
Non-Malleable Codes Against
Bounded Polynomial Time Tampering

Marshall Ball1, Dana Dachman-Soled2, Mukul Kulkarni2,
Huijia Lin3, and Tal Malkin1

1 Columbia University
{marshall,tal}@cs.columbia.edu

2 University of Maryland
danadach@ece.umd.edu, mukul@umd.edu

3 University of Washington
rachel@cs.washington.edu

Abstract. We construct efficient non-malleable codes (NMC) that are
(computationally) secure against tampering by functions computable in
any fixed polynomial time. Our construction is in the plain (no-CRS)
model and requires the assumptions that (1) E is hard for NP circuits of
some exponential 2βn (β > 0) size (widely used in the derandomization
literature), (2) sub-exponential trapdoor permutations exist, and (3) P-
certificates with sub-exponential soundness exist.
While it is impossible to construct NMC secure against arbitrary
polynomial-time tampering (Dziembowski, Pietrzak, Wichs, ICS ’10),
the existence of NMC secure against O(nc)-time tampering functions
(for any fixed c), was shown (Cheraghchi and Guruswami, ITCS ’14) via
a probabilistic construction. An explicit construction was given (Faust,
Mukherjee, Venturi, Wichs, Eurocrypt ’14) assuming an untamperable
CRS with length longer than the runtime of the tampering function.
In this work, we show that under computational assumptions, we can
bypass these limitations. Specifically, under the assumptions listed above,
we obtain non-malleable codes in the plain model against O(nc)-time
tampering functions (for any fixed c), with codeword length independent
of the tampering time bound.
Our new construction of NMC draws a connection with non-interactive
non-malleable commitments. In fact, we show that in the NMC setting,
it suffices to have a much weaker notion called quasi non-malleable
commitments — these are non-interactive, non-malleable commitments
in the plain model, in which the adversary runs in O(nc)-time, whereas
the honest parties may run in longer (polynomial) time. We then
construct a 4-tag quasi non-malleable commitment from any sub-
exponential OWF and the assumption that E is hard for some
exponential size NP-circuits, and use tag amplification techniques to
support an exponential number of tags.



1 Introduction

Non-Malleable Codes (NMC) were introduced by Dziembowski, Pietrzak, and
Wichs [25] as a modification of error correcting codes, with the goal of achieving
security against adversarial tampering functions, that may change every part of
a codeword. Informally, a NMC against a class F guarantees that if a codeword
is tampered via the application of a function f ∈ F , then the decoding of the
tampered codeword will either be exactly the original message, or completely
unrelated to the original message. As noted in [25], it is impossible to construct
NMC against arbitrary tampering functions, since non-malleability can always
be broken by a tampering function which first decodes the codeword to learn
the underlying message, then re-encodes a related message. In particular, there
can be no efficient NMC against arbitrary polynomial time tampering. Thus, to
achieve feasibility, we must restrict the class of tampering functions.

A natural way to restrict tampering adversaries is via well-studied computa-
tional complexity measures. Several recent works have followed this approach
and have developed strong connections between NMC and techniques from
computational complexity. For example, Ball et al. [5] constructed NMC against
bounded depth circuits with constant fan-in (which includes NC0), several
works [13, 6, 3] constructed NMC against AC0 relying on different complexity
theoretic techniques, and some works considered (restricted variants of) NMC
against space-bounded tampering [26, 6]. Specifically, the work of Faust et
al. [26] considers space-bounded tampering adversaries in the random oracle
model and achieves the security notion of leaky continuous non-malleability.
The work of Ball et al. [6] is information-theoretic, considers streaming, space-
bounded tampering adversaries and achieves standard non-malleability. The
current work continues this line of research.

In this paper, we focus on the task of constructing NMC against bounded
polynomial time tampering, namely tampering functions that are computable in
an arbitary fixed polynomial time. This is a very natural class to consider given
the impossibility result for (unbounded) polynomial time, and indeed, some of
the first works in this line of research have already considered this class. We
discuss these next, along with the motivation and goals for our current work.

Cheraghchi and Guruswami [14] gave probabilistic constructions of efficient
codes for circuits of size O(nc) (where an efficient randomized procedure outputs
a “good” code with high probability). Faust et.al [27] gave an improved (in
terms of the dependence on the error bound) construction against the same
class, which is explicit, but relies on a model including an untamperable
CRS (common reference string). The presence of CRS is undesirable, as
not only must the CRS be generated by a trusted party, the CRS is also
a non-tamperable component of the scheme. Moreover, both of these works
can be viewed as using limited (t-wise) independence to partially derandomize
probabilistic constructions. This approach inherently leads to a CRS whose
length is at least as long as the bound on the size of the tampering circuits —
meaning the tampering circuits cannot even read the entire CRS. We additionally
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note that if we allowed other size parameters, in particular the codeword size,
to be as large as the runtime of the tampering function, then achieving non-
malleability would become trivial. Finally, we note that constructions of NMC
against bounded polynomial-time adversaries are trivial in the ideal permutation
model, where it is assumed that all parties have access to an ideal, invertible
permutation. Since Feistel-based constructions in the random oracle model are
indifferentiable from ideal permutations (and indeed ideal cipher) [18, 19, 20],
the above results hold in the random oracle model as well and can be instantiated
in practice based on e.g. SHA-3. However, whereas in the random oracle/ideal
permutation/ideal cipher model, non-malleability comes for free, in this work we
seek constructions that are based solely on hardness assumptions that do not
have a non-malleability flavor.

This motivates the following question:

Can we construct efficient NMC against bounded polynomial time
adversaries, in the plain model (i.e. without CRS or random oracles)?
Ideally, with codeword length that is independent of the runtime of the
adversarial tampering function?

As we elaborate next, we achieve this by moving to computational security and
restricting our attention to uniform adversaries (while [14, 27] gave statistical
guarantees against non-uniform adversaries). In addition, as explained shortly
below, we allow uniform bounded polynomial time tampering adversaries to have
an inverse polynomial advantage (as in [14]) as opposed to having only negligible
advantage (as in [27]). We emphasize that to the best of our knowledge, there
is no transformation that either (a) eliminates the CRS in the NMC of [27]
to achieve security against uniform (or non-uniform) adversaries or (b) fully
derandomizes the monte carlo construction of [14], even under derandomization
assumptions. Our techniques highlight interesting new connections to
complexity theory.

1.1 Our Results

Our construction requires a complexity theoretic assumption that some language
in the complexity class E (the class of languages that can be decided by Turing
machines running in time 2O(n)) is hard for NP circuits of some exponential
2βn (for β > 0) size. As surveyed later, such assumptions are widely used in the
derandomization literature, often referred to as derandomization assumptions,
and have connection with cryptography. Our construction also relies on the
following cryptographic assumptions: the existence of subexponential trapdoor
permutations and P-certificates (P-cert) with sub-exponential soundness. P-
certs (introduced by [15]) are “succinct” non-interactive arguments for languages
L ∈ P, with proof length which is a fixed polynomial, independent of the time it
takes to decide L (see full version of this paper [4] for a formal definition). We
provide more background on these assumptions in Section 1.2 below.
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Theorem 1 (Informal). Assuming

– E is hard for NP circuits with some exponential size (namely 2βn for some
constant β > 0)

– Existence of sub-exponential trapdoor permutation
– Existence of P-cert with sub-exponential soundness

for every constant cA, there is an efficient construction of NMC in the
plain (no-CRS) model against uniform, bounded polynomial ncA-time tampering
adversaries, with inverse polynomial indistinguishability (for any polynomial
time non-uniform distinguisher). Furthermore, the codeword size is a fixed
polynomial independent of ncA .

A few remarks are in order. First, to formalize that a tampered codeword, if
not copied from the orginal codeword, must decode to an independent value,
the definition of non-malleability requires that the decoded values, u1 and u2,
obtained from tampering codewords of different values, v1 and v2 respectively,
must be indistinguishable (ub is replaced by same in the case of copying). Our
NMC achieves inverse polynomial distinguishing advantage against polynomial-
time non-uniform distinguishers .

Second, as mentioned before, it is important that the length of the codeword
is smaller than the time-bound ncA of the tampering functions; otherwise,
achieving non-malleability becomes trivial. Here, we achieve the ideal case, where
the length of the codeword is bounded by a fixed polynomial, independent of
ncA . As the adversarial time bound grows, the only parameter that grows is the
run time of encode/decode. Moreover, this dependence is necessary as discussed
earlier, since non-malleability is trivially impossible when the class of tampering
functions includes the encode/decode functions.

