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Abstract. A conjunction is a function f(x1, . . . , xn) =
∧
i∈S li where

S ⊆ [n] and each li is xi or ¬xi. Bishop et al. (CRYPTO 2018) recently
proposed obfuscating conjunctions by embedding them in the error posi-
tions of a noisy Reed-Solomon codeword and placing the codeword in a
group exponent. They prove distributional virtual black box (VBB) se-
curity in the generic group model for random conjunctions where |S| ≥
0.226n. While conjunction obfuscation is known from LWE [47, 31], these
constructions rely on substantial technical machinery.

In this work, we conduct an extensive study of simple conjunction ob-
fuscation techniques.

– We abstract the Bishop et al. scheme to obtain an equivalent yet
more efficient “dual” scheme that handles conjunctions over expo-
nential size alphabets. We give a significantly simpler proof of generic
group security, which we combine with a novel combinatorial argu-
ment to obtain distributional VBB security for |S| of any size.

– If we replace the Reed-Solomon code with a random binary linear
code, we can prove security from standard LPN and avoid encoding
in a group. This addresses an open problem posed by Bishop et al. to
prove security of this simple approach in the standard model.

– We give a new construction that achieves information theoretic dis-
tributional VBB security and weak functionality preservation for
|S| ≥ n− nδ and δ < 1. Assuming discrete log and δ < 1/2, we sat-
isfy a stronger notion of functionality preservation for computation-
ally bounded adversaries while still achieving information theoretic
security.

1 Introduction

Program obfuscation [7] scrambles a program in order to hide its implemen-
tation details, while still preserving its functionality. Much of the recent at-
tention on obfuscation focuses on obfuscating general programs. Such obfusca-
tion is naturally the most useful [43, 15], but currently the only known con-
structions are extremely inefficient and rely on new uncertain complexity as-
sumptions about cryptographic multilinear maps [27, 23, 29]. Despite recent
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advances [1, 37, 28, 35, 2, 13, 36, 39, 8], obfuscating general programs remains
out of reach.

For some specific functionalities, it is possible to avoid multilinear maps.
A series of works have shown how to obfuscate point functions (i.e., boolean
functions that output 1 on a single input) and hyperplanes [21, 38, 46, 24, 48,
10]. Brakerski, Vaikuntanathan, Wee, and Wichs [19] showed how to obfuscate
conjunctions under a variant of the Learning with Errors (LWE) assumption.
More recently it has been shown how to obfuscate a very general class of evasive
functions including conjunctions under LWE [31, 47].

1.1 This Work: Conjunction Obfuscation

In this work, we primarily consider obfuscating conjunctions. This class of pro-
grams has also been called pattern matching with wildcards [12], and in related
contexts is known as bit-fixing [14].

A conjunction is any boolean function f(x1, . . . , xn) =
∧
i∈S li for some S ⊆

[n], where each literal li is either xi or ¬xi. This functionality can be viewed as
pattern-matching for a pattern pat ∈ {0, 1, *}n, where the * character denotes
a wildcard. An input string x ∈ {0, 1}n matches a pattern pat if and only if x
matches pat at all non-wildcard positions. So for example x = 0100 matches
pat = *10* but not pat = 1**0.

We are interested in obfuscating the boolean functions fpat : {0, 1}n → {0, 1}
which output 1 if and only if x matches pat. We additionally give obfusca-
tion constructions for two generalizations of the pattern matching functionality:
multi-bit conjunction programs fpat,m which output a secret message m ∈ {0, 1}`
on an accepting input, and conjunctions over arbitrary size alphabets.3

In particular, we consider the notion of distributional virtual black-box obfus-
cation (VBB), which guarantees that the obfuscation of a pattern drawn from
some distribution can be simulated efficiently, given only oracle access to the
truth table of the function defined by the pattern. We consider this notion of
obfuscation in the evasive setting, where given oracle access to a pattern drawn
from the distribution, the polynomial time simulator cannot find an accepting
input except with negligible probability. Thus our goal will be to produce obfus-
cations that are easily simulatable without any information about the sampled
pattern other than its distribution.

Recently, Bishop, Kowalczyk, Malkin, Pastro, Raykova, and Shi [12] gave a
simple and elegant obfuscation scheme for conjunctions, which they prove secure
in the generic group model [44]. Unfortunately, they did not prove security rela-
tive to any concrete (efficiently falsifiable [41, 30]) assumption on cryptographic
groups. Before their work, obfuscation for conjunctions was already known from
LWE as a consequence of lockable obfuscation (also known as obfuscation for
compute-and-compare programs) [47, 31]. However, for the restricted setting of

3 Conjunctions over boolean/binary inputs naturally generalize to alphabets [`] for
` ≥ 2. In this setting, each xi ∈ [`], and `i specifies the setting on the ith character.
Positions not fixed by the `i are the wildcards.
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conjunctions, the Bishop et al. [12] construction is significantly simpler and more
efficient.

Our Results. In this work, we show how to alter the Bishop et al. construction
in various ways, obtaining the following results.

– A New Generic Group Construction. We give a new group-based construc-
tion that can be viewed as “dual” to the construction of Bishop et al [12].
Our construction offers significant efficiency improvements by removing the
dependence on alphabet size from the construction.

We also improve upon the generic group security analysis of Bishop et al. [12]
by simplifying the proof steps and extending the argument to handle a larger
class of distributions.

– Security from LPN. We show that a few modifications to the group-based
construction allows us to remove groups from the scheme entirely. We prove
security of the resulting construction under the (constant-rate) Learning
Parity with Noise (LPN) assumption. Along the way, we give a reduction
from standard LPN to a specific, structured-error version of LPN, which we
believe may be of independent interest.

– Information-Theoretic Security. Finally, we show how to extend our tech-
niques to the information-theoretic setting if the number of wildcards is
sub-linear. We stress that this requires considering a weaker notion of func-
tionality preservation. We also give an alternative information theoretic
scheme that achieves an intermediate “computational” notion of functional-
ity preservation assuming discrete log.

In Table 1, we compare our results with prior works on conjunction obfusca-
tion achieving distributional-VBB security (we omit the [19] and [17] construc-
tions from entropic-ring-LWE and multilinear maps).

Assumption Alphabet Distribution FP

[47, 31] LWE Exponential H∞(b|pat−1(*)) ≥ log(n) Strong
Bishop et. al. GGM Binary Uw,n for w < .774n Strong

This work GGM Exponential Uw,n for w < n− ω(log(n)) 4 Strong
This work LPN Binary Uw,n for w = cn, c < 1 Weak
This work None Binary H∞(b|pat−1(*)) ≥ n1−γ 5 Weak

Table 1: A comparison between our constructions and prior work. Let Un,w be
the uniform distribution over all patterns in {0, 1, *}n with exactly w wildcards.
For any pattern pat ∈ {0, 1, *}n, define pat−1(*) := {j | patj = *} the positions
of the wildcards and let b ∈ {0, 1}n−w denote the fixed bits of pat. When we say
the alphabet is exponential, we mean any alphabet with size at most exponential
in the security parameter. FP refers to functionality preservation.
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1.2 Technical Overview

Review of the Bishop et al. Construction [12]. We first recall the Bishop
et al. scheme for obfuscating a pattern pat ∈ {0, 1, *}n. Begin by fixing a prime q
exponential in n. Then sample uniformly random s1, . . . , sn−1 ← Zq and define

the polynomial s(t) :=
∑n−1
k=1 skt

k ∈ Zq[t]. Note that s(t) is a uniformly random
degree n− 1 polynomial conditioned on s(0) = 0.

Now visualize a 2 × n grid with columns indexed as i = 1, . . . , n and rows
indexed as j = 0, 1. To obfuscate pat ∈ {0, 1, *}n, for each (i, j) such that pati ∈
{j, *}, we place s(2i + j) in grid cell (i, j) and otherwise, we place r2i+j ← Zq.
For example, if the pattern is pat = 11*0, we write

r2 r4 s(6) s(8)

s(3) s(5) s(7) r9

Bishop et al. [12] observe that these 2n field elements are essentially a noisy
Reed-Solomon codeword with the white grid cells representing error positions.
If the number of error positions is small enough, an attacker can run any Reed-
Solomon error correction algorithm to recover s(t) and learn pat. However, all
known error-correction algorithms for Reed-Solomon codes are non-linear. Thus,
the final step is to place the 2n field elements in the exponent of a group G =
〈g〉 of order q. The crucial observation in [12] is that we can perform honest
evaluation on an input x ∈ {0, 1}n with linear operations in the exponent. For
example, to evaluate on input x = 1110, we generate Lagrange reconstruction
coefficients L3, L5, L7, L8 for the cells corresponding to x and reconstruct

gL3s(3)+L5s(5)+L7s(7)+L8s(8) = gs(0) = g0.

