

key generator. If we treat this dynamically generated encoding as an RLWE encoding of
correlated noise, then we can use this to add noise to the NLinFE decryption equation by
generalizing techniques from [6]. The decryptor can, using all the machinery developed
so far, recover fi(x) + noisef(x) + noisefldi where noisefldi is constructed as a quadratic
polynomial of noise terms that live in special ideals.

19

Mixing Ideals. While it suffices for functionality to choose the correlated noise term
as a polynomial evaluated on noise living in special ideals, the question of security
is more worrisome. By using the new “on-the-fly” encodings of noise, the decryptor
recovers noise which lives in special, secret ideals, and learning these ideals would
compromise security. In more detail, the noise term we constructed above is a random
linear combination of terms (g1 · g2), {f1i}i, {f2j}j , which must be kept secret for
semantic security of d1i, d2j to hold. Indeed, if we over-simplify and assume that the
attacker can recover noise terms that live in the ideal generated by g1 ·g2, then recovering
g1 · g2 from these terms becomes an instance of the principal ideal problem [50, 40].

While the principal ideal problem has itself resisted efficient classical algorithms so
far, things in our setting can be made significantly better by breaking the ideal structure
using additional tricks. We describe these next.

1. Mixing ideals. Instead of computing a single set of pairs
((

h1i, d1i
)
,
(
h2i, d2i

))
,

we now compute k of them, for some polynomial k fixed in advance. Thus, we
sample f j1i, f

j
2i and gj1, g

j
2 for i ∈ {1, . . . , w}, j ∈ {1, . . . , k}, where w, k are fixed

polynomials independent of function output length `, and set

hj1i =
f j1i
gj1
, hj2i =

f j2i
gj2
∈ Rp2

The encoding of a noise term constructed corresponding to the (i, j)th monomial is
dii′ =

∑
j∈[k]

d1id2i′ . Thus, the resultant noise term that gets added to the decryption

equation looks like:

p0 ·

[∑
j∈[k]

(
gj2 · g

j
1 ·
(
p0 · (ξj1i · ξ

j
2i′)
)
+
(
f j1i · ξ

j
2i′ · t1 + f j2i′ · ξ

`
1i · t2

))]
(1.2)

Thus, by adding together noise terms from multiple ideals, we “spread” it out
over the entire ring rather than restricting it to a single secret ideal. Also, we note
that it is only the higher degree noise terms that must live in special ideals; if the
polynomial contains linear terms, these may be chosen from the whole ring without
any restrictions. In more detail, above, we computed a noise term corresponding to
a quadratic monomial which required multiplying and summing encodings. If we
modify the above quadratic polynomial to include a linear term, we will need to add
a degree 1 encoding into the above equation. The degree 1 encoding which does not
participate in products, may encode noise that is chosen without any restrictions,
further randomizing the resultant noise.

2. Adding noise generated collectively by ciphertext and key. Aside from computing
polynomials over structured noise terms encoded in the ciphertext, we suggest an
additional trick which forces noise terms into the decryption equation. These noise
terms are quadratic polynomials where each monomial is constructed jointly by
the encryptor and the key generator. This trick relies on the structure of the key

20

and ciphertext in our construction. We describe the relevant aspects of the key and
ciphertext here. The key for function fi is a short vector k such that:

〈w, k〉 = ufi

where w is part of the master secret, and ufi is computed by the key generator. The
encryptor provides an encoding

c = w · s+ p1 · noise0

As part of decryption, the decryptor computes 〈k, c〉 to obtain ufi ·s+p1·〈k, noise0〉.
Moreover by running EvalCT(C1, . . . , Cd), she also obtains ufi · s + f(x) + p0 ·
noise+ p1 · noise′. Subtracting these and reducing modulo p1 and then modulo p0
yields f(x) as desired.
Intuitively, the structured noise computed above is part of the noise in the sample
computed by EvalCT, i.e. part of

(
p0 · noise + p1 · noise′

)
in the notation above.

