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Abstract. Concrete security proofs give upper bounds on the attacker’s
advantage as a function of its time/query complexity. Cryptanalysis sug-
gests however that other resource limitations – most notably, the at-
tacker’s memory – could make the achievable advantage smaller, and
thus these proven bounds too pessimistic. Yet, handling memory limita-
tions has eluded existing security proofs.
This paper initiates the study of time-memory trade-offs for basic sym-
metric cryptography. We show that schemes like counter-mode encryp-
tion, which are affected by the Birthday Bound, become more secure (in
terms of time complexity) as the attacker’s memory is reduced.
One key step of this work is a generalization of the Switching Lemma:
For adversaries with S bits of memory issuing q distinct queries, we prove
an n-to-n bit random function indistinguishable from a permutation as
long as Sˆq ! 2n. This result assumes a combinatorial conjecture, which
we discuss, and implies right away trade-offs for deterministic, stateful
versions of CTR and OFB encryption.
We also show an unconditional time-memory trade-off for the security
of randomized CTR based on a secure PRF. Via the aforementioned
conjecture, we extend the result to assuming a PRP instead, assuming
only one-block messages are encrypted.
Our results solely rely on standard PRF/PRP security of an underlying
block cipher. We frame the core of our proofs within a general frame-
work of indistinguishability for streaming algorithms which may be of
independent interest.

Keywords: Provable security, symmetric cryptography, time-memory
trade-offs

1 Introduction

Concrete security proofs upper bound the adversarial advantage ε as a function
of the adversary’s resources. A scheme is deemed secure if the advantage is small
for all feasible resource amounts. The classical approach captures such resources
in terms of running time and/or description size.

Time is however not the only resource to determine feasibility of an attack.
In particular, the memory costs also matter – in the context of provable security,



these were first studied by Auerbach et al. [4] and Wang et al. [26], who con-
sidered the tightness of reductions with respect to memory usage. Memory-tight
reductions lift an assumed time-memory trade-off for the assumption to one for
the scheme, and this is particularly important when the underlying assumption
does not admit low-memory attacks (e.g., this is true for the LPN problem).

Earlier work on time-memory tradeoffs in symmetric cryptography focused
on cryptanalytic attacks [15,5] or precomputation attacks against primitives like
hash functions [6].

Symmetric cryptography. Memory tightness is less useful for symmetric
cryptography: A typical assumption here is that AES is a PRP for attackers
with large time complexity, e.g., T “ 2100, but the best generic attack is memo-
ryless, so there is generally no trade-off to be assumed.

Still, time-memory trade-offs may affect the actual modes of operation. For
example, it is well known that (randomized) counter mode (CTR$) allows to
encrypt no more than q “

?
N plaintexts when using an n-bit block cipher

(here, N “ 2n), yet restricting memory to only store S bits may help. Indeed,
let the i-th message mi be encrypted as pri, ci “ AESKpriq ‘miq, where ri is
a random string. The optimal distinguishing attack waits for ri “ rj to occur
for i ‰ j, in which case ci ‘ cj “ mi ‘ mj – which is unlikely to hold if ci
and cj are random. But this also requires remembering approximately

?
N ri’s.

If we can only store fewer of them, then we need a collision with one of the
ri’s we remember, and the attack advantage decrease to Sq

N when q messages
are encrypted. However, is this attack the optimal one? – a proof would have to
argue over all possible adversarial strategies storing S bits of partial information.

Remarkably, despite schemes like CTR$ being decades old, the question of
proving bounds that take memory into account has remained open.

Our results: Overview. This paper takes a ground-up approach to proving
time-memory trade-offs. To this end, we start with exactly those simple symmet-
ric encryption schemes like CTR$ and OFB we ought to understand, and develop
proofs and proof techniques – mostly relying on information-theoretic and com-
binatorial tools – aimed at showing that conjectured trade-offs are optimal.

A common trait of basic encryption schemes is that they are only secure up
to the Birthday Bound. For stateless, randomized schemes, this is because inputs
to the block cipher are otherwise going to repeat. Also, even when inputs are
distinct, non-repeating block-cipher outputs become easily distinguishable from
random. We will show that this fact is no longer valid if the adversary’s memory
capacity does not exceed

?
N , and more generally, we show a trade-off between

the number of encryptions and the attacker’s memory.

For example, we revisit the well-known Switching Lemma in the memory-
bounded setting: under a combinatorial conjecture (see details below), we show
that an adversary making T distinct queries to a random function or a random
permutation cannot tell them apart with advantage larger than Op

a

ST {Nq.
The special case S “ T is the original switching lemma. This gives us bounds
for stateful CTR and OFB, assuming the underlying block cipher is a sufficiently
secure PRP. We consider the question fundamental enough to justify a partial
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Scheme Underlying Primitive Bound

CTR PRF εprf
PRP εprp `OslpT, S,Nq

OFB PRF Insecure when T P Ωp
?
Nq

PRP εprp `OslpT, S,Nq `OpT {Nq

CTR$ PRF εprf `Op
a

ST {Nq
1-block CTR$ weak-PRP εwprp ` 3OslpT, S,Nq

Encrypt-then-PRF INDR and weak-PRF εindr ` εwprf `Op
a

ST {Nq

Fig. 1. Encryption schemes we analyze. Schemes with a $ are randomized, otherwise
they are deterministic. If Conjecture 1 holds then OslpT, S,Nq P Op

a

ST {Nq. Bounds
are for INDR security. S is the memory bound of the adversary, T is the number of
blocks encrypted, and N is the domain size of the family of functions.

answer even under a conjecture – moreover, the reduction to this conjecture
is highly non-trivial, and a failure of the conjecture is likely to only minimally
impact this bound.

We also show a bound of Op
a

ST`{Nq for randomized CTR$ based on a
pseudorandom function (PRF), where ` is a bound on the number of blocks
per encrypted message. This result does not need any conjecture, beyond PRF
security. For the case ` “ 1, we show that under the aforementioned conjecture,
the result holds when the scheme is based on a PRP, instead of a PRF.

An overview of our results for encryptions schemes is given in Figure 1. We
discuss them in more detail below, but first address an important piece of recent
related work.

Related work. It is worth noting that our work complements a recent paper
by Tessaro and Thiruvengadam [25]. Their goal are schemes with security as high
as possible, well beyond 2n (where n is the block length of the cipher), provided
the cipher is secure enough (e.g., it has a long key), and adversarial memory is
bounded. In their work, neither tightness nor practical efficiency is a concern.
Here, in contrast, we focus on tightness for simple, deployed cryptography. As
a result of this, we end up facing different, and somewhat more technically
challenging problems.

A framework: Streaming indistinguishability. The common denomina-
tor of our security proofs is that they reduce to a new, yet natural, setting of
memory-bounded streaming algorithms which we refer to as streaming indis-
tinguishability. In essence, a memory-bounded algorithm A is given access, one
value at a time, to one of two streams

X1, X2, . . . or Y1, Y2, . . . ,

with different distributions. The goal is to distinguish them.
To the best of our knowledge, the existing literature on streaming algorithms

does not consider this problem explicitly. Rather, the focus is mostly on worst-
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case complexity (we care about average-case), and search problems. However,
one can cast classical problems like building PRGs against space-bounded read-
once branching programs (cf. e.g. [21]), as a special case of this setting, where
the Xi’s are the output bits of the PRG and the Yi’s are random bits.

The Switching Lemma.Let us first address our generalized Switching Lemma.
It is well known that the advantage of a T -query distinguisher A trying to tell
apart a truly random permutation P from a truly random function F (both from
n bits to n bits) is at most T 2{N , which is tight. Also, an optimal distinguisher
making T «

?
N can be implemented to only use S !

?
N bits, e.g., with

the help of a memory-less collision-finding algorithms (e.g., using Pollard’s ρ-
method [23,24]). One uses the fact that when accessing P , the algorithm will
never succeed in finding a collision.

One observation, however, is that in many useful scenarios, the resulting A
never queries the same input twice and it is not hard to see that any memory-less
collision-finding strategy will query the same input twice.

We show that, assuming the validity of a conjecture we explain next, under
non-repeating queries, the Switching Lemma indeed holds with a tradeoff of the
form SˆT “ N . In fact, we prove a more general (and also fundamental) state-
ment about the advantage of distinguishing two streams: The first, X1, X2, . . .
samples n-bit values with replacement, the second, Y1, Y2, . . ., without.

A conjecture. A proof of a non-trivial bound appears out of reach. Instead,
we give a proof that relies on a (plausible) combinatorial conjecture involving
hypergraphs.

Recall that a k-hypergraph with N vertices is a collection H “ te1, . . . , emu,
where the ei’s are distinct size-k subsets of rN s “ t1, 2, . . . , Nu. The degree dHpiq
of i P rN s is the number of ej ’s such that i P ej . Then, we look at the maximum
D2pmq, over all m-edge hypergraphs H, of the function

D2pHq “
N
ÿ

i“1

dHpiq
2 .