Evaluation accepts if and only if the result is g0. Notice that if a single element
from a white cell is included in the reconstruction, the evaluator fails to recover
g0 with overwhelming probability (q−1)/q. For security, they prove the following:

Theorem ([12]). Let Un,w be the uniform distribution over all patterns in
{0, 1, *}n with exactly w wildcards. For any w < 0.774n, this construction attains
distributional virtual black box security in the generic group model.

Bishop et al. [12] do not address whether the scheme becomes insecure for
0.774n < w < n− ω(log n), or if the bound is a limitation of their analysis.6

4 In a concurrent work [11], Beullens and Wee achieved the same improvement in
parameters and show how to base security on a new knowledge assumption secure
in the generic group model. In the full version [9], we also obtain security for more
general distributions that satisfy a certain min-entropy requirement.

5 For patterns with nδ wildcards, and γ < 1− δ.
6 If w = n − O(logn), the distributional virtual black box security notion is vacuous

since an attacker can guess an accepting input and recover pat entirely.
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This Work. We provide several new interpretations of the [12] scheme. Through
these interpretations, we are able to obtain improved security, efficiency, and
generality, as well as novel constructions secure under standard cryptographic
assumptions. We summarize the properties of these new constructions in Table 1

Interpretation 1: The Primal. Our first observation is that the 2n field
elements generated by the [12] construction can be rewritten as a product of a
transposed Vandermonde matrix A and a random vector s, plus a certain “error
vector” e. So if the pattern is pat = 11*0, instead of writing the elements in grid
form as above, we can stack them in a column as



r2
s(3)
r4
s(5)
s(6)
s(7)
s(8)
r9


=



21 22 23

31 32 33

41 42 43

51 52 53

61 62 63

71 72 73

81 82 83

91 92 93


·

s1s2
s3

+



r′2
0
r′4
0
0
0
0
r′9


.

So far, nothing has changed — the Bishop et al. [12] obfuscation scheme
is precisely gA·s+e. But if we revisit the evaluation procedure in the A · s + e
format, a possible improvement to the construction becomes apparent. Recall
that evaluation is simply polynomial interpolation: on input x ∈ {0, 1}n, the
evaluator generates a vector v ∈ Z2n

q where v2i+xi−1 = 0 for all i ∈ [n], and
the n non-zero elements of v are Lagrange coefficients. For any input x (even
ones not corresponding to accepting inputs), the Lagrange coefficients ensure v
satisfies v> · A = 0 ∈ Z2n

q and the corresponding scalar equation v> · A · s = 0.

This means an input x is only accepted if v> · (A · s + e) = v> · e = 0. Indeed,
we can verify that if there exists a position i ∈ [n] where xi 6= pati (note that if
pati = * we take this to mean xi = pati), this corresponds to an entry where v is
non-zero and e is uniformly random, making v> · e non-zero with overwhelming
probability.

Interpretation 2: The Dual. Observe that evaluation only required the A
matrix and e vector. The random degree n − 1 polynomial s(t) generated in
the [12] scheme, whose coefficients form the random s vector, does not play a role
in functionality. This suggests performing the following “dual” transformation
to the A · s + e scheme. Let B be an (n + 1) × 2n dimensional matrix whose

rows span the left kernel of A. Since B · A = 0 ∈ Z(n+1)×(n−1)
q , multiplying

B · (A · s+ e) yields the n+ 1 dimensional vector B · e. We claim this dual gB·e

scheme captures all the information needed for secure generic group obfuscation,
but with n+ 1 group elements rather than 2n.
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Evaluation in the Dual. A similar evaluation procedure works for the dual
scheme. On input x, the evaluator solves for a vector k ∈ Fn+1

q so that the

2n-dimensional vector k> · B is 0 at position 2i + xi − 1 for each i ∈ [n]. Note
that such a k exists since we only place n constraints on n+ 1 variables. k> ·B
will play exactly the same role as the v> vector from the A · s + e evaluation.
On accepting input, k> ·B will be 0 in all the positions where e is non-zero, so
k> ·B · e = 0. On rejecting inputs, (k> ·B) will have a non-zero entry where the
corresponding entry of e is uniformly random, so k> ·B ·e 6= 0 with overwhelming
probability.

Proving Generic Group Security. The Bishop et al. [12] proof of distributional
VBB security uses over 10 pages of generic group and combinatorial analysis.
They derive their bound of 0.774n on the number of wildcards by numerically
solving a non-linear equation arising from their analysis of a certain combinato-
rial problem.

Our first contribution is to show that by analyzing our dual scheme, we can
give a short and extremely intuitive proof of generic group model security from a
linear independence argument (Section 3). Part of the simplification arises from
the fact that our dual scheme completely removes the random polynomial from
the construction. Our generic model proof steps end with the same combinatorial
problem Bishop et al. [12] consider, but instead of deferring to their analysis, we
give a simple combinatorial argument from a Chernoff bound. This allows us to
improve their 0.774n wildcard bound to n−ω(log n). This bound is optimal; for
n−O(log n) wildcards, a polynomial time adversary can guess an accepting input
and learn the pattern entirely. We remark that our new combinatorial analysis
implies the original Bishop et al. [12] scheme is also secure up to n − ω(log n)
wildcards. In the full version [9], we show how to generalize this analysis to
certain distributions with sufficient entropy.

Conjunctions over Large Alphabets. If we go beyond binary alphabets, the dual
scheme actually reduces the obfuscation size by far more than a factor of 2.
Suppose the alphabet is [`] for some integer `, so a conjunction is specified by
a length n pattern pat ∈ {[`] ∪ {*}}n. fpat(x) = 1 only if xi = pati on all
non-wildcard positions.

We can give a natural generalization of the A ·s+e/Bishop et al. [12] scheme
to handle larger alphabets. For an alphabet of size `, we use an error vector
e ∈ Zn`q , which we imagine partitioning into n blocks of length `. The ith block
of e corresponds with the ith pattern position. As in the binary case, if pati = *,
we set every entry of e in the ith block to 0. If pati = j for j ∈ [`], we set
the jth position in the ith block of e to a uniformly random value in Fq, and
set the remaining ` − 1 entries in the ith block to 0. A is now a transposed
Vandermonde matrix of dimension n`× n`− n− 1, and s is drawn as a random
vector from Zn`−n−1p . To evaluate on x ∈ [`]n, we solve for v> · A = 0 where v
is restricted to be zero only at v(i−1)`+xi for each i ∈ [n].7 However, this scheme

7 We note that if we set ` = 2, this generalization flips the role of 0 and 1, but is
functionally equivalent.

6



is fundamentally stuck at polynomial-size alphabets, since A · s+ e contains n`
elements.

If we switch to the dual view, this same scheme can be implemented as gB·e

where B ∈ Z(n+1)×n`
q , e ∈ Zn`q . But the number of group elements in gB·e is

simply n + 1, which has no dependence on the alphabet size. Of course B will
have dimension (n + 1) × n`, but if we choose B to be a Vandermonde matrix,
we can demonstrate that neither the evaluator nor the obfuscator ever have to
store B or e in their entirety, since e is sparse for large `. In particular, we set
the (i, j)th entry of B to ji. We simply need q to grow with log ` to ensure this
implicit B satisfies the certain linear independence conditions that arise from
our security analysis.

Moving Out of the Exponent. Returning to the A · s+ e view of the scheme
for a moment, we see that its form begs an interesting question:

Can the (transposed) Vandermonde matrix A be replaced with other matrices?

In [12], the transposed Vandermonde matrix A plays at least two crucial roles: it
allows for evaluation by polynomial interpolation and at the same time is vital for
their security analysis. However, the structure of the transposed Vandermonde
matrix is what leads to Reed-Solomon decoding attacks on the plain scheme,
necessitating encoding the values in a cryptographic group. Furthermore, observe
that our abstract evaluation procedure described for our primal interpretation
made no reference to the specific structure of A; in particular, it works for any
public matrix A. In the case of the transposed Vandermonde matrix, applying
this abstract procedure results in the Lagrange coefficients used in [12], but we
can easily perform evaluation for other matrices.

Furthermore, the matrix form of the scheme is strongly reminiscent of the
Learning Parity with Noise (LPN) problem and in particular its extension to Fq,
known as the Random Linear Codes (RLC) problem [33].

We recall the form of the RLC problem over Fq for noise rate ρ and nc

samples. Here, we have a uniformly random matrix A ← Fnc×nq , a uniformly

random column vector s ∈ Fnq , and an error vector e ∈ Fncq generated as follows.
For each i ∈ [nc], set ei = 0 with independent probability 1 − ρ, and otherwise
draw ei ← Fq uniformly at random. The search version of this problem is to
recover the secret vector s given (A,A · s + e), and the decision version is to
is to distinguish (A,A · s + e) from (A, v) for uniformly random v ← Fncq . The
standard search RLC and decisional RLC assumptions are that these problems
are intractable for any computationally bounded adversary for constant noise
rate 0 < ρ < 1.

