Uncovering Algebraic Structures in the MPC
Landscape

Navneet Agarwal', Sanat Anand!, and Manoj Prabhakaran'*

Indian Institute of Technology Bombay
{navneet,sanat,mp}@cse.iitb.ac.in

Abstract. A fundamental problem in the theory of secure multi-party
computation (MPC) is to characterize functions with more than 2 parties
which admit MPC protocols with information-theoretic security against
passive corruption. This question has seen little progress since the work
of Chor and Ishai (1996), which demonstrated difficulties in resolving it.
In this work, we make significant progress towards resolving this question
in the important case of aggregating functionalities, in which m parties
Pi,..., Py, hold inputs z1,...,z, and an aggregating party Py must
learn f(z1,...,%m).

We uncover a rich class of algebraic structures that are closely related
to secure computability, namely, “Commuting Permutations Systems”
(CPS) and its variants. We present an extensive set of results relating
these algebraic structures among themselves and to MPC, including new
protocols, impossibility results and separations. Our results include a
necessary algebraic condition and slightly stronger sufficient algebraic
condition for a function to admit information-theoretically secure MPC
protocols.

We also introduce and study new models of minimally interactive MPC
(called UNIMPC and UNIMPC*), which not only help in understanding
our positive and negative results better, but also open up new avenues
for studying the cryptographic complexity landscape of multi-party func-
tionalities. Our positive results include novel protocols in these models,
which may be of independent practical interest.

Finally, we extend our results to a definition that requires UC security
as well as semi-honest security (which we term strong security). In this
model we are able to carry out the characterization of all computable
functions, except for a gap in the case of aggregating functionalities.

1 Introduction

Secure Multi-Party Computation (MPC) is a central and unifying concept
in modern cryptography. The foundations, as well as the applications, of
MPC have been built up over a period of almost four decades of active

* Supported by the Dept. of Science and Technology, India via the Ramanujan Fel-
lowship and an Indo-Israel Joint Research Project grant, 2018.

research since the initial ideas emerged [SRA79,Blu81,Ya082]. Yet, some
of the basic questions in MPC remain open. Specifically, the following
basic problem remains open to this day for various standard notions of
security (when there are no restrictions like honest majority):

Which multi-party functions admit information-theoretically secure MPC?

Indeed, one of the most basic forms of this problem remains wide open:
for the case of security against passive corruption, a characterization of
securely realizable functions is known only for 2-party functions [Kus89].
Chor and Ishai pointed out the difficulty of this problem, by disproving
a natural conjecture for characterizing securely realizable k-party func-
tionalities in terms of functionalities involving fewer parties [CI96]. Since
then, very little progress has been made on this problem.

In this work, we make significant progress towards resolving this ques-
tion in the important case of aggregating functionalities: In an aggregating
functionality, there are m parties Pi,..., P, with inputs z1,...,z,, and
an aggregating party Py must learn f(z1,..., 2,). Aggregating function-
alities form a practically and theoretically important class. In particu-
lar, it has been the subject of an influential line of study that started
with the minimal model for secure computation of Feige, Kilian and Naor
[FKNO94]. This model — also referred to as the Private Simultaneous Mes-
sages (PSM) model [IK97] — served as a precursor of important concepts
like randomized encodings [IK00] that have proven useful in a variety of
cryptographic applications. Recently, a strengthening of this model, called
Non-Interactive MPC (NIMPC) was introduced by Beimel et al. [BGIT14],
which is closer to standard MPC in terms of the security requirements.!
However, these models do not address the question of secure realizability
in the standard model, because due to weakened security requirements,
all aggregating functions are securely realizable in these models.

Towards characterizing secure realizability under (the standard model
of) MPC, we uncover and examine a rich class of algebraic structures of ag-
gregating functionalities. We exploit these structures to give new positive

! Both PSM and NIMPC consider protocols of the following form: a coordinator sends
a private message to each of Pi,..., P,; each P; uses this message and its input to
compute a single message which it sends to Py; Po computes an output. PSM has a
corruption model in which only Py could be corrupted, whereas NIMPC allows any
subset of the parties (other than the coordinator) to be corrupted. But when such
corruption takes place, NIMPC allows the adversary to learn the residual function
determined by the honest parties’ inputs — i.e., the output for each possible setting
of the inputs for the corrupt parties (unlike in MPC, where the output for only a
given input of the corrupt parties is learned).

and negative results for MPC. Further, we also put forth new minimalistic,
yet natural models of secure computation that arise from these results.
These new models and algebraic structures, in tandem, open up new av-
enues for investigating the landscape of secure multiparty computation
involving many parties.

Commuting Permutations Systems. We identify an algebraic-combinatorial
structure called Commuting Permutations System (CPS) and interesting
sub-classes thereof. CPS generalizes the function of abelian group sum-
mation to a less structured class of functions. Indeed, as a function of two
inputs (denoted as m = 2), a CPS can be identified with a quasigroup op-
eration, or equivalently the function specified by a minor of a Latin square.

(For m > 2 inputs, CPS imputes more structure than m-dimensional Latin
hypercubes.)

All aggregating functions

We define CPS as the class of all ag- [=PSM = NIMPC]
gregating functions which embed into a l
CPS functionality (Definition 2). We also ~ :-----oo-- >CPS
identify two interesting sub-classes of CPS l BITMPG
that (as we shall see) are closely related ; MPGC oo
to secure computability, corresponding to : l Ifit exists
Commuting Permutation Subgroup Sys- :
tems (CPSS) and Complete CPS (CCPS). UNIMPC |

exists

Minimal Models of MPC In.a Parallel R}ﬁgg; UNIMPC*
thread, we develop new minimalistic mod- : l

els of MPC, that help us study feasibil-

ity of information-theoretic MPC. These : CPES ..o m=2
models (called UNIMPC* and UNIMPC) e
admit secure protocols only for functions CCPS B

which have secure protocols in the stan-

dard MPC model. We remark that ours Fig. 1. The m-PC landscape of ag-
is perhaps the first significant minimalis- gregating functions. The classes in
tic model with this property, as previous Plue typeface are defined in terms

.. .. of algebraic/combinatorial proper-
minimalistic models — PSM [FKN94] and ;.. "4 the others in terms of se-

NIMPC [BGIT14] — admit secure proto- cure computability. Arrow A — B
cols for all functions. indicates A 2 B.