Estimating D2pmq is challenging: The only known upper bound [9] is loose, and
the general question is believed to be out of reach [16]. This is because degree
sequences of hypergraphs are poorly understood, even more so when restricted
to m edges. Only for the special case of graphs (i.e., k “ 2) is the question well
understood (cf. e.g. [14,10,20,1]), though far from trivial.

Our conjecture will be on the value of D2pmq when k ą N{2 for specific
values of m. We will assume in particular that if m “

`

A
k

˘

, then the complete
hypergraph containing all k-element subsets of t1, . . . , Au achieves D2pmq. We
stress that even a slight relaxation of this conjecture would only affect our proof
slightly.

Randomized counter mode. The above switching lemma for distinct inputs
only applies to stateful schemes. Let us look now instead at randomized CTR$
described above and, for simplicity, let us assume that we encrypt single-block
plaintexts. Assuming the underlying block cipher is a PRF, the resulting security
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game can again be cast as a streaming (in)distinguishability setting with

Xi “ pRi, Ziq , Yi “ pRi, F pRiqq ,

where F is a random function from n bits to n bits and the Ri, Zi’s are random,
independent n-bit strings. We will show a bound of Op

a

ST {Nq. Interesting,
once cast in the right language, the proof is fairly elementary and uses only
simple properties of Shannon entropies – what is novel here is the usage of these
tools to prove the security of symmetric cryptography, and the fact that they
are robust to dealing with memory restrictions.

In practice, of course, F is more likely to be a permutation, as it is built
from a block cipher. However, our proof techniques seems not to extend directly
to random permutations. We also cannot apply the Switching Lemma directly,
because Ri’s will not be distinct.

We will however do something different – we will apply the streaming indis-
tinguishability result underlying the Switching Lemma to the Ri’s first, telling
us they can be replaced by random, distinct ones when encrypting single-block
plaintexts. This will allow us to ultimately to replace F with a permutation –
again by the Switching Lemma – but for a concrete bound, we will need to resort,
again to our conjecture. (This can be thought, more generally, as extending the
Switching Lemma to the case of random inputs.)

We could of course build a beyond-birthday secure PRF from a block cipher
directly, e.g., using the xor construction [7,22,12], but this would require two
block-cipher calls per block, or Iwata’s CENC [17,18] for better amortized effi-
ciency. We note that we also apply these techniques to analyze the confidentiality
of Encrypt-then-PRF.

Outline of this paper. Section 2 introduces notation and provides necessary
information theoretic and cryptographic background. Section 3.1 introduces our
general streaming setting. Section 3.2 and Section 4.1 introduce our main stream-
ing theorems which are proven in Section 3.3 and Section 4.2, respectively. In
Section 3.4 and Section 4.3 we apply these respective theorems to cryptographic
reductions. We emphasize that while the analysis in Section 3 requires a conjec-
ture, the results of Section 4 are unconditional.

2 Definitions

Let N “ t0, 1, 2, . . . u. For N P N let rN s “ t1, 2, . . . , Nu. If S and S1 are finite
sets, then FcspS, S1q denotes the set of all functions F : S Ñ S1 and PermpSq
denotes the set of all permutations on S. The set of size k subsets of S is

`

S
k

˘

.
Picking an element uniformly at random from S and assigning it to s is denoted

by s
$
Ð S. The set of finite vectors with entries in S is pSq˚ or S˚. Thus t0, 1u˚

is the set of finite length strings.
If M P t0, 1u˚ is a string, then |M | denotes its bitlenth. If m P N and

M P pt0, 1umq˚, then |M |m “ |M |{m denotes the blocklength of M and Mi

denote the i-th m-bit block of M . When using the latter notation, m will be
clear from context. The empty string is ε.
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Algorithms are randomized when not specified otherwise. If A is an algo-
rithm, then y Ð AO1,...px1, . . . ; rq denotes running A on inputs x1, . . . and

coins r with access to oracles O1, . . . to produce output y. The notation y
$
Ð

AO1,...px1, . . . q denotes picking r at random then running y Ð AO1,...px1, . . . ; rq.
The set of all possible outputs of A when run with inputs x1, . . . is rApx1, . . . qs.
Adversaries and distinguishers are algorithms. The notation y Ð Opx1, . . . q is
used for calling oracle O with inputs x1, . . . and assigning its output to y (even
if the value assigned to y is not deterministically chosen).

Our cryptographic reductions will use pseudocode games (inspired by the
code-based framework of [8]). See Fig. 2 for some example games. We let Pr rGs
denote the probability that game G outputs true. The model underlying this
pseudocode is the following formalism

2.1 Model of computation

Computational Model.Our model is based on those of [2,3,25]. We consider
a space-bounded adversary interacting with an oracle O.

The interaction between an adversary and oracle occurs over q stages. In the
i-th stage, the adversary deterministically computes, as a function of the state
σi´1 and stage number i, a query xi to O.3 Then the adversary is give yi “ Opxiq
(with the same inputs as before) based on which it computes the next state σi.
The state σ0 is fixed and defined by A. The final output of A is σq. In code, stage

i behaves as follows, Stage i: xi Ð Api, σi´1q; yi Ð Opxiq; σi
$
Ð Api, σi´1, yiq.

Complexity Measures. An adversary A is S-bounded if |σi| ď S holds for all
i. The running time of A is T if it queries at most T bits to its oracle. These
complexity measures do not count the local state or time used by A during
a round. This strengthens our main proofs which are information theoretic in
nature and only require that the states σi and T are bounded in size.

Our applications of these main proofs will involve cryptographic reductions.
These complexity measures are not appropriate for this because they could hide
a weakness in a reduction that “cheats” by using much more local state or
computation time during a round. None of our reductions have such a weakness
so we leave reduction efficiency claims informal. See [4] for discussion of what
conventions should be used for measuring the memory complexity of a reduction.
Our reductions are given via explicit pseudocode so their complexity with respect
to particular conventions can easily be extracted.

2.2 Information-theoretic preliminaries

Entropies and KL-divergence. For probability distributions P,Q : X Ñ

r0, 1s where Qpxq ą 0 for all x P X , the Shannon and collision entropies are

HpP q “ ´
ÿ

xPX
P pxq logpP pxqq and H2pP q “ ´ log

˜

ÿ

xPX
P pxq2

¸

.

3 We insist on this computation being deterministic for convenience and because we
can think of xi having been included as part of σi´1.
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Statistical distance and KL-divergence are defined by

SDpP,Qq “
1

2

ÿ

xPX
|P pxq ´Qpxq| and KLpP }Qq “

ÿ

xPX
P pxq log

ˆ

P pxq

Qpxq

˙

.

Pinsker’s inequality says that SDpP,Qq ď
a

KLpP }Qq{2.
As usual, for two random variables X and Y with distributions PX and PY ,

we write KLpX}Y q for KLpPX}PY q (and the analogous notation for H and H2).

Lemma 1. Let X,Y be random variables with range X with Pr rX “ xs ą 0 for
all x P X . Let F : X Ñ t0, 1u˚ be a (possibly randomized) function. Then,

KLpF pXq}F pY qq ď KLpX}Y q .

Proof. For compactness, denote PZpxq “ Pr rZ “ xs for any random variable Z.
First, we note that we can consider without loss of generality deterministic F ’s.
Indeed, by convexity (cf. e.g. [11]),

KLpF pXq}F pY qq ď
ÿ

f

Pr rF “ f s ¨ KLpfpXq}fpY qq .

Now fix a function f : X Ñ t0, 1u˚. From the log-sum inequality we obtain

KLpF pXq}F pY qq “
ÿ

z

PF pXqpzq log

ˆ

PF pXqpzq

PF pY qpzq

˙

“
ÿ

z

¨

˝

ÿ

xPf´1pzq

PXpxq

˛

‚¨ log

˜

ř

xPf´1pzq PXpxq
ř

xPf´1pzq PY pxq

¸

ď
ÿ

z

ÿ

xPf´1pzq

PXpxq log

ˆ

PXpxq

PY pxq

˙

“
ÿ

xPX
PXpxq log

ˆ

PXpxq

PY pxq

˙

.

The last equality follows because every x is the pre-image of exactly one z. [\

2.3 Cryptographic preliminaries

Family of functions. A family of functions F specifies algorithms F.K and
F.Ev (where the latter of these is deterministic) and sets F.Dom and F.Rng.
Key generation algorithm F.K takes no input and outputs a key K. Evaluation
algorithm takes as input key K and X P F.Dom to return Y P F.Rng. We write

K
$
Ð F.K and Y Ð F.EvpK,Xq.
A blockcipher is a family of functions F for which F.Dom “ F.Rng and for all

K P rF.Ks the function F.EvpK, ¨q is a permutation with inverse F.InvpK, ¨q.
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Game Gprf
F,bpAq

K
$
Ð F.K

F
$
Ð FcspF.Dom,F.Rngq

b1
$
Ð ARor

Return b1 “ 1

RorpXq
Y1 Ð F.EvpK,Xq
Y0 Ð F pXq
Return Yb

Game Gprp
F,bpAq

K
$
Ð F.K

P
$
Ð PermpF.Domq

b1
$
Ð ARor

Return b1 “ 1

RorpXq
Y1 Ð F.EvpK,Xq
Y0 Ð P pXq
Return Yb

Game Gindr
SE,bpAq

σ
$
Ð SE.Sg

b1
$
Ð AEnc

Return b1 “ 1

EncpMq
pσ,C1q Ð SE.Epσ,Mq

C0
$
Ð t0, 1u|M |`SE.xl

Return Cb

Fig. 2. Security games for PRF/PRP security of a family of functions (Left/Middle)
and INDR security of an encryption scheme (Right).