Finally, we note that the assumption of the existence of sub-exponential
trapdoor permutation in Theorem 1, can be replaced with the assumption of
the existence of ZAPs (public coin, two message witness indistinguishable pro-
tocols) [24] with witness indistinguishability against sub-exponential adversaries
and the existence of sub-exponential one-way functions (OWF). Note that ZAPs
can be constructed from bilinear maps [39], which are not known to imply
trapdoor permutations.

Connection between NMC and Non-Malleable Commitments. Our construction
of NMC draws a connection with another important notion of non-malleability
– non-malleable commitments [21, 51]. The only difference between NMC and
non-interactive non-malleable commitments is that the former can be decoded
efficiently, whereas decommitment of the latter cannot be done efficiently. A
few prior works leverage this connection, showing that NMC can be used to
obtain improved non-malleable commitments [37, 11], and using techniques from
the non-malleable commitment literature to obtain NMC [12, 58]. However, the
latter direction—tapping into the wealth of techniques from the non-malleable
commitment literature to construct NMC—has been largely unexplored, perhaps
due to the fact that NMCs are typically unconditionally secure.
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In our NMC construction, we begin with the framework of Ball et al. [6],
which provides a generic way to construct NMC against tampering classes F for
which sufficiently strong average-case hardness results are known, but requires a
CRS. We show how to remove the CRS for particular tampering classes, including
the class of bounded, poly-time adversaries. One modification is replacing the
public key encryption scheme in the framework of [6] (whose pubic keys are
contained in the CRS) with a non-interactive, non-malleable commitment scheme
NMCom in the plain model.

At a very high (and overly simplified) level, our NMC, like [6], follows
the Naor-Yung [56] paradigm that achieves CCA security of encryption,
by composing two instances Encrypt(pk, v),Encrypt(pk′, v) of a public key
encryption scheme, followed by a NIZK proof of the equality of encrypted values.
In the context of NMC, we replace one instance of encryption with an encoding
E(v) that is decodable in some polynomial t time, but has certain complexity
theoretic hardness (specified shortly) against the class of circuits of smaller t′ < t
size. We further replace the other instance of encryption with a non-malleable
commitment c to v. Following [56, 6], we provide a reduction that can turn any
successful tampering adversary A against NMC, into an adversary B able to
“maul” an encoding E(v) of v into a non-malleable commitment c̃ to a related
value ṽ. The challenge lies in ensuring that the reduction is “simple”, namely, can
be implemented by a circuit of size t′. Then the complexity theoretic hardness
that we rely on is that it is impossible for such a circuit to compress an encoding
E(v) into a much shorter string c̃ correlated to v (despite that the correlation
may take exponential time to verify). Such an encoding, E, can be based on the
incompressible functions of Applebaum et al. [1], which can be constructed based
on assumptions that are widely used in the derandomization literature. (For
more details on the NMC construction see the technical overview in Section 1.3).

Connection between Complexity Theory and Non-Malleable Commitments. An-
other contribution of this work, is to develop new connections between complex-
ity theory and non-malleable cryptography. We show that derandomization as-
sumptions can be employed to build a new primitive we call Quasi Non-Malleable
Commitments, which is weaker than standard non-malleable commitments, but
nevertheless suffices for constructing NMC. This allows us to avoid adding
the assumptions needed for standard non-interactive NMCom such as time-lock
puzzles or hardness amplifiable injective one-way functions [50, 10].

Recall that in the non-malleable codes setting, encode/decode can be in
a larger complexity class than the adversary, and so standard non-interactive
NMCom is an overkill. This motivates our definition of Quasi Non-Malleable
Commitments in which the adversary runs in O(nccom)-time, whereas the honest
parties may run in longer (polynomial) time. To construct Quasi-NMCom from
assumptions widely used in the derandomization literature, observe that these
assumptions allow us to construct polynomial-time computable functions ψ
for which non-deterministic advice does not help speed up the computation.
This stands in stark contrast to the case of inversion of a one-way function ρ,
which becomes easy with non-deterministic advice (as the advice can contain

5



a pre-image). Following the framework of [50], we construct two types of
commitments that are harder than each other in different hardness “axes” —
namely “BP-time” (corresponding to probabilistic Turing machines) and “non-
deterministic (ND)-size” (corresponding to NP-circuits–see Sections 1.2 and
2.4). Specifically, one type of commitment com1 are the standard schemes based
on one-way functions ρ, and the other com2 is based on the function ψ given
by derandomization assumptions. The com1 is much harder to break than com2

in the axis of “BP-time”, as inverting one-way function ρ is much harder than
computing ψ using probabilistic Turing machines. On other hand, com2 is much
harder to break than com1 in the axis of “ND-size”, where both inverting ρ and
computing ψ can be done in poly-size, but computing ψ is significantly harder.

From such mutually harder commitment schemes, we obtain a 4-tag Quasi-
NMCom. Then, based on tag-amplification techniques in the literature [46, 10],
we increase the number of tags supported to an exponential. It turns out that
the quasi-setting makes amplification hard, which requires us to introduce a
notion of “Double-Agent” adversaries. Informally, double-agent adversaries are
probabilistic uniform Turing machines with “large” time complexity, that can
also be represented as a distribution over circuits with “small” size complexity
(see Section 2.1 for additional details). Post-amplification, our final Quasi-
NMCom construction employs the same assumptions as Theorem 1. We believe
these techniques may be useful for other applications in similar quasi-settings.

1.2 Background on Assumptions

In this section we provide some background on the assumptions that we use.

On P-certificates. P-certificates were introduced by [15] in pursuit of constant-
round concurrent zero-knowledge. Loosely, a P-certificate is a non-interactive
proof system that allows a prover to convince an efficient verifier of the validity
of any statement in P via a short proof. In particular, both the proof length
and the run-time of the verifier are bounded by some fixed polynomial, but
the system should work any language in P (the prover’s efficiency should be
comparable to the statement). CS-proofs [54] imply P-certificates, but unlike
the former, the latter assumption is falsifiable.

On “E requires circuits of exponential size.” A fundamental family of questions
in theoretical computer science is when and where randomness helps (vs strictly
deterministic procedures). While it is widely believed that BPP = P (i.e.,
any efficient, randomized decision procedure can be efficiently simulated by a
deterministic procedure), whether the equality indeed holds is still an open
problem. This particular question (BPP = P?) and others in the domain of
derandomization have deep connections to cryptography.

In the 1980s, Yao [70] showed that one-way permutations suffice to create
pseudorandom generators (PRG) for poly-time computation. PRGs expand a
small sequence of uniform random bits to a long sequence of pseudorandom bits
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that “fool” classes of procedures in the sense their behavior is essentially the same
as if they were given truly random bits. In this sense, PRGs give a canonical
technique for derandomizing decision procedures: running the procedure on
multiple outputs of the PRG in parallel and taking majority of the obtained
result. Later, it was shown that essentially minimal cryptographic assumptions
(one-way functions) suffice for constructing PRGs [42].

However, while most cryptography implies non-trivial derandomization, there
seem to be inherent barriers to statements of the converse form. In fact, the
so-called “cryptographic” PRG’s yield, in two aspects, much more than what
is required for derandomization since (a) the output of such PRGs fool any
polynomial time procedure (including procedures that run in much more time
than the PRG itself) and (b) such PRGs guarantee that the behavior of poly-time
procedures is only negligibly different from their behavior on true randomness.
On the other hand, one-way functions are not known to imply P = BPP because
known constructions only “stretch” random bits into polynomially many random
bits (whereas exponential stretch is required for canonical simulation).

Capitalizing on these observations, Nisan and Wigderson [57] gave a generic
means of constructing PRGs which “fool” a certain class of circuits C, from
any function that is hard-on-average for a slightly enlarged class of circuits. In
particular, this in some sense reduces the problem of explicit derandomization
to proving strong circuit lower bounds on explicit functions. To this end, later
work showed that, in fact, simply assuming there is a language in E that does
not have have circuits size 2βn for some β > 0 (for almost all n), is sufficient
to derandomize BPP [43, 67]. Moreover, because E has complete problems,
this yields explicit pseudorandom generators. However, for reasons alluded to
above, this assumption is, to best of our knowledge, incomparable to standard
cryptographic assumptions.