This suggests the following approach to obtaining a secure obfuscation scheme
from the original scheme: simply replace A with a random matrix over Fq. A
would be publicly output along with A · s+ e. The hope would be that we could
invoke the RLC assumption to show that even given A, the obfuscation A·s+e is
computationally indistinguishable from a vector v of 2n random elements. This
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would allow us to simultaneously avoid encoding in a group exponent and obtain
security under a standard assumption.

Structured Error Distributions. However, we cannot invoke security of RLC right
away. The main problem lies in the fact that the error vector in our setting is
structured : for any pair of positions e2i−1, e2i for i ∈ [n], the construction ensures
that at least one of e2i−1 or e2i is 0. Recall that if the ith bit of the pattern is
b, then e2i−b = 0 while e2i−(1−b) is drawn randomly from Fq. If the ith bit of
the pattern is *, then e2i−1 = e2i = 0. But if both e2i−1 and e2i are random
elements from Fq, this corresponds to a position where the input string can be
neither 0 nor 1, which can never arise in the obfuscation construction.

To the best of our knowledge, the only work that considers this particular
structured error distribution is the work of Arora and Ge [5], which shows that
this problem is actually insecure in the binary case (corresponding to a struc-
tured error version of LPN). Their attack uses re-linearization and it is easy to
see that it extends to break the problem we would like to assume hard as long
as A has Ω(n2) rows.

This leaves some hope for security, as our construction only requires that A
have 2n rows. Thus, we give a reduction that proves hardness of the structured
error RLC assumption with 2n samples assuming the hardness of the standard
RLC assumption for polynomially many samples. We note that our reductions
handle both the search and decision variants, and both LPN and RLC. We give
a high-level overview of our reduction below.

The Reduction to Structured Error. For our reduction, we return to theB·e
view of the scheme and consider the equivalent “dual” version of the decisional
RLC problem,8 where the goal is to distinguish (B,B · e) from (B, u) for B ←
F(nc−n)×nc
q , u← Fnc−nq , and e as drawn previously. The advantage of considering

the dual version is that the resulting technical steps of the reduction are slightly
easier to see, and we stress that our proof implies the hardness of structured
error RLC in its primal A · s+ e form.

Note that the problem of distinguishing between (B,B · e) and (B, u) for
nc − n samples and error vector e of dimension nc is equivalent to the setting
where the number of samples is n− n1/c and the error vector is of dimension n.
Since the standard RLC problem is conjectured hard for any constant c, we set
ε = 1/c and assume hardness for any 0 < ε < 1.

We show how to turn an instance of this problem into a structured error RLC
instance, where the challenge is to distinguish between (B,B · e) and (B, u) for

uniformly random B ← F(n+1)×2n
q , a structured error vector e ∈ F2n

q with noise
rate ρ, and uniformly random u ∈ Fn+1

q .
To perform this transformation, we need to somehow inject the necessary

structure into the standard RLC error vector e, which means introducing a

8 In the context of LWE this duality/transformation has been observed a number of
times, see e.g. [40]. For RLC, this is essentially syndrome decoding.
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zero element in each pair. The most natural way to do this given the regular
RLC instance (B,B · e) is to draw n new uniformly random columns and insert
them into B in random locations to produce the structured matrix B′. Now
B · e = B′ · e′, where e′ is a structured error vector with a 0 element in every
(2i−1, 2i) index pair. This immediately gives us a structured error RLC instance
with a matrix B′ of dimension (n − nε) × 2n. However, we require B to have
n+1 rows to enable evaluation of the corresponding obfuscation. We would like to
simply extend the (n−nε)×2n-dimensional B′ to an (n+1)×2n-dimensional B′′

by appending nε + 1 newly generated uniformly random rows, but this appears
impossible since we will be unable to fill in the nε+1 additional entries of B′′ ·e′
without knowledge of e′.

As a first attempt, we can try to extend B′ to B′′ by appending random
linear combinations of the n − nε rows of B′. This would allow us to properly
generate B′′ · e′ by extending B′ · e′ with the corresponding linear combinations.
Unfortunately, this is not quite sufficient since the matrix B′′ is distinguishable
from random, since its bottom nε+1 rows are in the row span of the first n−nε.

We now appeal to the fact that the reduction algorithm itself chose the
locations of the newly generated columns in B′, and thus it knows the location
of n elements of e′ set to 0. The reduction can therefore introduce randomness
into the last nε+ 1 rows of B′′ by modifying only the entries in these n columns,
since any changes it makes will not affect the dot product with e′. After this
process, the last nε + 1 rows of B′′ are no longer restricted to being in the row
span of the top n−nε rows. By appealing to leftover hash lemma arguments, we
can prove the resulting (n+ 1)× 2n dimensional B′′ matrix is statistically close
uniform and that B′′ · e′ is correctly distributed.

A Note on Functionality Preservation. Some previous works on conjunction ob-
fuscation [12, 17] explicitly prove a weak notion of functionality preservation,
where on any given input the obfuscation is required to be correct with over-
whelming probability. This is in contrast to strong functionality preservation,
which requires simultaneous correctness on all inputs with overwhelming prob-
ability. Both [12] and [17] remark that if desired, their constructions can be
boosted to achieve the stronger notion by scaling parameters until the error
probability on any given input can be union bounded over all inputs.9

A notable weakness of our analysis is that the above argument used for
proving the B′′ matrix is statistically close to uniform does not work for q as
large as 2n. Further complications arise when we attempt to equip a search-to-
decision reduction with a predicate (for more detail, see Section 4), and thus we
limit q = 2 for our formal obfuscation construction.10 Our reduction allows us
to add slightly more than nε+1 additional rows, and it turns out these rows can
be used to boost correctness — to a point. On any input, our final construction
has an error probability of 1/2n

δ
(for any δ < 1/2), and therefore settles for weak

functionality preservation.

9 This holds for our generic group model constructions as well.
10 RLC for field size q = 2 is equivalent to LPN.
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Information Theoretic Security. Our third and final contribution is a new
statistically secure conjunction obfuscator. As a starting point, we recall a sim-
ple proposal for distributional VBB secure point obfuscation informally discussed
by Bishop et al. [12]. The idea of their proposal (modified slightly for our set-
ting) is roughly the following. To obfuscate a point p ∈ {0, 1}n, output n uni-
formly random elements a(1), . . . , a(n) from Fq conditioned on

∑
i|pi=1 a

(i) = 0.

Equality checking on an input x ∈ {0, 1}n would be done by checking whether∑
i|xi=1 a

(i) = 0.11

While this idea seems like a plausible starting point for point obfuscation,
there is no room to support conjunctions. Any wildcard element must be set to
0 to preserve functionality, and thus the obfuscation trivially leaks information
on the underlying pattern. This barrier appears inherent if we are limited to
summing a set of elements in Fq and checking if the result is 0. But what if
we use matrices in Fq instead of scalar elements? Evaluation could now involve
checking the rank of the resulting matrix sum.

We prove security of this scheme by applying the leftover hash lemma (LHL),
which shows that as long as the non-wildcard bits of pat have sufficient min-
entropy, the matrix F is statistically close to a uniformly random matrix. Then
the rank deficient matrix B is statistically hidden from view, so if there are fewer
than k wildcards, all of the A(i) matrices are distributed as uniformly random
k× k rank 1 matrices. The number of wildcards this scheme can handle is k− 1,
but we cannot make the matrices arbitrarily large. The limitation arises from
our statistical security arguments which only work for k as large as nδ (for any
δ < 1), so we obtain statistical distributional VBB security for patterns with a
sublinear number of wildcards.

Computational Functionality Preservation. Although we obtain weak func-
tionality preservation with the above construction, it necessarily falls short of
strong functionality preservation. Without relaxing correctness, statistical VBB
security is impossible since a computationally unbounded adversary can recover
pat from the truth table of the obfuscated function.

A Motivating Scenario from [47]. A natural question to ask is when weak func-
tionality preservation is “good enough.” To shed light on this, we take a step
back and recall a motivating example for general evasive circuit obfuscation.
Even this might not be immediately obvious: what good is an obfuscated circuit
if a user can never find an accepting input? Wichs and Zirdelis [47] address pre-
cisely this question with the following scenario. Suppose we have a set of users
where a subset of them has access to additional privileged information. If we
publicly give out an obfuscated circuit containing this privileged information,

11 To the best of our knowledge, this scheme had not appeared in the literature be-
fore [12]. However, most prior work on point obfuscation considers stronger correct-
ness, security, and functionality requirements (such as multi-bit output) that this
scheme falls short of, which may preclude its use in certain settings.
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then security assures us that the un-privileged users cannot find accepting in-
puts. For them, functionality preservation is unimportant since the circuit may
as well be the all 0’s circuit.12 However, it does matter for the privileged users
who may actually find accepting inputs (for these users, security does not hold).