Our next trick shows how to add noise to 〈k, c〉.
We modify KeyGen so that instead of choosing a single k, it now chooses a pair
(k1,k2) such that:

〈w, k1〉 = ufi + p0 ·∆1 + p1 · ∆̃1

〈w, k2〉 = ufi + p0 ·∆2 + p1 · ∆̃2

Here, ∆1, ∆2, ∆̃1, ∆̃2 are discrete Gaussians sampled by the key generator unique
to the key for fi. Additionally, the encryptor splits c as:

c01 = w · s1 + p1 · ν1

c02 = w · s2 + p1 · ν2

where s1 + s2 = s and s1, s2 are small, then,

〈k1, c01〉+ 〈k2, c02〉 = ufi · s+ p0 ·
(
∆1 · s1 +∆2 · s2

)
+ p1 ·

(
∆̃1 · s1 + ∆̃2 · s2

)
+ p1 · noise

Thus, we forced the quadratic polynomial p0·
(
∆1·s1+∆2·s2

)
+p1·

(
∆̃1·s1+∆̃2·s2

)
into the noise, where ∆1, ∆2 and ∆̃1, ∆̃2 are chosen by the key generator for the
particular key request and the terms s1 and s2 are chosen by the encryptor unique
to that ciphertext. Note that w can be hidden from the view of the adversary since
it is not required for decryption, hence the adversary may not compute 〈w, k1〉,
〈w, k2〉 in the clear. For more details, please see the full version [3].

1.6 Related Work: Instantiation

To the best of our knowledge, all prior work constructing FE for degree L ≥ 3
polynomials rely on either iO itself [45] or multilinear maps [48] or bilinear maps and
weak pseudorandomness [12, 68, 71] as discussed above. Since our direct construction

21

also makes use of NTRU lattice assumptions, we discuss here some high level differences
between multilinear map based approaches and our approach.

Let us describe the main ideas behind the multilinear map construction of [44].
Our description follows the summary of [65]. Similarly to us, the authors consider the
polynomial rings R = Z[x]/〈xn + 1〉 and Rq = R/qR. They generate a small secret
g ∈ R and set I = 〈g〉 to be the principal ideal over R generated by g. Next, they sample
a uniform z ∈ Rq which stays secret. The “plaintext” is an element of R/I , and is
encoded via a division by z in Rq: to encode a coset of R/I , give element [c/z]q where
c is an arbitrary small coset representative. Since g is hidden, the authors provide another
public parameter y, which is an encoding of 1 and the encoding of the coset is chosen as
[e · y]q where e is a small coset representative. At level i 6= 1, the encoding has the form
[c/zi]q . The encodings are additively and multiplicatively homomorphic, and for testing
whether an element in the last level D (say) encodes 0, the authors provide a “zero test
parameter” pzt = hzDg−1 mod q where h is an element of norm approximately

√
q.

The parameters are set so that if an element encodes 0, its product with this parameter is
“small” otherwise it is “large”.

Known attacks against multilinear maps and obfuscators operate on the following
broad principle: i) perform algebraic manipulations on some initial encodings, ii) apply
the zero test to each top level encoding, iii) perform an algebraic computation on the
results of the zero testing so as to obtain an element in the ideal 〈g〉, iv) use this somehow
break the scheme. once an element in 〈g〉 is obtained, different attacks work in different
ways, but in the “weak multilinear map model” [49], being able to recover an element in
〈g〉 is considered a successful attack. Thus, the unique element g must crucially be kept
secret.

In our work, decryption of the FE scheme also results in a high degree polynomial
containing secret elements f1ig1, f2ig2 for i ∈ [poly] along with fresh random elements
per ciphertext. However, unlike the multilinear map template where there is a single
secret g, there are a polynomial number of secret elements that play (what appears to
us) qualitatively the same role as g in our construction. Moreover, these are “spread out”
in the recovered polynomial which makes obtaining any term isolating any one secret
element via algebraic manipulations seem improbable. Additionally, annihilation attacks
[75] crucially make use of the fact that the unstructured elements that are unique to every
encoding are linear, which assists in the computation of the annihilation polynomial.
In contrast, unstructured elements in our recovered polynomial that are unique to the
encoding are high degree and seem much harder to annihilate.

Our construction of NLinFE appears much simpler in design than the construction of
multilinear map based obfuscators, we refer the reader to [75, 78] for a clean description
of an abstract obfuscator. Unlike current candidate obfuscators, we do not need to use
straddling sets for handling mixed input attacks, eliminating a vulnerability recently
exploited by [78]. This is because mixed input attacks seem very hard to launch in our
construction, since we do not use branching programs and all parts of a given input
are tied together using an LWE secret (albeit with a non-standard LWE assumption).
Moreover, the function keys in our FE construction have a different structure than the
ciphertext and do not seem amenable to mix and match attacks.

22

2 Noisy Linear Functional Encryption

We refer the reader to the full version [3] for definitions and preliminaries. In this section,
we define the notion of noisy linear functional encryption. At a high level, noisy linear
functional encryption is like regular linear functional encryption [1, 6], except that the
function value is recovered only up to some bounded additive error (which we informally
call noise), and indistinguishability holds even if the challenge messages evaluated on
all the function keys are only “approximately” equal, i.e. they differ by an additive term
of low norm.