This latter (worst-case) conjecture and its generalization has appeared in
a variety of contexts pertaining to derandomization and other questions in
computational complexity [53, 57, 2, 43, 67, 41, 47, 65, 66, 29, 55, 68, 64, 35, 40,
22]. The conjectures we are concerned with in this work take the following form
(following [1]):

Assumption 1 (E is hard for exponential size X-circuit) There exists a
problem L in E = DTIME(2O(n)) and a constant β > 0, such that for every
sufficiently large n, X-circuits of size 2βn fail to compute the characteristic of L
on inputs of length n.

whereX-circuits can be circuits of type, {non-deterministic, co-non-deterministic,
NP, Σi}. See Section 2.4, for definitions of these types of circuits. While these
types of assumptions are independently interesting, in this work we will utilize
some surprising implications outside of derandomization.

Recently, Applebaum et al. [1] presented (explicit) constructions of poly-
time computable incompressible functions based on the assumption that E is
hard for exponential size non-deterministic circuits (based on the extractors
for samplable distributions of Trevisan and Vadhan [68]). Loosely, a function,

7



ψ is incompressible for a class if no procedure in that class can “shrink” an
input to the function, x, such that ψ(x) can later be recovered. Note that, to
our knowledge, it is not known how to construct incompressible functions from
standard cryptographic assumptions (unlike the case of derandomization).

Barak et al. [8] observed that similar assumptions can be used to construct
cryptographic primitives. In particular, they showed that if E = DTIME(2O(n))
contains a function with co-non-deterministic circuit complexity 2Ω(n), then
there exists (explicit) non-interactive witness indistinguishable proof systems for
L ∈ NP (additionally assuming the existence of trapdoor permutations). They
also showed that the same assumption can be used to construct a non-interactive
bit commitment scheme from a one-way function.

In this work, we use the above results and demonstrate new connections
between these assumptions and non-malleable cryptography. In particular we
show that if Assumption 1 holds for NP-circuits and (sub-exponential) one-
way functions exist, then we can construct quasi-non-malleable commitment
schemes. We combine our construction of such commitment schemes along with
NIZK proofs based on the NIWI of [8], as well as the incompressible functions
of [1], to obtain our main result: a family of efficient non-malleable codes secure
against tampering by uniform algorithms running in time O(nc).

1.3 Technical Overview

We begin by recalling (a simplified version of) the template for constructing
non-malleable codes against complexity class F (based on the Naor-Yung double
encryption paradigm [56]) introduced in the work of Ball et al. [6]:

The CRS contains a public key pk for an encryption scheme E =
(Gen,Encrypt,Decrypt), and a CRS crs for a simulation-sound, non-interactive
zero knowledge proof (NIZK). For b ∈ {0, 1}, let Db denote disjoint distributions
over x1 . . . xn ∈ {0, 1}n such that ψ(x1 . . . xn) = b, where ψ is poly-time
computable, yet every f ∈ F has low correlation with ψ.

To encode a bit b:

1. Randomly choose string x1 . . . xn from Db
2. Compute c← Encryptpk(b).
3. Compute a NIZK proof T of “consistency”: ∃b′ ∈ {0, 1} s.t. x1 . . . xn is in

the support of Db′ and b′ is the plaintext underlying c.
4. Output (x1 . . . xn, c, T ).

To decode (x1 . . . xn, c, T ):

1. Verify the NIZK proof T .
2. If it accepts, output ψ(x1 . . . xn).

The proof of [6] proceeds (loosely) as follows: In the first hybrid they switch
to simulated proof T ′. Then they switch c, in the “challenge” encoding to an
encryption of garbage c′, and next switch to an alternative decoding algorithm in
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F , which requires the trapdoor sk (corresponding to the public key pk which is
contained in the CRS). If, in the final hybrid, decodings of tampered encodings
depend on b, a circuit in F can be constructed, whose output is correlated
with the hard function ψ, reaching a contradiction. While [6] do in fact show
that the CRS can be removed for constructions against certain classes F of
tampering, naively, their approach requires a CRS in two seemingly inherent
ways: First, the CRS allows the use of the secret key trapdoor sk in the alternate
decoding algorithm and second, it allows the use of a simulation-sound NIZK,
which requires CRS.

In this work, we make two crucial observations that allow us to eliminate
the CRS from the above construction. First, we consider a stronger notion
of hardness for ψ, known as incompressibility (in fact, this hardness notion
was already implicitly used in [6] for their multi-bit construction). Briefly, if
a function ψ is incompressible by circuit class C, it means that for t � n, for
any (computationally unbounded) Boolean function F : {0, 1}t → {0, 1} and
any C : {0, 1}n → {0, 1}t ∈ C, the output of F ◦ C(x1, . . . , xn) is uncorrelated
with ψ(x1, . . . , xn) (over uniform choice of x1, . . . , xn). Now, since F is allowed
to be computationally unbounded, we may consider an F that decrypts the
ciphertext c = Encryptpk(b) by brute force search. To elaborate, instead of
using sk to efficiently decrypt c in complexity class C, the alternate decoding
algorithm D′ is split into two parts D′ = D′2 ◦D′1, where D′1 can be implemented
in F , but has short output length, whereas D′2 is computationally unbounded.
Specifically, D′1 checks the proof T and then outputs the entire ciphertext c
(which is fine so long as the length of c is sufficiently smaller than n), and,
due to the incompressibility property of ψ, we must still have that the output
of D′ = D′2 ◦ D′1 is uncorrelated with ψ(x1, . . . , xn). This eliminates the need
of providing a trapdoor to the alternate decoding algorithm and so instead of
using a public key encryption scheme, we may use a non-interactive statistically
binding commitment scheme, which can be constructed from injective one-way
function or from derandomization assumptions and any one-way function [8].4

Next, we note that it is possible to construct a NIZK proof system in the
plain (no-CRS) model (i.e. “One-Message Zero Knowledge”), with soundness
against uniform adversaries. To do so, one first constructs a non-interactive
witness indistinguishable proof system (NIWI) in the plain model (based on
standard cryptographic assumptions and derandomization assumptions [8]) and
then converts from witness indistinguishability to full zero knowledge using
the well-known FLS paradigm [28]. Specifically, the simulator will be given
a trapdoor witness based on a problem that is computationally hard for
uniform PPT adversaries such as finding a collision in a keyless collision
resistant hash function. The problem with this approach is that in the proof

4 As we will see, in our setting of non-malleable codes against polynomially-bounded
adversaries, our construction requires such derandomization assumptions in any case
and so only standard one-way function is required in addition. However, for simplicity
we will assume injective one-way function in the remainder of the exposition in this
section.
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sketch outlined above, we actually require simulation-sound NIZK, as opposed
to regular NIZK. In simulation-sound NIZK, the soundness properties must
hold, even after the adversary sees a simulated proof of a false statement.
Whereas various constructions of (one-time) simulation-sound NIZK rely on
embedding a trapdoor within the CRS (cf. [63, 52]), our approach to achieve
the simulation-soundness property without CRS is to replace the commitment
c (which replaced the encryption Encryptpk(b) as described above) with a non-
interactive, non-malleable commitment scheme. Unfortunately, currently known
non-interactive, non-malleable commitment schemes require somewhat non-
standard assumptions such as time-lock puzzles or hardness amplifiable injective
one-way functions [50, 10], whereas our goal is to minimize assumptions. As
we will see, the fact that our commitment scheme is only required to be non-
malleable against adversaries in a restricted circuit class F , allows us to obtain
non-interactive, non-malleable commitments, while reducing assumptions.

Instantiating the Paradigm In this work we construct non-malleable codes
against the class F of uniform, polynomial-bounded tampering functions.
Crucially, we will do so (1) without relying on CRS (2) with codeword length
that is independent of the polynomial time bound (note that if the codeword
length is longer than the polynomial time bound then the adversary does not
even get to read the entire input, also it’s trivial to construct these ) and (3)
while reducing computational assumptions, to the extent possible.

Specifically, in addition to standard cryptographic assumptions, we will
assume standard derandomization-type assumptions such as those discussed in
the previous section. We also require the notion of P-certificates, which seem to
be necessary to implement the above high-level paradigm, as we discuss next.
To see why this is so, note that the statement proved in NIZK proof T , involves
proving that ψ(x1, . . . , xn) is equal to some value. Note that ψ is a polynomial-
time computable function, but that intrinsic in the approach is choosing ψ that
is hard to compute in the specific polynomial time bound T (n) corresponding
to tampering class F . Moreover, we require that the size of the proof T be
independent of the polynomial time bound T (n), and so in particular the size
of the proof T must be independent of the time required to compute ψ. This is
now exactly the notion of a P-certificate.