In this example, a secure obfuscation that only achieves weak functional-
ity preservation is good enough to ensure the un-privileged users never learn
anything about the hidden circuit. However, it might not be enough for cer-
tain applications. Weak functionality preservation does not explicitly rule out
the possibility that a user with privileged information can detect that the ob-
fuscated circuit functionality differs from the intended circuit functionality. In
addition, it does not rule out the possibility that a user (privileged or not) can
find an input that causes the obfuscated circuit to wrongly accept. For example,
in many cases the hash of a password can be viewed as an “obfuscation” of a
point function for that password; simply accept if the input hashes to the stored
hash [38]. Even if we guarantee that a computationally unbounded adversary
cannot learn any information about the original password just given the hash,
this does not rule out the possibility that an attacker can find a different string
that causes the obfuscated password checker to accept.

An Intermediate Definition. To address this gap, we use a notion (between
weak and strong) we refer to as computational functionality preservation. In the
context of point obfuscation, this notion is essentially equivalent to the correct-
ness definition for oracle hashing13 considered by Canetti [21] (also achieved by
Canetti, Micciancio, and Reingold [22] and Dodis and Smith [25]), as observed
by Wee [46]. It is also roughly the same definition considered by Brakerski and
Vaikuntanathan [18] for constrained PRFs. For us, computational functionality
preservation guarantees that even a user who knows the real circuit (in this work,
“real circuit” means the obfuscated pattern) cannot find a point x on which the
obfuscated circuit and the real circuit differ, provided they are computationally
bounded.

In Section 5.3, we describe a simple modification to our basic sum-of-matrices
scheme that allows us to achieve computational functionality preservation from
discrete log. We note that the resulting construction is still information theo-
retically secure. Mapping this to the above example, this means even computa-
tionally unbounded un-privileged users cannot learn any predicate on the hidden
pattern. This is only possible because our obfuscated circuit computes the wrong
output on exponentially many inputs. Despite this, a computationally bounded
user (who might even know the hidden pattern) cannot even find one of these
incorrect inputs, assuming discrete log.

1.3 Related Work

Conjunction Obfuscation. Previously, Brakerski and Rothblum had shown how
to obfuscate conjunctions using multilinear maps [16]. This was followed by a

12 This is slightly informal, since it requires a notion of input-hiding obfuscation [6].
13 This was re-named to “perfectly one-way functions” in [22].
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work of Brakerski et al. which showed how to obfuscate conjunctions under en-
tropic ring LWE [19]. More recently, Wichs and Zirdelis showed how to obfuscate
compute-and-compare programs under LWE [47]. Goyal, Koppula, and Waters
concurrently and independently introduced lockable obfuscation and proved se-
curity under LWE [31]. Both of these works easily imply secure obfuscation of
conjunctions under LWE, though with a complicated construction that encodes
branching programs in a manner reminiscent of the GGH15 multilinear map [29].
The main contribution of [12] then was the simplicity and efficiency of their con-
junction obfuscation scheme. In this work, we provide constructions and proofs
that maintain these strengths while addressing the major weaknesses of the [12]
construction — lack of generality (to more wildcards, more distributions, and
more alphabet sizes) and lack of security based on a falsifiable assumption.

2 Preliminaries

Notation. Let Z,N be the set of integers and positive integers. For n ∈ N, we
let [n] denote the set {1, . . . , n}. For q ∈ N, denote Z/qZ by Zq, and denote the
finite field of order q by Fq. A vector v in Fq (represented in column form by
default) is written as a lower-case letter and its coefficients vi ∈ Fq are indexed
by i; a matrix A is written as a capital letter and its columns (A)j are indexed
by j. We denote by 0n×m the (n,m)-dimensional matrix filled with zeros. For
any matrix M , let colspan(M) denote the column span of M .

We use the usual Landau notations. A function f(n) is said to be negligible
if it is n−ω(1) and we denote it by f(n) := negl(n). A probability p(n) is said to
be overwhelming if it is 1− n−ω(1).

If D is a distribution, we denote Supp(D) = {x : D(x) 6= 0} its support.
For a set S of finite weight, we let U(S) denote the uniform distribution on S.
The statistical distance between two distributions D1 and D2 over a countable
support S is ∆(D1, D2) := 1

2

∑
x∈S |D1(x)−D2(x)|. We naturally extend those

definitions to random variables. Let ε > 0. We say that two distributions D1

and D2 are ε-statistically close if ∆(D1, D2) ≤ ε. We say that D1 and D2 are
statistically close, and denote D1 ≈s D2, if there exists a negligible function ε
such that D1 and D2 are ε(n)-statistically close.

The distinguishing advantage of an algorithm A between two distributions
D0 and D1 is defined as AdvA(D0, D1) := |Prx←D0

[A(x) = 1]−Prx←D1
[A(x) =

1]|, where the probabilities are taken over the randomness of the input x and
the internal randomness of A. We say that D1 and D2 are computationally
indistinguishable, and denote D1 ≈c D2, if for any non-uniform probabilistic
polynomial-time (PPT) algorithm A, there exists a negligible function ε such
that AdvA = ε(n).

Finally, we let x← X denote drawing x uniformly at random from the space
X, and define Un,w to be the uniform distribution over {0, 1, *}n with a fixed w
number of * (wildcard) characters.

The min-entropy of a random variable X is H∞(X) := − log(maxx Pr[X =
x]). The (average) conditional min-entropy of a random variable X conditioned
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on a correlated variable Y , denoted as H∞(X|Y ), is defined by

H∞(X|Y ) := − log

(
Ey←Y

[
max
x

Pr[X = x|Y = y]

])
.

We recall the leftover hash lemma below.

Lemma 1 (Leftover hash lemma). Let H = {h : X → Y} be a 2-universal
hash function family. For any random variable X ∈ X and Z, for ε > 0 such that
log(|Y|) ≤ H∞(X|Z)−2 log(1/ε), the distributions (h, h(X), Z) and (h, U(Y), Z)
are ε-statistically close.

2.1 Security Notions for Evasive Circuit Obfuscation

We recall the definition of a distributional virtual black-box (VBB) obfuscator.
We roughly follow the definition of Brakerski and Rothblum [16], but we include
a computational functionality preservation definition.

Definition 1 (Distributional VBB Obfuscation). Let C = {Cn}n∈N be a
family of polynomial-size circuits, where Cn is a set of boolean circuits operating
on inputs of length n, and let Obf be a PPT algorithm which takes as input an
input length n ∈ N and a circuit C ∈ Cn and outputs a boolean circuit Obf(C)
(not necessarily in C). Let D = {Dn}n∈N be an ensemble of distribution families
Dn where each D ∈ Dn is a distribution over Cn.

Obf is a distributional VBB obfuscator for the distribution class D over the
circuit family C if it has the following properties:

1. Functionality Preservation: We give three variants:
– (Weak) Functionality Preservation: For every n ∈ N, C ∈ Cn, and x ∈
{0, 1}n, there exists a negligible function µ such that

Pr[Obf(C, 1n)(x) = C(x)] = 1− µ(n) .

– (Computational) Functionality Preservation: For every PPT adversary
A, n ∈ N, and C ∈ Cn, there exists a negligible function µ such that

Pr[x← A(C,Obf(C, 1n)) : C(x) 6= Obf(C, 1n)(x)] = µ(n) .

– (Strong) Functionality Preservation: For every n ∈ N, C ∈ Cn, there
exists a negligible function µ such that

Pr[Obf(C, 1n)(x) = C(x) ∀x ∈ {0, 1}n] = 1− µ(n) .

2. Polynomial Slowdown: For every n ∈ N and C ∈ Cn, the evaluation of
Obf(C, 1n) can be performed in time poly(|C|, n).

3. Distributional Virtual Black-Box: For every PPT adversary A, there exists
a (non-uniform) polynomial size simulator S such that for every n ∈ N,
every distribution D ∈ Dn (a distribution over Cn), and every predicate
P : Cn → {0, 1}, there exists a negligible function µ such that∣∣∣∣ Pr

C←Dn
[A(Obf(C, 1n)) = P(C)]− Pr

C←Dn
[SC(1|C|, 1n) = P(C)]

∣∣∣∣ = µ(n) .
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We note that computational functionality preservation has appeared before
in the obfuscation literature [46, 25], and our definition is also the same as the
functionality preservation notion considered in Definition 3.1 of [18] in the con-
text of constrained PRFs. We motivate and discuss this definition in Section 1.2,
and demonstrate an obfuscation scheme achieving it in Section 5.3.

We now extend the above definition to give the notion of statistical security
in the context of average-case obfuscation.

Definition 2 (ε(n)-Statistical Distributional VBB Obfuscation). Let C,
Obf, and D, be as in Definition 1. Obf is a ε(n)-statistical distributional VBB
obfuscator if it satisfies the notions of Functionality Preservation and Polynomial
Slowdown and a modified notion of Distributional Virtual Black-Box where for
any unbounded adversary A, the distinguishing advantage is bounded by ε(n).