UNIMPC stands for Unassisted NIMPC and, as the name suggests, re-
moves the assistance from the trusted party in NIMPC: Instead the parties
should securely compute the correlated randomness by themselves, in an
offline phase. Unlike PSM and NIMPC, which have an incorruptible party,
UNIMPC retains the standard security model of MPC, allowing corrup-

tion of any set of parties, and requiring the adversary to learn nothing
more than the output of the function.

A UNIMPC protocol is an MPC protocol and can also be immedi-
ately interpreted as an NIMPC' protocol.?

Note that MPC and NIMPC are incomparable in the sense that an
MPC protocol does not yield an NIMPC protocol (because of the general
communication pattern) and an NIMPC protocol does not yield an MPC
protocol (because of the use of a trusted party, and because the adversary
is allowed to learn potentially more than the output of the function).
Thus UNIMPC could be seen as a common denominator of these two
secure computation models.

UNIMPC* corresponds to a minimalistic version of UNIMPC, with

protocols which have a single round of (simultaneous) communication
among the parties before they get their inputs, followed by a single mes-
sage from each party to the aggregator after they receive their input.
(UNIMPC allows arbitrarily many rounds of communication prior to re-
ceiving inputs.)
Strongly Secure MPC. We also study feasibility under a stronger
model of MPC, which requires both UC security and passive security
to hold simultaneously (information theoretically). Traditionally, UC se-
curity refers to the setting of active corruption, in which the security
guarantees are relative to an ideal model where too the corrupt parties
are actively corrupt. While stronger in general, this gives a weaker guar-
antee than security against passive corruption, when the corrupt parties
are indeed only passively corrupt.® From a practical point of view, strong
security (possibly weakened to hold only against PPT adversaries) is im-
portant, and arguably the “right” notion in many cases. Here we initiate
the study of characterizing multi-party functionalities that are strongly
securely realizable.

Relating Secure Computation to the Algebraic Classes. Our
results show the rich connections between the cryptographic complex-
ity landscape of MPC and the combinatorial/algebraic structures of the
functions, as summarized in Figure 1. We briefly point out the several

2 Replacing the views from the pre-processing phase of a UNIMPC protocol with
correlated randomness from a trusted party turns it into an NIMPC protocol.

3 E.g., a 2-party functionality in which Bob receives a\Vb, where a, b € {0, 1} are inputs
to Alice and Bob respectively, has no protocol secure against passive corruption;
but a protocol in which Alice simply sends a to Bob is UC secure. Also see FAnD
discussed in Section 8.1.

results that go into making this map. All results relate to the information-
theoretic setting with finite functions.

0O MPC C CPS: This result hinges on characterizing the following cryp-
tographic property algebraically: given any subset of the inputs and the
output of the function, the residual function of the remaining inputs
can be determined. (Theorem 2.)

O CPSS C UNIMPC*: We establish this by developing a novel MPC
protocol that generalizes the simple abelian group summation protocol
to a certain class of (non-abelian) group actions (Theorem 3).

0O CPSS C CPS: We give a concrete family of functions that fall into the
gap between these two classes (Theorem 1). Combined with the above
results, this separation leaves an intriguing gap between the necessary
and sufficient conditions for MPC. (But we show in Theorem 4, that
this gap disappears/reduces for a small number of input parties.)

0 CCPS C UNIMPC*: The class CCPS (for Complete CPS) consists of
the “Latin Hypercube” functionalities that fall within CPS. We show
that all such functions, in more than two dimensions, are highly struc-
tured and in particular fall within CPSS (Theorem 5). For two dimen-
sions, i.e., Latin squares, this is not true; but in this case a UNIMPC*
protocol can be directly given for all Latin squares. Further, in this
case, due to a classical result of Ryser [Rys51], CPS = CCPS (see
Section 1.2).

O UC security results: The characterization of UC securely realizable
functions has been resolved for 2 and 3-party functionalities [CKL06,PROS],
but remains open for more than 3 parties. Prabhakaran and Rosulek
[PRO8| showed that there are only two classes of secure function evalua-
tion functionalities — aggregating and disseminating — that can possibly
have UC secure protocols. They also gave a UC secure protocol for the
“disseminated OR” functionality for 3 parties. We build on this further
to show that:

— Disseminated OR functionality with any number of players is UC
securely realizable. Further, every disseminating functionality is UC
securely realizable by a reduction to the disseminated OR functionality
(Section 8.2).

— Every aggregating functionality in CCPS has a UC secure protocol;
this relies on a compiler from a strongly secure protocol for F (which
exists only if F is a CPS functionality) to one for F restricted to a
domain D (Section 8.1).

— In both these positive results, we obtain strong security (Theorem 7).
Combined with the negative results (Theorem 6), this shows that

CCPS UDISS C sTrRoNGMPC C CPS U DISS

where STRONGMPC denotes the class of all functionalities (not just ag-
gregating functionalities) that have strongly secure protocols, and DISS
and CCPS are interpreted as all functionalities “isomorphic” to func-
tionalities that are disseminating or functionalities that embed into a
CCPS functionality. In Figure 1, this relationship is indicated restricted
to aggregating functionalities (in which, case the extension to isomor-
phism — which allows all parties to have inputs and outputs — can be
ignored).

Additional Results and Implications:

— Recently, Halevi et al. introduced the notion of “Best Possible Information-
Theoretic MPC” (BIT-MPC) [HIKR18|, by removing the trusted party
and the non-interactive structure in the NIMPC model, but retaining
the provision that (in the ideal-world) the adversary is allowed to learn
the residual function of the honest parties’ inputs. While the set of
functions for which BIT-MPC is possible is a strict superset of MPC,
the main open problem posed in [HIKR18] is whether all functions have
BIT-MPC protocols. We note that for all functions in CPS, BIT-MPC
protocols are automatically MPC protocols (because for them the resid-
ual function can be deduced from the output and the corrupt parties’
own inputs). Thus if CPS\ MPC # (), then there exist functions which
do not have a BIT-MPC protocol.