We also note that given the above paradigm for encoding of a single bit,
it is straightforward to obtain a scheme for the encoding of multiple bits (by
individually encoding each bit and then using a single proof T to “wrap” together
the individual encodings). The only restriction will be that the number of bits,
m, that are encoded, multiplied by the length of a bit commitment, λ, should
be sufficiently smaller than n, the input length of the function ψ. See Section 3
for additional details.

Instantiation of ψ Recall that for the above approach to work, we must
instantiate ψ with a function that is incompressible against polynomially-
bounded adversaries. Fortunately, such a construction was given by [1], based
on a derandomization-type assumption. See Section 4 for additional details.
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Instantiation of NMCom In fact, as discussed previously, we note that we do
not need full-fledged NMCom, but only Quasi NMCom, i.e. NMCom with the
following two relaxations: (1) The commitment scheme is only secure against
bounded-poly (in fact “Double-Agent”) adversary and distinguisher (2) The
complexity of the honest sender/receiver may be greater than the complexity
of the adversary. To construct Quasi-NMCom, we adopt the approach of [50] to
initially construct a commitment scheme with small number of tags, and use
the fact that the derandomization assumptions that we employ in this work are
believed to hold even against non-deterministic adversaries. In particular, we
employ the well-studied assumption that E is hard for adversaries represented
as exponential size NP-circuits—or circuits with access to a SAT oracle (See
Sections 1.2 and 2.4 for further discussions on these assumptions). To construct
our NMCom scheme, we start off with two different types of commitments, Type 0
and Type 1 such that if we get a Type 0 on left, we can extract from Type 1 on the
right without breaking the security of Type 0 and vice versa. Each commitment
consists of an input x to a Boolean function ψ′ (with logarithmic input length)

that is hard for NP-circuits of size 2ε3·input length to compute as well as the
output y of an injective OWF ρ, which is hard for ppt adversaries running in

time 2input lengthε
′
3
.5 Each of these can be considered as a commitment to a

bit (given x, the output of ψ′(x) is the committed value and given y, a hardcore
bit of ρ) and the final committed value is the xor of the two bits committed.

Type 0: input length c1 log(n) to ψ′, input length nε
′
1 to ρ.

Type 1: input length c2 log(n) to ψ′, input length nε
′
2 to ρ.

Set c2 > c1 > ε′1 > ε′2 so that (1) nc1 < nε3·c2 and (2) 2n
ε′2 < 2n

ε′3·ε
′
1 . We now

consider the two possible cases:

Type 0 on left, Type 1 on right. Extract by inverting the injective OWF ρ in

deterministic time 2n
ε′2 and computing ψ′ in deterministic time nc2 . Note

that this does not allow breaking injective OWF ρ with input length nε
′
1 ,

which is secure against time 2n
ε′3·ε
′
1 > 2n

ε′2 .
Type 1 on left, Type 0 on right. Extract by computing ψ′ in deterministic time
nc1 and inverting the injective OWF ρ with an NP-circuit of size nε

′
1 . Note

that this does not allow breaking hardness of ψ′ with input length c2 log(n),
which is secure against NP-circuits of size nε3·c2 > nc1 .

See Figure 1 for a summary and [4] for additional details.

The above 2-tag commitment scheme can then be straightforwardly extended
to work for 4 tags, at which point amplification techniques from [46] can be

5 For this exposition, we assume for simplicity that ψ′ can be computed in

deterministic time 2input length and that the injective OWF has linear circuit size.
Recall that we do not require injective OWF and that any statistically binding, non-
interactive commitment scheme is sufficient, but that for simplicity we assuming
injective OWF in this exposition.
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Input length to ψ′ Hardness of ψ′ Input length to ρ Hardness of ρ
D ND D ND

Type 0 c1 · log(n) nε3·c1 nε3·c1 nε
′
1 2n

ε′3·ε
′
1 nε

′
1

Type 1 c2 · log(n) nε3·c2 nε3·c2 nε
′
2 2n

ε′3·ε
′
2 nε

′
2

Fig. 1. ψ′ and ρ are the functions described in the paragraph above. D stands for
deterministic and ND stands for “non-deterministic” hardness. We set parameters so
that c2 > c1 > ε′1 > ε′2.

applied to obtain NMCom with number of tags exponential in the security
parameter. The analysis of the amplified scheme is somewhat different than
in prior work, since our analysis must carefully take into account that some
assumptions are inherently uniform (One-Message Zero Knowledge) and some
assumptions (hardness of ψ′) are inherently non-uniform (the adversary in the
proof is so limited that it does not have time to generate new commitments on
its own and therefore must receive them as non-uniform advice when reducing
security to the hardness of computing ψ′). To solve this problem, we introduce
the notion of “Double Agent” adversaries (as discussed in the introduction) and
provide a proof of security of our amplified NMCom scheme against this class of
adversaries. See [4] for additional details.

1.4 Related Work

Non-Malleable Codes. Non-malleable codes (NMC) were introduced by
Dziembowski, Pietrzak and Wichs in their seminal work [25]. While there has
been a long line of important results for various tampering classes, due to space
limitations, we discuss here only the results most relevant to this work.

As discussed extensively in the introduction, Faust et.al [27] constructed
efficient information-theoretically secure NMC in the CRS model, resilient
against tampering function classes F which can be represented as circuits of size
poly(n). Another important result by Cheraghchi and Guruswami [14] showed
the existence of information theoretically secure NMC against tampering families
F of size |F| ≤ 22

αn

with optimal rate 1−α. They achieve error ε ∈ O(1/poly(n))
as the run-time of the encoding and decoding algorithms is proportional to
poly(1/ε) where ε is the error probability.

Ball et.al [5] constructed efficient information theoretic secure NMC against
nδ-local tampering functions, for any constant δ > 0. This class includes
tampering functions, which can be represented as constant depth circuits
with bounded fan-in i.e NC0 circuits. Chattopadhyay and Li [13] constructed
NMC against AC0 tampering functions from seedless non-malleable extractors,
although the codeword length of this construction is super-polynomial in the
message length n. Faust et.al [26] considered non-malleable codes against space
bounded tampering adversaries in the random oracle model. The construction
achieves a new notion of leaky continuous non-malleable codes (with self-destruct
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property), where the adversary is allowed to learn some bounded log(|m|) bits
of information about the underlying message m.

Recently, Ball et.al [6] presented a generic framework to construct NMC
against tampering function classes for which average-case hardness bounds are
known. They also instantiated their framework to construct the first efficient,
computationally secure multi-bit NMC against tampering functions which can be
represented as constant-depth circuits with unbounded fan-in (AC0 tampering),
as well as against tampering functions which can be represented as bounded
depth decision tree. Additionally, they showed that the framework can be
used to construct information-theoretic NMC against space-bounded streaming
tampering. Information-theoretic secure, efficient NMC against AC0 tampering
were subsequently constructed by [3].

Derandomization and Cryptography The connection between derandomization
techniques with cryptography was first explored by Barak et.al. [8], who
constructed one-message witness indistingushable proof systems (non-interactive
commitment scheme) in the plain model based on trapdoor permutations
(one-way functions) in addition to the derandomization assumptions. Recently,
Applebaum et.al. [1] constructed incompressible functions against the class of
bounded polynomial time functions from similar assumptions.

Non-Malleable Commitments Non-malleable commitments have been studied
extensively since their introduction by [21] in their seminal paper. Great
progress has been made in reducing the interaction between the sender and
the receiver, while minimizing computational assumptions. We list just some of
the results in this line of work [7, 59, 60, 48, 61, 36, 49, 38, 37, 16, 17, 45].
Recently, Lin, Pass, and Soni [50] gave a construction of a non-interactive,
fully-concurrent, non-malleable commitment scheme secure against uniform
adversaries based on sub-exponential non-interactive commitment schemes, non-
interactive witness indistingushable proof systems (NIWI), uniform collision
resistant hash functions, and time-lock puzzles [62]. When replacing the uniform
collision resistant hash functions with a family of collision resistant hash
functions, their protocol becomes 2-round. Khurana and Sahai [46] constructed
2-round non-malleable commitments with bounded concurrency from standard
sub-exponential assumptions. Bitansky, and Lin [10] gave a construction of
a non-interactive, fully-concurrent, non-malleable commitment scheme from
multi-collision-resistant keyless hash functions, sub-exponentially-secure time-
lock puzzles, and other standard assumptions.