On the noise added by NLinFE. Recall from Section 1.3, that NLinFE must add a noise
term noisefld which “floods” the noise term noisef(x) for security. Also recall that in
our setting, noisef(x) is the noise term that results from evaluating the circuit f on the
FHE encodings of x. We denote by D the distribution from which the noise terms in
FHE are sampled and by F the class of circuits that are used to compute on the FHE
noise terms, resulting in noisef(x). Thus, NLinFE must add a noise term that wipes out
the leakage resulting from the adversary learning noisef(x). In general, F represents
the class of functions that NLinFE can be used to bootstrapped to. In more detail, if
F = NC1, NLinFE enables bootstrapping to FE for NC1, whereas when F = NC0, it
enables bootstrapping to FE for NC0.

Definition of NLinFE. In our constructions, R is a ring, instantiated either as the ring of
integers Z or the ring of polynomials Z[x]/f(x) where f(x) = xn + 1 for n a power of
2. We let Rq = R/qR for some prime q. Let D be a distribution over R, F be a class of
functions F : R` → R and B ∈ R+ a bounding value on the norm of the decryption
error. In general, we require B << q. We are ready for the formal definition.

Definition 2.1. A (D,F , B)-noisy linear functional encryption scheme FE is a tuple
FE = (FE.Setup,FE.Keygen,FE.Enc,FE.Dec) of four probabilistic polynomial-time
algorithms with the following specifications:

– FE.Setup(1κ, R`q) takes as input the security parameter κ and the space of message
and function vectors R`q and outputs the public key and the master secret key pair
(PK,MSK).

– FE.Keygen(MSK,v) takes as input the master secret key MSK and a vector v ∈ R`q
and outputs the secret key SKv.

– FE.Enc(PK, z) takes as input the public key PK and a message z ∈ R`q and outputs
the ciphertext CTz.

– FE.Dec(SKv,CTz) takes as input the secret key of a user SKv and the cipher-
text CTz, and outputs y ∈ Rq ∪ {⊥}.

Definition 2.2 (Approximate Correctness). A noisy linear functional encryption
scheme FE is correct if for all v, z ∈ R`q ,

Pr

[(PK,MSK)← FE.Setup(1κ);

FE.Dec
(
FE.Keygen(MSK,v),FE.Enc(PK, z)

)
= 〈v, z〉+ noisefld

]
= 1−negl(κ)

23

where noisefld ∈ R with ‖noisefld‖ ≤ B and the probability is taken over the coins of
FE.Setup, FE.Keygen, and FE.Enc.

Security. Next, we define the notion of Noisy-IND security.

Definition 2.3 (Noisy-IND Security Game). We define the security game between the
challenger and adversary as follows:

1. Public Key: Challenger returns PK to the adversary.
2. Pre-Challenge Queries: Adv may adaptively request keys for any functions vi ∈
R`q for i ∈ [k] for some polynomial k. Along with vi, Adv also submits a function
fi ∈ F which must satisfy some constraints discussed later. In response, Adv is
given the corresponding keys SK(vi).

3. Challenge Ciphertexts: Adv outputs the challenge message pairs (zi0, z
i
1) ∈ R`q ×

R`q for i ∈ [Q], where Q is some polynomial, to the challenger. Along with the
challenger pair (zi0, z

i
1), the adversary also outputs µi ← D`, which must satisfy

some constraints discussed later. The challenger chooses a random bit b, and returns
the ciphertexts {CT(zib)}i∈[Q].

4. Post-Challenge Queries: Adv may request additional keys for functions of its choice
and is given the corresponding keys. Adv may also output additional challenge
message pairs which are handled as above.

5. Guess. Adv outputs a bit b′, and succeeds if b′ = b.

The advantage of Adv is the absolute value of the difference between the adversary’s
success probability and 1/2.

In the selective game, the adversary must announce the challenge in the first step,
before receiving the public key. In the semi-adaptive game, the adversary must announce
the challenge after seeing the public key but before making any key requests.

We next define the notion of admissible adversary.

Definition 2.4 (Admissible Adversary). We say an adversary is F-admissible if for
any pair of challenge messages z0, z1 ∈ R`q and its corresponding vector µi ← D`, any
queried key vi ∈ R`q and corresponding function fi ∈ F , it holds that 〈vi, z0 − z1〉 =
fi(µ) .