— Our necessity result — that MPC C CPS — can be extended in a
couple of ways (Section 5.1): Firstly, the necessity condition continues
to hold even if the corruption model allowed the corruption of at most
one party other than the aggregating party, if we require a UNIMPC
protocol (this model could be called 1-Robust UNIMPC). Secondly, the
necessity condition holds even for NIMPC (even 1-Robust NIMPC), if
we required an additional security property that the adversary learns
only what the output reveals (like in MPC) rather than the residual
function of the honest parties (as NIMPC does).

— While our focus is on aggregating functionalities, our positive results
for passive-secure MPC do yield new protocols for symmetric function-
alities wherein all parties get the same output — as considered in [CI96].
This is because a passive-secure MPC protocol for an aggregating func-
tionality can be readily converted into one for a symmetric functionality
computing the same function.

— Since one of our results (Theorem 4) depends on the existence of
NIMPC protocols, we present a simple NIMPC protocol for general
functionalities in the full version. This protocol is a generalization of
an NIMPC protocol in [HIJT16] to arbitrary input domains, presented
more directly in terms of the function matrix. This NIMPC protocol is
more efficient and much simpler than the earlier ones in the literature
[BGIT14,0Y16].

We present more details of our results and techniques in Section 1.2. In
the full version, we also discuss several problems that are left open by this
work.

1.1 Related Work

There has been a large body of work aimed at characterizing functionali-
ties with MPC protocols in various models (see, e.g., a survey [MPR13]).
For some important classes, exact characterizations are known: this in-
cludes passive and active (stand-alone) security for 2-party determin-
istic functions [Kus89,KMR09,MPR09|, multi-party functions with re-
stricted adversary structures [BGW88,CCD88,HM97|, multi-party func-
tions with binary alphabet [CK91|, multi-party protocols which only have
public communication [KMR09|, and UC security for 2-party functions
|CKLO06,PROS].

The characterization question for the multi-party setting (with point-
to-point channels and no honest majority, for passive security) was ex-
plicitly considered in [CI96]. It was shown there that there exist m-party
functions which do not have any passive-secure protocol such that the
m — 1-party function obtained by merging any two parties results in a
securely realizable functionality. This problem in the context of UC secu-
rity was studied in [PROS8|, where the terms aggregating functionality and
disseminating functionality were coined.

The NIMPC model was introduced by Beimel et al. [BGIT14], inspired
by the earlier work of Feige et al. [FKN94|. This was generalized to other
patterns of interaction in [HIJT16]. A computational version of UNIMPC
(but with a public-key infrastructure) was recently explored in [HIJT17].

A recent independent and concurrent work by Halevi et al. [HIKR18|
overlaps with some of our results. Specifically, they also observe the fact
that an MPC protocol must reveal the residual function of the honest
parties to an adversary corrupting the output party, which is the staring
point of our proof of Theorem 2 (they do not derive the combinatorial
characterization of CPS). The transformation from NIMPC to UNIMPC

we use to prove Theorem 4 is a special case of the NIMPC to MPC
compiler of [HIKR18], which forms the main tool for their positive results.
Finally, as pointed out above, the main open problem left in [HIKR18] is
whether there are functions with no BIT-MPC protocol, and this relates
to an open problem we leave, namely whether CPS = MPC: A negative
answer to our question answers that of [HIKR18]| in the negative.

1.2 Technical Overview

We give a brief overview of CPS functions, and a couple of our protocols
that exploit this structure.

An m + 1 aggregating functionality involves parties P, --- , P, with
inputs and an aggregator Py who learns the output. A classical exam-
ple of an aggregating functionality that admits secure computation is the
summation operation in an abelian group. As a starting point to under-
standing all securely computable functions, one could try to generalize
this function. Consider the 3-party version of this problem, involving two
input parties P;, P, and an output party FPy. W.l.o.g. we can consider
computing a function f : [n1] X [n2] — [n], given an as a matrix M with
M;; = f(i,j). Suppose there is a passive secure protocol II for computing
f. From the results on 2-party MPC we know that an adversary which
passively corrupts { Py, P1} must learn P’s input fully (up to equivalent
inputs). Then, for this protocol to be secure, even given an ideal func-
tionality, an adversary who passively corrupts { Py, P1} should be able to
learn Py’s input. A passive adversary is not allowed to change the par-
ties’ inputs. Hence, for any inputs z1 € [n1], z2 € [ng], it must be the case
that (z1, f(x1,x2)) uniquely determines xo. Symmetrically, (x2, f(x1,x2))
uniquely determines x1. We refer to this as the Latin property of M, named
after Latin squares. (Latin squares are n x n square matrices in which each
row and each column is a permutation of [n]. Note that a square matrix
with the Latin property is the same as a Latin square.)

It is easy to see that any 3-party aggregating functionality f : [n] X
[n] — [n] which is a Latin square has a passive secure protocol: P, and P»
privately agree on a random permutation o over [n], and then P; sends Py
the row indexed by its input x1, but with positions permuted according to
oiie., avector (21, ,2n) Where z,(jy = My, j. P2 sends k = o(z2) to P,
and Py outputs 2z, = M, ;,. Note that the security of this protocol relies
on not only the Latin property, but also on the fact that each row has
all n elements. However, since any rectangle with the Latin property can
be embedded into an (at most quadratically larger) Latin square [Rys51],

any function f which has the Latin property does indeed have a passive
secure protocol.

This might suggest that for arbitrary number of parties, an analogous
Latin hypercube property would be a tight characterization of secure com-
putability. Interestingly, this is not the case. With m input clients, the 2-
party results imply that an adversary corrupting a subset of the m input
parties and the aggregator Py can learn the residual function of the honest
parties’ inputs. Since the passive adversary cannot change the input of the
corrupt parties even in the ideal world, this means that any choice of the
corrupt parties’ inputs should reveal the residual function of the honest
parties. We identify an algebraic formulation in terms of a “Commuting
Permutation System” (CPS) that captures this condition tightly.

