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Abstract. In a non-interactive zero-knowledge (NIZK) proof, a prover
can non-interactively convince a verifier of a statement without revealing
any additional information. Thus far, numerous constructions of NIZKs
have been provided in the common reference string (CRS) model (CRS-
NIZK) from various assumptions, however, it still remains a long standing
open problem to construct them from tools such as pairing-free groups
or lattices. Recently, Kim and Wu (CRYPTO’18) made great progress
regarding this problem and constructed the first lattice-based NIZK in
a relaxed model called NIZKs in the preprocessing model (PP-NIZKs).
In this model, there is a trusted statement-independent preprocessing
phase where secret information are generated for the prover and verifier.
Depending on whether those secret information can be made public, PP-
NIZK captures CRS-NIZK, designated-verifier NIZK (DV-NIZK), and
designated-prover NIZK (DP-NIZK) as special cases. It was left as an
open problem by Kim and Wu whether we can construct such NIZKs from
weak paring-free group assumptions such as DDH. As a further matter,
all constructions of NIZKs from Diffie-Hellman (DH) type assumptions
(regardless of whether it is over a paring-free or paring group) require
the proof size to have a multiplicative-overhead |C| · poly(κ), where |C|
is the size of the circuit that computes the NP relation.
In this work, we make progress of constructing (DV, DP, PP)-NIZKs with
varying flavors from DH-type assumptions. Our results are summarized
as follows:
– DV-NIZKs forNP from the CDH assumption over pairing-free groups.

This is the first construction of such NIZKs on pairing-free groups
and resolves the open problem posed by Kim and Wu (CRYPTO’18).

– DP-NIZKs for NP with short proof size from a DH-type assumption
over pairing groups. Here, the proof size has an additive-overhead
|C|+poly(κ) rather then an multiplicative-overhead |C| ·poly(κ). This
is the first construction of such NIZKs (including CRS-NIZKs) that
does not rely on the LWE assumption, fully-homomorphic encryption,
indistinguishability obfuscation, or non-falsifiable assumptions.

– PP-NIZK for NP with short proof size from the DDH assumption
over pairing-free groups. This is the first PP-NIZK that achieves a



short proof size from a weak and static DH-type assumption such as
DDH. Similarly to the above DP-NIZK, the proof size is |C|+poly(κ).
This too serves as a solution to the open problem posed by Kim and
Wu (CRYPTO’18).

Along the way, we construct two new homomorphic authentication
(HomAuth) schemes which may be of independent interest.

1 Introduction

1.1 Background

Zero-knowledge (ZK) proof system [57] is an interactive protocol where a prover
convinces the validity of a statement to a verifier without providing any additional
knowledge. A non-interactive zero-knowledge (NIZK) proof (or argument4) [13] is
a ZK proof (or argument) where a prover can generate a proof to the validity of
a statement without interacting with a verifier. Due to the absence of interaction,
NIZKs have found tremendous number of applications in cryptography including
(but not limited to) chosen-ciphertext secure public key encryption [76,45,84],
group/ring signatures [37,9,81], anonymous credentials [35,40], and multi-party
computations (MPC) [55]. Furthermore, aside from its practical interests, due to
its theoretically appealing nature, studying the types of assumptions which imply
NIZKs has also been an active research area for NIZKs [47,63,12,82]. Below, we
briefly review the current state of affairs concerning NIZKs.
NIZKs in the CRS model. It is well known that NIZKs for non-trivial
languages do not exist in the plain model where there is no trusted setup [56].
Therefore NIZKs for all of NP are constructed either in the common reference
string (CRS) model [47] or the random oracle model [48,79]. In the former type of
NIZK, the prover and the verifier have access to a CRS generated by a trusted third
party (hereafter referred to as CRS-NIZK). Thus far, known constructions of CRS-
NIZK for NP are based on (doubly-enhanced) trapdoor permutation [47,10,53],
pairing [63,64], or indistinguishability obfuscation [86,11,12]. Constructing CRS-
NIZKs based on other assumptions such as pairing-free groups and lattices
remains to be a long standing open problem.
NIZKs in the designated verifier/prover model. As an alternative line of
research, NIZKs in a relaxed model have been considered: designated verifier
NIZKs (DV-NIZKs) and designated prover NIZKs (DP-NIZKs). Both notions of
NIZKs retain most of the useful security properties of NIZKs with some relaxation.
In DV-NIZKs, anybody can generate a proof, but the proof can only be verified by
a designated party in possession of a verification key. On the other hand, in DP-
NIZKs only a designated party in possession of a proving key can generate a proof,
but the proof can be verified by anybody. Although the two types of NIZKs are
relaxation of CRS-NIZKs, they showed to be no easier to construct. There have
4 NIZK arguments are a relaxed notion of NIZK proofs where soundness only holds
against computationally bounded adversaries. Throughout the introduction, we
simply refer to them as NIZKs.
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been a long line of work concerning DV-NIZKs [77,42,91,33,74,32,34], however,
many of these schemes do not satisfy soundness against multiple theorems, which
in brief means that soundness does not hold against a cheating prover given
unbounded access to a verification oracle (See Sec. 1.4 for more details). Moreover,
DV-NIZKs satisfying soundness against multiple theorems [32,34] are built on
tools which are already known to imply CRS-NIZKs. It was not until recently that
Kim and Wu [71] in a breakthrough result showed how to construct DP-NIZKs
supportingNP languages from lattices; this is the first NIZKs for all ofNP in any
model that is based on lattice assumptions. They showed a generic construction of
DP-NIZKs from homomorphic signatures (HomSig) and instantiated it with the
lattice-based HomSig of [60]. However, despite these recent developments, basing
the construction of DV-NIZKs or DP-NIZKs for all of NP on pairing-free groups
still remains unsolved, and Kim and Wu [71] have stated it as an open problem
to construct such NIZKs from the decisional Diffie-Hellman (DDH) assumption.

First Contribution. One of our main contributions is solving this open problem
and constructing the first DV-NIZKs from the computational Diffie-Hellman
(CDH) assumption over paring-free groups. As our scheme is DV-NIZKs and
not DP-NIZKs, our techniques depart from [71] and follows more closely to the
classical techniques of [47]. More details will be provided in Sec. 1.2.

NIZKs with short proof size. An equally important topic for NIZKs is
constructing NIZKs with short proof size. Our construction above solves the
open problem of constructing DV or DP-NIZKs from paring-free groups, however,
the size of proof is rather large. Namely, it is of size poly(κ, |C|), where κ is the
security parameter and |C| is the size of circuit computing the NP relation R.
In particular, the proof size incurs at least a multiplicative-overhead of O(|C|κ).
As far as we know, the only (CRS, DV, DP)-NIZKs for NP in the standard
model with a short proof size, i.e., a proof with additive-overhead O(|C|)+poly(κ)
rather than O(|C|) · poly(κ), either requires a knowledge assumption [62], (fully-
)homomorphic encryption (FHE) [52], indistinguishability obfuscation (iO) [86],
or HomSig with additional compactness properties [71].5 Notably, we do not know
how to construct (CRS, DV, DP)-NIZKs with short proof size from standard
assumptions from paring-free groups. In fact, this is the case even if we were to
consider paring groups [25,63,1] as none of the aforementioned heavy machineries
are implied from such groups. In other words, it is not known whether DH-type
assumptions can be used to construct DV or DP-NIZKs with short proof size.

Second Contribution. Our second contribution is constructing a DP-NIZK with
short proof size from a DH-type assumption over paring groups by proposing a
compact HomSig scheme from a new non-static DH-type assumption (proven
to hold in the generic group model) and following the general conversion from
HomSig to DP-NIZK by Kim and Wu [71]. More details will be provided in
Sec. 1.2.

5 In fact, as we show in Table 1, all of these approaches lead to a much more succinct
proof size of |w|+ poly(κ), where w is the witness.
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Our second scheme achieves the first DP-NIZK with short proof size from
any DH-type assumptions, however, one caveat is that the assumption is non-
static and rather strong, and furthermore requires paring groups. Therefore,
desirably we would like to construct any type of NIZKs with short proof size
from weaker and static assumptions such as the DDH assumption while only
requiring paring-free groups. To this end, we consider a further relaxation of
NIZKs in the preprocessing model (hereafter referred to as PP-NIZK). In this
model, there is a trusted preprocessing setup that generates a verification and
proving key, where only those with the proving (resp. verification) key can
generate (resp. verify) proofs. Analogously to the history of DV and DP-NIZKs,
even with this added relaxation, PP-NIZKs turned out to be a rather difficult
primitive to construct. There have been several works concerning PP-NIZKs
[43,70,73,41,39,66], however, all of them were only bounded-theorem in the sense
that either the soundness or zero-knowledge property hold in a bounded manner.
The problem of constructing unbounded-theorem PP-NIZKs, which meets the
standard criteria of NIZK, was only recently resolved in the aforementioned
paper [71], where Kim and Wu showed a generic construction of PP-NIZKs
using homomorphic MACs (HomMAC). In particular, depending on whether the
signature can be verified publicly (HomSig) or not (HomMAC), their generic
construction leads to a DP-NIZK or a PP-NIZK, respectively. In fact, it was
observed in [71] that using the compact HomMAC proposed by Catalano and Fiore
[27] based on the non-static `-computational DH inversion (`-CDHI) assumption
[14,21], we can construct PP-NIZKs from a non-static DH-type assumption
over paring-free groups. However, they left it as an open problem to construct
HomMAC that suffices for PP-NIZKs (with short proof size) from a weaker static
assumption such as DDH.