2 Definitions

2.1 Notation

When comparing distribution ensembles D = {Dn}n∈N,D′ = {D′n}n∈N, we use

the notation D
G,S
≈ D′, where G, S are sets, to indicate that for sufficiently large
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n, every distinguisher D ∈ G distinguishes Dn from D′n with probability at most
p(n), for some p(·) ∈ S. When comparing functions p, p′, we use the notation

p(n)
S
≈ p′(n), where S is a set, to indicate that |p(n)− p′(n)| ∈ S.

We consider “Double-Agent” adversaries A in computational classes denoted
by BPtime(T (n))

⋂
SIZE(t(n)), for some functions T (·), t(·). Intuitively, this

computational class contains probabilistic uniform Turing machines A with
“large” time complexity T (n), that can also be represented as a distribution
over circuits with “small” size complexity t(n). Informally, this is possible since
A can be split into subroutines in such a way that subroutines that require
“large” time complexity can all be replaced with non-uniform advice. Formally,
A ∈ BPtime(T (n))

⋂
SIZE(t(n)) if the following hold:

– A = (A1, A2).
– A1 ∈ BPtime(T (n)), A2 ∈ BPtime(t(n)).
– A1 receives only security parameter 1n as input and produces output of

length at most t(n).
– A2 receives the input of A as its input, along with the output of A1.

Note that, since A1 takes only security parameter as input, the output of
A1, can be viewed as non-uniform advice to A2. Thus, we can convert such a
uniform adversary A = (A1, A2) into a distribution over non-uniform circuits of
size t(n) with identical behavior to A.

2.2 Non-Malleable Codes

Definition 1 (Coding Scheme). Let Σ, Σ̂ be sets of strings, and κ, κ̂ ∈ N
be some parameters. A coding scheme consists of two algorithms (E,D) with the
following syntax:

– The encoding algorithm (perhaps randomized) takes input a message in Σ
and outputs a codeword in Σ̂.

– The decoding algorithm takes input a codeword in Σ̂ and outputs a message
in Σ.

We require that for any message msg ∈ Σ, Pr[D(E(msg)) = msg] = 1.

Definition 2 (O(1/p(n))-Non-malleability [25]). Let n be the security
parameter, F be some family of functions. For each function f ∈ F , and
msg ∈ Σ, define the tampering experiment:

Tamperfmsg
def
=

{
c← E(msg), c̃ := f(c), m̃sg := D(c̃).

Output : m̃sg.

}
,

where the randomness of the experiment comes from the encoding algorithm.
We say a coding scheme (E,D) is O(1/p(n))-non-malleable with respect to F if
for each f ∈ F , there exists a PPT simulator Sim such that for any message
msg ∈ Σ, we have
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Tamperfmsg

PPT,O(1/p(n))
≈ IdealSim,msg

def
=

 m̃sg ∪ {same∗} ← Simf(·).
Output :msg if output of Sim is same∗;

otherwise m̃sg.


Definition 3 (O(1/p(n))-Medium Non-malleability). Let n be the security
parameter, F be some family of functions. Fix msg ∈ Σ. Let c ← E(msg) and
let g(·, ·) be a predicate such that for every f ∈ F ,

Pr[g(c, f(c)) = 1] ∧ D(f(c)) 6= msg] ≤ negl(n).

For g as above, each function f ∈ F , and msg ∈ Σ, define the tampering
experiment

MediumNMf
msg,g

def
=

{
c← E(msg), c̃ := f(c), m̃sg := D(c̃)

Output : same∗ if g(c, c̃) = 1, and m̃sg otherwise.

}
The randomness of this experiment comes from the randomness of the

encoding algorithm. We say that a coding scheme (E,D) is O(1/p(n))-medium
non-malleable with respect to F if there exists a g as above and for any
msg,msg′ ∈ Σ and for each f ∈ F , we have:

{MediumNMf
msg,g}n∈N

PPT,O(1/p(n))
≈ {MediumNMf

msg′,g}n∈N

It is straightforward to check that medium non-malleability implies standard
non-malleability.

2.3 Non-Interactive Commitment Scheme

Definition 4 (Commitment Scheme). A (non-interactive) commitment
scheme for the message space {0, 1}m, is a pair (Com,Open) such that:

– For all msg ∈ {0, 1}m, (c, d) ← Com(m) is the commitment/opening pair
for the message msg.

– Open(msg, c, d)→ {0, 1}, where 1 indicates that d is a valid opening of c to
msg and 0 is returned otherwise.

The commitment scheme must satisfy the standard correctness requirement,

∀m ∈ N,∀msg ∈ {0, 1}m, Pr [Open(msg,Com(msg)) = 1] = 1

where the probability is taken over the randomness of Com.

We will consider statistically binding commitment schemes. For the formal
definitions of the Hiding and Binding properties, see [4].
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Well-formed Commitments: Let val(·) be a function which takes an arbitrary
commitment c as an input. val outputs msg if ∃ unique msg such that
Open(msg, c, ·) = 1, and outputs ⊥ otherwise.

Definition 5 (Tag-based Commitment Scheme [50]). A commitment
scheme (Com,Open) is a tag-based commitment scheme with τ(m) number of
tags if, in addition to the the message msg, the sender (committer) and receiver
also receive a “tag” of length poly(log(τ(m))) as common input.

If τ(m) is exponential in security parameter m, we omit the prefix τ(m) and
refer to the commitment scheme as simply a tag-based commitment scheme.

Man In The Middle Execution (MIM): Let (Com,Open) be a tag-based
commitment scheme, and A an adversary. For security parameter m, consider
the following interactions by A(1m):

– Left interaction: A(1m) interacts with the sender and receives commitment
to a message msg of length m using identity tag as c← Com(msg, tag).

– Right interaction: A(1m) interacts with the receiver and tries to commit
to related message m̃sg using identity ˜tag of its choice. Specifically, for the
commitment c̃ sent to the receiver, let m̃sg = val(c̃). Furthermore, if ˜tag =
tag, then we set m̃sg = ⊥.

Let mimA
C (msg) denote the random variable that describes m̃sg that A

commits to in the right interaction along with its output in the MIM execution
MIMA

C (msg) as described above.

Definition 6 (O(1/p(m))-Non-Malleability against G [50]).

A tag-based commitment scheme C = (Com,Open) is said to be
O(1/p(m))-non-malleable against G if ∀ A ∈ G, the following ensembles are
indistinguishable,{

mimA
C (msg0)

}
m∈N,msg0∈{0,1}m

G,O(1/p(m))
≈

{
mimA

C (msg1)
}
m∈N,msg1∈{0,1}m

.

2.4 Incomputable and Incompressible Functions

Definition 7 (Incomputable Function [1]). A function ψ : {0, 1}n →
{0, 1}m is incomputable by a function class C if ψ is not contained in C. We say
that f is ε-incomputable by C if for every function C : {0, 1}n → {0, 1}m in C,
Pr [C(x) = f(x)] ≤ 1

2m + ε for uniform random x← {0, 1}n.

Definition 8 (Incompressible Function [23]). A function f : {0, 1}n →
{0, 1}m is incompressible by a function C : {0, 1}n → {0, 1}` if for every function
D : {0, 1}` → {0, 1}m, there exists x ∈ {0, 1}n such that D(C(x)) 6= f(x). We
say that f is ε-incompressible by C if for every function D : {0, 1}` → {0, 1}m,
Pr [D(C(x)) = f(x)] ≤ 1

2m + ε for uniform random x ← {0, 1}n. We say that
f is `-incompressible (resp. (`, ε)-incompressible) by a class C if for every C :
{0, 1}n → {0, 1}` in C, f is incompressible (resp. ε-incompressible) by C.
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Definition 9 (Non-deterministic Circuits and NP Circuits [1]). A non-
deterministic circuit C has additional “non-deterministic input wires.” We say
that the circuit C evaluates to 1 on x if and only if there exists an assignment
to the non-deterministic wires that makes C output 1 on x. An oracle circuit
C(·) is a circuit which in addition to the standard gates uses an additional gate
(potentially with large fan-in). When instantiated with specific boolean function
A, CA is the circuit in which the additional gate is A. Given boolean function
A(x), an A-circuit is a circuit that is allowed to use A gates in addition to the
standard gates. An NP-circuit is a SAT -circuit (where SAT is the satisfiability
function).

The size of all circuits is the total number of wires and gates.