A CPS over the output alphabet [n] has input sets X; C S, for
i = 1 to m, where S, is the group of all permutations of [n]. On input
(71, ym) € X1 X+ -+ X Xy, the output is defined as w0+ - -omp,(1). The
“commuting’ property is the requirement that this output is invariant to
the order in which the m permutations are applied to 1. Note that the
commutativity needs to hold only when applied to 1. Also, it holds only
across the sets X1, -+, X,,. That is if m, 7’ € Xj, it is not necessary that
mo 7' (1) equals 7’ o w(1). The function table of a CPS functionality is
indeed a Latin hypercube, but the converse does not hold.

Being a CPS functionality is necessary to have an MPC protocol (let
alone a UNIMPC protocol). Unfortunately, we do not know if this is also a
sufficient condition. But given some additional structure in a CPS, we are
able to give a new protocol. The additional structure that we can exploit
is that each X; is a subgroup of S,, in which case we call the system
a Commuting Permutation Subgroups System or CPSS. Exploiting this
property, we design a protocol for computing CPSS functions, as discussed
below.

UNIMPC Protocol for CPSS Functionalities. We present a novel
protocol with perfect, information-theoretic security against passive cor-
ruption for all CPSS functionalities (and, further, is in fact, UC secure for
a sub-class). Recall that the goal is to let Py learn mj o - - - o mp, (1), where
m; is a permutation that P; receives as input. At first glance, our protocol
may appear similar in structure to a protocol for an abelian group sum:
each party P; shares its input m; as m; = 0000410 -0 04,, Where
each of the shares itself belongs to X;. It will be helpful to visualize these
shares as forming the i*" row in a matrix of shares. The shares in each
column (oqj,- -+ ,0m ;) for j € [m] will be correlated with each other in
some manner, so that the output can be reconstructed by aggregating

only the shares (01,0, ,0m,0). (An analogy for the case of the abelian
group would be to choose the shares in each column to sum up to the
identity element.) These shares will be sent to Fj.

But there are a couple of major differences. Firstly, permutations do
not commute in general, and it is not clear how the shares can be mean-
ingfully combined. Secondly, we must not reveal the composition of the
inputs — i.e., the permutation m o --- o m, — to the aggregator; only the
result of applying this composition to 1 should be revealed. So, choosing
the column shares to “add up to” the identity permutation would be prob-
lematic, not to mention that there may not be any such choice other than
choosing all the shares to be the identity element.

In our protocol, we choose
the column shares such that their
composition has 1 as a fixed
point (there is at least one such
choice, since the each entry can
be chosen as the identity per-
mutation). Then, using the CPSS Fig.2. Flements in the i row be-
property, it can be shown that long to a subgroup X; in a CPSS.
(Hie[m} 0'1',0)(1) = (Hie[m] ﬁi)(l) The subgroup structure enables secret-

3 — 0 P
(see Figure 2). It turns out that we Sharing as m = [[;_, 0i;. Then
the illustrated quantities are equal:

can use the subgroup structure in (Tl m)(1) = (11 M, o:,)(1) =
i€[m] "' - i€[m] 2] -

. Jj=m
CPSS to argue that if the shares (1%, [Ticpm @05) (1) The last equality

are chosen uniformly at random relies on the closure property in the
subject to the above constraint, subgroup, as well as the commutativity

then (0.1 0, Om 0) reveals noth- guarantee (when applied to 1). In our pro-
’ ' tocol, for each j > 0, (Hie[m] oij)(1) =1,

and hence this also equals (Hie[m] ai,o) (1).

]
3\
3
8
!

h

ing more than m o -+ omy,(1).
Further, even if we consider all
the shares ; ; except for (i,5) € Sx S for some S C [m], we show that they
reveal nothing more than the residual function ([];cgmi)(1). The need to
consider revealing this set of shares comes from the fact that our protocol
is not an NIMPC protocol (where a trusted dealer could compute o; ; for
all (i,) € [m]? and send only (051, -+ ,0;m) to each party P); instead we
require the parties to compute all the shares themselves, which is achieved
by each party P; computing the 4 column of shares, and distributing it
among all the parties P;. Thus when we consider a set S of honest parties,
only the shares o; ; where (7,7) € S? remain hidden from the adversary.

UC-secure Protocols. It turns out that the above protocol for aggregat-
ing functions is UC secure if the function is a Complete CPSS (CCPSS)
function. For m > 3, a Complete CPS is always a Complete CPSS, and

hence this gives a UC secure (in fact, strongly secure) protocol for all
CCPS functionalities. (The case of m = 2 is handled separately.)

However, for a function that is only embedded in a CCPS functionality,
this protocol is not necessarily UC secure (because nothing prevents an
adversary from using an input from the full domain of the CCPS function-
ality). We give a compiler that can take a UC secure protocol for a CCPS
functionality, and transform it into a UC secure protocol for the function-
ality restricted to a smaller domain. The main idea of the compiler is to
run several instances of the original protocol with the parties using ran-
dom inputs from the restricted domain. That they used inputs from the
restricted domain is then verified using a cut-and-choose phase. Then, an
aggregated AND functionality is used to identify instances among the un-
opened executions to obtain the output. Plugging in a simple UC secure
protocol for aggregated AND, this compiler yields a UC secure proto-
col. Interestingly, though aggregated AND itself has no strongly secure
protocol (or passive-secure protocol, for that matter) as it is not a CPS
functionality, the resulting protocol above is a strongly secure protocol.

We remark that this is a feasibility result that relies on the domains
being finite (small) as the compiler’s overhead is polynomial in the domain
size.

We also present a reduction from any disseminating function to the
disseminated-OR functionality. This is also a feasibility result that relies
on the number of parties being finite (small) as the protocol is expo-
nential in the number of parties. To complete establishing the realizabil-
ity of all disseminating functions, we give a UC secure protocol for the
disseminated-OR functionality (extending a 3-party protocol for the same
functionality in [PROS]).

2 Preliminaries

We write [n] to denote the set {1,--- ,n}. S, denotes the symmetric group
over [n], namely, the group of all permutations of [n]. In our proofs,
we shall use the product notation] to denote the composition opera-
tion of permutations. Note that composition of permutations is a non-
commutative operation in general, and hence the order of the indices is
important (as in [['_, p;). When the order is not important, we denote
the indices by a set (as in [[;cp pi)-

Below we define notions referred to through out the paper. Additional
notions relevant to strong security are deferred to Section 8.