We recall the definition of perfect-circuit hiding, introduced by Barak, Bitan-
sky, Canetti, Kalai, Paneth, and Sahai [6].

Definition 3 (Perfect Circuit-Hiding [6]). Let C be a collection of circuits.
An obfuscator Obf for a circuit collection C is perfect circuit-hiding if for every
PPT adversary A there exists a negligible function µ such that for every balanced
predicate P, every n ∈ N and every auxiliary input z ∈ {0, 1}poly(n) to A:

Pr
C←Cn

[A(z,Obf(C)) = P(C)] ≤ 1

2
+ µ(n) ,

where the probability is also over the randomness of Obf.

Barak et al. [6] prove that perfect-circuit hiding security is equivalent to dis-
tributional virtual black-box security, i.e. property 3 in Definition 1 is equivalent
to Definition 3. We rely on this equivalence to simplify the proof of Theorem 3.

2.2 The Generic Group Model

Part of our analysis occurs in the generic group model [44], which assumes that
an adversary interacts with group elements in a generic way. To model this, it
is common to associate each group element with an independent and uniformly
random string (drawn from a sufficiently large space) with we refer to as a
“handle.” The adversary has access to a generic group oracle which maintains
the mapping between group elements and handles. The adversary is initialized
with the handles corresponding to the group elements that comprise the scheme
in question. It can query its generic group oracle with two handles, after which
the oracle performs the group operation on the associated group elements and
returns the handle associated with the resulting group element.

It will be convenient to associate each of these group operation queries per-
formed by the adversary to a linear combination over the initial handles that
it receives. The adversary can also request a “ZeroTest” operation on a handle,
to which the oracle replies with a bit indicating whether or not that handle is
associated with the identity element of the group.
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There is a natural extension of the notion of distributional VBB security to
the generic group model. In Definition 1, we simply give the obfuscation Obf
and adversary A access to the generic group oracle G. We refer to this definition
as Distributional VBB Obfuscation in the Generic Group Model.

2.3 Learning Parity with Noise

We give the precise definition of the Learning Parity with Noise (LPN) problem
in its dual formulation. Let ρ ∈ (0, 1) and m be an integer. Let Bmρ denote the
distribution on Fm2 for which each component of the output independently takes
the value 1 with probability ρ and 0 with probability 1− ρ.

Definition 4. Let n,m be integers and ρ ∈ (0, 1). The Decisional Learning Par-
ity with Noise (DLPN) problem with parameters n,m, ρ, denoted DLPN(n,m, ρ),
is hard if for every probabilistic polynomial-time (in n) algorithm A, there exists
a negligible function µ such that∣∣∣∣Pr

B,e
[A(B,B · e) = 1]− Pr

B,u
[A(B,B · u) = 1

∣∣∣∣ ≤ µ(n),

where B ← F(m−n)×m
2 , e← Bmρ , and u← Fm−n2 .

Remark 1. The primal version of the above problem is, for A ← Fm×n2 , s ←
Fn2 , e← Bmρ , and v ← Fm2 , to distinguish between (A,As+ e) and (A, v). These
problems are equivalent for any error distribution when m = n + ω(log n), as
discussed for example in [40, Sec. 4.2].

3 Obfuscating Conjunctions in the Generic Group Model

In this section, we present our generalized dual scheme for obfuscating conjunc-
tions in the generic group model. We then show a simple proof of security that
applies to the uniform distribution over binary patterns with any fixed number
of wildcards. In particular, our distributional VBB security result holds for up
to n−ω(log n) wildcards, but distributional VBB security is vacuously satisfied
for w > n−O(log n) wildcards. This extends the generic model analysis of [12]
that proved security up to w < .774n. We note that the combinatorial argument
we give can be used to show that the original [12] construction achieves security
for all values of w as well.

In the full version [9], we show how to extend these generic group model
results in a number of ways. In particular, we prove security for general distri-
butions with sufficient min-entropy (over a fixed number of wildcards). We then
give a formal description of how to extend our construction to large alphabets,
though we stress the construction is essentially the one sketched in Section 1.2.
We also prove that our min-entropy results extend to the large alphabet setting.

Here and throughout the remainder of paper, the length n of the pattern will
double as the security parameter.

15



3.1 Generic Group Construction

Throughout this section, we will refer to a fixed matrix B.

Definition 5. Let Bn+1,k,q ∈ Z(n+1)×k
q be the matrix whose (i, j)th entry is ji:

Bn+1,k,q =


1 2 . . . k
1 22 . . . k2

...
...

...
...

1 2n+1 . . . kn+1

 .

Construction.

– Setup(n). Let G be a group of prime order q > 2n with generator g. We let
B := Bn+1,2n,q where Bn+1,2n,q is as in Definition 5.

– Obf(pat ∈ {0, 1, *}n). Set e ∈ Z2n×1
q as follows. For each i ∈ [n]:

• If pati = *, set e2i−1 = e2i = 0.
• If pati = b, sample e2i−b ← Zq and set e2i−(1−b) = 0.

Output
gB·e ∈ Gn+1 .

– Eval(v ∈ Gn+1, x ∈ {0, 1}n). Define Bx to be the (n + 1) × n matrix where
column j is set as (Bx)j := (B)2j−xj . Solve14 tBx = 0 for a non-zero t ∈
Z1×(n+1)
q . Compute

n+1∏
i=1

vtii

and accept if and only if the result is g0.

Alternative Setup. For concreteness (and efficiency), we define Obf and Eval
to use the matrix Bn+1,2n,q. However, Setup can be modified to output any

B ∈ Z(n+1)×2n
q with the property that any n+ 1 columns of B form a full rank

matrix (with overwhelming probability), and Obf and Eval will work as above
with the matrix B. We note that if B is viewed as the generator matrix for a
linear code (of length 2n and rank n+ 1), then this property is equivalent to the
code having distance n. This requirement on B is sufficient to prove Theorem 1
below.

Functionality Preservation. We first state a useful lemma.

Lemma 2. If k < q, any set of n+ 1 columns of Bn+1,k,q are linearly indepen-
dent over Zq.

Proof. This follows from inspecting the form of the determinant of the Vander-
monde matrix, and noting that none of the factors of the determinant will divide
q as long as k < q. ut
14 See the full version [9] for a description of how to do this in O(n log2(n)) time
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Fix an x which matches pat and let t be the row vector computed in the Eval
procedure. By construction, the vector tB is zero in all of the positions for which
e is non-zero and thus

n+1∏
i=1

vtii = gtBe = g0 .

On the other hand, for an x which does not match pat, by construction there
is at least one index i ∈ [2n] such that (B)i is not part of Bx and ei is a uniformly
random field element. Then appealing to Lemma 2, t(B)i 6= 0 since otherwise
the n+ 1 columns Bx and (B)i would be linearly dependent. Then the product
t(B)iei is distributed as a uniformly random field element, which means that
tBe is as well. Thus x is only accepted with probability 1/q = negl(n).15

Security. We prove the distributional VBB security of our construction.

Theorem 1. Fix any function w(n) ≤ n. The above construction is a distribu-
tional VBB obfuscator in the generic group model for the distribution Un,w(n)

over strings {0, 1, *}n.

Proof. First we consider the case where w(n) = n − ω(log(n)). Let c(n) =
n− w(n) = ω(log(n)). Let H be the space of handles used in the generic group
instantiation of the obfuscation and let |H| > 2n so that two uniformly drawn
handles collide with negligible probability. For any adversary A, we consider
the simulator S that acts as the generic group model oracle and initializes A
with n + 1 uniformly random handles. On a group operation query by A, S
responds with a uniformly random handle unless A had previously requested
the same linear combination of initial elements, in which case S responds with
the same handle as before. S can easily implement this with a lookup table. We
assume without loss of generality that A only submits linear combinations over
initial elements that are not identically zero. On any ZeroTest query by A, S
will return “not zero”. Finally, S will output whatever A outputs after it has
finished interacting with the generic group model simulation.

We show that with all but negligible probability,A’s view of the generic group
model oracle that is honestly implementing the obfuscation is identical to its view
of the simulated oracle, which completes the proof of security. Observe that the
only way that A’s view diverges is if when interacting with the honest oracle,
A either gets a successful ZeroTest, or receives the same handle on two group
operation queries corresponding to different linear combinations of the initial
handles. If we subtract these two linear combinations, we see that in both cases
A has formed a non-trivial linear combination of the initial n+1 group elements
that evaluates to zero. Consider the first time that this occurs and denote the
vector of coefficients as k = (k1, . . . , kn+1) ∈ Z1×(n+1)

q . Let e ∈ Z2n×1
q be the

vector drawn in the Obf procedure on input a pattern pat drawn from Un,n−c(n),
so the resulting evaluation is equal to kBe. We show that the probability that
kBe = 0 over the randomness of the pattern and of the obfuscation is negligible.