Final Contribution. Our final contribution is constructing a PP-NIZK with short
proof size from the DDH assumption over paring-free groups. We first construct a
non-compact HomMAC from the DDH assumption and exploit extra structures
in our HomMAC to achieve short proof size when converting it into a PP-NIZK.
More details will be provided in Sec. 1.2.

Motivation for studying different types of NIZKs. Although (DV, DP,
PP)-NIZKs may be more restricted compared to CRS-NIZKs, they can be
useful nonetheless. For example, applications of CRS-NIZKs including group
signatures [37,9], anonymous credentials [35,40], electronic cash [36], anonymous
authentication [89] may lead to a designated verifier or prover variant by using
DV or DP-NIZKs. In some natural scenarios where we do not require public
verifiability or require everybody to be able to construct proofs, these alternatives
may suffice. Furthermore, as stated in [71], PP-NIZKs can be used instead of
CRS-NIZKs to boost semi-honest security to malicious security [55]. Finally, we
believe studying different types of NIZKs and understanding which assumptions
imply them will provide us with new insights on realizing the long standing open
problem of constructing CRS-NIZKs from paring-free groups or lattices.
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1.2 Our Results in Detail

As briefly mentioned above, we give new constructions of DV-NIZK, DP-NIZK,
and PP-NIZK with different flavors from DH-type assumptions. Our first and
third schemes are instantiated on a pairing-free group, and the second scheme
requires a pairing group.

1. We construct DV-NIZKs for NP from the CDH assumption over pairing-free
groups that resists the verifier rejection attack. This is the first construction
of such (DV, DP)-NIZK on pairing-free groups and resolves the open problem
posed by Kim and Wu [71].

2. We construct DP-NIZKs for NP with short proof size from a newly defined
non-static (n,m)-computational DH exponent and ratio (CDHER) assump-
tion (proven in the generic group model) over pairing groups. This is the first
NIZK in the standard model to achieve a short proof size without assuming
the LWE assumption, fully-homomorphic encryption, indistinguishability
obfuscation, or non-falsifiable assumptions. The proof size has an additive-
overhead |C| + poly(κ) rather then a multiplicative-overhead |C| · poly(κ)
where |C| is the size of the circuit that computes the NP relation (See
Table 1). Moreover, if we make a slight relaxation in the assumption that the
NP relation is expressed by a “leveled circuit” [20], then the proof size can be
made as short as |w|+ |C|/ log κ+ poly(κ) where |w| denotes the witness size.
This is the first NIZK (including PP-NIZKs) that achieves sublinear proof
size in |C|. We note that by applying the same technique to the `-CDHI-based
construction of PP-NIZK stated in Kim and Wu [71], we can make their
proof size sublinear as well, as long as the NP relation can be expressed by
a leveled circuit.

3. We construct PP-NIZKs for NP with short proof size from the DDH as-
sumption over pairing-free groups that are multi-theorem. This is the first
PP-NIZK that achieves a short proof size from a weak and static DH-type
assumption such as DDH. (In fact, this construction also serves as a solution
to the open problem posed by Kim and Wu [71].) Similarly to the above
DP-NIZK, the proof size is |C|+ poly(κ). Moreover, going through the same
technique with additional observations, in case the NP relation can be ex-
pressed by a leveled circuit, we are able to make the proof size sublinear
|w|+ |C|/ log κ+ poly(κ).

Perhaps of an independent interest, along the way to achieve our second
result, we propose an HomSig scheme that simultaneously achieves compactness,
context-hiding, and online-offline efficiency under the (n,m)-CDHER assumption.
This is the first construction of such HomSig schemes on pairing groups.

The comparison table among existing and our NIZK is given in Table 1. We
note that we omit schemes that do not support all of NP, do not resist the
verifier rejection attack, or do not achieve unbounded-theorem soundness or
zero-knowledge from the table.
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Table 1. Comparison of NIZKs for NP.

Reference Soundness ZK Proof size Model Assumption

FLS [47] stat. comp. poly(κ, |C|) CRS trapdoor permutation‡
Groth [62] stat. comp. |C| · ktpm · polylog(κ) + poly(κ) CRS trapdoor permutation‡
Groth [62] stat. comp. |C| · polylog(κ) + poly(κ) CRS Naccache-Stern PKE
GOS [63] perf. comp. O(|C|κ) CRS DLIN/SD
GOS [63] comp. perf. O(|C|κ) CRS DLIN/SD
CHK,DN,Abu
[25,46,1] stat. comp. poly(κ, |C|) CRS CDH
Groth [62] comp. perf. O(κ) CRS q-PKE and q-CPDH
GGIPSS [52] stat. comp. |w|+ poly(κ) CRS FHE and CRS-NIZK
SW [86] comp. perf. O(κ) CRS iO+OWF
KW [71] stat.∗ comp. |w|+ poly(κ, d) DP LWE
CF+KW
[27]+[71] comp. comp. |C|+ poly(κ) PP `-CDHI (pairing-free)
Sec. 3 stat. comp. poly(κ, |C|) DV CDH (pairing-free)
Sec. 4 comp. comp. |C|+ poly(κ) DP (n,m)-CDHER
Sec. 4† comp. comp. |w|+ |C|/ log(κ) + poly(κ) DP (n,m)-CDHER
Sec. 5 stat. comp. |C|+ poly(κ) PP DDH (pairing-free)
Sec. 5† stat. comp. |w|+ |C|/ log(κ) + poly(κ) PP DDH (pairing-free)

In column “Soundness” (resp. “ZK”), perf., stat., and comp. means perfect, statistical, and computational
soundness (resp. zero-knowledge), respectively. In column “Proof size”, κ is the security parameter, |w| is
the witness-size, and |C| and d are the size and depth of circuit computing the NP relation. In column
“Assumption", DLIN stands for the decisional linear assumption, SD stands for the subgroup decision as-
sumption, q-PKE stands for the q-power knowledge of exponent assumption, and q-CPDH stands fo the
q-computational power Diffie-Hellman assumption.
∗ Though their primary construction only has computational soundness, they sketched a variant that achieves
statistical soundness in the latest version [72, Remark 4.10]
† Applicable only when C is a leveled circuit.
‡ If the domain of the permutation is not {0, 1}n, we further assume they are doubly-enhanced [53].

1.3 Technical Overview

We rely on mainly two approaches to achieve our results. The first approach
is an extension of the construction of CRS-NIZKs from trapdoor permutations
by Feige, Lapidot, and Shamir [47] (we call it the FLS construction) to the DV
setting. The second approach is constructing (DP, PP)-NIZKs using the the
Kim-Wu conversion [71] from homomorphic authenticators (HomAuth), where
HomAuth are shorthand for HomSig and HomMAC. Specifically, we provide new
instantiations of context-hiding HomAuth schemes. Our first result is obtained by
the first approach, and the second and third results are obtained by the second
approach. In the following, we explain these approaches.

Part 1: DV-NIZK from CDH via FLS paradigm. Our DV-NIZK is based
on the Feige-Lapidot-Shamir (FLS) paradigm [47], which enables to construct
CRS-NIZKs based on trapdoor permutations (TDP). However, we can not directly
use the FLS paradigm since we currently do not know how to achieve TDPs
from the CDH assumption. In this study, we present a variant of the FLS
construction in the DV setting that can be instantiated by the CDH assumption
over paring-free groups.
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Our starting point is the CRS-NIZK based on the CDH assumption over
pairing groups [25,46,1]. The idea is to use a function fι defined as follows instead
of a TDP for the FLS construction: fι(X,Z) := X if (g,X, Y, Z) is a DH tuple
and otherwise ⊥, where ι := (g, Y = gτ ). Though fι is not a TDP, it is a trapdoor
function (TDF) with a structure that is sufficient for implementing the FLS
construction. Below, we take a closer look at the construction.