We adapt the definition of an aggregating functionality from [PR0S].*

Definition 1 (Aggregating Functionality). An (m + 1) party Aggre-
gating functionality accepts inputs xz; € X; from P; for i =1 to m, and
sends f(x1, - ,xm) to party Py, where f: X1 X -+ X X, — 2 is a fized
function.

Consistent with the literature on feasibility questions, we consider the
functions to have constant-sized domains (rather than infinite domains or
domains expanding with the security parameter). Also, in all our positive
results, the security obtained is perfect and hence the protocols themselves
do not depend on the security parameter. Our negative results do allow
protocols to have a negligible statistical error in security.

Definition 2 (Embedding). An aggregating functionality f : X1 x--- X
X — [n] is said to embed into a functionality g : X| x -+ x X], — [n]
if there exist functions ¢; : X; — X| fori € [m], and an injective function
¢o : [n] = 0] such that for all (z1,-- ,Tm) € X1 X -+ X X,

¢0(f(.%'1,"' 71.71)) :g(¢1(x1),~-- 7¢m(xm)) (1)

Below, A = B denotes that the statistical difference between the two
distributions A and B is negligible as a function of a (statistical) security
parameter.

Definition 3 (Passive Secure MPC). An (m + 1)-party protocol IT
with parties Py, --- , Py, Py is said to be an information-theoretically se-
cure MPC protocol for an (m+1)-party aggregating functionality f against
passive corruption, if for any subset T C [m|U{0}, there exists a simulator
S s.t. for any input x € X :

S(zp, f(x)) f0eT

VIEW 7oy ({ Pili € T'}) = {S(xT, 1) otherwise

where VIEW 7,y ({ Pi|i € T'}) represents the view of the parties {P;|i € T'}
i an execution of II with input x and L represents an empty input.

We shall use the following result for 2-party MPC, obtained from the
general characterization in [KMRO09].

4 We allow only the aggregating party Py to have an output. The original definition
in [PRO§] allows all the parties to have outputs, but requires that for each party
other than Py, its output is a function only of its own input. Such a function is
“isomorphic” to an aggregated functionality as we define here.

Lemma 1 (2-Party MPC with one-sided output [KMRO09]). If a
finite 2-party functionality which takes inputs x € X andy € Y from Alice
and Bob respectively and outputs f(x,y) to Bob for some function f : X x
Y — Z has a statistically secure protocol against passive adversaries, then
Ve, o' € X it holds that Jy € Y, f(z,y) = f(a',y) = Vy € Y, f(z,y) =

f@'y).
We refer the reader to [BGIT14] for a definition of NIMPC and PSM.

3 New Models

In this section we define UNIMPC and UNIMPC*, which are models of
secure computation, as well as combinatorial objects CPS and CPSS. For
simplicity, we define UNIMPC and UNIMPC* for fixed functions rather
than function families (though the definitions can be easily extended to
function families, where all the input players receive the function as an
input).

Definition 4 (UNIMPC). We define an Unassisted Non-Interactive
Secure Multi-party Computation (UNIMPC) protocol IT for an (m +1)-
party aggregating functionality f : X — §2 as II = (R, Enc, Dec) where:

— R is an m-party randomized protocol (without inputs), generating cor-
related views (r1, -+ ,7ym) € Ry X -+ X Ry,.

— Enc is an m-tuple of deterministic functions (Ency,--- ,Enc,,) where
EHCi : Xl X Rz — Ml

— Dec : My x --- X M, — §2 is a deterministic function satisfying the
following correctness requirement: for any (x1, -+ ,xm) € X and any
view (11, -+ ,Tm) which R generates with positive probability,

Dec((Ency(z1,71), -+, Encp(xm, rm)) = f(x1,- -+, Tm)-
It is identified with a two-phase MPC protocol where:

1. Offline Phase: The parties P; : i € [m]| run R (without any input) so
that each P; obtains the view r;.

2. Online Phase: Every P; encodes its input z; as z; = Enc;(x;, ;) and
sends it to the aggregator Py. Py outputs Dec(z1,- -+, zm).

Security: A UNIMPC protocol II for f : X — 2 is said to be T-secure
(for T C [m]) if there exists a simulator S s.t. for any x € X :

VIEW 7o) ({P]i € TYU {Po}) = S(ar, f(2))

where VIEW r7(,,)(+) represents the view of a given set of parties in the two-
phase protocol above, with input x.

For any t € [m], II is said to be t-robust if it is T-secure VT C [m)]
s.t. |T| <t. A UNIMPC protocol II is said to be secure if it is m-robust.

We point out that a secure UNIMPC protocol as defined above is a
passive secure MPC protocol for f (as in Definition 3). Note that in defin-
ing T-security we considered only the case when the set of corrupt parties
includes the aggregator. But when the aggregator is honest, security is
automatically guaranteed by the structure of the UNIMPC protocol (the
view of the adversary being derived completely from the offline phase).

Definition 5 (UNIMPC*). We define an Unassisted Non-Interactive
Secure Multi-party Computation protocol with Non-Interactive Pre-Processing
(UNIMPC* protocol) IT for a functionality f : X — 2 as a UNIMPC pro-
tocol I = (R,Enc,Dec) for f where R consists of a single round (i.e.,
each party simply sends messages to the others, and then receives all the
messages sent to it).

We define classes MPC, UNIMPC, UNIMPC* as the class of aggre-
gating functionalities that have (information-theoretically) passive secure
MPC, UNIMPC and UNIMPC* protocols, respectively.

4 Commuting Permutations System

In this section, we define the new algebraic-combinatorial classes.

Definition 6 (CPS and CPSS). An (n,m)-Commuting Permutations
System (CPS) is a collection (X1, -+ , X;n) where for alli € [m], X; C S,
contains the identity permutation, and for any collection (mwy,- -« .mp,) with
T € XZ', and pE Sm, ML O--- o’]Tm(l) =Tp1)© - Oﬂp(m)(l).s

It is called an (n, m)-Commuting Permutation Subgroups System (CPSS)
if each X; is a subgroup of S,.