15 As noted in [12], we can boost this to strong functionality preservation by setting
q > 22n.
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Since the coefficients of k are specified by A before its view has diverged
from the simulated view, we can treat k as completely independent of e. Now by
Lemma 2, any n+ 1 columns of B form a full rank matrix, so the vector kB ∈
Z1×2n
q is 0 in at most n positions. Now if there exists i ∈ [2n] for which (kB)i

is non-zero and ei is uniformly random, then with overwhelming probability
kBe 6= 0 over the randomness of the obfuscation.

Partition e into the n pairs {e2j−1, e2j}j∈[n]. Sampling pat from Un,n−c(n)
corresponds to uniformly randomly picking c(n) of the pairs to have one uni-
formly random e component, and then within each of these c(n) sets, picking
either e2j−1 or e2j with probability 1/2 to be the uniformly random component.

Let S ⊂ [2n] be any fixed set of n indices. At least n/2 of these pairs must
contain at least one ei such that i ∈ S, and among them, an expected c(n)/2
number of them have a uniformly random e component. This random variable
is an instance of a hypergeometric random variable, and in Lemma 3 we use a
Chernoff bound to show that it is greater than c(n)/8 except with negligible
probability. Now for each of these n/2 pairs that contains a uniformly random
component ei, we have that i ∈ S with probability 1/2. Then the probability
that there does not exist any i ∈ S such that ei is uniformly random is at most
(1/2)c(n)/8 + negl(n) which is negl(n) for c(n) = ω(log n).

Now we handle the case where w(n) = n − O(log(n)). In this parameter
regime, distributional VBB security is a vacuous security notion since a random
input will satisfy the pattern with 1/poly(n) probability. Thus a polynomial time
simulator S can find an accepting input with overwhelming probability. Then
it simply varies the accepting input one bit at a time in queries to the function
oracle, and recovers the pattern in full. At this point it can run the obfuscation
itself and simulate A on the honest obfuscation. ut

We now state Lemma 3. While tail bounds are known for hypergeometric
random variables, we were unable to find bounds strong enough for our param-
eter settings. In particular, plugging in the bounds summarized by Skala [45]
into the proof of Theorem 1 imply security when c(n) is as small as 1/nε for
ε < 1/2. Using Lemma 3, we obtain c(n) = ω(log n). We note that our bound
is specifically tailored for our application and should not be misinterpreted as a
strengthening of known bounds on hypergeometric random variables.

Lemma 3. A bag initially contains n balls, of which c(n) are black and n−c(n)
are white. If n/2 balls are randomly drawn without replacement, then

Pr
[
# black balls drawn ≥ c(n)

8

]
≥ 1− e−c(n)/12 .

This claim follows from Chernoff bounds; a detailed proof is given in the full
version [9].

4 Obfuscating Conjunctions from Constant-Noise LPN

In this section, we present our second obfuscation construction. As described in
Section 1.2, this is our “dual” construction instantiated with a random matrix
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B over F2 and taken out of the group exponent. Security will be based on the
standard constant-noise LPN assumption.

LPN vs. RLC. We note that under the Random Linear Codes (RLC) assumption
(i.e., a generalization of LPN to Fq for q ≥ 2—see the full version [9] or [33]),
we could use the techniques from this section to prove that our construction
over large fields is indistinguishable from random. However, indistinguishability
from random does not imply distributional VBB security.16 The problem arises
from the fact that distributional VBB security requires indistinguishability from
a simulated obfuscation even if the adversary knows a one bit predicate on the
circuit (the pattern in our case). This requires us to prove that the decisional
“structured error” LPN/RLC problem is indistinguishable from random even if
the adversary knows a predicate on the positions of the non-zero error vector
entries, which encode the pattern, which can be accomplished by modifying an
appropriate search-to-decision reduction. Unfortunately, no search-to-decision
reductions are known for RLC with super-polynomial modulus q, preventing our
approach from extending beyond polynomial size q [3]. Since no (asymptotic)
improvements to our construction result from considering polynomial size q, we
restrict to q = 2 for concreteness and prove security from LPN.

In Section 4.1, we define the relevant LPN variants we consider for our con-
struction, which we formally describe in Section 4.2. We then observe in Sec-
tion 4.3 that prior work implies hardness of our structured error LPN notion
still holds even if an arbitrary predicate on the error vector is known.

In the full version [9], we give a core technical reduction from standard RLC
to structured error RLC that works for q up to size 2n

γ

. Plugging in q = 2
suffices for our constructions, but we state our result for maximal generality as
the reduction may be of independent interest.

Strong Functionality Preservation. We note that simply plugging our reduction
into our obfuscation scheme only gives us weak functionality preservation (Def-
inition 1). Other works such as [12] address this issue by increasing the size of
the field, but this will not work here since LPN restricts us to q = 2. We can still
boost our scheme and satisfy strong functionality preservation by making use
of additional regular (as opposed to structured) LPN samples (as we describe
in the full version [9]). However, this modification has one caveat: the evalua-
tion is polynomial-time in expectation, requiring a relaxation of the polynomial
slowdown requirement in Definition 1.

Multi-bit Output. As a consequence of the reduction from constant noise LPN,
our scheme can handle random conjunctions where a constant fraction ρ of the

16 Consider for example the distributional point obfuscator that simply outputs the
single accepting point in the clear as the “obfuscation.” To evaluate, we simply
compare the input point with the accepting point. Notice this trivially insecure
obfuscation is perfectly indistinguishable from random for point functions drawn
from the uniform distribution. However, we note that in the generic group model,
indistinguishability from random does imply distributional VBB.
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bits are wildcards, but it cannot handle a sub-constant fraction of wildcards. This
is surprising, since obfuscation for evasive functionalies should intuitively get
easier as we reduce the number of accepting inputs. However, our construction
is completely broken if there are no wildcards, and in fact there is an easy brute
force attack on our scheme for any ρ = 1−O(logn/n).

In the full version [9], we show how to adapt our construction to support
multi-bit output. In this setting, the obfuscator can embed a fixed message into
the obfuscation, which an evaluator recovers upon finding an accepting input.
This allows us to handle conjunctions with a sub-constant (or even zero) fraction
of wildcards. The idea is to set some of the non-wildcard bits to be wildcards,
and then use the multi-bit output to specify the true settings of those bits.

4.1 Exact Structured Learning Parity with Noise

We begin by recalling the decisional Exact Learning Parity with Noise (DxLPN)
problem considered by Jain et al. [34]. The word “exact” modifies the standard
decisional Learning Parity with Noise (DLPN) problem by changing the sampling
procedure for the error vector. Instead of setting each component of e ∈ Fmq to
be 1 with independent probability ρ, we sample e uniformly from the set of
error vectors with exactly bρmc entries set to 1 (we refer to these as vectors of
weight bρmc). DLPN is polynomially equivalent to the exact version following
the search to decision reduction given in [4], as noted in [34, 26]. We give the
precise definition in its dual formulation.

Let ρ ∈ [0, 1] and m > 0 be an integer. Let χmρ denote the distribution on Fm2
which outputs uniformly random vectors in Fm2 of weight bρmc.

Definition 6 (Exact Learning Parity with Noise). Let n,m be integers
and ρ ∈ (0, 1). The (dual) Decisional Exact Learning Parity with Noise (DxLPN)
problem with parameters n,m, ρ, denoted DxLPN(n,m, ρ), is hard if, for every
probabilistic polynomial-time (in n) algorithm A, there exists a negligible func-
tion µ such that∣∣∣∣Pr

B,e
[A(B,B · e) = 1]− Pr

B,u
[A(B, u) = 1]

∣∣∣∣ ≤ µ(n)

where B ← F(m−n)×m
2 , e← χmρ , and u← Fm−n2 .

Exact Structured LPN. We now introduce a modification of the Exact Learn-
ing Parity with Noise (DxLPN) problem where we enforce that the error vector is
structured. Concretely, the error vector e is now 2m-dimensional, and we enforce
that in any of the pairs (2i − 1, 2i) for i ∈ [m], at least one of e2i−1 and e2i is
0. As we are considering the exact version of the problem, we enforce that bρmc
components of e are non-zero. Note that while the error vector has doubled in
size, the number of non-zero components is unchanged.
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We first introduce some notation. For a distribution D on Fm2 , we define

σ(D) =


 s1

...
s2m


∣∣∣∣∣∣∣∣
x← {0, 1}m
e′ ← D

for all i ∈ [m],

{
s2i−xi = e′i
s2i−(1−xi) = 0

 .

Definition 7 (Exact Structured LPN). Let n,m be integers and ρ ∈ (0, 1).
The (dual) Decisional Exact Structured Learning Parity with Noise (DxSLPN)
problem with parameters n, 2m, ρ, denoted DxSLPN(n, 2m, ρ), is hard if, for ev-
ery probabilistic polynomial-time (in n) algorithm A, there exists a negligible
function µ such that∣∣∣∣Pr

B,e
[A(B,B · e) = 1]− Pr

B,u
[A(B, u) = 1]

∣∣∣∣ ≤ µ(n)

where B ← F(2m−n)×2m
2 , e← σ(χmρ ), and u← F2m−n

2 .