Pseudorandomness security. For security we will consider both pseudoran-
dom function (PRF) and pseudorandom permutation (PRP) security.

Let F be a family of functions. PRF security requires that F.EvpK, ¨q looks
like a truly random function to somebody who does not know K. Consider the
game Gprf

F,bpAq shown on the left side of Figure 2. It it parameterized by F, a bit
b P t0, 1u, and an adversary. The adverasry is given access to an oracle Ror
which on input X either returns F applied to X (b “ 1) or the output of a
random function on X (b “ 0). The advantage of A against F is defined by

AdvprfF pAq “ PrrGprf
F,1pAqs ´ PrrGprf

F,0pAqs.
PRP security of a blockcipher F is defined analogously by the game Gprp

F,bpAq
shown in the middle of Figure 2. This is essentially the same except the random
function F P FcspF.Dom,F.Rngq has been replaced by a random permutation
P P PermpF.Domq. The advantage of A against F is defined by AdvprpF pAq “
PrrGprp

F,1pAqs ´ PrrGprp
F,0pAqs.

Symmetric encryption. A symmetric encryption scheme SE specifies algo-
rithms SE.Sg, SE.E, and SE.D (where the last of these is deterministic) and set
SE.M. State generation algorithm takes no input and outputs state σ which will
be used as the initial encryption state σe and decryption state σd. Encryption
algorithm SE.E takes as input σe and message M P SE.M. It outputs updated
state σe and ciphertext C. We assume there exists a constant expansion length
SE.xl P N such that |C| “ |M |`SE.xl. Decryption algorithm SE.D takes as input
σd and ciphertext C. It outputs updated state σd and M P SE.M Y tKu. We

write σ
$
Ð SE.Sg, pσe, Cq

$
Ð SE.Epσe,Mq, and pσd,Mq Ð SE.Dpσd, Cq.

Correctness requires for all states σe0 “ σd0 P rSE.Sgs and all sequences of
messages M P pSE.Mq˚ that Prr@i : M i “ M 1

is “ 1 where the probability is

over the coins of encryption in the operations pσei ,Ciq
$
Ð SE.Epσei´1,M iq and

pσdi ,M
1
iq Ð SE.Dpσdi´1,Ciq for i “ 1, . . . , |M |.

This non-standard syntax is used to simultaneously capture stateful deter-
ministic encryption and stateless probabilistic encryption. For the first of these
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SE.E is a deterministic algorithm. For the latter, σe and σd are equal to some
key K which is never updated.

Encryption security. For security we will require that the output of encryp-
tion look like a random string. Consider the game Gindr

SE,bpAq shown on the right
side of Figure 2. It is parameterized by a symmetric encryption scheme SE, ad-
versary A, and bit b P t0, 1u. The adversary is given access to an oracle Enc
which, on input a message M , returns either the encryption of that message or
a random string of the appropriate length according to the secret bit b. The ad-
vantage of A against SE is defined by AdvindrSE pAq “ PrrGindr

SE,1pAqs ´PrrGindr
SE,0pAqs.

3 The Switching Lemma

How hard is it for a memory-bounded distinguisher to tell apart a random func-
tion from a random permutation rN s Ñ rN s? It is easy to do so in a near-
memory-less strategy with roughly

?
N queries, where N is the domain size:

The distinguisher, given access to an oracle rN s Ñ rN s, mounts a classical
memory-less collision finding attack – if the attack succeeds, the distinguisher is
highly certain it is interacting with a random function.

However, this attack requires querying the random function at the same point
twice. It is not clear if a distinguisher which never repeats a query can still suc-
ceed with low memory and roughly

?
N queries. We will show that it cannot.

This boils down to bounding how well a memory-bounded can distinguish be-
tween a sequence of random values and a sequence of random values without
repetition.

3.1 Streaming Indistinguishability

We consider a streaming setting, where a sequence of random variables

X1, X2, . . . , Xq

with range rN s is given, one by one, to a (memory-bounded) distinguisher A,
which is otherwise computationally unbounded. The distinguisher will need to
tell apart this setting from another one, where it is given pY1, Y2, . . . , Yqq instead.
We are interested in its distinguishing advantage. This is a very natural setting,
but we are not aware of this having been considered explicitly.

The streaming model. More formally, in the i-th step (for i P rqs), the dis-
tinguisher A has a state σi´1 and stage number i. Then it asks for the value
Vi P tXi, Yiu based on which it updates its state to σi. We write for notational
convenience Api, σi´1, Viq “ σi, noting that this mapping can be randomized.
We denote in particular Σ0, Σ1, . . . , Σq the states during the execution with Xq

and Γ0, Γ1, . . . , Γq the states during the execution with Y q. Here Σ0 “ Γ0 is some
a priori fixed value. For the final state (Σq or Γq) A outputs a bit, which we
denote by ApXqq and ApY qq, respectively, and we are interested in its advantage

AdvdistXq,Y q pAq “ Pr rApXqq ñ 1s ´ Pr rApY qq ñ 1s .
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It will sometime be convenient to think of this as an interaction between A
and an oracle Samp which returns Vi’s according to one of these distributions

(written as b
$
Ð ASamp).

We will use the following lemma below, for the case where the Xi’s are
individually uniformly distributed.

Lemma 2. Let Xq “ X1, . . . , Xq be independent and uniformly distributed.
Then for any Y q “ Y1, . . . , Yq,

AdvdistXq,Y q pAq ď
1
?

2

g

f

f

eq logN ´
q
ÿ

i“1

HpYi | Γi´1q .

Proof. Since the final output bit is Σq and Γq, respectively, we can always upper
bound the advantage by the statistical distance of these states, i.e.,

AdvdistXq,Y q pAq ď SDpΣq, Γqq “ SDpΓq, Σqq .

We will work in the regime of KL-divergence, and thus we also have

AdvdistXq,Y q pAq ď
1
?

2

b

KLpΓq}Σqq .

We note now that for all i P rqs, by Lemma 1,

KLpΓi}Σiq “ KLpApi, Γi´1, Yiq}Api, Σi´1, Xiqq ď KLppΓi´1, Yiq}pΣi´1, Xiqq .

Write P ps, xq “ Pr rpΣi´1, Xiq “ ps, xqs, P psq “ Pr rΣi´1 “ ss and P px|sq “
Pr

“

Xi “ x
ˇ

ˇΣi´1 “ s
‰

. Also define analogously Qps, xq, Qpsq and Qpx|sq replac-
ing pΣi´1, Xiq with pΓi´1, Yiq. Then,

KLppΓi´1, Yiq}pΣi´1, Xiqq “
ÿ

s,x

Qps, xq log

ˆ

Qps, xq

P ps, xq

˙

“
ÿ

s,x

Qps, xq log

ˆ

Qpsq

P psq

˙

`
ÿ

s,x

Qps, xq log

ˆ

Qpx|sq

P px|sq

˙

“ KLpΓi´1 } Σi´1q ` logN ´
ÿ

s

Qpsq log

ˆ

1

Qpx|sq

˙

“ KLpΓi´1 } Σi´1q ` logN ´ HpYi | Γi´1q .

Therefore, KLpΓq | Sqq ď KLpΓ0 } S0q ` q logN ´
řq
i“1 HpYi } Γi´1q, and the

lemma follows since KLpΓ0 } S0q “ 0. [\

3.2 Sampling with and without replacement

Consider the streaming indistinguishability of the following natural distributions:
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- Sampling with replacement. In the distribution Xq “ pX1, X2, . . . , Xqq

the Xi’s are independent and uniformly distributed over rN s.

- Sampling without replacement. In the distribution Y q “ pY1, . . . , Yqq
the Yi’s are sampled uniformly without repetition from rN s (thus q ď N).

We want to upper bound the advantage in distinguishing these two streams for
a memory-bounded distinguisher A which receives these values one by one. We
are going to show a time-memory trade-off for any distinguisher A, assuming
a conjecture that we now state. We will discuss the conjecture (and why this
requires a conjecture) later in Section 3.5.

A conjecture on hypergraphs. A k-uniform simple hypergraph (or hence-
forth, simply, a k-hypergraph) with N vertices and m edges is a collection
H “ te1, e2, . . . , emu of distinct subsets ei Ď rN s, each of size k. Conventional
graphs correspond to the case k “ 2. The degree dHpiq of a vertex i P rN s is

dHpiq “ |tj P rms : i P eju| ,

i.e., the number of edges ej containing i. By a double-counting argument we

have
řN
i“1 dHpiq “ k ¨m. We will be interested in the following function of the

degrees of a hypergraph,

D2pHq “
N
ÿ

i“1

dHpiq
2 .