NIZK in the Hidden Bits Model. Before explaining the construction, we recall
the notion of NIZK proof systems in the hidden bits model (hereafter referred to
as HBM-NIZK) [47]. In [47], HBM-NIZKs is used as a building block for the
final CRS-NIZK. In HBM-NIZK, a prover is provided with a randomly generated
string ρ $← {0, 1}` (referred to as a hidden random string) independently from
the statement x and witness w for the NP language L. Then it generates a proof
πhbm along with an index set I indicating the positions in the hidden random
string. A verifier given a sub-string ρ|I of the hidden random string ρ on positions
corresponding to the index set I along with the statement x and a proof πhbm,
either accepts or rejects. Soundness requires that no adversary can generate a
valid proof πhbm with an index set I if x /∈ L, and the zero-knowledge property
requires that a proof provides no additional knowledge to the verifier beyond
that x ∈ L if all bits of ρ on positions corresponding to [`] \ I are hidden to the
verifier. Feige et al. proved that HBM-NIZKs for all of NP exist unconditionally.

CRS-NIZK from CDH with pairings We now describe the CRS-NIZK based on
the CDH assumption over pairing groups [25,46,1]. We give a direct (high-level)
description without using the abstraction by TDFs for clarity.
Setup(1κ) : Output a CRS crs consisting of a group description (G, p, g) and

random group elements (X1, ..., X`)
$← G` where ` is the length of the hidden

random string of the underlying HBM-NIZK.
Prove(crs, x, w): The prover samples τ $← Zp, computes Zi := Xτ

i and lets ρi be
the hardcore bit of Zi for all i ∈ [`]. Then it uses ρ := ρ1‖ · · · ‖ρ` as a hidden
random string to generate a proof πhbm along with an index set I ⊂ [`] by
the proving algorithm of the underlying HBM-NIZK on (x,w). It outputs a
proof π = (πhbm, I, {Zi}i∈I , Y := gτ ).

Verify(crs, x, π) Given a statement x and a proof π = (πhbm, I, {Zi}i∈I , Y := gτ ),
the verification algorithm verifies (g,Xi, Y, Zi) is a DH-tuple for all i ∈ I by
using pairing, and rejects if it is not the case. Then it computes the hardcore
bit ρi of Zi for all i ∈ I, and verifies πhbm by the verification algorithm of the
underlying HBM-NIZK.

Roughly speaking, soundness and zero-knowledge follow from those of the under-
lying HBM-NIZK since a hidden random string ρ is somehow “committed” in
(X1, ..., X`) once τ is fixed, and only the sub-string of them corresponding to I
is revealed to the verifier.6 Clearly, the above construction relies on pairing to
6 Though a cheating prover can arbitrarily choose τ ∈ Zp, we can negligibly bound its
success probability by the union bound if the success probability of a cheating prover
of the underlying HBM-NIZK is bounded by p−1 · negl(κ).
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check if (g,Xi, Y, Zi) is a DH-tuple during verification. We note that this check is
essential since without it, a cheating prover can arbitrarily choose Zi for i ∈ I to
control ρ|I to any value, in which case soundness of HBM-NIZK ensures nothing.

Getting rid of pairing. Now, we explain how to get rid of the use of pairing from
the above construction in the DV setting. Our main idea is to use the twin-DH
technique [26]. Intuitively, the twin-DH technique enables a designated entity
to verify whether a tuple (g,X, Y, Z) ∈ G4 is a DH-tuple without knowing the
discrete logarithm of X or Y and without using pairings, where (g,X) is public,
and (Y,Z) may be chosen arbitrarily. More precisely, suppose that an extra
element X̂ := gβ/Xα is published in addition to (g,X) where α, β $← Zp. Then
for Y = gτ , we may consider (Z = Xτ , Ẑ = X̂τ ) to be a “proof” that (g,X, Y, Z)
is a DH-tuple. Namely, a designated verifier who holds α and β can verify the
validity of the “proof” by checking if ZαẐ = Y β holds. The main implication of
the twin-DH technique is that the above verification is essentially equivalent to
checking if Z = Xτ and Ẑ = X̂τ hold conditioned on the fact that (Y,Z, Ẑ) is
chosen by a “prover” who does not know (α.β).

With this technique in hand, we describe how to modify the above construction
to achieve DV-NIZK without pairing: We add extra elements X̂i := gβi/Xαi

where αi, βi
$← Zp for i ∈ [`] in the CRS, give {αi, βi}i∈[`] as the verification

key to the designated verifier, and add extra elements Ẑi := X̂τ
i for i ∈ I in the

proof. Then the verifier can verify that (g,Xi, Y, Zi) is a DH-tuple by checking if
ZαiẐ = Y βi holds without using pairing. This enables us to achieve DV-NIZK
without pairing.

On adaptive zero-knowledge. Though our main idea is as presented above, the
above described construction only achieves non-adaptive zero-knowledge which
requires an adversary to choose the statement x independently of the CRS. To
achieve adaptive zero-knowledge, we need to add some extra structures using the
technique of non-committing encryption [24,46]. See Sec. 3 for technical details.
We note that the original FLS NIZK proof system is also adaptive zero-knowledge,
but it uses specific properties of the underlying HBM-NIZK. Though a similar
analysis may also yield alternative construction of DV-NIZKs with adaptive
zero-knowledge from the CDH assumption without pairing, we choose the above
approach where we do not assume any structure on the underlying HBM-NIZK
for a conceptually simpler and modular construction.

Part 2: PP-NIZK via context-hiding HomAuth.Kim andWu [71] showed a
conversion from any context-hiding HomAuth scheme to PP-NIZKs. In particular,
they noted that context-hiding HomAuth scheme for NC1 suffices to instantiate
their conversion. In this part, we propose new constructions of context-hiding
HomAuth schemes for NC1, and plug them into their conversion. First, we recall
the definition of HomAuth. Roughly speaking, a HomAuth scheme is a digital
signature or MAC scheme with a homomorphic property. Namely, given a vector
of signatures σ for a vector of messages x, anyone can publicly evaluate the
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signature on a circuit C to generate an evaluated signature σ for a message
C(x). We say that a HomAuth scheme is a HomSig scheme if verification can be
done publicly, and is a HomMAC scheme otherwise. As a security requirement of
HomAuth scheme, we require that an adversary given x cannot generate a pair
of an evaluated signature σ∗ and a circuit C∗ such that σ∗ is a valid signature
for a message z 6= C∗(x) even if the adversary is given access to a verification
oracle. In addition, we say that a HomAuth scheme is context-hiding if σ for a
message z generated by evaluating a circuit C on a vector of signatures σ for x
does not reveal information of x beyond that C(x) = z.

In this paper, we propose two new constructions of HomAuth schemes for
NC1. The first one is a HomSig scheme based on a new assumption that we call
(n,m)- CDHER assumption on a pairing-group. A nice feature of this HomSig
scheme is that the size of an evaluated signature is compact (i.e., does not depend
on the message vector length or the circuit to evaluate), and has online-offline
efficiency. The second one is a HomMAC scheme based on the DDH assumption on
a pairing-free group. The function class the second scheme supports is arithmetic
circuits over Zp of polynomial degree, which is larger than NC1, and we take
advantage of this extra freedom to improve the proof size. We explain these
constructions below.

HomSig from CDHER. Here, we informally explain how an attribute-based
encryption (ABE) scheme with some special properties can be converted into a
HomSig scheme. Our HomSig scheme from the CDHER assumption can be seen
as an instantiation of this conversion.

To explain the idea, we first recall the notion of (key-policy) ABE. In an ABE
scheme, one can encrypt a message M with respect to some string x ∈ {0, 1}`
using some public parameter pp. Furthermore, a secret key is associated with
some policy C : {0, 1}` → {0, 1} and the decryption is possible if and only if
C(x) = 1. As for security, we require the selective one-way security. In a selective
one-way security game, an adversary has to declare its target x? at the beginning
of the game before seeing the public parameter pp. An adversary can further
query secret keys for C such that C(x?) = 0 unbounded polynomially many times
throughout the game, and we require that an adversary given an encryption of a
random message M? under the string x? cannot recover M?.

We first observe that the security proofs for most selectively secure schemes
such as those proposed in [87,61,92,59,18] can be abstracted in the following
manner:7 At the beginning of the game, the reduction algorithm is given a problem
instance Ψ of some hard problem (e.g., the bilinear Diffie-Hellman problem).
Then, it first runs the adversary to obtain the target x?. Given Ψ and x?, the
reduction algorithm generates pp along with some simulation trapdoor tdx? . The
reduction algorithm can perfectly simulate the game using tdx? . Namely, given
tdx? , it can generate correctly distributed secret key skC for any C such that
C(x?) = 0. Furthermore, given tdx? , it can embed the problem instance Ψ into

7 Actually, these previous works prove the standard indistinguishability security notion
rather than one-wayness. However, one-wayness is sufficient for our application.

9



the challenge ciphertext so that it can extract the answer of the hard problem
whenever the adversary succeeds in extracting M?.