We now present commonly used assumptions in the derandomization
literature to explicitly construct pseudorandom generators. [2, 57, 67, 47, 65,
66, 29, 55, 68, 64, 35, 40, 8, 22]:

Assumption 2 (E is hard for exponential size X-circuits) There exists
a problem L in E = DTIME(2O(n)) and a constant β > 0, such
that for every sufficiently large n, X-circuits of size 2βn fail to compute
the characteristic function of L on inputs of length n, where X ∈
{non-deterministic, co-non-deterministic, NP}.

Theorem 2 (Theorem 1.3, 1.10 [1]). If E is hard for exponential
size X-circuits, where X ∈ {non-deterministic, co-non-deterministic, NP}
(Assumption 2), then for every constant c > 1 there exists a constant a > 1
such that for every sufficiently large n, and every r such that a log n ≤ r ≤ n
there is a function ψ : {0, 1}r → {0, 1} that is n−c-incomputable for size nc

X-circuits, Furthermore, ψ is computable in time poly(nc) (or poly(n)).

We define NIZK without CRS against uniform adversaries and NIWI in [4]. In
the remainder of this section, we focus on instantiations of the above primitives.

Theorem 3 ([8]). Assume that E is hard for exponential size co-non-
deterministic circuits and that (subexponentially secure) trapdoor permutations
(resp. one-way functions) exist. Then every language in NP has a (sub-
exponentially indistinguishable) NIWI proof system (resp. non-interactive
commitment scheme).

Moreover, by correctly setting the output length of the commitment scheme
in terms of the security parameter n, we obtain a non-interactive perfectly
binding and computationally hiding commitment scheme, such that given a
commitment c, the committed message (i.e., val(c)) can be computed by a
2n

ε

-time algorithm, where n is the security parameter and ε is some constant.

To go from NIWI to NIZK, one can apply the well-known FLS technique [28].
The simulator is provided with a trapdoor via non-uniform advice, which is not
known to the uniform adversary in the real world. Note that we choose the
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trapdoor such that it can be obtained by a uniform adversary running in super-
polynomial (sub-exponential) time. Formally, [9] show how to construct NIZK
without CRS against uniform adversaries under the following assumptions:

Assumption A: There exists a NIWI proof system for every language L ∈ NP
with WI against sub-exponential adversaries.

Assumption B: There exists a non-interactive perfectly binding and
computationally hiding commitment scheme, such that given a commitment,
the message can be computed by a 2n

ε

-time algorithm, where n is the security
parameter and ε is some constant.

Assumption C: There exists a language ∆ ∈ P and constants ε1 < ε2 < 1
such that:
∆ is hard to sample in time 2n

ε1
: For every probabilistic 2n

ε1
-time algorithm

A, the probability that A(1n) ∈ ∆ ∩ {0, 1}n is negligible.
∆ is easy to sample in time 2n

ε2
: There exists a 2n

ε2
algorithm S∆ such

that for every n ∈ N , Pr[S∆(1n) ∈ ∆ ∩ {0, 1}n] = 1.

Theorem 4 ([9]). Under Assumptions A, B and C, there exists a NIZK
argument system without CRS for NP with soundness against sub-exponential
uniform adversaries and zero-knowledge against sub-exponential adversaries.

Lemma 1. If E is hard for exponential size non-deterministc circuits and P-
cert with soundness against sub-exponential adversaries exists, then Assumption
C is true.

The proof of the lemma can be found in [4].

Corollary 1. Assuming that E is hard for exponential size (co-)non-
deterministic circuits, the existence of sub-exponential trapdoor permutations,
and the existence of P-cert with soundness against sub-exponential adversaries,
there exists a NIZK argument system without CRS for NP with soundness
against sub-exponential uniform adversaries and zero knowledge against sub-
exponential adversaries.

3 Construction for Multi-Bit Messages

Let C = (Com,Open) be a tag-based, non-interactive commitment scheme
that is perfectly binding (see Definition 2.3). Let ΠNI = (PNI,VNI,SimNI) be
a non-interactive simulatable proof system. Let S = (Gen,Sign,Ver) be a
one-time signature scheme. Let D0, D1 be disjoint distributions over {0, 1}n.
For b := b1, . . . , bm ∈ {0, 1}m, Db denotes a draw from the product distribution
(Db1 , . . . , Dbm). We define the following language:
Language L: s := ([xi]i∈[m], c, tag) ∈ L iff ∃b := b1, . . . , bm ∈ {0, 1}m such that
for i ∈ [m], xi = (xi1, . . . , x

i
n) is in the support of Dbi and c is a commitment to

b under tag.
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E(b := b1, . . . , bm):

1. Choose (vk, sk)← Gen(1n
′
), where n′ � n. We assume WLOG |vk| = n′.

2. Sample x := x1, . . . ,xm ← Db, where for i ∈ [m], xi = xi1, . . . , x
i
n.

3. Compute (c,d)← Com(b, tag := vk).
4. Compute a non-interactive, simulatable proof T proving ([xi]i∈[m], c, vk) ∈ L.
5. Compute σ ← Sign(sk, ([xi]i∈[m], c, T )).
6. Output CW := (vk, [xi]i∈[m], c, T, σ).

D(CW):

1. Parse CW := (vk, [xi]i∈[m], c, T, σ)
2. Check that Ver(vk, σ, ([xi]i∈[m], c, T )) = 1.
3. Check that VNI outputs 1 on proof T .
4. If yes, output [bi]i∈[m] such that for all i ∈ [m], xi1, . . . , x

i
n is in the support of

Dbi . If not, output 0.

Fig. 2. Non-malleable code (E,D), secure against F tampering.

E1(td, b := b1, . . . , bm):

1. Choose (vk, sk)← Gen(1n
′
)

2. Sample x := x1, . . . ,xm ← Db, where for i ∈ [m], xi = xi1, . . . , x
i
n.

3. Compute (c,d)← Com(b, tag := vk).
4. Simulate, using td, a non-interactive proof T ′ proving

s := ([xi]i∈[m], c, vk) ∈ L.
5. Compute σ ← Sign(sk, ([xi]i∈[m], c, T

′)).
6. Output CW := (vk, [xi]i∈[m], c, T

′, σ).

Fig. 3. Encoding algorithm with simulated proof.

The construction is presented in Figure 2:

Let Ψ(p, x, y, z) be defined as a function that takes as input a predicate p,
and variables x, y, z. If p(x, y) = 1, then Ψ outputs the m-bit string 0. Otherwise,
Ψ outputs z.

Theorem 5. Let (E,D), E1, E2, D′ and g be as defined in Figures 2, 3, 4, 5 and
6. Let F be a computational class. If, for every pair of m-bit messages b0, b1 and
for every tampering function f ∈ F , all of the following hold:

– Simulation of proofs.

1. Pr[g(CW0, f(CW0)) = 1]
negl(n)
≈ Pr[g(CW1, f(CW1)) = 1],
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E2(td, b := b1, . . . , bm):

1. Choose (vk, sk)← Gen(1n
′
)

2. Sample x := x1, . . . ,xm ← Db, where for i ∈ [m], xi = xi1, . . . , x
i
n.

3. Compute (c′,d′)← Com(0, tag := vk).
4. Simulate, using td, a non-interactive proof T ′ proving s := ([xi]i∈[m], c

′, vk) ∈
L.

5. Compute σ ← Sign(sk, ([xi]i∈[m], c
′, T ′)).

6. Output CW := (vk, [xi]i∈[m], c
′, T ′, σ).

Fig. 4. Encoding algorithm with simulated proof and commitments.

D′(CW) := D′2(D′1(CW)):

D′1(CW):

1. Parse CW := (vk, [xi]i∈[m], c, T, σ)
2. Check that Ver(vk, σ, ([xi]i∈[m], c, T )) = 1.
3. Check that VNI outputs 1 on proof T
4. If not, output ⊥, where ⊥ is a special symbol.
5. If yes, output (c, tag := vk).

D′2(c, tag := vk):

1. If c = ⊥, output [0]i∈[m] and terminate.

2. Otherwise, check if there exists a string d and a string b̃ such that
Open(d, c, vk, b̃) = 1. If yes, output b̃. Otherwise, output [0]i∈[m].

Fig. 5. Alternate decoding procedure D′.

g(CW,CW∗):

1. Parse CW = (vk, [xi]i∈[m], c, T, σ), CW∗ = (vk∗, [x∗i]i∈[m], c
∗, T ∗, σ∗).

2. If vk = vk∗ and Ver(vk∗, σ∗, ([x∗i]i∈[m], c
∗, T ∗)) = 1 then output 1. Otherwise

output 0.