For example, if H is the complete k-hypergraph, i.e., it contains all
`

N
k

˘

possible

edges, dHpiq “
`

N´1
k´1

˘

for all i P rN s, and thus D2pHq “ N ¨
`

N´1
k´1

˘2
.

Let HN,kpmq be the set of all k-hypergraphs with N vertices and m edges.
We define in particular,

D2
N,kpmq “ max

HPHN,kpmq
D2pHq .

The behavior of D2
N,2pmq is fully characterized by a series of papers [14,10,20,1].

However, very little is known about D2
N,kpmq for general k. We will need the

following conjecture.

Conjecture 1 (Main conjecture). Let k ą N{2 and assume further that m “
`

A
k

˘

for some A ě k. Then, the graph H “ te1, ..., emu, where e1, . . . , em are all size
k subsets of t1, . . . , Au, maximizes D2

N,kpmq.

We refer the reader to Section 3.5 for an in-depth discussion of why we believe
Conjecture 1 to be true, and why it is however hard to provide a full proof. We
stress however that even weaker form of the conjecture (e.g., assuming that
D2
N,kpmq is at most p1 ` 1{kq higher than the value achieved by the complete

H) would not invalidate our bound below. Weakening even further would also
simply result in a somewhat weaker bound.

11



Indistinguishability. We are going to now prove the following theorem.

Theorem 1. Let N be given, q ă N{2, and 20 logpeq ď S ď N{4. Further, let
Xq be sampled with replacement and Y q be sampled without replacement from
rN s. Then, if Conjecture 1 holds, for every S-bounded distinguisher A, we have

AdvdistXq,Y q pAq ď
c

S ¨ q

N
.

Let Oslpq, S,Nq denote the best possible advantage over all S-bounded adver-
saries. The above result tells us that Osl P Op

a

S ¨ q{Nq. For the sake of gener-
ality our results which use Theorem 1 are stated in terms of Osl.

3.3 Proof of Theorem 1

We are going to use Lemma 2, and therefore we are going to be concerned solely
with showing a lower bound on HpYi } Γi´1q for all i P rqs. This involves in
particular a random experiment where (1) Y1, . . . , Yi are sampled, and (2) the
state Γi´1 is going to be produced, as a function of Y1, . . . , Yi´1 only (which
however, also of course depend on Yi by being distinct from it).

Intermediate experiment. We note that in the actual random experiment
A has, when outputting Γi´1, information about Y1, . . . , Yi´1 which is poten-
tially incomplete, especially if Γi´2 does not allow completely to remember
Y1, . . . , Yi´2, and so on. As a first simplification, we will remove this, and allow
an adversary full information about Y1, . . . , Yi´1 when attempting to produce a
state Γi´1 with the sole intent of making HpYi | Γi´1q as small as possible. A
second simplification is that, intuitively, the only information Y1, . . . , Yi´1 give
about Yi is its range, i.e., the set of values Yi can take.

In particular, for an adversary B, consider the following experiment, produc-
ing variables pYi, Γi´1q:

- Sample Y $
Ð

`

rNs
N´i`1

˘

- Let Γi´1
$
Ð BpYq

- Yi
$
Ð Y

- Return pYi, Γi´1q

The additional constraint here is that |Γi´1| ď S. Define now HipBq “ HpYi | Γi´1q.
We will show the following.

Lemma 3. For all i, and S-bounded adversary A, there exists a deterministic
B outputting at most S bits such that

HpYi | Γi´1q ě HipBq ,

where HpYi | Γi´1q is with respect to the original experiment.

12



Proof. We first build a randomized adversary A1 which given Y first samples
a random shuffling Y1, . . . , Yi´1 of the i ´ 1 elements not in Y, and then runs
A over i ´ 1 rounds feeding Y1, . . . , Yi´1 to it, to produce Γi´1, which is then
output by A1. Clearly, by construction, HpYi | Γi´1q “ HipBq.

To make B deterministic, let R be the random coins used by A1, and observe
that

HpYi | Γi´1q ě HpYi | Γi´1, Rq “ E
r

$
ÐR

rHpYi | Γi´1, R “ rqs .

Define B by fixing the coins of A1 to those minimizing HpYi | Γi´1, R “ rq. [\

Collision entropy and probabilities.We take an extra final step to simplify
our lower bound, and its connection with Conjecture 1. Namely, we will lower
bound

Hi2pBq “ E
γ

$
ÐΓi´1

rH2pYi | Γi´1 “ γqs

since clearly HipBq ě Hi2pBq. Also define

CollipBq “ E
γ

$
ÐΓi´1

«

ÿ

y

Pr
“

Yi “ y
ˇ

ˇΓi´1 “ γ
‰2

ff

.

We note here that by Jensen’s inequality,

Hi2pBq “ E
γ

$
ÐΓi´1

«

´ log

˜

ÿ

y

Pr
“

Yi “ y
ˇ

ˇΓi´1 “ γ
‰2

¸ff

ě ´ logCollipBq ,

because x ÞÑ ´ logpxq is a convex function. Therefore, the rest of the section will
be devoted to proving an upper bound for CollipBq. Specifically, we show:

Lemma 4. For all adversaries B outputting at most S bits, if Conjecture 1 is
true,

CollipBq ď
ˆ

1`
2

N

˙

¨
1

N ´ S
.

Before we turn to a proof, let us see how this implies the desired result. First
off, it immediately implies by the above

HpYi | Γi´1q ě ´ logCollipBq

ě ´ log

ˆ

1`
2

N

˙

` logpN ´ Sq

“ ´ log

ˆ

1`
2

N

˙

` logpNq ` log

ˆ

1´
S

N

˙

.

Now note that logp1`xq ď logpexq “ x logpeq. On the other hand, using the fact
that x “ S{N ď 0.25, we have

logp1´ xq “
1

ln 2
lnp1´ xq ě

1

ln 2

`

´x´ x2{2´ x3{2
˘

ě
´21x

16 ln 2
ě ´1.9x

13



Plugging in gives,

q
ÿ

i“1

HpYi | Γi´1q ě q

ˆ

´
2 logpeq

N
` logpNq ´

1.9S

N

˙

.

Then using Lemma 2 we can complete the proof via

AdvdistXq,Y q pAq ď
1
?

2

g

f

f

eq logN ´
q
ÿ

i“1

HpYi | Γiq

ď
1
?

2

d

q

ˆ

2 logpeq

N
`

1.9S

N

˙

ď
1
?

2

d

q

ˆ

0.1S

N
`

1.9S

N

˙

“

c

S ¨ q

N
.

Proof of Lemma 4.We first introduce some more notation. For a k-hypergraph
H “ te1, . . . , emu with vertex set rN s where k :“ N ´ i` 1, consider the distri-
bution pH which samples a y P rN s by first picking a random edge ei, and then
letting y be a random element of the set. In particular, pHpyq “ dHpyq{m ¨ k.
We also define

CollpHq “
ÿ

y

pHpyq
2 “

1

m2k2
D2pHq .

Also, let CollN,kpmq “ maxHPHN,kpmq CollpHq.
Note now that B assigns sets of size k to every S-bit output γ. For a given

γ, we can think of the sets assigned to it as a k-hypergraph, which we denote
B´1pγq. Letting mγ denote the number of edges in B´1pγq (and thus

ř

γmγ “
`

N
k

˘

), we have

CollpBq “ 1
`

N
k

˘

ÿ

γPt0,1uS

mγ ¨ CollpB´1pγqq ď
1

`

N
k

˘

ÿ

γPt0,1uS

mγ ¨ CollN,kpmγq . (1)

We are going to now maximize the right-hand-side of the above inequality over
all sets tmγuγPt0,1uS , where

ř

γmγ “
`

N
k

˘

, using Conjecture 1.4 We need the
following helping lemma, that CollN,kpmγq is a non-increasing function. Its proof
is deferred to the full version of this paper [19].

Lemma 5. For all m ě 1, CollN,kpm` 1q ď CollN,kpmq.

Unfortunately, the function CollN,kpmq is not “smooth”, due to its discrete
nature, making our maximization of the RHS of (1) difficult. We will now replace
it with a continous version without too much loss. Concretely, we define

AN,kpmq “
1

α
,

4 Note that applying this conjecture requires k ą N{2 which holds because k “
N ´ i` 1 ě N ´ q ` 1 ą N ´N{2` 1.
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where α P rk,N s is the (unique) real number such that
ˆ

α

k

˙

“
αpα´ 1q ¨ ¨ ¨ pα´ k ` 1q

k!
“ m .

We can now use the following lemma.

Lemma 6. Assume Conjecture 1. For all m P t1, 2, . . . ,
`

N
k

˘

u, we have

CollN,kpmq ď

ˆ

1`
1

k

˙

¨AN,kpmq .

Proof. Pick m, and let m0 ď m ď m1 such that m0 “
`

A
k

˘

and m1 “
`

A`1
k

˘

for
a natural number A ě k. Then, AN,kpmq “

1
α for some α P rA,A`1s, and using

Lemma 5 and Conjecture 1,

CollN,kpmq ď CollN,kpm0q “
1

A
“
α

A
AN,kpmq ď

1`A

A
AN,kpmq .