Note that given a CPS (Xi,---,X,,), for any (71, ,my) € X5 X
+ X Xpm, the expression ([];cpy, mi)(1) is well-defined as the order of
composition is not important.

Definition 7 (CCPS). An (n,m)-CPS (X1, -+, X,,) is said to be com-
plete in dimension ¢ if {w(1) | 7 € X;} = [n]. If it is complete in all m
dimensions, it is called a Complete CPS (CCPS).

5 Choice of 1 is arbitrary. Requiring identity permutation to always be part of each
X is w.l.o.g., as a CPS without it will remain a CPS on adding it.

Definition 8. An (m + 1)-party aggregating functionality f: X1 x -+ X
X — [n] is said to be a CPS functionality (resp., CPSS and CCPS
functionality) if (X1, -, Xm) is an (n,m)-CPS (resp., (n,m)-CPSS and
(n,m)-CCPS), and for all (71, ,7m) € X1 XXXy, f(m1,-+ ,7m) =
(I Ligpm) ™) (1)

CPS (resp., CPSS and CCPS) is defined as the class of all aggre-
gating functionalities that embed into a CPS functionality (resp., CPSS
functionality and CCPS functionality).

A CPSS enjoys a certain (non-abelian) group structure. More specifi-
cally, the CPSS (G1, - -, Gy,) can be identified with a group, with the set

of elements G X - - - X Gy, and group operation * defined as (o71,...,0pm)*
(6),...,00,) = (01 00%,...,0m 00),). This is captured in the following
lemma.

Lemma 2. Suppose (G1,---,Gn) is a CPSS. Then, for any set of mt
permutations {o; ; | i € [m],j € [t]} such that o;; € G;, it holds that

H H 7i5) H H 7i5)

j=li=1 i€[m] j=1

Proof: Consider p o [pi(1), where p; € G; for each i, and p € G,
for some ig € [m]. Note that the order of composition is not important
in [[7%, pi(1), since (Gy,---,Gp) is a CPS(S), and we may write it as
[Licpm pi(1). Also, define pj as

, {p opi, iti=1p
Pi = .
Di otherwise.

Since G, is a group, we have p} € G; for all i € [m] (including 4p). Then,

pOsz (popie I r)W)=0he TI)@ =CII A
i1€[m]

i€[m]\{io} i€[m]\{io}

where in the last step, we again used the CPS property. The claim follows
by repeatedly using the above equality. O

Our first result is a separation:

Theorem 1. CPSS C CPS.

Proof: We prove this by giving an explicit (5, 3)-CPS (X7, X2, X3), and
showing that the corresponding CPS functionality does not embed into
any (n,3)-CPSS functionality. (In the full version we give instances of
(n,m)-CPS that cannot be embedded into a CPSS, for every value of
m > 2.) Let

X1 = {mo,m1}, Xo = {mo, m2}, X3 = {mo, M3},

where (using the standard cycle notation for permutations), mo = (1)(2)(3)(4)(5),
m o= (125)34), ™= (135)(24) and 73 = (1 4 5)(2 3). It can

be verified that this is a CPS by computing all non-trivial applications

of these permutations on 1: [[;crq o mi(1) = 5, [Lieq 0y m(1) = 4,
[Licqi 5y mi(1) = 3, and [];co.4y mi(1) = 2.

We argue that this cannot be embedded into a CPSS. Suppose, for
some n, there is an (n, 3)-CPSS, (G1, G2, G3), and functions ¢; : X; — G;
and an injective function ¢g : [5] — [n], as specified in Definition 2. Let
¢i(mo) = o; and ¢;(m;) = p;. First, we argue that w.l.o.g., we can require
all o; to be the identity function. This is because, otherwise, ¢;(r) =
0;1 o () and ng = (c1009003) Loy is a valid embedding, with (Zgi(ﬂ'o)
being the identity function. This follows from the fact (see Lemma 2) that
in a CPSS with {«;, 5;} C Gj,

(o pBi)o---o(amofn)(l) =(aro---oam)o(fio---ofn)(1).

Next we argue that (with o; being identity), w.l.o.g., ¢¢ is the identity
function as well. This is because (ﬁz(ﬂ) = ¢ o ¢i(T)Py 1 along with ¢
being the identity function yields an embedding. This relies on the fact
that ¢o(1) = 1 (as implied by Equation 1 of Definition 2, by considering
Tl =Ty = T3 = 7'('0).

Now, we derive a contradiction from the following two requirements:

— From Equation 1, we get that m;(a) = p;(a) for all i and a € {1,2,3,4}
(but not necessarily for a = 5).

— Since (G4, Ga, G3) is a CPSS, we require that p3 € Ga. Then, we require
that p3 o p3(1) = p3 0 p3(1).

Using the first condition, we derive three equalities: p3(1) = 4, p3 o
p3(1) = 4 and p3 o p3(1) = p3(5). From the last two equalities, and the
second condition, we find that p3(5) = 4, yielding a contradiction with
the first equality. O

5 Only CPS Functionalities have (UNI)MPC Protocols

We show that if an aggregating functionality has a statistically secure
MPC protocol against semi-honest adversaries (without honest majority
or setups), then it must be a CPS functionality. Since UNIMPC protocols
are MPC protocols, this applies to UNIMPC as well.

Theorem 2. If an aggregating functionality has an information-theoretically
secure MPC' protocol against semi-honest adversaries, then it embeds into
a CPS functionality.

Proof: Suppose an (m + 1)-party aggregating functionality f: X3 x --- X
Xy — [n] is semi-honest securely realizable. Denote the aggregating party
as Py and for each i € [m], the party with input domain X; as P;.

Firstly, w.l.o.g., we may assume that no party has two equivalent
inputs, by considering an embedding if necessary. Further, we may let
X; = [n;] for each i, and f(1,---,1) = 1, by relabeling the inputs and the
outputs.