Fig. 6. The predicate g(CW,CW∗).

2. Ψ(g,CW0, f(CW0),D(f(CW0)))
PPT,negl(n)
≈

Ψ(g,CW1, f(CW1),D(f(CW1))),

where f ∈ F , CW0 ← E(b0) and CW1 ← E1(td, b0).
– Simulation of Commitments.
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1. Pr[g(CW1, f(CW1)) = 1]
negl(n)
≈ Pr[g(CW2, f(CW2)) = 1],

2. Ψ(g,CW1, f(CW1),D(f(CW1)))
PPT,negl(n)
≈

Ψ(g,CW2, f(CW2),D(f(CW2))),

where f ∈ F , CW1 ← E1(td, b0) and CW2 ← E2(td, b0).
– Simulation Soundness.

Pr[D(f(CW2)) 6= D′(f(CW2)) ∧ g(CW2, f(CW2)) = 0] ∈ O(1/nc),

where f ∈ F , CW2 ← E2(td, b0).
– Hardness of Db relative to Alternate Decoding.

1. Pr[g(CW2, f(CW2)) = 1]
PPT,O(1/nc)

≈ Pr[g(CW3, f(CW3)) = 1],
2. For every Boolean function, represented by a circuit F over m variables,

F ◦ D′(f(CW2))
stat,O(1/nc)
≈ F ◦ D′(f(CW3)),

where CW2 ← E2(td, b0), and CW3 ← E2(td, b1).

Then the construction presented in Figure 2 is a O(1/nc)-non-malleable code
for class F .

We present the proof of Theorem 5 in the full version [4].

4 Multi-Bit NMC Against Bounded Poly Adversaries

We describe the underlying components required to instantiate the generic
construction. The tampering class F corresponds to (uniform) tampering
functions that run in time O(ncA), where n is security parameter. The length of
the encoding is L := O(nc`), for some fixed constant c`. Therefore, the tampering
function is allowed to run in time LcA/c` with respect to the input length L.

Let n be the input length for the hard distribution described in Section 4.1.
We fix polynomials tψ(n) = ncψ , tcom(n) = nccom where cψ, ccom are constants
(both greater than cA) and superpolynomial time bounds Tcom(n), T ′NIZK(n),
TZK(n). such that

– cψ � ccom,
– T ′NIZK(n)� Tcom(n),
– TZK(n) is subexponential.

The distribution described in Section 4.1 is hard for tψ(n)-time adversaries.
m ·λ� n is the length of the m-bit commitment using the commitment scheme
described in Section 4.2, n is set such that m ·λ+n′ ≤ (m+ 1) ·λ ∈ o(n) (so n is
asymptotically larger than the length of the commitment–m · λ–plus the length
of the tag–n′.). These commitments are hiding for polynomial-time adversaries
and quasi-non-malleable for adversaries in BPtime(Tcom(n))

⋂
SIZE(tcom(n)).

The the non-interactive simulatable proof system in Section 4.3 has soundness
against uniform, poly-time adversaries and zero knowledge against TZK(n) time
adversaries.
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4.1 The Hard Distribution Db (instance length n, hard against
tψ(n)-time adversaries)

Theorem 6 ( [1]). If E is hard for exponential size nondeterministic circuits,
then for every constant cψ > 1, there exists a constant d > 1 such that for every
sufficiently large n, there is a function ψ : {0, 1}n → {0, 1} that is (`, n−cψ )-
incompressible for size ncψ circuits, where ` = n − d · log n. Furthermore, ψ is
computable in time poly(ncψ ) ∈ O(nccom).

Setting parameters n, cψ, d as above, we let Db be the uniform distribution over
x← {0, 1}n, conditioned on ψ(x) = b. The theorem above immediately implies
the following:

Claim. Let n, cψ, d, ψ be as above, let F̃ be any Boolean function over (m+1)·λ ≤
n−d · log n < (1−α)n variables, and let C be a size ncψ circuit with input length

n and output length m. Then, over random choice of x← {0, 1}n, F̃ ◦C(x) has
correlation at most 1/n−cψ with ψ(x).

4.2 Commitment scheme C = (Com,Open) (length λ � n, hiding
for poly-time adversaries, and quasi non-malleable against
adversaries in BPtime(Tcom(n))

⋂
SIZE(tcom(n)))

We instantiate the commitment scheme C = (Com,Open) with the scheme
presented in [4]. Recall that the scheme has the following properties:

– Non-interactive with no-CRS.
– Perfectly binding,
– Quasi-non-malleable against in BPtime(Tcom(n))

⋂
SIZE(tcom(n)).

4.3 Non-Interactive Simulatable Proof System (Sound against
uniform ppt adversaries, ZK against adversaries running in
time TZK(n))

Let Π = (P,V,Sim) be a NIZK proof system for NP with no CRS (Construction
given in [4]) with soundness against uniform adversaries running in time
TNIZK(n). We additionally require that the trapdoor can be extracted by
uniform adversaries running in time T ′NIZK(n).

Let C′ = (Com′,Open′) be a non-interactive, perfectly binding, commitment
scheme with no CRS that can be extracted in time TNIZK(n) and is hiding
against adversaries running in time TZK(n).

We also assume the existence of P-certificates with soundness against
adversaries running in time TNIZK(n).

We define the proof system ΠNI = (PNI,VNI,SimNI) for language L defined in
Section 3 as follows:
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PNI: Recall that a witness w for statement s := ([xi]i∈[m], c, tag) ∈ L consists
of a string b = b1, . . . , bm and an opening d such that (1) Open(c, b, tag) = 1
and (2) for all i ∈ [m], ψ(xi) = bi. Given a statement s and witness w, let
P be a P-certificate that (1) and (2) hold.
Invoke P from proof system Π with the statement s′ = (s, com) ∈ L′ using
proof system Π, where L′ is the language consisting of strings (s, com) such
that com is a commitment to (w,P ) and P is a P-certificate that (1) and
(2) hold for (s, w). P outputs a proof π′. PNI outputs proof π = com||π′.

VNI: On input statement s, proof π and language L: Parse π := com||π′. Run
the underlying verifier V on π′ for statement (s, com) and language L′ and
output whatever it does.

SimNI: On input (td, x), and language L: Set com to a commitment to 0 and
invoke the underlying Sim for Π with input (td, (s, com)) and language L′.

Note that given the P-certificate P , computing the NIZK proof using ΠNI

can be done in fixed polynomial time in the length of the statement (s, com).
Moreover, given the trapdoor td, a simulated proof can also be computed in fixed
polynomial time. The following claim is straightforward.

Claim. Given the above assumptions, ΠNI = (PNI,VNI,SimNI) is a NIZK
argument system for language L with zero knowledge against adversaries running
in time TZK(n) and trapdoor that can be extracted in time T ′NIZK(n).

4.4 Main Theorem

Theorem 7. For any constant cA > 1, Π = (E,D) (presented in Figure 2) is a
multi-bit, non-malleable code against (uniform) tampering functions that run in
time O(ncA), if parameters cψ, ccom, Tcom(n), T ′NIZK(n), TZK(n) are chosen as
described above and the underlying components are instantiated in the following
way:

– For b ∈ {0, 1}, Db is the distribution from Section 4.1.
– C := (Com,Open) is the commitment scheme from Section 4.2.
– ΠNI := (PNI,VNI,SimNI) the simulatable proof system from Section 4.3.
– S := (Gen,Sign,Ver) is any one-time signature scheme secure against PPT

adversaries.

Proof. To prove the theorem, we need to show that the necessary properties
from Theorem 5 hold. We next go through these one by one.

Simulation of proofs.

1. Pr[g(CW0, f(CW0)) = 1]
negl(n)
≈ Pr[g(CW1, f(CW1)) = 1],

2. Ψ(g,CW0, f(CW0),D(f(CW0)))
PPT,negl(n)
≈ Ψ(g,CW1, f(CW1),D(f(CW1))),

where f ∈ F , CW0 ← E(b0) and CW1 ← E1(td, b0).

This follows by ZK property of ΠNI.

Simulation of Commitment.
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1. Pr[g(CW1, f(CW1)) = 1]
negl(n)
≈ Pr[g(CW2, f(CW2)) = 1],

2. Ψ(g,CW1, f(CW1),D(f(CW1)))
PPT,negl(n)
≈ Ψ(g,CW2, f(CW2),D(f(CW2))),

where f ∈ F , CW1 ← E1(td, b0) and CW2 ← E2(td, b0).