The claim follows, because 1`A
A ď 1` 1

k . [\

Therefore, we can now adapt this to (1) as

CollpBq ď
ˆ

1`
1

k

˙

1
`

N
k

˘

ÿ

γPt0,1uS

mγ ¨AN,kpmγq

“

ˆ

1`
1

k

˙

1
`

N
k

˘

ÿ

γPt0,1uS

BN,kpmγq ,

(2)

where BN,kpmq “ m ¨AN,kpmq. To conclude the proof, we use the following two
lemmas, whose proofs are deferred to the full version of this paper [19].

Lemma 7. The function BN,kpmq is concave.

Lemma 8. For N{2 ď k ď N ´ S, we have
`

N
k

˘

{2S ě
`

N´S
k

˘

.

Lemma 7 can now be applied to (2) to yield

CollpBq ď
ˆ

1`
1

k

˙

2S
`

N
k

˘

1

2S

ÿ

γPt0,1uS

BN,kpmγq

ď

ˆ

1`
1

k

˙

2S
`

N
k

˘BN,k

¨

˝

1

2S

ÿ

γPt0,1uS

mγ

˛

‚

“

ˆ

1`
1

k

˙

2S
`

N
k

˘BN,k

ˆˆ

N

k

˙

{2S
˙

“

ˆ

1`
1

k

˙

¨AN,k

ˆˆ

N

k

˙

{2S
˙

ď

ˆ

1`
1

k

˙

¨AN,k

ˆˆ

N ´ S

k

˙˙

“

ˆ

1`
1

k

˙

1

N ´ S
,

(3)

where for the last inequality we have used Lemma 8 and the fact that AN,kp¨q
is a non-increasing function.
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3.4 Application: The Switching Lemma and Counter-mode
encryption

The switching lemma.A classic result in cryptography is the switching lemma
which says roughly that for any blockcipher F and adversary A making at most

q oracle queries,
ˇ

ˇ

ˇ
AdvprfF pAq ´ AdvprpF pAq

ˇ

ˇ

ˇ
ă q2{N where N “ |F.Dom|. The stan-

dard proof works by bounding the ability of A to distinguish a random function
from a random permutation by analyzing the probability that the output of a
random function repeats. When A does not repeat its oracle queries we can
reduce this to the streaming problem we just analyzed this.

Lemma 9. Let F be a blockcipher with F.Dom “ rN s. Let A be an S-bounded
adversary which makes at most q non-repeating queries to its oracle. Then

|AdvprfF pAq ´ AdvprpF pAq| ď Oslpq, S,Nq .

If Conjecture 1 holds, then we can in turn bound Oslpq, S,Nq by
a

S ¨ q{N
using Theorem 1. This would make the bound (and others in the section) es-
sentially tight. If an attacker stores S outputs from its oracle, we expect it to
see one of these outputs again from a random function after T « N{S queries.
For a random permutation such a repeat is impossible. In the full version of this
paper [19] we provide the (simple) analysis for this attack.

Proof. Without loss of generality, assume that AdvdistXq,Y q pAq is positive. We claim

that PrrGprf
F,0pAqs “ Pr rApXqq ñ 1s and PrrGprp

F,0pAqs “ Pr rApY qq ñ 1s. Then
the following calculation establishes the result.

|AdvprfF pAq ´ AdvprpF pAq| “ |PrrG
prp
F,0pAqs ´ PrrGprf

F,0pAqs|
“ |Pr rApY qq ñ 1s ´ Pr rApXqq ñ 1s|

“ AdvdistXq,Y q pAq
ď Oslpq, S,Nq .

The first equality used that games Gprf
F,1pAq and Gprp

F.1pAq are identical. [\

Counter-mode encryption.Let F be a family of functions with F.Dom “ rN s
for some N P N and F.Rng “ t0, 1uF.ol for some F.ol P N. One classic example of
an encryption mode constructed using F is stateful counter-mode. Formally this
is the encryption scheme CTRrFs with CTRrFs.M “ pt0, 1uF.olq˚ and algorithms
defined as shown below.

CTRrFs.Sg

K
$
Ð F.K

Return p0,Kq

CTRrFs.Epσe,Mq

pi,Kq Ð σe

For j “ 0, . . . , |M |F.ol
Cj ÐMj ‘ F.EvpK, i` jq

iÐ i` |M |F.ol
Return ppi,Kq, Cq

CTRrFs.Dpσd, Cq

pi,Kq Ð σd

For j “ 0, . . . , |C|F.ol
Mj Ð Cj ‘ F.EvpK, i` jq

iÐ i` |C|F.ol
Return ppi,Kq,Mq
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Adversary ARor
prf

iÐ 0
b1

$
Ð ASimEnc

Return b1

SimEncpMq
C ÐM‘Rorpiq
iÐ i` 1
Return C

Fig. 3. Adversary for Theorem 2.

Here addition is mod N . It is trivial to show that if F is a good PRF then,
CTRrFs is a secure encryption scheme. Consider the following theorem. For sim-
plicity we focus on the case that the attacker queries only 1 block messages.

Theorem 2. Let F be given with F.Dom “ rN s and F.Rng “ t0, 1uF.ol. Let A be
an adversary making at most q ă N queries to its Enc oracle where each is F.ol
bits long. Then we can build an adversary Aprf (Fig. 3) such that

AdvindrCTRrFspAq “ AdvprfF pAprfq .

Adversary Aprf is roughly as efficient as A.

Proof. Let Aprf be the adversary shown in Fig. 3. It uses its Ror oracle to

simulate the view of A. We claim that PrrGindr
CTRrFs,1pAqs “ PrrGprf

F,1pAqs and

PrrGindr
CTRrFs,0pAqs “ PrrGprf

F,0pAqs from which the stated advantage relationship
follows. The former equality holds because in both A is seeing CTRrFs encryp-
tions of M . For the latter equality note that the total block-length of all of
A’s queries is less than N so the input to the random function will never
repeat. Consequently each value returned by Ror in Gprf

F,0pAq (and thus each
Cj “ Mj ‘Rorpi` jq) is a fresh random string. This is identical to the distri-

bution on C returned to A in Gindr
CTRrFs,0pAq.

The efficiency of Aprf can be verified by examining its pseudocode. [\

Suppose F is a blockcipher (where we identfy rN s with t0, 1uF.ol in the obvious

way). If q P Ωp
?
Nq, then we cannot generically hope that AdvprfF pAprfq is small

because an attacker with unbounded state can remember the outputs of F for
every query it made and check if they ever repeated. However, if S is op

?
Nq

then we can still meaningfully hope for security because Aprf cannot remember
ever query it made. In particular, by combining Thm. 2 and Lemma 9 we obtain
the following corollary.

Corollary 1. Let F be a blockcipher with F.Rng “ t0, 1uF.ol. Let A be an S-
bounded adversary making at most q ď 2F.ol queries to its Enc oracle each of
which are F.ol bits long. Then we can build an adversary Aprf (Fig. 3) such that

AdvindrCTRrFspAq ď AdvprpF pAprfq `Oslpq, S, 2
F.olq .

Adversary Aprf is roughly as efficient as A.
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Proving this requires only observing that Aprf is S-bounded. Examining the
code of Aprf it may seem like it needs to remember the counter i and M in
addition to the state of A. However, as per the computation model in Section 2.1,
the stage number is given to an adversary during each stage and the i-th message
Mi can be deterministically recomputed from A’s state σi´1.

Output-feedback mode encryption. In the full version of this paper [19] we
apply our streaming results to analyze the security of stateful output-feedback
mode. This mode starts with Y0 “ 0F.ol and the encrypts each Mi via Yi Ð
F.EvpK,Yi´1q; Ci ÐMi‘Yi where F is a blockcipher. The analysis of the mode
is more involved than the CTR$ analysis because we cannot a priori assume that
the inputs to F will not repeat.

The crux of the proofs lies in considering the streaming problem of distin-
guishing 1, F p1q, F pF p1qq, . . . from random where F is a random permutation
rN s Ñ rN s. This is exactly what arises from the standard reduction to replace
the PRF with a truly random function. In analyzing this streaming problem we
first bound the statistical distance between the stated distribution and sampling
without replacement. This gives a Opq{Nq term corresponding to the probability
that 1 is chosen as the output of F for any of first q samples in the distribution.
Having done this we can now simply apply a bound on the streaming problem we
have been studying in this section. Putting everything together, the reduction
from security of the encryption scheme to this new streaming problem is straight-
forward and gives a bound AdvindrOFBrFspAq “ AdvprpF pAprpq`Oslpq, S, 2

F.olq`4q{N .
Surprisingly, this result cannot hold for output-feedback mode with a PRF

instead of a PRP. In the full version of this paper [19] we note a low memory
attack that with high success probability when the number of encrypted blocks
is Ωp

?
Nq. The critical difference allowing this attack is that random functions

have much shorter cycle lengths than random permutations. The importance of
cycle lengths for OFB was first noted by Davies and Parkin [13].