Now, for each i € [m], consider the 2-party SFE functionality obtained
by grouping parties {P;|j € [m] \ {i}} as a single party Alice, and the
parties {P;, Py} as a single party Bob. This functionality has the form in
Lemma 1, namely, only Bob has any output. Then applying the lemma, we
get the following (where the notation x[i : ¢] denotes the vector obtained
from x by setting x; to £): Vx,x" € X1 X -+ X X,

fx)=fX)and z; =2, = Vle X f(x[i:)= f(X[i:¥). (2)

We use this to prove the following claim.
Claim. For each i € [m] and ¢ € X, there exists a permutation wéi) such
that, for all x € X7 x --- x X,;, with x; = 1,

T (f(x) = F(x[i : 4]). (3)

Proof: Fix i € [m], £ € X;. Now, consider defining a (partial) function
ﬂéz) using Equation 3. This is well-defined thanks to Equation 2: Even
though there could be multiple x with z; = 1 and the same value for f(x),
Equation 2 ensures that they all lead to the same value for f(x[i : /]).
Further, with this definition, if wél) (a) = Wél)(b), this means that there
exist x,x' with z; = 2} =1, f(x) = a, f(x') =band f(x[i: {]) = f(x[i:
?]). But by considering z = x[i :], 2’ = x'[i : {], we have z; = 2] and
f(z) = f(Z'). Hence, by Equation 2, we have f(z[i : 1]) = f(2'[i : 1]. But

since x = z[i : 1] and x’ = 2z'[i : 1], this means that a = f(x) = f(x) = b.
Hence, wéz) is a one-to-one function, from {a|3x,z; = 1, f(x) = a} C [n]
to [n]. We can arbitrarily extend this to be a permutation over [n] to meet

the condition in the claim. O
Finally, for any x such that x;, = --- = z;, = 1, and distinct 41, - - , %,
by iteratively applying Equation 3, wgft) 0.0 ngl)(f(x)) = f(x[iy :
O] -+ [ig 2 4y]). Taking (i, £x) = (p(k), 2p(x)) for any permutation p € Sp,
and any z € X X -+ X X, we have x[iy : l1] -+ [im : €] = 2, for any
x. Then, with x = (1,---,1) we get that
f(z) = wlPM) oo gltm) (),

Zp(1) Zp(m)

where we substituted f(x) = 1. This concludes the proof that f embeds
into the CPS functionality with input domains X; = {ﬂél)w €[ni]}. O

5.1 Extensions to 1-Robust UNIMPC and NIMPC

Since every secure UNIMPC protocol is a secure MPC protocol, Theorem 2
applies to UNIMPC as well. But it extends to UNIMPC in a stronger
manner than it holds for MPC. Note that if we restrict the number of
corrupt parties to be at most m/2, then every m + 1 party functionality
has a passive secure MPC protocol, even if the functionality is a non-CPS
aggregating functionality. But we show that as long as the adversary can
corrupt just two parties (the aggregator and one of the input parties), the
only aggregating functionalities that have secure UNIMPC protocols are
CPS functionalities.

To see this, we consider how Equation 2 was derived in the proof of
Theorem 2 (the rest of the argument did not rely on the protocol). We
used the given (m + 1)-party protocol to derive a secure 2-party protocol
to which Lemma 1 was applied. In arguing that this 2-party protocol is
secure we considered two corruption patterns in the original protocol: the
adversary could corrupt { Py, P;} (Bob) or {P; | j € [m]\{i}} (Alice). Now,
if we allow only corruption of up to two parties, we cannot in general argue
that the resulting two party protocol is secure when Alice is corrupted.
However, if the starting protocol was a UNIMPC protocol, then in the
resulting 2-phase protocol, there is an offline phase when Alice and Bob
interact without using their inputs, and after that Alice sends a single
message to Bob in the second phase. Any such protocol is secure against
the corruption of Alice, as Alice’s view can be perfectly simulated without
Bob’s input. Thus, when the starting protocol is a UNIMPC protocol that

is T-secure for every T of the form {0,¢} (i € [m]), then Lemma 1 applies
to the 2-party protocol constructed, and the rest of the proof goes through
unchanged. Thus, an aggregating functionality f has a 1-robust UNIMPC
protocol only if it is a CPS functionality.

The above argument extends in a way to 1-robust NIMPC as well. Of
course, every function has a secure NIMPC protocol [BGI*14], and we
cannot require all such functions to be CPS. But we note that NIMPC
turned out to be possible for all functions not only because a trusted party
is allowed (to generate correlated randomness), but also because NIMPC
allows the adversary (corrupting the aggregator and some set of parties)
to learn the residual function of the honest parties’ inputs. So, one may
ask for which functionalities does the adversary learn nothing more than
the output of the function on any input (just as in the security require-
ment for MPC), even as we allow a trusted party to generate correlated
randomness. Here, we note that the above argument in fact extends to
the NIMPC setting with the trusted party: We simply include the trusted
party as part of Alice in the above 2-party protocol. Since the security of
the 2-party protocol relied only on security against Bob (and the 2-phase
nature of the protocol), including the trusted party as part of Alice does
not affect our proof. Thus we conclude that only CPS functionalities have
1-robust NIMPC where the simulator takes only the input of the corrupt
parties and the output of the function (rather than the residual function
of the honest parties’ inputs).

6 UNIMPC Protocols

In this section we present our positive results for UNIMPC* and UNIMPC
(Theorem 3 and Theorem 4).

Theorem 3. Any function embeddable in a CPSS function has a UNIMPC*
protocol with perfect security.

To prove Theorem 3 it is enough to present a perfectly secure pro-

tocol for a CPSS function: the protocol retains security against passive
corruption when the input domains are restricted to subsets.

UNIMPC* Protocol for CPSS Function.

For i € [m], party P; has input 7; € G;, where (G1,- -+ ,Gy,) is an (n,m)-
CPSS. Party Py will output mp o -+ o mp(1).

1. Randomness Computation: For each j € [m], P; samples (o1, -+ , Omj)
uniformly at random from G1 X --- X G,,, conditioned on

01500250+ 00y,i(l) =1. (4)

For each i,j € [m], P; sends 0y to P;.