In other words, the error vector e ∈ F2m
2 in the DxSLPN problem can be

derived from the error vector e′ ∈ Fm2 of the DxLPN problem; for each i ∈ [m],
randomly set one of e2i−1 or e2i to e′i and the other to 0.

We prove the following theorem in the full version [9].

Theorem 2. Fix constants ε, δ,∈ [0, 1/2) and constant ρ ∈ (0, 1). If DxLPN(nε, n, ρ)
is hard, then DxSLPN(n− nδ, 2n, ρ) is hard.

4.2 Construction

The following is parameterized by a pattern length n and a constant δ ∈ [0, 1/2).

– Obf(pat ∈ {0, 1, *}n): Draw B ← F(n+nδ)×2n
2 and e ∈ F2n

2 as follows. For
each i ∈ [n]
• If pati = *, e2i−1 = e2i = 0
• If pati = b, e2i−b = 1, e2i−(1−b) = 0

Output (B,Be).
– Eval((B, v), x): Define Bx to be the (n+nδ)×n matrix where column j is set

as (Bx)j := (B)2j−xj . Solve for a full rank matrix T ∈ Fn
δ×(n+nδ)

2 such that

T ·Bx = 0. Compute T · v and if the result is 0n
δ×1 output 1 and otherwise

output 0.

Weak Functionality Preservation. We show that for all pat ∈ {0, 1, *}n and
x ∈ {0, 1}n, it holds that

Pr[Eval(Obf(pat), x) = fpat(x)] = 1− negl(n) ,

over the randomness of the Obf procedure. Let B, e be drawn as in the Obf
procedure. Let T,Bx be as defined in the Eval procedure and Bx be the n columns
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of B not in Bx. Let ex be defined analogously. First, if fpat(x) = 1, then ex = 0 by
construction. Then T ·v = T ·B ·e = (T ·Bx)·ex = 0. Hence, Eval(Obf(pat), x) = 1
with probability 1. Now if fpat(x) = 0, then ex 6= 0 by construction. Since T ·Bx
is a uniformly random rank nδ matrix independent of ex, it holds that

Pr[T · v = 0] =
1

2nδ
= negl(n) .

4.3 Security

Lemma 4. Fix any predicate P : {0, 1, *}n → {0, 1}. Assuming the hardness of
DxSLPN(n, 2m, ρ) implies that for all probabilistic polynomial-time A,∣∣∣∣Pr

B,e
[A(B,Be,P(e)) = 1]− Pr

B,u
[A(B, u,P(e)) = 1]

∣∣∣∣ = negl(n)

where B ← F(2m−n)×2m
2 , e← σ(χmρ ), and u← F2m−n

2 .

Proof. The hardness of DxSLPN(n, 2m, ρ) immediately implies that for all prob-
abilistic polynomial-time A′,

Pr
B,e

[A′(B,Be,P(e)) = e] = negl(n) ,

where B, e are drawn as in the lemma statement. This follows since the reduction
can simply guess the value of P(e) and be correct with probability at least 1/2.
Thus we just need to show a search to decision reduction for structured LPN with
a one bit predicate. This follows from the proof of Lemma 5 in [26] (equivalence
of search and decision “leaky LPN”), which is a slight tweak of the search-to-
decision reduction presented in [4]. We can easily adapt the proof to our case
by letting the underlying problem be structured LPN rather than regular LPN
and considering the special case of leakage functions corresponding to one bit
predicates. This proof is presented for the As+ e version of LPN, but the same
technique works for the dual Be version, as shown for example in the proof of
Lemma 2.3 in [32]. ut

Theorem 3. Fix any constant ρ ∈ (0, 1). Assuming the hardness of DLPN(nε, n, ρ)
for some ε < 1/2, the above obfuscation with parameters (n, δ) for δ < 1/2 is
Distributional-VBB secure for patterns pat← Un,n−ρn.

Proof. We show that the above obfuscator satisfies the definition of Perfect
Circuit-Hiding (Definition 3), which implies Distributional VBB security [6].
We want to show that for any probabilistic polynomial-time adversary A and
any balanced predicate P : {0, 1, *}n → {0, 1} (that is, P takes the values 0 and
1 with probability 1/2 over the randomness of pat← Un,n−ρn),

Pr
pat←Un,n−ρn

[A(Obf(pat)) = P(pat)] =
1

2
+ negl(n) .
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We know by assumption and from Theorem 2 and Lemma 4 that, for any
predicate P : {0, 1, *} → {0, 1} and for all probabilistic polynomial-time B,∣∣Pr[B(Obf(pat),P(pat)) = 1]− Pr[B((B, u),P(pat)) = 1]

∣∣ = negl(n) ,

where pat← Un,n−ρn, B ← F(n+nδ)×2n
2 , and u← Fn+n

δ

2 .
Now assume that there exists a balanced predicate P such that there exists

a probabilistic polynomial-time adversary A with non-negligible advantage µ(n)
in the above Perfect Circuit-Hiding definition. Consider an adversary B that re-
ceives ((B, u),P(pat)), runs A on (B, u) and outputs 1 if A(B, u) = P(pat) and
0 otherwise. If (B, u) was an honest obfuscation, then B outputs 1 with proba-
bility 1

2 + µ(n). If (B, u) was uniformly random, then A(B, u) is independent of
P(pat), so since P is balanced, B outputs 1 with probability exactly 1/2. Thus,
B’s distinguishing advantage is µ(n), which is non-negligible. ut

5 Information-Theoretic Security

In this section, we consider a third construction, which relies on subset sums of
random rank one matrices. We prove this construction attains a notion of statis-
tistical distributional VBB security, as well as weak functionality preservation.
In order to achieve statistical security, however, we must limit the number of
wildcards to at most nδ for any δ < 1. In Section 5.3, we show how to mod-
ify this base construction to achieve an intermediate notion of computational
functionality preservation, assuming the discrete log assumption. The resulting
scheme has the curious property of being distributional-VBB secure against com-
putationally unbounded adversaries, but functionality preserving in the view of
any computationally bounded adversary (even those who know pat).

5.1 Construction

We begin by drawing a k×k matrix B by choosing its first k−1 rows at random,
and then picking its last row to be in the row span of the first k − 1. We could
also have drawn B as a uniformly random rank k−1 matrix; however,“pushing”
the rank deficiency to the last row of B will simplify both the security analysis
and the modified construction in Section 5.3.

Notation. We will frequently write a matrix M as

(
M
M

)
where M is the sub-

matrix of M consisting of every row but the last, and M denotes the last row.

Construction. The following is parameterized by a pattern length n and field
size q = 2n

γ

for a γ > 0. We let Fq denote a field of size q.

– Obf(pat ∈ {0, 1, *}n). Partition [n] into S0 ∪ S1 ∪ S* so that S0 = {i | pati =
0}, S1 = {i | pati = 1}, and S∗ = {i | pati = ∗}, and let k = |S*|+ 1.
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• Draw B ← F(k−1)×k
q , r ← F1×(k−1)

q and let B :=

(
B
r ·B

)
• For all i ∈ S0 ∪ S1, sample a uniformly random rank 1 A(i) ∈ Fk×kq .

• For all i ∈ S*, sample a uniformly random rank 1 A
(i) ∈ F(k−1)×k

q . Let

A(i) :=

(
A

(i)

r ·A(i)

)
.

• Define F := B −
∑
i∈S1

A(i), and output (F,A(1), . . . , A(n)).

– Eval((F,A(1), . . . , A(n)), x ∈ {0, 1}n). Output 1 if det

(
F+

∑
i|xi=1A

(i)

)
= 0

and 0 otherwise.

Weak Functionality Preservation. By construction, for an x that matches pat,
we have that

colspan

(
F +

∑
i|xi=1

A(i)

)
= colspan

(
B +

∑
i|xi=1∧pati=∗

A(i)

)
⊆ colspan(B) .

It then follows that det(F +
∑
i|xi=1A

(i)) = 0 since B has rank at most k − 1.
For an x that does not match pat, consider the matrix

F +
∑
i|xi=1

A(i) = B +
∑

i|xi=1∧pati=∗

A(i)

︸ ︷︷ ︸
B′

+
∑

i|xi=1∧pati=0

A(i) −
∑

i|xi=0∧pati=1

A(i)

︸ ︷︷ ︸
A′

.

Since the first k− 1 rows of B are all uniformly random, the same is true of first

k − 1 rows of B′, denoted as B
′
. Furthermore, we know by construction that

there exists at least one i such that pati 6= xi and pati ∈ {0, 1}, so A′ contains at
least one of these A(i) matrices. Note that the last row of A(i) (and hence A′) is

uniformly random and independent of B
′
. Thus F +

∑
i|xi=1A

(i) is distributed
as a uniformly random matrix, so its determinant is non-zero with overwhelming
probability 1− k/q = 1− negl(n) by the Schwartz–Zippel lemma.