Nonce-based encryption. A standard way of constructing nonce-based en-
cryption from a randomized encryption scheme is to apply a PRF to the nonce
to obtain coins for the underlying encryption scheme. Because nonce repetitions
are disallowed in the most basic security definitions for nonce-based encryption
we can use Lemma 9 to replace the PRF with a PRP. The proof of this is
straightforward and we omit a formalization.

3.5 Validity of Conjecture 1

We now discuss conjecture 1. First off, we point out that the problem is well
understood for the case of graphs, that correspond to k “ 2.

Additionally, note that the conjecture is not true for all k. For example, take
k “ 2, m “

`

4
2

˘

“ 6 and N ě 7. The complete graph over 4 vertices gives
D2pK4q “ 4 ˆ 9 “ 36. Yet the star S6 with edges t1, 2u, t1, 3u, . . . , t1, 7u has
D2pS6q “ 62 ` 6ˆ 1 “ 42. In fact, one can show that S6 is optimal (see below).

The case k ą N{2. However, this is different for k ą N{2, and we briefly
explain the intuition, by giving an equivalent formulation of our conjecture.
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The first observation here is that for any k-hypergraph H “ te1, . . . , emu, we
can define its complement as the pN ´ kq-hypergraph H 1 “ te11, . . . , e

1
mu, where

e1i “ rN szei. Now, note that

D2pHq “
N
ÿ

i“1

dHpiq
2 “

N
ÿ

i“1

pm´ dH1piqq
2

“ N ¨m2 ´ 2m ¨
N
ÿ

i“1

dH1piq `
N
ÿ

i“1

dH1piq
2

“ N ¨m2 ´ 2m2pN ´ kq `D2pH 1q .

This in particular implies directly the following: H maximizes D2pHq over k-
hypergraphs with m edges iff H 1 maximizes D2pH 1q over pN ´ kq-hypergraphs
with m edges.

In general, if m “
`

A
k

˘

for N{2 ă k ď A ď N , then our conjecture says that
the complete k-hypergraph over rAs, denoted KA,k, maximizes D2pHq. We note
that the complement of KA,k is (isomorphic to) SN,N´A,N´k, where SN,R,k1 for
k1 ą R is the k1-hypergraph with edges

t1, . . . , Ru Y e ,

and e is any subset of size k1 ´ R of tR ` 1, . . . , Nu. Our conjecture is then
equivalent to the statement that for any k1 ă N{2 and m “

`

A
N´k1

˘

, the graph

H “ SN,R,k1 for R “ N ´A maximizes D2pHq.

Example 1. The conjecture is easily seen to be true for k “ N ´ 2, and we are
given m “

`

N´1
N´2

˘

edges (this is the only non-trivial m). Then, k1 “ 2, and thus
SN,N´A,N´k “ SN,1,2 “ SN , the graph which contains exactly all edges ti,Nu
for i P rN ´ 1s.

Now, we can see that H “ SN maximizes D2pHq. This is because for any
k1-hypergraph H “ pe1, . . . , emq, let v1, . . . ,vm P t0, 1uN be the characteristic
vectors of the edges, then

D2pHq “

˜

m
ÿ

i“1

vi

¸T ˜

m
ÿ

i“1

vi

¸

“

m
ÿ

i“1

vTi vi ` 2
ÿ

i,j

vTi vj

“ m ¨ k1 ` 2
ÿ

i,j

|ei X ej | .

Clearly, for edges of size k1 “ 2, |ei X ej | is at most 1, and SN has the property
that it is exactly one for any i ‰ j.

The above example, showing the optimality of one simple special case, also
shows our intuition. Namely, to maximize m ¨ k1 ` 2

ř

i,j |ei X ej |, we make ev-
ery pair of vertices share the highest number of possible vertices, i.e., N ´ A.
The number of edges then exactly corresponds to the completion of all edges
consisting of all subsets of size A of the remaining vertices.
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Dual graph. We can repeat an analogous analysis of the dual graph of H “

te1, . . . , emu. We define this to be the k-hypergraph H “
`

rNs
k

˘

zH. Now, note
that

D2pHq “
N
ÿ

i“1

dHpiq
2 “

N
ÿ

i“1

ˆˆ

N

k

˙

´ dH1piq

˙2

“ N ¨

ˆ

N

k

˙2

´ 2

ˆ

N

k

˙2

pN ´ kq `D2pH 1q .

This implies that H maximizes D2pHq over k-hypergraphs with m edges iff H 1

maximizes D2pH 1q over k-hypergraphs with
`

N
k

˘

´m edges.
The complement of a k-hypergraph KA,k is isomorphic to ZN,N´A,k, where

ZN,R,k is the k-hypergraph with all edges e P
`

rNs
k

˘

such that

t1, . . . , Ru X e ‰ H .

Our conjecture is then equivalent to the statement that for any k ą N{2 and
m “

`

A
k

˘

, the graph H “ ZN,R,k for R “ N ´ A maximizes D2pHq. Note
when k “ 2, the only S graphs are isomorphic to SN,1,2 “ ZN,1,2. Furthermore,
when k “ 2 for an appropriate generalization of complete graphs and Z graphs
(covering when they do not “fits” perfectly for a given m) D2pHq is always
maximized by a complete or Z graph.

Complete, S, and Z graphs are very natural ways to try to “pack” a hy-
pergraph. Complete graphs create a uniform packing over a subset of the nodes
with no overflow. Both S and Z graphs create very biased packings by making a
small subset of the nodes have particularly high degree at the expense of a long
tail of nodes that have low, but non-zero degree.

Why proving it is hard? One reason why proving the conjecture is hard is
that we are maximizing a function over degree sequences pd1, . . . , dN q of hyper-
graphs. The structure of this set is however not well understood, even when
dropping the restriction that we must have exactly m edges.

4 Randomized Encryption

The general streaming setting introduced in Section 3.1 can be used to derive
time-memory tradeoff bounds for other encryption schemes by considering other
distributions for Xq and Y q. In this section we study randomized stateless en-
cryption schemes (the only state is an unchanging secret key K). Our main pos-
itive result is for randomized counter-mode (CTR$) with a good PRF. Towards
this we start by (in Section 4.1) specifying the necessary streaming distribution
for analyzing CTR$. Analyzing this requires different techniques than those used
in Section 3.3 and is done unconditionally (i.e. we do not rely on Conjecture 1).

Note that, unlike in the case of stateful counter-mode, security with a PRF
is not trivial because the input to the function may repeat across different en-
cryption queries. We show a Op

a

Spq{Nq bound on the adversary’s advantage
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where p is the length of the messages encrypted and q is the number of messages.
Note that the running time of an adversary, T , upper bounds p ¨ q.

Beyond this we show a generic “switching lemma” between two notions
of weak PRF security. In the first an adversary tries to distinguish between
pR,F.EvpK,Rqq and pR,F pRqq for randomly sampled R and F a random func-
tion rN s Ñ rN s. In the other notion, the latter distribution is replaced with
pR, Y q where Y is chosen at random. The latter of these is more useful for se-
curity, but the former is more plausible achieved with good bounds. We show
that there can be at most an Op

a

ST {Nq difference between an adversary’s ad-
vantage in these two games. As an example application of this result we note
this can be used to provide a time-memory tradeoff for the INDR security of the
Encrypt-then-PRF generic composition.

All of these bounds are essentially tight. If an attacker stores S input-output
examples for F, we expect it to see one of these inputs again (allowing it to
trivially distinguish from random) after T « N{S queries.

4.1 Streaming distributions for CTR$

Consider the streaming indistinguishability of the following two distributions.

- RandrN,M, p, qs. The distribution Xq “ pX1, X2, . . . , Xqq is such that the
Xi’s are independent and uniformly distributed over rN s ˆ rM sp.

- CTR$rN,F , p, qs. For the distribution Y q “ pY1, . . . , Yqq first a function F is
sampled at random from F . Then Yi “ pRi, F pRi`1q, . . . , F pRi`pqq where
Ri’s are are independent and uniformly distributed over rN s and addition is
modulo N .

To analyze CTR$ with a good PRF we will let F “ FcspN,Mq. Security with
a good PRP could be modeled by letting N “M and F “ PermpNq.

Indistinguishability. We are going to now prove the following theorem.

Theorem 3. Let N , M , p, q, and S be given such that p|N . Furthermore, let
Xq “ RandrN,M, p, qs and Y q “ CTR$rN,FcspN,Mq, p, qs. Then for every
S-bounded distinguisher A, we have

AdvdistXq,Y q pAq ď
1
?

2

c

S ¨ p ¨ q

N
.

Note that unlike Theorem 1 we prove this result uncategorically, without requir-
ing any conjectures.

For notational convenience we use bold-face to indicate vectors obtained by
adding 1 through p to some value. For example, if R P rN s we will let R “

pR` 1, . . . , R` pq. Further, we let F pRq “ pF pR` 1q, . . . , F pR` pqq.
In the proof we will use the chain rule which saysHpX,Y q “ HpX|Y q`HpY q.