Our basic idea for constructing HomSig is to use the above reduction algorithm
in the real world. To sign on a message x, we generate tdx and set σ := tdx.
To evaluate the signature σ on a circuit C such that C(x) = 0, we run the
reduction algorithm of the ABE scheme on input tdx to generate skC and set
σ := skC . Here, evaluation of signatures can be done publicly since tdx is the
only secret state required to run the reduction algorithm. A subtle problem with
this approach is that we cannot evaluate the signature on a circuit C such that
C(x) = 1 since the reduction algorithm does not work for such C. This problem
can be easily fixed by defining the scheme so that when evaluating a signature on
such C, we generate sk¬C instead of skC , where ¬C is a circuit that is obtained
by flipping the output bit of C by applying the NOT gate. Now, for the signature
σ = skC to be publicly verifiable, we require it to be possible to efficiently check
whether σ is a correctly generated secret key of the ABE given (C, σ). However,
this is not such a strong restriction since it is satisfied by many selectively secure
ABE schemes such as the ones listed above.

We recall that given tdx, the reduction algorithm can perfectly simulate the
selective security game for ABE where x is the target chosen by the adversary.
This in particular implies that skC simulated by tdx follows the same distribution
as skC generated in the real system which does not use information of x. Then,
the context-hiding property of the scheme follows from this fact. Namely, the
distribution of σ = skC only depends on C and pp, not on x. In other words, σ
does not leak any information of x, which meets the requirements of the context-
hiding security. Furthermore, the unforgeability of the scheme follows from the
one-wayness of the ABE: If the adversary can forge a signature σ = skC? for C?
such that C?(x) = 1, then skC? can be used to decrypt the challenge ciphertext,
which contradicts the security of the ABE. We note that the circuit class of the
allowed homomorphic evaluation for the resulting HomSig scheme is roughly the
same as the circuit class supported by the original ABE scheme.

In order to obtain the aforementioned HomSig scheme for NC1 with compact
signatures, we need a key-policy ABE scheme with constant-size secret keys.
Unfortunately, the only construction of ABE scheme [7] which meets the efficiency
(i.e., compactness) property we require does not conform to our template that
uses the simulation trapdoor tdx. Therefore, we construct a new ABE scheme
with the required property which conforms to our template based on the CDHER
assumption. The structure of our ABE scheme is inspired by the ciphertext-policy
ABE scheme with constant-size ciphertexts (not secret keys) due to Agrawal
and Chase [3]. To turn their scheme into an ABE scheme with constant-size
secret keys, at a high level, we swap the ciphertexts and secret keys of their
construction. Since the security of the resulting scheme is not guaranteed by
that of the original one, we directly prove its security by adding considerable
modification to the previous proof techniques [83,4].

HomMAC from DDH. Here, we explain the construction of HomMAC under
the DDH assumption. Our idea is to add the context-hiding property to the

10



non-context-hiding HomMAC proposed by Catalano and Fiore [27] by using
functional encryption for inner products (IPFE). First, we recall their non-
context-hiding HomMAC, which supports all arithmetic circuits of polynomially
bounded degree.8 The signing/verification key of their construction are r ∈ Z`p
and s ∈ Z∗p where ` is the arity of arithmetic circuits it supports, and the
evaluation key is a prime p. A signature σ ∈ Z`p for a message x ∈ Z`p is set
to be σ := (r − x)s−1 mod p.9 Given an arithmetic circuit f of degree D, a
message x, and a signature σ, the evaluation algorithm computes the coefficients
(c1, ..., cD) ∈ ZDp that satisfy f(r) = f(x) +

∑D
j=1 cjs

j , and sets σ := (c1, ..., cD)
as an evaluated signature. We remark that this can be done by using x, σ, and p
without knowing (r1, ..., rn) or s since the signatures satisfy sσ + x = r mod p.
To verify the evaluated signature, the verifier simply checks if the above equation
holds by using r and s included in the verification key. Though the construction
is very simple, the scheme satisfies unforgeability even against unbounded-time
adversaries. Unfortunately, this construction cannot yet be used for the purpose
of PP-NIZKs, since in general it is not context-hiding.

Here, we observe that in the above construction, what a verifier has to know
for the verification is only

∑D
j=1 cjs

j , and not the entire (c1, ..., cD). Moreover,∑D
j=1 cjs

j does not convey any information on x beyond f(x) because the term
is determined solely by r and f(x). Therefore if there exists a way to only transfer∑D
j=1 cjs

j to the verifier, then context-hiding is guaranteed. We remark that
a trivial idea of publishing s does not work because it completely breaks the
unforgeability. In particular, we want to find a way to let a verifier only know∑D
j=1 cjs

j without providing s to the evaluator. To solve this problem we rely
on IPFE. In an IPFE scheme, both a ciphertext and a secret key are associated
with a vector. If we decrypt a ciphertext of a vector x by a secret key associated
with y, then the decryption result is 〈x,y〉, which is an inner product of x and y.
We convert the above non-context-hiding HomMAC to a context-hiding one by
using IPFE as follows: In the setup, we additionally generate a public parameter
pp and a master secret key msk of IPFE. Then a verifier is provided with a
secret key sk(s,...,sD) for a vector (s, ..., sD), and an evaluator is provided with pp.
The evaluator sets the evaluated signature to be an encryption ct of (c1, ..., cD)
instead of (c1, , , ., cD) itself. Now, a verifier only learns

∑D
j=1 cjs

j due to the
security of IPFE, and thus context-hiding is achieved.

Given the above overview, it may seem that any IPFE scheme suffices for the
construction. Moreover, since only one secret key is needed in the construction, it
seems that one-key IPFE suffices. Since there are constructions of one-key secure
FE even for all circuits based on any PKE scheme [85,58], one may think that we
can implement the above construction based on any PKE scheme. However, this is
in fact not the case because these FE schemes are malleable. Namely, the standard
8 Though the original construction by Catalano and Fiore [27] is based on PRF, we
present an information theoretically secure variant of it in a simplified setting where
the arity of an arithmetic circuit is bounded.

9 Though the scheme is not publicly verifiable, we call σ a “signature” for compatibility
to HomSig.
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security notion of FE does not prevent a malicious encryptor from generating
an invalid ciphertext. Put differently, the decryption result may be controlled.
In the context of the above construction, the fact that an evaluator generates
a ciphertext ct by the secret key sk(s,...,sD) that is decrypted to T does not
necessarily mean that it knows (c1, ...., cD) such that

∑D
j=1 cjs

j = T . Therefore,
although the construction seems to work, we cannot prove unforgeability of
the above scheme. To solve this problem, we introduce a notion which we call
extractability for IPFE. Extractability requires that for any (possibly malformed)
ciphertext ct that is decrypted to T with a secret key sk associated with a vector
y, we can extract x such that 〈x,y〉 = T from ct. It is clear that the above
problem is resolved if we have an extractable IPFE.

Here, we observe that the IPFE scheme based on the DDH assumption pro-
posed by Agrawal, Libert, and Stehlé [5] satisfies extractability. A subtle problem
of their construction is that a decryptor must compute a discrete logarithm
for computing a decryption result, and thus the size of the decryption result
must be limited to being relatively small. Fortunately, this does not matter in
our application since the verification is done by simply checking if a decryption
result of IPFE satisfies a certain linear equation which can be performed on the
exponent. Concretely, we only need a variant of IPFE that enables a decryptor
to learn inner-product on the exponent. Putting all the ideas together, we obtain
a context-hiding HomMAC for arithmetic circuits of polynomial degree (which
includes NC1) based on the DDH assumption, which further combined with [71]
leads to PP-NIZK proofs based on the DDH assumption. Moreover, we can make
the proof size of the PP-NIZK short by incorporating the idea by Katsumata
[69]. Namely, the proof size of the resulting PP-NIZK is |C|+ poly(κ) where |C|
is the size of a circuit that computes a relation to prove. See the full version for
details.

PP-NIZK with sublinear proof size. Direct adaptations of the Kim-Wu
conversion to compact context-hiding HomAuth for NC1 yield PP-NIZK with
proof sizes |C|+ poly(κ). Here, we explain that this can be further reduced to
sublinear size |w|+ |C|/ log κ+poly(κ) by making a slight relaxation that a circuit
C computing the NP relation is expressed as a leveled circuit [20]; a circuit whose
gates are partitioned into D + 1 levels and all incoming wires to a gate of level
i+ 1 come from gates of level i for each i ∈ [D]. To explain this, we first briefly
review the Kim-Wu conversion. In their construction, a prover is provided with a
secret key K of a symmetric key encryption (SKE) scheme as its proving key, and
to prove that (x,w) satisfies C(x,w) = 1 for a circuit C, it encrypts w by using K
to generate a ciphertext ct, and generates an evaluated signature σ on message “1”
under the function fct,x defined by fct,x(K ′) := C(x,Dec(K ′, ct)) where Dec is the
decryption algorithm of the SKE scheme. A proof consists of ct and σ. A verifier
simply verifies that the evaluated signature σ is a valid signature on message “1”
under the function fct,x. To implement this construction based on HomAuth for
NC1, we have to express a circuit that computes the NP relation in NC1. This
is in general possible by “expanding” the witness to values corresponding to all
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wires of C(x, ·). However, since the size of the expanded witness is as large as
the circuit size |C|, the proof size of the resulting PP-NIZK is linear in |C|. Now,
we observe that we actually need not expand the witness to all wires, and we
can choose a portion of them based on a similar idea used in [20]. Namely, for a
leveled circuit C of depth D, we divide [D] into log κ intervals of length D/ log κ,
and choose “special levels” i in each interval so that the number of gates of level
i is the smallest among those in the interval. Then we set an expanded witness
to be the original witness appended by values corresponding to all wires of
special levels of C(x, ·). We observe that the consistency of the expanded witness
generated in this way still can be verified in NC1 since successive special levels
are at most 2 log κ apart from each other. Moreover, the size of the expanded
witness is at most |w|+ |C|/ log κ since the number of gates of special levels is at
most |C|/ log κ by the choice of special levels. Thus, by applying the Kim-Wu
conversion with the above expanded witness, we obtain PP-NIZK with proof size
|w|+ |C|/ log κ+ poly(κ).