Definition 2.5 (Noisy-IND security).
A (D,F , B) noisy linear FE scheme NLinFE is Noisy-IND secure if for all F-

admissible probabilistic polynomial-time adversaries Adv, the advantage of Adv in the
Noisy-IND security game is negligible in the security parameter κ.

Remark 2.6. In most of our constructions of NLinFE, the precise distribution of fi(µ)
will not be important, and it will suffice that ‖fi(µ)‖ < Bleak for some bound Bleak,
to perform the noise flooding. While it may appear strange to restrict the adversary to
choosing messages and functions that satisfy a strong constraint such as the above, such
a restricted adversary suffices for our main application in Section 4.

24

3 Broader Classes of Randomness Generators

In this section we define broader classes of randomness generators that suffice for our
bootstrapping.

3.1 Correlated Noise Generators

In this section we define the notion of a correlated noise generator, which we denote by
CNG. We denote byR the ring of integers Z or the ring of polynomials Z[x]/f(x) where
f(x) = xd+1. LetD1 be a distribution overR andF : Rw → R be a set of deterministic
functions. Let DomCng,RgCng be finite subsets of R, let G : Domn

Cng → RgmCng be a
family of deterministic functions and D2 be a distribution over DomCng. We require that
n be linear in w, i.e. n = O(w,poly(κ)).

Definition 3.1 ((D1,F)- Correlated Noise Generator). We say that (D2,G) is a
(D1,F)- Correlated Noise Generator (CNG) if the advantage of any P.P.T adversary A
is negligible in the following game:

1. Challenger chooses n i.i.d samples β ← Dn2 .
2. The adversary A does the following:

(a) It chooses m functions f1, . . . , fm ∈ F .
(b) It samples µ← Dw1 .
(c) It returns ({fi}i∈[m],µ) to the challenger.

3. The challenger chooses m functions G1, . . . , Gm ∈ G. It tosses a coin b. If b = 0, it
returns {fi(µ) +Gi(β)}i∈[m], else it returns {Gi(β)}i∈[m].

4. The adversary outputs a guess for the bit b and wins if correct.

We will refer to β as the seed of the CNG. We say that an CNG has polynomial stretch if
m = n1+c for some constant c > 0.

3.2 Non Boolean Pseudorandom Generators

As discussed in Section 1, in prior work [68, 71], Boolean PRGs were required in order
to compute the binary randomness needed for constructing randomizing polynomials.
In our case, the PRG output must satisfy a much weaker property. Say we can bound
‖fi(µ)‖ ≤ ε for i ∈ [m]. Then we require the PRG output Gi(β) to computationally
flood fi(µ) for i ∈ [m], i.e., Gi(β) + fi(µ)

c
≈ Gi(β), ∀i ∈ [m].

4 Functional Encryption for NC1

In this section, we construct a functional encryption scheme for NC1, denoted by
FeNC1, from a correlated noise generator CNG, the RLWE assumption and a noisy
linear functional encryption scheme NLinFE.

25

Background. Let R = Z[x]/(φ) where φ = xd + 1 and d is a power of 2. Let Rp ,
R/pR for any large prime p satisfying p = 1 mod 2n.

We consider arithmetic circuits F : Rwp0 → Rp0 of depth d, consisting of alternate
addition and multiplication layers. For circuits with long output, say `, we consider `
functions, one computing each output bit. For k ∈ [d], layer k of the circuit is associated
with a modulus pk. For an addition layer at level k, the modulus pk will be the same as
the previous modulus pk−1; for a multiplication layer at level k, we require pk > pk−1.
Thus, we get a tower of moduli p1 < p2 = p3 < p4 = . . . < pd. We define encoding
functions Ek for k ∈ [d] such that Ek : Rpk−1

→ Rpk . The message space of the scheme
FeNC1 is Rp0 .

At level k, the encryptor will provide Lk encodings, denoted by Ck, for some
Lk = O(2k). For i ∈ [Lk] we define

Ek(yi) = uki · s+ pk−1 · ηki + yi.