We also use that HpX,Y | Zq ď HpX | Zq`HpY | Zq and HpXq ď logX where
X is the support of X with equality when X is uniformly distributed over X .
These are standard facts about entropy.
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4.2 Proof of Theorem 3

Associating the set rN s ˆ rM sp with rN ¨Mps we can use Lemma 2 to obtain a
bound of,

AdvdistXq,Y q pAq ď
1
?

2

g

f

f

eq logpN ¨Mpq ´

q
ÿ

i“1

HpYi | Γiq .

Therefore we are going to be concerned solely with showing a lower bound
on HpYi | Γiq for all i P rqs. Recall that Yi is the tuple pRi, F pRiqq. The chain
rule gives that HpYi | Γiq “ HpF pRiq | Ri, Γiq `HpRi | Γiq.

Note that Ri is independent of Γi and uniformly sampled from rN s so
HpRi | Γiq “ logN . Conditioning over all possible values of Ri gives

HpF pRiq | Ri, Γiq “ N´1 ¨
ÿ

rPrNs

HpF prq | Γi´1q .

Observe that because p divides N the vectors r can be divided into p different
partitions of rN s. That is for every j P rps,

Ů

kPrN{pstj`kp`1, . . . , j`kp`pu “

rN s. This observation allows us to continue our calculations as follows,

HpF pRiq | Ri, Γiq “ N´1 ¨
ÿ

jPrps

ÿ

kPrN{ps

HpF pj ` kpq | Γi´1q

ě N´1 ¨ p ¨HpF | Γi´1q

ě N´1 ¨ p ¨ pHpF q ´HpΓi´1qq

ě N´1 ¨ p ¨ pN logM ´ Sq .

Thence
q
ÿ

i“1

HpYi | Γiq “
q
ÿ

i“1

HpF pRiq | Ri, Γiq `HpRi | Γiq

ě

q
ÿ

i“1

N´1 ¨ p ¨ pN logM ´ Sq ` logN

“ q logpN ¨Mpq ´ Spq{N ,

from which the result follows. [\

4.3 Application: CTR$ with a PRF and Weak PRFs

Randomized counter-mode.We can use Theorem 3 to prove a security result
for randomized counter-mode encryption. Let F be a family of functions with
F.Dom “ rN s and F.Rng “ t0, 1uF.ol. Then randomized counter-mode with F is
the encryption scheme CTR$rFs with state generation algorithm CTR$rFs.Sg “
F.K, message space CTR$rFs.M “ pt0, 1uF.olq˚, and encryption/decryption algo-
rithms defined as shown below.
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Adversary ARor
prf

b1
$
Ð ASimEnc

Return b1

SimEncpMq

R
$
Ð rN s

For i “ 1, . . . , |M |F.ol do
Ci ÐMi ‘RorpR` iq

Return pR,Cq

Distinguisher ASamp
dist

b1
$
Ð ASimEnc

Return b1

SimEncpMq
pR, V1, . . . , Vpq Ð Samp
For i “ 1, . . . , |M |F.ol do
Ci ÐMi ‘ Vi

Return pR,Cq

Fig. 4. Adversary for Theorem 4.

CTR$rFs.EpK,Mq

R
$
Ð rN s

For i “ 1, . . . , |M |F.ol
Ci ÐMi ‘ F.EvpK,R` iq

Return pK, pR,Cqq

CTR$rFs.DpK, pR,Cqq

For i “ 1, . . . , |C|F.ol
Mi Ð Ci ‘ F.EvpK,R` iq

Return pK,Mq

Here R ` i is addition mod N . The standard security theorem for CTR$rFs
tells us (roughly) that given an adversary A making q oracle queries we can

construct a PRF adversary Aprf such that AdvindrSE pAq ď AdvprfF pAprfq ` p2q2{N .
Below is our theorem which takes space into account to provide a better bound
when the amount of space used is much less than pq.

Theorem 4. Let F be a family of functions with F.Dom “ rN s and F.Rng “
t0, 1uF.ol. Let A be an S-bounded adversary making at most q queries with lengths
at most p ¨ F.ol bits to its oracle. Assume p|N . Then we can build an adversary
Aprf (Fig. 4) such that

AdvindrCTR$rFspAq ď AdvprfF pAprfq `
1
?

2

c

S ¨ p ¨ q

N
.

Adversary Aprf is roughly as efficient as A.

Proof (of Theorem 4). Our proof begins with the PRF adversary Aprf on the
left side of Fig. 4. It simulates the view of A using its own oracle to provide A
with the encryption of messages. Similarly the distinguisher Adist shown on the
right side of Fig. 4 uses its sample oracle to simulate the view of A.

The claim on the efficiency of Aprf follow from examination of its code. Note
that distinguisher Adist is S-bounded because it only needs to store the state of
A during its oracle query (because M can be recomputed from this state).

We claim that the following equalities hold

(i) PrrGprf
F,1pAprfqs “ PrrGindr

CTR$rFs,1pAqs,
(ii) PrrGprf

F,0pAprfqs “ PrrAdistpY
qq ñ 1s,

(iii) PrrAdistpX
qq ñ 1s “ PrrGindr

CTR$rFs,0pAqs.
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Game Gwprf
F,b pAq

K
$
Ð F.K

F
$
Ð FcspF.Dom,F.Rngq

b1
$
Ð ARor

Return b1 “ 1

Rorpq

X
$
Ð F.Dom

Y1 Ð F.EvpK,Xq
Y0 Ð F pXq

Y´1
$
Ð F.Rng

Return pX,Ybq

Fig. 5. Games defining weak pseudorandom function security of a family of functions.

Here we let Xq “ RandrN, 2F.ol, p, qs and Y q “ CTR$rN,FcspN, 2F.olq, p, qs.
Claim (i) holds because in both games A is seeing encryptions of M using

CTR$rFs. Claim (ii) holds because in both games A is seeing randomized counter-
mode encryption of M using a random function F . Claim (iii) holds because in
both games A is seeing random strings.

The calculations are then as follows.

AdvindrCTR$rFspAq “ PrrGindr
CTR$rFs,1pAqs ´ PrrGindr

CTR$rFs,0pAqs

“ PrrGprf
F,1pAprfqs ´ Pr rAdistpX

qq ñ 1s

“ AdvprfF pAprfq ´ AdvdistXq,Y q pAdistq

ď AdvprfF pAprfq `
1
?

2

c

S ¨ p ¨ q

N
.

The final inequality follows by applying Theorem 3 with the distinguisher that
outputs the bit 1‘ASamp

dist . [\

Weak prf. Weak PRF security is a variant of PRF security where the game
picks the input to the PRF at random for the adversary. Consider the game
Gwprf
F,b pAq shown in Fig. 5 when b P t0, 1u. The standard definition of WPRF

security is AdvwprfF pAq “ PrrGwprf
F,1 pAqs ´ PrrGwprf

F,0 pAqs. It asks that an adversary
cannot distinguish between F.EvpK,Xq and F pXq when X is picked at random
and F is a random function.

For proofs a different version of WPRF security is preferable. Consider the
game Gprf

F,´1pAq. It differs from Gwprf
F,0 pAq because the Ror oracle returns a fresh

random Y even if X’s repeat. We define the advantage of A by Advwprf2F pAq “
PrrGprf

F,1pAqs ´ PrrGprf
F,´1pAqs. We call this WPRF2 security.

A family of functions is deterministic so its output will necessarily repeat
on repeated inputs. Thus we can expect better security for the first definition.
It is then useful to assume good WPRF security and have a generic proof that
WPRF2 security cannot differ from it too much. It is straightforward to show,
for example, that |AdvwprfF pAq ´ Advwprf2F pAq| ď q2{N . Using our space-bounded
techniques we can show the following theorem which improves the bound when
the space used by A is less than the number of queries it makes.
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Lemma 10. Let F be a family of functions with F.Dom “ rN s. Let A be an
S-bounded adversary making at most q queries to its oracle. Then

ˇ

ˇ

ˇ
AdvwprfF pAq ´ Advwprf2F pAq

ˇ

ˇ

ˇ
ď

1
?

2

c

S ¨ q

N
.

Proof. First note that |AdvwprfF pAq ´ Advwprf2F pAq| “ |PrrGwprf
F,´1s ´ PrrGwprf

F,0 pAqs|
and suppose without loss of generality that this difference in probabilities is
positive. Identify F.Rng with rM s. In game Gwprf

F,´1 the adversary is being given

uniformly random samples pX,Y q
$
Ð rN sˆrM s and in game Gwprf

F,0 pAq it is seeing
the same subject to the fact that Y will repeat whenever X does. These views
are exactly identical to the view of a distinguisher in the setting of Theorem 3.
Applying that result gives the state bound. [\

4.4 CTR$ with a PRP and Weak PRPs

In practice most encryption uses AES - a blockcipher with domain t0, 1u128

which is thus best modeled as a PRP. We do not know how to extend our CTR$
analysis for this case. Our streaming analysis with a random function F used that
HpF q “ logpMN q. If F is a random permutation then HpF q “ logpN !q which is
not sufficiently large. However, when only one block messages are encrypted, we
can using the streaming problem addressed in Section 3 to bound the advantage
by OpOslq.