1.4 Other Related Works

Concurrent Works. There are two concurrent and independent works [38,80]
that contain similar results to our first result, namely, multi-theorem DV-NIZK
from CDH assumption in pairing-free groups. We summarize differences of these
results below.

– Couteau and Hofheinz [38] additionally give a construction of (CRS,DV)-
NIZK assuming the LWE assumption and a (CRS,DV)-non-interactive witness
indistinguishable proof system for bounded distance decoding.

– Quach, Rothblum, and Wichs [80] additionally consider a stronger variant of
DV-NIZK called malicious DV-NIZK, and construct it based on a stronger
assumption called the one-more CDH assumption in pairing-free groups.

– Constructions of (DP,PP)-NIZKs with compact proofs are unique to this
paper.

CRS-NIZK from Lattices. Very recently, Peikert and Shiehian [78] constructed
the first CRS-NIZKs for NP under standard lattice assumptions following the
line of researches [68,23,65,22] to instantiate the Fiat-Shamir transform [48] in
the standard model.
More discussions on existing (DV, DP, PP)-NIZK. Unlike CRS-NIZKs
where proving statements and verifying proofs can be done publicly, in (DV, DP,
PP)-NIZKs since we have the notion of secret states, it is not uncommon to have
a bound on the number of statements (i.e., theorems) one can prove without
compromising soundness or zero-knowledge. In DV-NIZKs, a common issue have
been the bound on the number of time the prover can query the verification
oracle. Namely, a prover can break the soundness of a DV-NIZK if the verifier
uses the same verification key to verify multiple statements. Due to this fact,
such DV-NIZKs that require a bound on the number of time a prover can query
the verification oracle are called bounded-theorem. If the verifier can keep using
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the same key for multiple statements, then it is called multi-theorem. Almost all
previous DV-NIZKs for all ofNP [77,42,91,33,74] suffered from this issue of being
bounded-theorem. There are more recent works that avoid the above issue based
on a certain type of additively homomorphic encryption [32] or a primitive called
oblivious linear-function evaluation [34]. However, instantiating either of these
primitives require an assumption that is already known to imply a CRS-NIZK.
DP and PP-NIZKs share similar problems, where in this case, zero-knowledge
does not hold if the prover uses the same proving key multiple statements. Other
than the recent schemes by Kim and Wu [71] and Boyle et al [19], all previous DP
or PP-NIZKs [43,70,73,41,39,66] are known to be bounded-theorem. Though it is
known that we can convert any bounded theorem NIZK to unbounded theorem
NIZK in the CRS setting [47], the conversion heavily relies on the fact that proofs
can be generated publicly, and does not seem to work in the PP model. We refer
to [71] for more discussions.

Homomorphic authenticators. The notion of homomorphic authenticators
(MACs or signatures) originates to Desmedt [44] and was first formalized by
Johnson et al. [67]. In the beginning, HomAuth was considered extensively in the
context of network coding where the homomorphism were focused on linear func-
tions, yielding a long line of interesting works such as [2,15,50,16,8,17,29,49,31,28].
HomAuth for linear functions has also been considered for proofs of retrievability
for outsourced storage [6,88]. Boneh and Freeman [16] were the first to consider
homomorphism beyond linear functions, showing the first scheme for polynomial
function based on lattices. Since then numerous improvements on HomAuth
have been made [29,51,60,27]. Gorbunov et al. [60] constructed a HomSig that
supports arbitrary circuits with bounded-depth from lattices and Catalano et
al. [27] constructed a HomMAC that supports arbitrary arithmetic circuits with
bounded-degree from PRFs or DH-type assumptions.

Recently, Tsabary [90] showed a generic conversion of an attribute-based
signature (ABS) to HomSig. Using their construction, we may obtain a HomSig
with compact signatures starting from an ABS with short signatures. However, the
two ABS schemes with short signatures are not a complete fit for the conversion:
The scheme by Attrapadung et al. [7] is only selectively-secure and the above
conversion is not applicable. The scheme by [75] is constructed on composite-order
groups, which is not desirable from the view points of security and efficiency.

Finally, we also mention that our idea of viewing some types of ABE as
HomSig seems to be applicable for other ABE schemes such as [61]. This leads to
a context-hiding HomSig scheme from the CDH assumption and thus DP-NIZK
from the same assumption via the transformation due to Kim and Wu [71]. In
addition, we observe that if we start from the ABE for circuits from lattices
due to Boneh et al. [18], we recover the existing HomSig scheme by Gorbunov,
Vaikuntanathan, and Wichs [60]. While this is not a new result, the observation
provides new insights into the connection between them.
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2 Preliminaries

We omit basic notations and knowldege on cryptography due to limited space.

2.1 Preprocessing NIZKs

Let R ⊆ {0, 1}∗ × {0, 1}∗ be a polynomial time recognizable binary relation.
For (x,w) ∈ R, we call x as the statement and w as the witness. Let L be
the corresponding NP language L = {x | ∃w s.t. (x,w) ∈ R}. We also write
R(x,w) ∈ {0, 1} as the output of the polynomial time decision algorithm R on
input (x,w), where 0 is for reject and 1 is for accept. Below, we define (adaptive
multi-theorem) preprocessing NIZKs for NP languages. Some discussions on our
presentation of NIZKs are provided below.

Definition 2.1 (NIZK Proofs). A non-interactive zero-knowledge (NIZK)
proof in the preprocessing model ΠPPNIZK for the relation R is defined by the
following three polynomial time algorithms:

Setup(1κ)→ (crs, kP, kV): The setup algorithm takes as input the security param-
eter 1κ and outputs a common reference string crs, a proving key kP, and a
verification key kV. This algorithm is executed as the “preprocessing" step.

Prove(crs, kP, x, w)→ π: The prover’s algorithm takes as input a common refer-
ence string crs, a proving key kP, a statement x, and a witness w and outputs
a proof π.

Verify(crs, kV, x, π)→ > or ⊥: The verifier’s algorithm takes as input a common
reference string, a verification key kV, a statement x, and a proof π and
outputs > to indicate acceptance of the proof and ⊥ otherwise.

Moreover, an (adaptive multi-theorem) NIZK proof in the preprocessing model
ΠPPNIZK is required to satisfy the following properties, where the probabilities are
taken over the random choice of the algorithms:
Completeness. For all pairs (x,w) ∈ R, if we run (crs, kP, kV)← Setup(1κ),
then we have

Pr[π ← Prove(crs, kP, x, w) : Verify(crs, kV, x, π) = >] = 1.

Soundness. For all (possibly inefficient) adversaries A, if we run (crs, kP, kV)←
Setup(1κ), then we have

Pr[(x, π)← AVerify(crs,kV,·,·)(1κ, crs, kP) : x 6∈ L ∧ Verify(crs, kV, x, π) = >] = negl(κ).

Here, in case soundness only holds for computationally bounded adversaries A,
we say it is a NIZK argument.
(Non-Programmable CRS) Zero-Knowledge. For all PPT adversaries A,
there exists a PPT simulator S = (S1,S2) such that if we run (crs, kP, kV) ←
Setup(1κ) and τV ← S1(1κ, crs, kV), then we have∣∣∣Pr[AO0(crs,kP,·,·)(1κ, crs, kV) = 1]− Pr[AO1(crs,kV,τV,·,·)(1κ, crs, kV) = 1]

∣∣∣ = negl(κ),
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where O0(crs, kP, x, w) outputs Prove(crs, kP, x, w) if (x,w) ∈ R and ⊥ otherwise,
and O1(crs, kV, τV, x, w) outputs S2(crs, kV, τV, x) if (x,w) ∈ R and ⊥ otherwise.