Here uki ∈ Rpk is called the “label” or “public key” of the encoding, ηki is noise chosen
from some distribution χk, s← Rp1 is the RLWE secret, and yi ∈ Rpk−1

is the message
being encoded. We will refer to Ek(yi) as the Regev encoding of yi. We denote:

PK
(
Ek(yi)

)
, uki , Nse(Ck) , pk−1 · ηki

The messages encoded in level k encodings Ck are denoted byMk.
Agrawal and Rosen [8] show that at level k, the decryptor is able to compute a Regev

encoding of functional message fk(x) where fk is the circuit f restricted to level k.
Formally:

Theorem 4.1. [8] There exists a set of encodings Ci for i ∈ [d], such that:

1. Encodings have size sublinear in circuit. ∀i ∈ [d] |Ci| = O(2i).
2. Efficient public key and ciphertext evaluation algorithms. There exist efficient

algorithms EvalPK and EvalCT so that for any circuit f of depth d, if PKf ←
EvalPK(PK, f) and CT(f(x)) ← EvalCT(∪

i∈[d]
Ci, f), then CT(f(x)) is a “Regev

encoding” of f(x) under public key PKf . Specifically, for some LWE secret s,
we have:

CT(f(x)) = PKf · s+ pd−1 · ηd−1f + µf(x) + f(x) (4.1)

where pd−1 · ηd−1f is RLWE noise and µf(x) + f(x) is the desired message f(x)
plus some noise µf(x)9.

3. Ciphertext and public key structure. The structure of the functional ciphertext is
as:

CTf(x) = Polyf (C1, . . . , Cd−1) + 〈Linf , Cd〉 (4.2)

where Polyf (C1, . . . , Cd−1) ∈ Rpd−1
is a degree d polynomial and Linf ∈ RLd

pd
computed by EvalPK(PK, f) is a linear function. We also have

f(x) + µf(x) = Polyf (C1, . . . , Cd−1) + 〈Linf ,Md〉 (4.3)

9 Here µf(x) is clubbed with the message f(x) rather than the RLWE noise pd−1 · ηd−1
f since

µf(x) + f(x) is what will be recovered after decryption of CTf(x).

26

where Md are the messages encoded in Cd. The public key for the functional
ciphertext is structured as:

PK
(
CTf(x)

)
=
〈
Linf ,

(
PK(Cd1), . . . ,PK(CdLd

)
)〉

(4.4)

4. Noise Structure. The term µf(x) is the noise resulting from FHE evaluation
of function f on the encodings of x. Moreover, µf(x) can be expressed as a
linear combination of noise terms, each noise term being a multiple of pk for
k ∈ {0, . . . , d− 1}.

The Encodings. The encodings Ck for k ∈ [d] are defined recursively as:

1. C1 , {E1(xi), E1(s)}
2. If k is a multiplication layer, Ck = {Ek(Ck−1), Ek(Ck−1 · s), Ek(s2)}10. If k is an

addition layer, let Ck = Ck−1.

We will use NLinFE to enable the decryptor to compute 〈Linf ,Md〉+Gf (β) where
Gf (β) is a large noise term that floods functional noise µf(x). She may then compute
Polyf (C1, . . . , Cd−1) herself and by Equation 4.3 recover f(x) + µf(x) +Gf (β).

4.1 Construction

Next, we proceed to describe the construction. The construction below supports a single
function of output length ` or equivalently ` functions with constant size output (however,
in this case ` must be fixed in advance and input to all algorithms).

FeNC1.Setup(1
κ, 1w, 1d): Upon input the security parameter κ, the message dimension

w, and the circuit depth d, do:
1. For k ∈ [d], letLk = |Ck|where Ck is as defined in Theorem 4.1. For k ∈ [d−1],
i ∈ [Lk], choose uniformly random uki ∈ Rpk . Denote uk = (uki) ∈ RLk

pk
.

2. Invoke NLinFE.Setup(1κ, 1Ld , pd) to obtain PK = NLinFE.PK and MSK =
NLinFE.MSK.

3. Sample a CNG seed β ← Dnseed. Sample t0, . . . , tLd
← Rpd−1

and let t =
(t0, . . . , tLd

).
4. Output PK = (u1, . . . ,ud−1,NLinFE.PK) and MSK = (NLinFE.MSK,β, t).

FeNC1.KeyGen(MSK, f): Upon input the master secret key NLinFE.MSK, CNG seed
β and a circuit f : Rwp0 → Rp0

11 of depth d, do:
1. Let Linf ← EvalPK(PK, f) ∈ RLd

pd
as described in Equation 4.4.

2. Let Gf denote the CNG chosen corresponding to function f as described in the
full version [3].

3. Compute keyf = 〈Linf , t〉 −Gf (β).
10 Here, we use the same secret s for all RLWE samples, but this is for ease of exposition – it is

possible to have a different secret at each level so that circular security need not be assumed.
We do not describe this extension here.

11 We will let the adversary request ` functions

27

4. Let SKf = NLinFE.KeyGen(MSK, Linf‖keyf).
FeNC1.Enc(x,PK): Upon input the public key and the input x, do:

1. Compute the encodings Ck for k ∈ [d− 1] as defined in Theorem 4.1. Denote
by s the RLWE secret used for these encodings.