Security of CTR$ for one block messages corresponds closely to the WPRF2
security of the underlying blockcipher. Thus we divide the CTR$ proof into
three steps. First we use Theorem 1 to obtain a bound in the streaming setting
naturally induced by this problem. Next we use this to prove a generic “switch-
ing lemma” between Weak PRP (WPRP) security (defined momentarily) and
WPRF2 security analogous to Lemma 10. The security of CTR$ for one block
messages follows from this lemma in a straightforward way. The streaming anal-
ysis will be presented in full here. The WPRP and CTR$ results are stated, but
the (straightforward) proofs are deferred to the full version of this paper [19].

Weak prp. WPRP security is defined via the games Gwprp
F,b shown in Figure 6.

The advantage of an adversary A against blockcipher F is defined by AdvwprpF pAq “
PrrGwprp

F,1 pAqs ´ PrrGwprp
F,0 pAqs. The notion is essentially the same as for WPRF

security, except the random function has been replaced with a random permu-
tation.

The following lemma bounds the difference between an adversary’s WPRP
and WPRF2 advantages, allowing one to generically switch between the two. It
is an almost immediate implication of the coming streaming analysis.

Lemma 11. Let F be a family of functions with F.Dom “ F.Rng “ rN s. Let A
be an S-bounded adversary making at most q queries to its oracle. Then

ˇ

ˇ

ˇ
AdvwprpF pAq ´ Advwprf2F pAq

ˇ

ˇ

ˇ
ď 3Oslpq, S,Nq .
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Game Gwprp
F,b pAq

K
$
Ð F.K

F
$
Ð PermpF.Domq

b1
$
Ð ARor

Return b1 “ 1

Rorpq

X
$
Ð F.Dom

Y1 Ð F.EvpK,Xq
Y0 Ð F pXq
Return pX,Ybq

Fig. 6. Games for weak pseudorandom permutation security of a family of functions.

Randomized counter-mode.The following theorem (proved using Lemma 11)
bounds the advantage of an attacker against CTR$ with a blockcipher by the
WPRP security of the blockcipher when only one block messages are encrypted.

Theorem 5. Let F be a blockcipher with F.Dom “ F.Rng “ t0, 1un. Let A be
an S-bounded adversary making at most q queries of length n to its oracle. Then
we can build an adversary Awprp such that

AdvindrCTR$rFspAq ď AdvwprpF pAwprpq ` 3Oslpq, S, 2
nq .

Adversary Awprp is roughly as efficient as A.

Steaming analysis. In the streaming setting we now analyze A is given re-
peated samples pRi, Piq where Pi is either random or F pRiq for a random
F P PermpNq. We first use Osl to switch to Ri being picked without replacement.
Now Pi “ F pRiq can be viewed as random samples without replacement; we use
Osl again to switch Pi to being sampled with replacement. Then we use Osl a
final time to switch Ri back to being picked with replacement.

Lemma 12. Let N , q, and S be given. Further, let W q “ RandrN,N, 1, qs and
V q “ CTR$rN,PermpNq, 1, qs. Then for every S-bounded distinguisher A, we
have

AdvdistW q,V q pAq ď 3Oslpq, S,Nq .

Proof. Consider the sequence of game G0 through G4 shown in Fig. 7.
In game G0, each Ri is uniformly and independently sampled and Pi “

F pRiq where F is a random permutation. This is exactly the distribution V q

so Pr rG0s “ Pr rApV qq ñ 1s. In game G4, each Ri and each Pi are uniformly
and independently sampled. This is exactly the distribution W q so Pr rG4s “

Pr rApW qq ñ 1s. We can then see that,

AdvdistW q,V q pAq “
4
ÿ

i“1

Pr rGis ´ Pr rGi´1s

Let Xq be sampling with replacement and Y q be sampling without replace-
ment from rN s. We will bound the difference between G0 and G4 by using a
sequence of distinguishers for pXq, Y qq, whose advantages we bound with Osl.
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Games G0,G1,G2,G3,G4

F
$
Ð PermpNq // G0,G1

F
$
Ð FcspN,Nq // G2

iÐ 1
b1

$
Ð ASamp

Return b1 “ 1

Samppq

Ri
$
Ð rN s // G0,G4

Ri
$
Ð rN sr tR1, . . . , Ri´1u // G1,G2,G3

Pi Ð F pRiq // G0,G1,G2

Pi
$
Ð rN s // G3,G4

iÐ i` 1
Return pRi, Piq

Fig. 7. Games for proof of Lemma 12. Commented lines of code are only included in
the indicated games.

The distinguishers are shown below, where Răi “ tR1, . . . , Ri´1u. As written,
distinguishers A0,1 and A1,2 store large amounts of space. The former stores an
entire random permutation F : rN s Ñ rN s. The latter stores a list of q different
Ri values. Used naively, this would result in useless advantage bounds. However,
note that the stored state is sampled before any oracle queries are made. Thus
we can use a standard coin-fixing argument to upper bound the advantage of
these distinguishers by the advantage of distinguishers A˚0,1 and A˚1,2 for which
the best choices of F and the Ri values are hardcoded.

The description size of a distinguisher is not included in the bound of their
state so we can see that A˚0,1 is S-bounded, A˚1,2 is S-bounded, and A3,4 is S-
bounded. Note that A˚1,2 does not need to store the stage counter i for itself
because this is provided as input as part of our streaming.

Distinguisher ASamp
0,1

F
$
Ð PermpNq

b1
$
Ð ASimSamp

Return 1‘ b1

SimSamppq

RÐ Samp
P Ð F pRq
Return pR,P q

Distinguisher ASamp
1,2

For i “ 1, . . . , q do

Ri
$
Ð rN srRăi

iÐ 1

b1
$
Ð ASimEnc

Return b1

SimSamppq

P Ð Samp
iÐ i` 1
Return pRi, P q

Distinguisher ASamp
3,4

b1
$
Ð ASimEnc

Return b1

SimSamppq

RÐ Samp

P
$
Ð rN s

Return pR,P q

Now consider the transition from G0 to G1. They differ in whether Ri is sam-
pled with or without replacement. Distinguisher A0,1 tries to use this difference
to distinguish between Xq and Y q using its samles to set Ri and simulating
P “ F pRq for itself. We have Pr rG1s´Pr rG0s “ AdvdistXq,Y q pA0,1q. Note that A0,1

outputs the bit 1‘ b1 to give the order we want.

Games G1 and G2 differ only in whether F is a random permutation or
random function. Because they are being fed non-repeating input the values
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Pi “ F pRiq are distributed according to Y q in the former case and Xq in the
latter. Consequently, we can see that Pr rG2s ´ Pr rG1s “ AdvdistXq,Y q pA1,2q.

Games G2 and G3 are equivalent. They differ in whether each Pi is by

Pi
$
Ð rN s or as F pRiq for a random function F . Because the Ri values are

non-repeating these are the same distribution, giving Pr rG3s ´ Pr rG2s “ 0.

Finally, G3 and G4 differ in whether Ri is sampled with or without replace-
ment. Via A3,4 we again reduce this to distinguishing between Xq and Y q. We

have Pr rG4s ´ Pr rG3s “ AdvdistXq,Y q pA3,4q.

Plugging in to 4.4 and bounding with A˚0,1 and A˚1,2 gives

AdvdistW q,V q pAq ď AdvdistXq,Y q pA˚0,1q ` AdvdistXq,Y q pA˚1,2q ` AdvdistXq,Y q pA3,4q .

The result follows by bounding these advantages with Osl. [\

4.5 Other results

Encrypt-then-prf. In the full version of this paper [19] we apply the above
result to the proving the security of the encrypt-then-PRF construction of an
authenticated encryption scheme (for fixed length messages).

Nonce-based encryption. We note that our CTR$ and encrypt-then-prf the-
orems composes correctly with the standard way of constructing nonce-based
encryption from a randomized encryption scheme by applying a PRF to the
nonce to obtain coins for the underlying encryption scheme.

Other encryption schemes. In the full version of this paper [19] we look at
streaming models induced by other randomized encryption schemes (CTR$ with
a permutation, OFB$, CBC$, and CFB$). We exhibit straightforward attacks
which distinguish length p P Θp

?
Nq samples from random with low state, q “ 1,

and good advantage.

Our streaming proof for the model induced by CTR$ with a random function
implies such an attack is not possible against it. However, to be clear, these
attacks do not rule out good time-memory tradeoffs for these other schemes.
Instead these very weak attacks indicate that if such bounds are possible, their
proofs will require new insights/models. See the full version of this paper [19]
for more discussion.

5 Open Questions

Our work leaves open a number of important questions - most directly resolv-
ing validity of Conjecture 1 (or a relaxed version thereof which suffices for our
final statement). More generally, there is the question of which other encryption
schemes admit proofs of tight time-memory trade-offs. Furthermore, we do not
know how to prove trade-offs for more complex security games which do not fit
within the streaming model, e.g., security in the presence of decryption oracles.
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Nielsen, editors, EUROCRYPT 2017, Part III, volume 10212 of LNCS, pages 33–
62. Springer, Heidelberg, April / May 2017.
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