Remark 2.1 (Programmable Zero-Knowledge). As also discussed in [72], we can
define a slightly weaker variant of zero-knowledge where the simulator is provided
the freedom of programming the common reference string crs and verification
key kV.
(Programmable CRS) Zero-Knowledge For all PPT adversaries A, there
exists a PPT simulator S = (S1,S2) such that if we run (crs, kP, kV)← Setup(1κ)
and (crs, k̄V, τ̄V)← S1(1κ), then we have∣∣∣Pr[AO0(crs,kP,·,·)(1κ, crs, kV) = 1]− Pr[AO1(c̄rs,k̄V,τ̄V,·,·)(1κ, crs, k̄V) = 1]

∣∣∣ = negl(κ),

where O0(crs, kP, x, w) outputs Prove(crs, kP, x, w) if (x,w) ∈ R and ⊥ otherwise,
and O1(crs, k̄V, τ̄V, x, w) outputs S2(crs, k̄V, τ̄V, x) if (x,w) ∈ R and ⊥ otherwise.

This definition captures the zero-knowledge property used in standard NIZKs
in the common reference string (CRS) model. In the CRS model, the Setup
algorithm outputs a CRS σ used by both the prover and verifier, and the zero-
knowledge simulator is allowed to program the CRS σ. Specifically, the proving
key and verification key are both set as the CRS σ.

Remark 2.2 (Different types of NIZKs). The definition is general enough to
capture many of the existing types of NIZKs. In case kP = kV = ⊥, the above
definition captures the standard NIZKs in the common reference string (CRS)
model, which we refer to as CRS-NIZKs hereafter. Specifically anybody can
construct a proof using the public CRS and those proofs are publicly verifiable
[47]. On the other hand, in case kP = ⊥ but kV is required to be kept secret,
the above definition captures designated verifier NIZKs (DV-NIZKs) [77,42].
Moreover, in case kV = ⊥ but kP is required to be kept secret, the above
definition captures designated prover NIZKs (DP-NIZKs) [71]. Finally, in case
both kP and kV must be kept secret, it is simply called preprocessing NIZKs
(PP-NIZKs) [39].

Remark 2.3 (Bounded and Multi-Theorem NIZK). Unlike CRS-NIZKs where
there are nothing to be kept secret, (DV, DP, PP)-NIZKs take more subtle care
to construct. Specifically, the latter types of NIZKs may possibly leak secret
information when constructing a proof (DP-NIZKs) or verifying a proof (DV-
NIZKs). We say the scheme is bounded-theorem if the number of statements
supported by the scheme to guarantee soundness or zero-knowledge is bounded
before setup. Otherwise, we say the scheme is multi-theorem. All the NIZKs we
construct in this paper are multi-theorem. Finally, we call the scheme single-
theorem if it only supports one statement.

Remark 2.4 (Adaptive and Non-Adaptive NIZK). One often considers weaker
security called non-adaptive soundness and zero-knowledge. In non-adaptive
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soundness, an adversary has to declare the statement x on which he forges a
proof before seeing a common reference string. In non-adaptive zero-knowledge,
an adversary has to declare a pair of a statement x and its witness w to query
the proving oracle before seeing a common reference string. All the NIZKs we
construct in this paper satisfy adaptive soundness and zero-knowledge.

NIZKs for Bounded Languages. Throughout this paper, we mainly con-
sider the weaker variant of PP-NIZKs which we call PP-NIZKs for bounded
languages as was done by Kim and Wu [71]. PP-NIZKs for bounded languages
enable one to generate a proof for (x,w) ∈ R ∩ ({0, 1}n(κ) × {0, 1}m(κ)) for a
priori bounded polynomials n(·) and m(·). For clarity, we say PP-NIZKs for
unbounded languages to express PP-NIZKs that do not have the above limitation.
As discussed in the full version, we can generically convert any PP-NIZKs for
bounded languages to PP-NIZKs for unbounded languages at the cost of making
the proof size larger. However, we note that since the conversion makes the
proof size larger, the distinction between PP-NIZKs for bounded and unbounded
languages are meaningful if we start to consider proof sizes.

3 DV-NIZK from CDH via FLS Transform

In this section, we construct a DV-NIZK from the CDH assumption over pairing-
free groups based on the FLS construction [47] for CRS-NIZKs from TDPs. More
formally, we prove the following theorem.
Theorem 3.1. If the CDH assumption holds on a pairing-free group, then there
exists an (adaptive multi-theorem) DV-NIZK proof system for all NP languages.
The theorem is proven in the following steps:

1. We first construct a variant of DV-NIZK proof system (which we call the base
proof system) with a special syntax satisfying a relaxed notion of soundness
and adaptive single-theorem zero-knowledge. We construct it from a NIZK
proof system in the hidden-bits model based on the CDH assumption over
pairing-free groups. This is done by applying the FLS construction [47] along
with the twin-DH technique. A relaxed notion of adaptive zero-knowledge is
achieved by using a technique often used in non-committing encryption.

2. We then construct an adaptive designated-verifier non-interactive witness
indistinguishable (DV-NIWI) proof for all NP languages by running many
copies of the base proof system in parallel.

3. Finally, we transform our adaptive DV-NIWI proofs into adaptive multi-
theorem DV-NIZK proofs by using pseudorandom generators via the trans-
formation of Feige, Lapidot, and Shamir [47] (i.e., the technique of FLS is
applicable to the DV-NIZK setting).

3.1 Preliminaries

We introduce the Goldreich-Levin hardcore function GL(a; r). This is defined by
GL(a; r) := 〈a, r〉 :=

⊕u
j=1(aj · rj) where a, r ∈ {0, 1}u and σj denotes the j-th
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bit of a string σ. In fact, we use groups in our construction and the input to GL
is an element in G. Thus, we interpret a group element gri ∈ G as a u-bit-string.

Theorem 3.2 (Goldreich-Levin Theorem (adapted) [54]). Assuming that
the CDH assumption holds, it holds that∣∣∣Pr[ExptGL-cdh

A (κ, 0) = 1]− Pr[ExptGL-cdh
A (κ, 1) = 1]

]
≤ negl(κ),

where the experiment ExptGL-cdh
A (κ, coin) is defined as follows.

ExptGL-cdh
A (κ, coin)

Samples (G, p, g) $← GGen(1κ), R $← {0, 1}u, and x, y $← Zp.
If coin = 1, then ρ $← {0, 1}, else if coin = 0, then ρ := GL(gxy;R).
Output coin′ ← A(1κ,G, p, g, gx, gy, R, ρ)

Next, we introduce a theorem called twin-DH trapdoor test which enables
one to check if a tuple (g,X, Y, Z) is a DH-tuple without knowing the discrete
logarithm of X or Y by using a special trapdoor.

Theorem 3.3 (Twin-DH Trapdoor Test [26]). For any (G, p, g)← GGen(κ)
and function F , it holds that

Pr

(ZαẐ ?= Y β) 6= ((Z ?= Y x) ∧ (Ẑ ?= Y x̂))

∣∣∣∣∣∣∣
X

$← G,
α, β

$← Zp, X̂ := gβ/Xα,

(Y, Z, Ẑ)← F ((G, p, g), X, X̂)

 ≤ 1/p,

where X = gx and X̂ = gx̂.

We introduce the notion of witness indistinguishability.

Definition 3.1 (Adaptive WI (in the DV model)). We say that a proof
system Π satisfies adaptive witness indistinguishability if for all PPT adversaries
A that makes arbitrary number of queries (resp. at most 1 query), if we run
(crs, kV)← Setup(1κ), then we have∣∣∣Pr[AO0(crs,·,·,·)(1κ, crs, kV) = 1]− Pr[AO1(crs,·,·,·)(1κ, crs, kV) = 1]

∣∣∣ = negl(κ),

where Ob(crs, x, w0, w1) outputs Prove(crs, x, wb) if (x,w0) ∈ R∧ (x,w1) ∈ R and
⊥ otherwise.

Definition 3.2 (Adaptive NIWI). We say that a proof system Π is adaptive
designated-verifier non-interactive witness indistinguishable proof system if Π
satisfies completeness, soundness in Definition 2.1 (in the designated-verifier
model), and adaptive witness indistinguishability in Definition 3.1.

We then formally define a NIZK proof in the hidden-bits model, which will
be used as a building block in our construction.
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Definition 3.3. A NIZK proof in the hidden-bits model (HBM) for L is defined
by the following two polynomial time algorithms:

Prove(1κ, x, w, ρ)→ (π, I): The prover’s algorithm takes as input the security
parameter 1κ, a statement x, a witness w, and a hidden random string
ρ ∈ {0, 1}`hrs(κ), and outputs a proof π and a set of indices I ⊆ [`hrs(κ)] where
`hrs(·) is a polynomial of κ.

Verify(1κ, x, π, I, ρ|I)→ > or ⊥: The verifier’s algorithm takes as input the se-
curity parameter, a statement x, a proof π, an index set I, a substring
ρ|I := {ρi}i∈I , where ρi is the i-th bit of ρ, and outputs > to indicate accep-
tance of the proof and ⊥ otherwise.