This follows from hiding property of the commitment scheme C.
Simulation Soundness.

Pr
r

[D(f(CW2)) 6= D′(f(CW2)) ∧ g(CW2, f(CW2)) = 0] ∈ O(1/nccom),

where f ∈ F , CW2 ← E2(td, b0).

We begin by defining the following:

P0(n) := Pr[D(f(CW0)) 6= D′(f(CW0)) ∧ g(CW0, f(CW0)) = 0],

where f ∈ F , CW0 ← E(b0)

P1(n) := Pr
r

[D(f(CW1)) 6= D′(f(CW1)) ∧ g(CW1, f(CW1)) = 0],

where f ∈ F , CW1 ← E1(td, b0)

P2(n) := Pr
r

[D(f(CW2)) 6= D′(f(CW2)) ∧ g(CW2, f(CW2)) = 0],

where f ∈ F , CW2 ← E2(td, b0).

We prove the following sequence of claims, which immediately imply the
simulation soundness property.

Claim. P0(n) ∈ negl(n).

Since D(f(CW1)) 6= D′(f(CW1)) can only occur if the NIZK proof verifies,
but the statement being proved is false, this follows from the soundness of the
NIZK proof system ΠNI.

Claim. |P1(n)− P0(n)| ∈ negl(n).

This holds due to complexity leveraging–i.e. by appropriately setting
parameters, one can check whether the statement being proved is true or false
(by deciding whether x is in the support of D0 or D1 and by extracting from the
commitment scheme) without distinguishing a real from simulated proof since
TZK(n) is subexponential.

Claim. |P2(n)− P1(n)| ∈ O(1/nccom).

Proof. Assume |P2(n) − P1(n)| /∈ O(1/nccom), we will construct an adver-
sary/distinguisher (A,D) in BPtime(Tcom(n))

⋂
SIZE(tcom(n)) that breaks

the O(1/nccom)-non-malleability of commitment scheme C. Specifically, we must
show an adversary A, distinguisher D in BPtime(Tcom(n))

⋂
SIZE(tcom(n))

such that D distinguishes the output of mimA
C (b0) from mimA

C (0) with advantage
a(n) /∈ O(1/nccom).

A = (A1, A2) is specified as follows:
On input security parameter 1n, A1 does as follows:
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– A1 generates keys (vk, sk)← Gen(1n)
– A1 runs in uniform time T ′NIZK(n) ≤ Tcom(n) to recover the trapdoor td of

the NIZK.
– A1 outputs tag := vk to its challenger as the desired tag and outputs td, sk

to A2.

On input td, sk, vk, c, A2 does as follows:

– For i ∈ [m], sample xi ∼ Dbi (in time m · poly(ncψ ) ∈ O(nccom), where poly
is a fixed polynomial.

– Use td to generate a simulated proof T in fixed polynomial time and compute
σ ← Sign(sk, ([xi]i∈[m], c, T )) in fixed polynomial time.

– Compute f(vk, [xi]i∈[m], c, T, σ) = [vk′,x
′i]i∈[m], c

′, T ′, σ′).
– If the predicate g evaluates to 1, the signature σ′ or proof T does not verify,

output ⊥ (this computation takes fixed polynomial time).
– Otherwise, output (c′, out := [x

′i]i∈[m]). Note that in this case, vk′ 6= vk
(corresponding to the tag of the commitment) since g evaluates to 0 and σ
verifies.

Distinguisher D receives the committed value v′ = v′1, . . . , v
′
m underlying c′

(or receives ⊥) as well as out (the additional output of adversary A). D outputs
0 if for all i ∈ [m], v′i = ψ(xi) (or if its input is ⊥) and outputs 1 otherwise
(computed in time m · poly(ncψ ) ∈ O(nccom)).

Clearly,
Pr

c←Com(b0,vk)
[D(v′, out) = 1] = P2(n), and

Pr
c←Com(0,vk)

[D(v′, out) = 1] = P1(n)

Thus, we have that∣∣∣∣ Pr
c←Com(b0,vk)

[D(v′, out) = 1]− Pr
c←Com(0,vk)

[D(v′, out) = 1]

∣∣∣∣ /∈ O(1/nccom).

Moreover, A,D are in BPtime(Tcom(n))
⋂

SIZE(tcom(n)). Thus, we obtain a
contradiction to the O(1/nccom) non-malleability of the commitment scheme
against adversaries, distinguishers in BPtime(Tcom(n))

⋂
SIZE(tcom(n)).

Hardness of Db relative to Alternate Decoding.

1. Pr[g(CW2, f(CW2)) = 1]
O(1/ncψ )
≈ Pr[g(CW3, f(CW3)) = 1],

2. For every Boolean function, represented by a circuit F over m variables,

F ◦ D′(f(CW2))
stat,O(1/ncψ )

≈ F ◦ D′(f(CW3)),
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where f ∈ F , CW2 ← E2(td, b0) and CW3 ← E2(td, b1).

We consider a sequence of distributions where we switch the internal random
variables of E2 from from xi ← Dbi0

, for all i ∈ [m] to xi ← Dbi1
, for all i ∈ [m].

Namely, for each i ∈ {0, . . . ,m} we consider a distribution where for j ≤ i,
xj ← Dbi1

and for j > i, xj ← Dbi0
.

We must show that (1) and (2) hold for each consecutive pair of distributions.
When considering the i-th consecutive pair, fix all random variables except the i-
th variableXi to values x1, . . . ,xi−1,xi+1, . . . ,xm. LetXi be a random variable
such that with probability 1/2, Xi ← Dbi0

and with probability 1/2, Xi ← Dbi1
.

Xi = Xi,γ where γ ← {0, 1}, and let random variable CWi denote the output
of E2 when using random variables x1, . . . ,xi−1,Xi,xi+1, . . . ,xm.

Since proving (1) is similar, but more straightforward than proving (2), we
defer the proof of (1) to [4] and proceed to prove (2) next.

To show (2), assume D′(f(CW2)) and D′(f(CW3)) have greater than 1/ncψ

statistical distance. This implies that there exists a distinguisher F (represented
by an m-bit Boolean function) such that F ◦D′(f(CW2)) is more than 1/ncψ -far
from F ◦ D′(f(CW3)). This implies that, for some i ∈ [m], the output of F ◦
D′(f(CWi)) is a(n) /∈ O(1/ncψ )-correlated with ψ(Xi). Note that, by definition,
F ◦D′(f(CWi)) = F ◦D′2 ◦D′1(f(CWi)), where D′1 has output length (m+ 1) · λ
(m · λ for the size of the non-malleable commitment and λ for the length of the
tag of the non-malleable commitment). We will show that D′1(f(CWi)) can be
computed by a circuit C of size O(ncψ ) (drawn from some distribution C over
circuits) with input Xi. We then use Claim 4.1, which says that if C is a size
O(ncψ ) circuit taking inputs of length n bits and producing outputs of length

(m + 1) · λ < (1 − α)n-bits and and F̃ is any (m + 1) · λ < (1 − α)n-bit input

Boolean function then the output of F̃ (C(Xi)) is at most O(1/ncψ )-correlated

with ψ(Xi), instantiating F̃ := F ◦D′2. This yields a contradiction. Details follow.

Given non-uniform advice td, f , we construct the distribution of circuits C2f,td.
A draw C ∼ C2f,td as follows:

1. Sample signature keys (vk, sk)← Gen(1n),
2. Sample random commitment to 0m: (c′,d′)← Com(0m, tag := vk),
3. Sample x1, . . . ,xi−1 from Dbi0

, and xi+1, . . . ,xm from Dbi1
.

4. Output the following circuit C that has the following structure:

– hardcoded variables: f , x1, . . . ,xi−1, c′, [T
′β,i
j ]β∈{0,1},i∈[m],j∈[n],

x1, . . . ,xi−1,xi+1, . . . ,xm.
– input: Xi.
– computes and outputs: D′1(f(CWi)).

Given all the hardwired variables, computing CWi can be done in time
O(ncψ ) since it only requires computing the simulated proof T and signature
σ, which can both be done in fixed polynomial time less than ncψ .
Additionally, f can be computed in time ncA < ncψ , and D′1 can be computed
in fixed polynomial time less than ncψ , since it only involves verifying the
signature σ and proof T , which both take fixed polynomial time.
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