2. Define Md =
(
Cd−1, Cd−1 · s, s2

)
∈ RLd

pd
. Compute Cd =

NLinFE.Enc(NLinFE.PK,Md).
3. Output CTx = ({Ck}k∈[d]).

FeNC1.Dec(PK,CTx,SKf): Upon input a ciphertext CTx for vector x, and a secret
key SKf for circuit f , do:
1. Compute CTf(x) = EvalCT({Ck}k∈[d−1], f). Express CTf(x) = Polyf (C1, . . . , Cd−1)+
〈Linf , Cd〉 as described in Equation 4.2.

2. Compute NLinFE.Dec(SKf , Cd) to obtain 〈Linf ,Md〉+ ηf for some noise ηf
added by NLinFE.

3. Compute Polyf (C1, . . . , Cd−1)+ 〈Linf ,Md〉+ ηf mod pd mod pd−1, . . . ,
mod p0 and output it.

4.2 Correctness

Correctness follows from correctness of EvalPK, EvalCT and NLinFE. We have by
correctness of EvalPK, EvalCT that:

CTf(x) = 〈Linf , Cd〉+ Polyf (C1, . . . , Cd−1)
Polyf (C1, . . . , Cd−1) + NLinFE.Dec(SKf , Cd) = Polyf (C1, . . . , Cd−1) + 〈Linf ,Md〉+ ηf

= f(x) + µf(x) + ηf by theorem 4.1
= f(x) mod pd mod pd−1, . . . , mod p0

where the last step follows since:

1. µf(x) and ηf are linear combinations of noise terms, each noise term being a multiple
of pk for k ∈ {0, . . . , d− 1}. For details regarding the structure of the noise terms
µf(x). The noise term ηf is chosen by NLinFE to flood µf(x) as discussed in Section
2, and hence is also a linear combination of noise terms, each noise term being a
multiple of pk for k ∈ {0, . . . , d− 1}.

2. We set the parameters so that pi is sufficiently larger than pi−1 for i ∈ [d], so that
over Rpi , any error term which is a multiple of pi−1 may be removed by reducing
modulo pi−1. Thus the successive computation of mod pi, for i = d, . . . , 0, results
in f(x) mod p0 in the end.

4.3 Efficiency and Security

The size of the ciphertext is | ∪
k∈[d−1]

Ck|+ |NLinFE.CT(Md)|. Note that | ∪
k∈[d−1]

Ck| =

O(2d) and |Md| = O(2d) by Theorem 4.1. All our constructions of NLinFE will have
compact ciphertext, hence the ciphertext of the above scheme is also sublinear in circuit
size. We refer the reader to the full version [3] for our constructions of NLinFE.

In the full version [3], we prove the following security theorem:

28

Theorem 4.2. Assume the noisy linear FE scheme NLinFE satisfies semi-adaptive
indistinguishability based security as in Definition 2.5 and that G is a secure CNG
as defined in Definition 3.1. Then, the construction FeNC1 achieves semi-adaptive
indistinguishability based security.

References

1. Abdalla, M., Bourse, F., Caro, A.D., Pointcheval, D.: Simple functional encryption schemes
for inner products. Cryptology ePrint Archive, Report 2015/017 (2015), http://eprint.
iacr.org/ To appear in PKC’15.

2. Agrawal, S.: Stronger security for reusable garbled circuits, new definitions and attacks. In:
Crypto (2017)

3. Agrawal, S.: Indistinguishability obfuscation without multilinear maps: New methods for
bootstrapping and instantiation. Cryptology ePrint Archive, Report 2018 (2018)

4. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In:
EUROCRYPT. pp. 553–572 (2010)

5. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner product
predicates from learning with errors. In: Asiacrypt (2011)

6. Agrawal, S., Libert, B., Stehle, D.: Fully secure functional encryption for linear functions
from standard assumptions, and applications. In: Crypto (2016)

7. Agrawal, S., Rosen, A.: Online offline functional encryption for bounded collusions.
Eprint/2016 (2016)

8. Agrawal, S., Rosen, A.: Functional encryption for bounded collusions, revisited. In: TCC
(2017)

9. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation without multilinear maps: io
from lwe, bilinear maps, and weak pseudorandomness. Cryptology ePrint Archive, Report
2018/615 (2018)

10. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption.
In: Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I. pp. 308–326 (2015)