5.2 Security

We prove our construction attains statistical distributional VBB security, defined
in Definition 1.

For any pattern pat ∈ {0, 1, *}n, define pat−1(*) := {j | patj = *} the
positions of the wildcards and let b ∈ {0, 1}n−w denote the fixed bits of pat.

Theorem 4. The above construction with field size q is a ε(n)-Statistical Distri-
butional VBB obfuscator for any distribution over patterns with w ≤ n wildcards
such that H∞(b|pat−1(*)) ≥ (w + 1) log(q) + 2 log(1/ε(n)) + 1
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Corollary 1. Fix any δ ∈ [0, 1). The above construction can be used to satisfy
ε(n)-Statistical Distributional VBB security for a negligible function ε(n), for any
distribution over patterns with w = nδ wildcards such that H∞(b|pat−1(*)) ≥
n1−γ for some γ < 1− δ.

The proof of Theorem 4 follows from standard applications of the leftover
hash lemma. We show that as long as there is sufficient entropy on the fixed
bits, the leftover hash lemma will imply the matrix F is statistically close to
a uniformly random matrix. Then the low rank matrix B is hidden from view,
and the k− 1 random wildcard matrices A(i) drawn from the column space of B
are distributed as uniformly random rank 1 matrices, just like all the other A(i)

matrices. The formal proof is done in the full version [9].

5.3 Computational Functionality Preservation

We now consider the notion of computational functionality preservation from
Definition 1, which is strictly weaker than strong functionality preservation, and
strictly stronger than weak functionality preservation.17 Refer to Section 1.2 for
general discussion motivating this definition.

Remark 2. For the setting of conjunction obfuscation, computational function-
ality preservation combined with distributional VBB security imply that a com-
putationally bounded adversary can never find an accepting input to the obfus-
cated program.18 If the adversary can find an accepting input to the program
that actually matches the hidden pattern pat, the adversary can learn a predi-
cate on pat, violating distributional VBB. If they find an accepting input to the
program that does not match the hidden pattern, they violate computational
functionality preservation.

We show that the following simple tweaks to our scheme allow us to base
computational functionality preservation on the hardness of solving discrete log.

– Modification 1: All of the matrices F,A(1), . . . , A(n) have their last row
encoded in the exponent of the group.

– Modification 2: On evaluation, we first check if rank(F +
∑
i|xi=1A

(i)
) =

k − 1, and if not, immediately reject.

17 To see this informally, consider any obfuscation scheme for an evasive functional-
ity given by (Obf,Eval) that achieves weak functionality preservation. Now define
(Obf′,Eval′) where Obf′(C) samples a random y from the input space and then
outputs Obf(C), y. Then Eval(Obf′, x) returns Eval(Obf, x) if x 6= y, but returns 1
if x = y. It is not hard to see that this scheme still satisfies weak functionality
preservation, but now an adversary can easily tell that functionality preservation is
violated at y, so computational functionality preservation is violated.

18 This is reminiscent of the notion of input-hiding obfuscation [6], but different in
that we require that the adversary cannot find an accepting input for the obfuscated
circuit rather than the original circuit.
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Our functionality proof will use a reduction from the representation problem,
introduced by Brands [20], which we denote as FIND-REP following [42].

Instance: A group G of order q, and random gs1 , . . . , gsn ← G.

Problem: Find non-trivial d1, . . . , dn ∈ Zq such that g
∑n
i=1 disi = g0.

Brands [20] proves that solving FIND-REP in G is as hard as solving discrete
log in G. Now we prove a theorem similar to Theorem 4, but with different
parameters than Corollary 1.

Theorem 5. Fix any δ ∈ [0, 12 ). Assuming discrete log, this construction satis-
fies computational functionality preservation for any distribution over patterns
with w = nδ wildcards such that H∞(b|pat−1(*)) ≥ n1−ε for some ε < 1− 2δ.

Proof. We prove that a PPT adversary that can find some point x for which
fpat(x) 6= Obf(fpat)(x), even given Obf(fpat), can solve discrete log in G. We
break up the analysis into two cases: we denote inputs x for which fpat(x) = 1
and Obf(fpat)(x) = 0 as false negatives, and denote inputs for which fpat(x) = 0
and Obf(fpat)(x) = 1 as false positives.

For δ ∈ [0, 1/2), pick δ′ > δ and set the field size q to 2n
δ′

.

Lemma 5. For q = 2n
δ′

and w = nδ where δ′ > δ, with overwhelming probabil-
ity our construction has no false negatives.

Proof. For any x where fpat(x) = 1, Obf(fpat)(x) can only evaluate to 0 if

rank

(
B +

∑
i|xi=1,pati=∗

A
(i)

)
< k − 1.

Recall from the construcion that B is sampled as a uniformly random matrix,

and for i where pati = *, A
(i)

is sampled as a uniformly random rank 1 matrix.

Thus, each of the 2n
δ

possible (k−1)×k subset sums is distributed as a uniformly
random (k − 1)× k matrix, and is thus rank deficient with probability at most
k−1
q2 . Since we set q to be at least 2n

δ′

for δ′ > δ, the probability that any of

these subset sum matrices is rank deficient is at most (k−1)·2n
δ

q2 = negl(n). ut

Thus with overwhelming probability, an adversary that finds an x where
fpat(x) 6= Obf(fpat)(x) must return a false positive. We show that finding a false
positive is as hard as solving FIND-REP.

Lemma 6. If there exists an algorithm A that finds a false positive with non-
negligible probability, there exists an algorithm A′ that solves FIND-REP with
non-negligible probability.
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Proof. On input gs1 , . . . , gsn , A′ constructs an obfuscation for a pattern pat with
w = nδ wildcards drawn from an arbitrary distribution. Given pat, define the
same sets S0, S1, and S∗ and as before, let k = w + 1. Note that throughout
this proof, when we add/subtract matrices that include group elements, we mul-
tiply/divide the group element components of the matrices. Likewise, when we
multiply a vector of group elements by a scalar, we actually raise each group
element to the appropriate power. A constructs the obfuscation as follows.

– Let r ∈ G1×(k−1) = [. . . gsj . . . ] for j ∈ S∗, draw B ← Z(k−1)×k
q , and let

B :=

(
B
r ·B

)

– For each i ∈ S0 ∪ S1, sample a uniformly random rank 1 matrix A
(i) ∈

F(k−1)×k
q , and let A(i) :=

(
A

(i)

gsi ·A(i)

1

)
– For each i ∈ S∗, sample ci ← Fk−1q and di ← F1×k

q , and letA(i) :=

(
ci
r · ci

)
·di.

– Define F := B −
∑
i∈S1

A(i) and output (F,A(1), . . . , A(n)).

Then A′ sends (F,A(1), . . . , A(n), pat) to A and if A is successful, A′ receives
back a set T with the following properties:

– det(F +
∑
i∈T A

(i)) = 0;

– det(F +
∑
i∈T A

(i)
) 6= 0;

– T \ S∗ 6= S1.

The determinant polynomial reduces to a linear combination of the elements
in the last row of F +

∑
i∈T A

(i). By the second property above, this linear
combination is not identically zero. Now A′ will plug in the random values
it chose in constructing the obfuscation to recover a linear combination over
s1, . . . , sn that evaluates to zero, by the first property above. It then submits
this linear combination to the FIND-REP challenger.

So it just remains to show that this final linear combination is not identi-
cally zero. As in our weak functionality preservation proof, we can re-write the
summation as

F +
∑
i∈T

A(i) = B +
∑

i∈T∩S∗

A(i)

︸ ︷︷ ︸
B′

+
∑

i∈T∩S0

A(i) −
∑

i∈([n]\T )∩S1

A(i)

︸ ︷︷ ︸
A′

.

By the third property above, there exists some i such that A′ includes the
matrix A(i). We show that with overwhelming probability, this implies that there
is some setting of s1, . . . , sn that produces a non-zero evaluation, which shows
that the final linear combination must not be identically zero.
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We condition on the fact that with overwhelming probability, for each of the

2n
δ

possible sets T∩S∗, and each i /∈ S∗, the row span of A(i) is outside of the row

span of B
′
. Indeed, this fails to happen with probability at most n2

nδ

/q = negl(n)

Thus since we can assume B
′
has rank k−1 for each T ∩S∗ (by the arguments

from the proof of Lemma 5), and since A′ must include a row from some A(i),
we conclude that the row B′ +A′ could be anything in the entire k dimensional
space, depending on the values of s1, . . . , sn. In particular it could be outside of

the k− 1 dimensional space spanned by A
′
+B

′
, in which case the determinant

polynomial would evaluate to non-zero. ut

Together, Lemmas 5 and 6 imply that any adversary that breaks computa-
tional functionality preservation can solve discrete log in G. ut
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