Completeness. For all x ∈ L and w such that (x,w) ∈ R, we have

Pr[ρ $← {0, 1}`hrs(κ), (π, I)← Prove(1κ, x, w, ρ) : Verify(1κ, x, π, I, ρ|I) = >] = 1.

Soundness. For all (possibly inefficient) adversaries A, we have

εHBM := Pr[ρ $← {0, 1}`hrs(κ), (x, π, I)← A(1κ, ρ) : x 6∈ L ∧ Verify(1κ, x, π, I, ρ|I) = >] = negl(κ).

We call εHBM soundness error.
Zero-Knowledge. There exists a PPT simulator S such that for all PPT
adversaries A = (A1,A2), we have∣∣∣Pr[(x,w)← A1(1κ), ρ $← {0, 1}`hrs(κ), (π, I)← Prove(1κ, x, w, ρ) : A2(x, π, I, ρ|I) = 1]

−Pr[(x,w)← A1(1κ), (π, I, ρ|I)← S(1κ, x) : A2(x, π, I, ρ|I) = 1]
∣∣ = negl(κ).

Theorem 3.4 (NIZK for all NP languages in the HBM [47]). Uncon-
ditionally, there exists NIZK proof systems for all NP languages in the HBM
with soundness error εHBM ≤ 2−cnκ where c > 1 is a constant, n is polynomially
related to the size of the circuit computing the NP language, κ is the security
parameter, and `hrs = poly(κ, n).

3.2 Constructing DV-NIWI

The goal of this subsection is proving the following theorem.

Theorem 3.5. Assume that the CDH assumption over paring-free group holds,
then there exists an adaptive DV-NIWI for all NP languages.

Here, we sketch our high-level construction. First, we present our so-called
base proof system bP, and then convert it into an adaptive DV-NIWI proof
system. Here, the base proof system bP is not a standard DV-NIWI proof system
since it has a slightly different syntax. Namely, the proving and verification
algorithms of the base proof system take an auxiliary string s as input in addition
to (crs, x, w) and (crs, kV, x, π), respectively. We show that the base proof system
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satisfies two properties called relaxed soundness, which means that an adversary
cannot forge a proof if s is fixed, and relaxed zero-knowledge, which means that
a proof can be simulated without a witness if s is randomly chosen. Observe
that if we were to convert the prover to sample s on its own and include it in the
proof, then the syntax fits that of DV-NIWI. However, such a simple conversion
of our base proof system bP into a DV-NIWI will not work as the acquired
DV-NIWI will not have soundness. Namely, the relaxed soundness of bP does
not prevent a cheating prover from forging a proof if he is allowed to choose s
himself. To resolve this problem, we use a similar idea used by Dwork and Naor
[46]. Our construction of an adaptive DV-NIWI proof system consists of running
many copies of the base proof system using a single common auxiliary input s
for all copies. Then, when the number of copies is sufficiently large, soundness
of the scheme can be proven from the union bound on all possible s. Moreover,
since the relaxed zero-knowledge implies witness indistinguishability, and witness
indistinguishability is preserved under parallel repetitions, we can prove the
witness indistinguishability of our DV-NIWI.

Base proof system. First, we introduce the syntax and security properties of the
base proof system bP. Note that bP is merely an intermediate system introduced
for a modular exposition and not a standard NIZK proof system.

Definition 3.4 (Syntax of base proof system). A base proof system bP
consists of the following three polynomial time algorithms.

bP.Setup(1κ)→ (crs, kV): The setup algorithm takes as input the security param-
eter 1κ and outputs a common reference string crs, and a verification key
kV.

bP.Prove(crs, x, w, s)→ π: The prover’s algorithm takes as input a common refer-
ence string crs, a statement x, a witness w, and a fixed string s ∈ {0, 1}`hrs(κ),
and outputs a proof π.

bP.Verify(crs, kV, x, π, s)→ > or ⊥: The verifier’s algorithm takes as input a
common reference string crs, a verification key kV, a statement x, a proof π,
and a fixed string s ∈ {0, 1}`hrs(κ), and outputs > to indicate acceptance of
the proof and ⊥ otherwise.

Definition 3.5 (Security of base proof system). A base proof system is
required to satisfy the following three properties.

Correctness: For all pairs (x,w) ∈ R and s ∈ {0, 1}`hrs(κ), if we run (crs, kV) $←
bP.Setup(1κ), then we have

Pr[π $← bP.Prove(crs, x, w, s) : bP.Verify(crs, kV, x, π, s) = >] = 1

Relaxed ε-soundness: For any fixed s ∈ {0, 1}`hrs , it holds that all (possibly
inefficient) adversaries A,

Pr[Exptr-snd
A (1κ, s) = >] < ε,
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where ε is the soundness error of bP, and the experiment Exptr-snd
A (1κ) is

defined as follows.
Exptr-snd

A (1κ, s)
(crs, kV)← bP.Setup(1κ),
(x∗, π∗)← AbP.Verify(crs,kV,·,·,s)(1κ, crs, s),
If x∗ /∈ L ∧ bP.Verify(crs, kV, x

∗, π∗, s) = >, then outputs 1,
Otherwise, outputs 0.
This is basically the same as the standard soundness except that A must use
a fixed s.

Relaxed zero-knowledge: There exists a PPT simulation algorithm bP.S =
(bP.S1, bP.S2) that satisfies the following. For all (stateful) PPT adversaries
A, we have∣∣∣Pr[Exptr-real

A (1κ) = 1]− Pr[Exptr-sim
A,S (1κ) = 1]

∣∣∣ = negl(κ),

where experiments Exptr-real
A and Exptr-sim

A,S are defined as follows.
Exptr-real

A
(crs, kV)← bP.Setup(1κ),
(x,w)← A(1κ, crs, kV),
s

$← {0, 1}`hrs ,
If (x,w) ∈ R, π ← bP.Prove(crs, x, w, s),
otherwise π := ⊥,
b′ ← A(π, s)
outputs b′

Exptr-sim
A,S

(crs, kV, τV)← bP.S1(1κ),
(x,w)← A(1κ, crs, kV),

If (x,w) ∈ R, (π, s)← bP.S2(crs, kV, τV, x),
otherwise π := ⊥,
b′ ← A(π, s)
outputs b′

We present a base proof system bP := (bP.Setup, bP.Prove, bP.Verify) based
on a NIZK proof system in the HBM (HBM.Prove,HBM.Verify) (with hidden-
random-string-length `hrs(κ)) and the CDH assumption. Note that we use the
GGen(1κ) algorithm to generate (G, p, g) where 22κ ≤ p throughout Sec. 3.
Hereafter, we simply write `hrs instead of `hrs(κ) for ease of notation.

bP.Setup(1κ): This algorithm generates the following parameters.
1. Samples (G, p, g) $← GGen(1κ).
2. Samples (αi,b, βi,b)

$← Z2
p for all i ∈ [`hrs] and b ∈ {0, 1} and a common

reference string crs := {Xi,b}i∈[`hrs],b∈{0,1}
$← G2`hrs uniformly at random.

3. Sets ĉrs := {X̂i,b}i∈[`hrs],b∈{0,1} := {X−αi,b

i,b · gβi,b}i∈[`hrs],b∈{0,1}.
4. Samples Ri

$← {0, 1}u for all i ∈ [`hrs] and sets R := {Ri}i∈[`hrs].
5. Outputs a common reference string crs := (G, p, g)‖crs‖ĉrs‖R and a

verification key kV := {(αi,b, βi,b)}i∈[`hrs],b∈{0,1}.
We can interpret crs as ({Xi,b, X̂i,b, Ri}i∈[`hrs],b∈{0,1}) ∈ G4`hrs × {0, 1}`hrsu,
where u is the length of the binary representation of a group element.

bP.Prove(crs, x, w, s): This algorithm does the following.
1. Parses crs = (G, p, g)‖crs‖ĉrs‖R where crs = {Xi,b}i∈[`hrs],b∈{0,1}, ĉrs =
{X̂i,b}i∈[`hrs],b∈{0,1}, R = {Ri}i∈[`hrs], and s ∈ {0, 1}`hrs .
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2. Samples τ $← Zp.
3. Sets Zi := (Xi,si

)τ and Ẑi := (X̂i,si
)τ and ρi = GL(Zi;Ri) for i ∈ [`hrs].

4. Generates (πhbm, I)← HBM.Prove(1κ, x, w, ρ) where ρ := ρ1‖ · · · ‖ρ`hrs .
5. Outputs a proof π := (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ).

bP.Verify(crs, kV, x, π, s): This algorithm parses π = (πhbm, I, {(Zi, Ẑ,i)}i∈I , T ),
kV := {(αi,b, βi,b)}i∈[`hrs],b∈{0,1}, crs = (G, p, g)‖crs‖ĉrs‖R where crs = {Xi,b}i∈[`hrs],b∈{0,1},
ĉrs = {X̂i,b}i∈[`hrs],b∈{0,1}, R = {Ri}i∈[`hrs], and s ∈ {0, 1}`hrs . This algorithm
does the following.
– For all i ∈ I,

1. Verifies that TestTDH((αi,si , βi,si), Xi,si , X̂i,si , T, Zi, Ẑi) = >, where
TestTDH is defined in Figure 1. If any one of the equations does not
hold, then outputs ⊥.