11. Ananth, P., Jain, A., Sahai, A.: Achieving compactness generically: Indistinguishability
obfuscation from non-compact functional encryption. IACR Cryptology ePrint Archive,
2015:730 (2015)

12. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistinguishability
obfuscation from degree-5 multilinear maps. In: EUROCRYPT (2017)

13. Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indistinguishability
obfuscations of circuits over ggh13. eprint 2016 (2016)

14. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials
and their applications. Computational Complexity 15(2), 115–162 (2006)

15. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In: IEEE 52nd
Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA,
USA, October 22-25, 2011. pp. 120–129 (2011)

16. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption for quadratic
functions with applications to predicate encryption. In: Crypto (2017)

17. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the
(im)possibility of obfuscating programs. In: CRYPTO (2001)

18. Barak, B., Brakerski, Z., Komargodski, I., Kothari, P.: Limits on low-degree pseudorandom
generators (or: Sum-of-squares meets program obfuscation). In: Eurocrypt (2018)

29

http://eprint.iacr.org/
http://eprint.iacr.org/

19. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE
Symposium on Security and Privacy. pp. 321–334 (2007)

20. Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings and their
applications. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015. pp. 439–448 (2015)

21. Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to obfustopia
through secret-key functional encryption. In: TCC (B2). Lecture Notes in Computer Science,
vol. 9986, pp. 391–418 (2016)

22. Bitansky, N., Paneth, O., Wichs, D.: Perfect structure on the edge of chaos - trapdoor
permutations from indistinguishability obfuscation. In: Theory of Cryptography - 13th
International Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings,
Part I. pp. 474–502 (2016)

23. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption.
FOCS 2015, 163 (2015), http://eprint.iacr.org/2015/163

24. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In: CRYPTO. pp.
213–229 (2001)

25. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan,
V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: EUROCRYPT. pp. 533–556 (2014)

26. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: TCC. pp.
535–554 (2007)

27. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without random
oracles). In: CRYPTO. pp. 290–307 (2006)

28. Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained prfs (and more)
from lwe. In: Theory of Cryptography Conference (TCC) (2017)

29. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-lwe and security
for key dependent messages. In: CRYPTO (2011)

30. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Succinct garbling and
indistinguishability obfuscation for RAM programs. In: Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA,
June 14-17, 2015. pp. 429–437 (2015)

31. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic circuits and
applications. In: TCC (2015)

32. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis.
In: EUROCRYPT. pp. 523–552 (2010)

33. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over
the integers. In: Proc. of EUROCRYPT. LNCS, vol. 9056, pp. 3–12. Springer (2015)

34. Cheon, J.H., Fouque, P.A., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis of the new clt
multilinear map over the integers. Eprint 2016/135

35. Cheon, J.H., Jeong, J., Lee, C.: An algorithm for ntru problems and cryptanalysis of the ggh
multilinear map without a low level encoding of zero. Eprint 2016/139

36. Cocks, C.: An identity based encryption scheme based on quadratic residues. In: IMA Int.
Conf. pp. 360–363 (2001)

37. Coron, J.S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova, M., Sahai, A.,
Tibouchi, M.: Zeroizing without low-level zeroes: New mmap attacks and their limitations.
In: Advances in Cryptology–CRYPTO 2015, pp. 247–266. Springer (2015)

38. Coron, J.S., Lee, M.S., Lepoint, T., Tibouchi, M.: Zeroizing attacks on indistinguishability
obfuscation over clt13. Eprint 2016 (2016)

39. Coron, J., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Advances
in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 18-22, 2013. Proceedings, Part I. pp. 476–493 (2013)

30

http://eprint.iacr.org/2015/163

40. Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators of principal ideals
in cyclotomic rings. In: EUROCRYPT (2016)

41. Ding, J., Yang, B.Y.: Multivariate Public Key Cryptography, pp. 193–241. Springer Berlin
Heidelberg (2009)

42. Farshim, P., Hesse, J., Hofheinz, D., Larraia, E.: Graded encoding schemes from obfuscation.
In: PKC (2018)

43. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In:
EUROCRYPT (2013)

44. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Advances
in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings.
pp. 1–17 (2013)

45. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS (2013),
http://eprint.iacr.org/

46. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for circuits
from multilinear maps. In: CRYPTO (2013)

47. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure functional encryption without
obfuscation. In: IACR Cryptology ePrint Archive. vol. 2014, p. 666 (2014), http://
eprint.iacr.org/2014/666

48. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without obfuscation. In:
Kushilevitz, E., Malkin, T. (eds.) Theory of Cryptography (2016)

49. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure obfuscation
in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) Theory of Cryptography. pp.
241–268. Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

50. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC. pp. 169–178 (2009)
51. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices. In: TCC

(2015)
52. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic

constructions. In: STOC. pp. 197–206 (2008)
53. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University Press, New

York, NY, USA (2000)
54. Goldwasser, S., Tauman Kalai, Y., Popa, R., Vaikuntanathan, V., Zeldovich, N.: Reusable

garbled circuits and succinct functional encryption. In: Proc. of STOC. pp. 555–564. ACM
Press (2013)

55. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled
circuits and succinct functional encryption. In: STOC. pp. 555–564 (2013)

56. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions
from multiparty computation. In: CRYPTO (2012)

57. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute based encryption for circuits. In: STOC
(2013)

58. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from lwe. In:
Crypto (2015)

59. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained
access control of encrypted data. In: ACM Conference on Computer and Communications
Security. pp. 89–98 (2006)

60. Hu, Y., Jia, H.: Cryptanalysis of GGH map. Cryptology ePrint Archive: Report 2015/301
(2015)

61. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with applications
to round-efficient secure computation. In: FOCS (2000)

31

http://eprint.iacr.org/
http://eprint.iacr.org/2014/666
http://eprint.iacr.org/2014/666

62. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial
equations, and inner products. In: EUROCRYPT. pp. 146–162 (2008)

63. Komargodski, I., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.: One-way functions
and (im)perfect obfuscation. In: 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS (2014)

64. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing machines
with unbounded memory. In: STOC (2015)

65. Langlois, A., Stehlé, D., Steinfeld, R.: Gghlite: More efficient multilinear maps from ideal
lattices. In: EUROCRYPT (2014)

66. Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional
encryption: Attribute-based encryption and (hierarchical) inner product encryption. In:
EUROCRYPT. pp. 62–91 (2010)

67. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding schemes. In:
EUROCRYPT. pp. 28–57 (2016)

68. Lin, H.: Indistinguishability obfuscation from sxdh on 5-linear maps and locality-5 prgs. In:
Crypto (2017)

69. Lin, H., Matt, C.: Pseudo flawed-smudging generators and their application to
indistinguishability obfuscation. Cryptology ePrint Archive, Report 2018/646 (2018)

70. Lin, H., Pass, R., Seth, K., Telang, S.: Output-compressing randomized encodings and
applications. In: TCC-A (2016)

71. Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-wise local
prgs. In: Crypto (2017)

72. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from ddh-like assumptions on
constant-degree graded encodings. In: FOCS (2016)

73. Lombardi, A., Vaikuntanathan, V.: On the non-existence of blockwise 2-local prgs with
applications to indistinguishability obfuscation. In: TCC (2018)

74. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification
and message-encryption. In: Advances in Cryptology — EUROCRYPT ’88. pp. 419–453.
Springer Berlin Heidelberg, Berlin, Heidelberg (1988)

75. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: Cryptanalysis of
indistinguishability obfuscation over ggh13. In: Crypto (2016)

76. Peikert, C.: A Decade of Lattice Cryptography, vol. 10, pp. 283–424 (03 2016)
77. Pellet-Mary, A.: Quantum attacks against indistinguishablility obfuscators proved secure

in the weak multilinear map model. In: Advances in Cryptology - CRYPTO 2018 - 38th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018,
Proceedings, Part III. pp. 153–183 (2018)

78. Pellet-Mary, A.: Quantum attacks against indistinguishablility obfuscators proved secure in
the weak multilinear map model. In: Advances in Cryptology - CRYPTO (2018)

79. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J.ACM
56(6) (2009), extended abstract in STOC’05

80. Sahai, A., Waters, B.: Functional encryption:beyond public key cryptography. Power Point
Presentation, 2008. http://userweb.cs.utexas.edu/˜bwaters/presentations/ files/functional.ppt.

81. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: EUROCRYPT. pp. 457–473 (2005)
82. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: Deniable encryption, and

more. In: STOC (2014), http://eprint.iacr.org/2013/454.pdf
83. Waters, B.: Functional encryption for regular languages. In: Crypto (2012)
84. Wolf, C.: Multivariate Quadratic Polynomials In Public Key Cryptography. Ph.D. thesis,

KATHOLIEKE UNIVERSITEIT LEUVEN (2005)

32

http://eprint.iacr.org/2013/454.pdf

	Indistinguishability Obfuscation Without Multilinear Maps: New methods for Bootstrapping and Instantiation
	Shweta Agrawal