2. Computes ρi = GL(Zi;Ri).
– If the proof passes all the tests above, then this algorithm outputs

HBM.Verify(1κ, x, πhbm, I, ρ|I).

The trapdoor test TestTDH((α, β), X, X̂, Y, Z, Ẑ)

1. Verifies that Zα · Ẑ = Y β . If it holds, then outputs >, else ⊥.

Fig. 1. The algorithm TestTDH((α, β), X, X̂, Y, Z, Ẑ) verifies that Z = Y x and Ẑ = Y x̂,
that is (g, Y,X,Z) and (g, Y, X̂, Ẑ) where X = gx and X̂ = gx̂ are DDH-tuples without
(x, x̂).

Unlike the idea outlined in the introduction, the CRS in bP consists of a
doubled-line of random elements (Xi,0, X̂i,0) and (Xi,1, X̂i,1) for each i ∈ [`hrs].
These doubled-line of random elements are crucial for achieving adaptive zero-
knowledge. If we only had a singled-line of random elements as the CRS in
the introduction, then we would have the following issue: The only way for the
ZK-simulator of bP SbP to use the ZK-simulator Shbm of the NIZK in the HBM,
is to feed Shbm the statement x output by the adversary. Now, for the simulated
proof π, index set I, and hidden bits ρ|I output by Shbm to be useful, we must
have ρi = GL(Xτ

i ;Ri) for all i ∈ I where τ is some element simulated by SbP.
However, due to soundness, if the CRS was only a single-line of random elements
(Xi, X̂i), then there exists no τ with overwhelming probability such that the
above condition holds. Therefore, SbP must choose τ and program the singled-line
of random elements (Xi, X̂i) in the CRS conditioned on ρi = GL(Xτ

i ;Ri) for all
i ∈ I in order to appropriately use Shbm. However, since ρi is only output as the
result of feeding Shbm with the statement x, SbP can only set the CRS after it is
given the statement x from the adversary. To overcome this problem, we use the
technique of non-committing encryption. Namely, we let CRS be a doubled-line of
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random elements (Xi,0, X̂i,0) and (Xi,1, X̂i,1). In the real-scheme the fixed string
s ∈ {0, 1}`hrs dictates which `hrs-random elements (Xi,si

, X̂i,si
)i∈[`hrs] a prover

must use. Then during the adaptive ZK proof, SbP will prepare the CRS so that
{GL(Xτ

i,0;Ri),GL(Xτ
i,1;Ri)} = {0, 1} without seeing the statement x. Then after

the adversary outputs the statement x, it runs Shbm, and samples a string s so
that ρi = GL(Xτ

i,si
;Ri) for all i ∈ I.

Security of bP. The following lemmas address the correctness and security of our
base proof system. Due to limited space the proof will appear in the full version.
Lemma 3.1 (Correctness). Our base proof system bP satisfies the correctness
in Definition 3.5.

Lemma 3.2 (Relaxed Soundness). If HBM is sound, then bP satisfies the
relaxed (p · εHBM + (qv + 1)/p)-soundness defined in Definition 3.5.

Lemma 3.3 (Relaxed ZK). If the CDH assumption over pairing-free group
holds, then bP satisfies the relaxed ZK defined in Definition 3.5.

Construction of DV-NIWI. Here, we present our adaptive DV-NIWI proof sys-
temΠ := (Setup,Prove,Verify) based on the base proof system bP := (bP.Setup, bP.Prove, bP.Verify)
that has relaxed ε-soundness for some ε < 1. We note that we proved that the
base proof system satisfies relaxed (p · εHBM +(qv+1)/p)-soundness in Lemma 3.2,
and we can make (p · εHBM + (qv + 1)/p) < 1 by choosing a parameter for HBM
so that p · εHBM is negligible. (This is possible by Theorem 3.4). We set an integer
`′ so that we have 2`hrs · ε`′ ≤ 2−κ. Then Π is described as follows.
Setup(1κ): This algorithm samples (crsj , k(j)

V )← bP.Setup(1κ) for j ∈ [`′]. It sets
crs := crs1‖ · · · ‖crs`′ and kV := k

(1)
V ‖ · · · ‖k

(`′)
V , and outputs (crs, kV).

Prove(crs, x, w)→ π: This algorithm does the following:
1. chooses s $← {0, 1}`hrs ,
2. generates πj ← bP.Prove(crsj , x, w, s) for all j ∈ [`′],
3. outputs a proof π := (π1, . . . , π`′ , s).

Verify(crs, kV, x, π)→ > or ⊥: This algorithm parses π = (π1, . . . , π`′ , s). For all
j ∈ [`′], it verifies that > = bP.Verify(crsj , k(j)

V , x, πj , s). If the proof passes
all the tests, then this algorithm outputs >, otherwise ⊥.

Our adaptive DV-NIWI proof system Π is complete, sound, and adaptively
witness-indistinguishable. The proofs can be found in the full version.

3.3 Transformation from DV-NIWI into Multi-Theorem DV-NIZK

To complete the proof of Theorem 3.1, it remains to show the following theorem.
Theorem 3.6. If there exists an adaptive DV-NIWI proof systems for all NP
languages and pseudorandom generators, then there exists an adaptive multi-
theorem DV-NIZK proof system for all NP languages.
We omit the proof since the transformation is essentially the same as that of
Feige et al. [47] (from NIWI to multi-theorem NIZK), with the exception that
we consider the designated-verifier setting.
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4 Constructing HomSig from ABE-Simulation Paradigm

We construct a context-hiding HomSig for NC1 from a new non-static (q-type)
assumption on pairing groups that we call the CDHER assumption. Specifically,
we first construct a new ABE scheme from the same assumption and then apply
the (semi-generic) conversion sketched in Sec. 1.2. We directly give a construction
of HomSig instead of constructing it via the new ABE. Using the transformation
by Kim and Wu [71], we obtain a DP-NIZK from the same assumption.

Theorem 4.1. If the CDHER assumption holds on a pairing group, then there
exists DP-NIZK for all NP languages with proof size |C|+ poly(κ), where |C|
denotes the size of the circuit that computes the relation being proved.

As far as we know, this is the first DP-NIZK scheme with short proofs without
assuming the LWE assumption, fully-homomorphic encryption, indistinguishabil-
ity obfuscation, or non-falsifiable assumptions. Furthermore, if the proven NP
relation can be expressed as a leveled circuit, we can reduce the proof size to
|w| + |C|/ log κ + poly(κ), where |w| is the length of the witness of the proven
relation and a leveled circuit refers to a circuit whose gates can be divided into
layers and only gates from the consecutive layers are connected by wires. See the
full version for the details.

Besides being a building-block for PP-NIZKs, our HomSig scheme alone
may be of an independent interest. In the full version, we extend the scheme to
the multi-data setting and demonstrate that it achieves online-offline efficiency.
This greatly improves the HomSig scheme with the same properties from the
multi-linear map [30] in terms of efficiency and security.

5 HomMAC from Inner Product Functional Encryption

In this section, we give a construction of HomMAC based on a variant of functional
encryption for inner-products (IPFE) which we call a functional encryption for
inner-product on exponent (expIPFE). Namely, we show that an expIPFE scheme
that satisfies a property called extractability suffices for constructing statistically
unforgeable and computationally context-hiding HomMAC. We also show that
the IPFE scheme by Agrawal et al. [5] can be seen as an instantiation of an
extractable expIPFE scheme under the DDH assumption. As a result, we obtain a
statistically unforgeable and computationally context-hiding HomMAC based on
the DDH assumption, which yields statistically sound and computationally (non-
programmable CRS) zero-knowledge PP-NIZK based on the DDH assumption
(over paring-free groups). Since our HomMAC is not compact, a simple adaptation
of their transformation yields PP-NIZK with proof size O(|C|κ) + poly(κ). How-
ever, by taking advantage of the fact our scheme can deal with arithmetic circuits
over Zp of polynomial degree, which is larger than NC1, and incorporating the
technique by Katsumata [69], we can reduce the proof size to |C|+ poly(κ). See
the full version for details. Then we obtain the following theorem.
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Theorem 5.1. If the DDH assumption holds on a pairing free group, then there
exists PP-NIZK for all NP languages with proof size |C|+ poly(κ), where |C|
denotes the size of circuit that computes the relation being proved.

Similarly to the case in Sec. 4, if the proven NP relation can be expressed as
a leveled circuit, we can further reduce the proof size to |w|+ |C|/ log κ+ poly(κ).
See the full version for the details.
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