2. Input Encoding: P; computes o9 := m;0(0j3 0+ 0 aim)fl, and sends
it to Py. Note that (o9, - ,0:m) is an additive secret-sharing of 7; in
the group Gj.

3. Output Decoding: Py outputs o190 0200 -0 0mo(1).

By construction, the protocol has the structure of a UNIMPC* pro-
tocol. Indeed, it is particularly simple for a UNIMPC* protocol in that
the randomness computation protocol in offline phase is a single round
protocol. Below we argue that this protocol is indeed a perfectly secure
protocol for computing (Hig[m} 772-)(1) against passive corruption of any
subset of parties.

Perfect Correctness: The output of Py is []}" 04,0(1). By Equation 4
(applied to j = 1) we may write 1 =[] 041(1). We further expand 1 in
this expression again by applying Equation 4 successively for j = 2,--- ;m
to obtain 1 =[]/, [[}Z, 0i;(1). Hence, the output of Py may be written
as [[72o [[;21 0i,(1). By Lemma 2, this equals [[;c(,,,) [172 0i;(1). By the
definition of oy this in turn equals [, mi(1), as desired.

Perfect Semi-Honest Security: A protocol with the UNIMPC struc-
ture is always perfectly semi-honest secure as long as the aggregator is
honest, or if all the input parties are corrupt. Hence we focus on the case
when the aggregator Py is corrupt and there is at least one honest party.
Suppose the adversary corrupts Py and {P; | i € S} for some set S C [m)].
Below, we write S := [m] \ S to denote the set of indices of the honest
parties. Recall that an execution of the protocol (including the inputs) is
fully determined by the m x (m+ 1) matrix o, with (i,)*® entry oy; € G;,
for (i,7) € [m] x ([m] U{0}). The input determined by o is defined by

input(o) = (71, -+ ,my), where m; = H;”:O oij. We say that o is valid if
for every j € [m], [Tiepm 0i5(1) = 1.
When the functionality is invoked with inputs # = (71, -+ ,7p), in

the ideal world, the adversary learns only the corrupt parties’ inputs 7|g
and the residual function of the honest parties’ inputs mg(1), where 75 :=
(IT;cg ™). But in the real world its view consists also (o)s = {oi; |
i€ SVjeSu{0}}. We need to show that for any two input vectors
7, with identical ideal views for the adversary - i.e., w|g = 7'|g, and

(1) = 7r’§(1) — the distribution of (o)g is also identical. For this we

shall show a bijective map gbg/ between valid matrices o consistent with 7
and those consistent with 7/, which preserves () g. Since o is distributed
uniformly over all valid matrices consistent with the input in the protocol,
this will establish that the distribution of (o)g is identical for 7 and =’
More precisely, the following claim completes the proof.

Claim. For any S C [m], and any m, 7’ € G; X --- X Gy, such that
w|s = 7'|s and ws(1) = wy(1), there is is a bijection ¢% from {o |
input(e) = m A o valid} to {o | input(e) = =’ A o valid}, such that
(@) = (6T (@))s.

Proof: Let S,m,n’ be as in the lemma. We shall first define ¢§/ for all
m X (m + 1) matrices o, with 0;; € G;, and then prove the claimed
properties when restricted to the domain in the claim. Fix h € S as (say)
the smallest index in S. Given o, qﬁgl maps it to o’ as follows.

O'/-- _ 0ij if j 75 h

" a;tormlop ™ ifj=nh
where o; = H?;& oij and f; = H;.”:hH oij. Note that like o, o’ also
satisfies the condition that agj € G, for all j = 0U[m], because o, f;, 7} €
G;.

By construction, [[j.,0}; = 7, and hence the image of ¢§, is con-
tained in {o’ | input(e’) = ’}. Also, when the domain is {o | input(o) =
7}, the mapping is invertible since gb@(d)g/ (o)) = o, when input(o) = .
Hence, by symmetry, this is a bijection from {o | input(e) = m} to
{o | input(o) = #'}. Further, for ¢ € S, m; = 7, and hence o}, = oy, s0
that (o)s = (o)s.

It remains to prove that the map is a bijection when the domain and
range are restricted to wvalid matrices. So, suppose o is a valid matrix.
Then we have

([T e =1 vj € [m] ()

1€[m)]
(IT somy =11 oij)(1) = 1. (6)
i€[m] j=h+1ie[m]

where the first equality in (6) is obtained by applying Lemma 2, and
the second by applying the validity condition (5) successively for j =
m,---,h+1.

To verify that o’ = gbgl(a') is valid, we only need to verify that
(I Licpm) 0/,)(1) = 1 (as the other columns of o’ are the same as in o).

This we show as follows (where for brevity, we write a := Hz‘e[m} a; and
B = Hie[m] Bi):
[[==][=
i€[m] 1€[m]
= (J] oo o)1) =[] asoomos)
i€[m)] i€[m]
:>0‘°(H O',Eh)oﬁ(l):ozo(H oin) o B(1) by Lemma 2
i€|m] i€[m)
= (H oin) o B(1) = (H oin) o B(1) « a permutation
i€[m] i€[m)]

= ([T ol = (] o)1) =1 by (6) and (5).
1€[m)

1€[m]

0

Theorem 4. Any CPS functionality with 4 or fewer parties has a UNIMPC
protocol with perfect security. Further, any CPS functionality with 3 or
fewer parties has a UNIMPC* protocol with perfect security.

We present the full proof in the full version. In particular, for the
case of 4 parties, we describe a UNIMPC protocol, which uses an NIMPC
scheme (Gen, Enc, Dec), but implements Gen using a 3-party perfectly
secure protocol for general functions that is secure against passive cor-
ruption of 1 party (e.g., the passive-secure protocol in [BGW88|). This
transformation has appeared in a recent, independent work [HIKR18].

7 Latin Hypercubes

CPS functions are closely related to Latin Squares, and more generally,
Latin Hypercubes. An n-ary Latin Square is an n X n matrix with entries
from [n] such that each row and column has all elements of [n] appear-
ing in it. The m-dimensional version is similarly a tensor indexed by m-
dimensional vectors, so that every “row” (obtained by going through all
values for one coordinate of the index, keeping the others fixed) is a per-
mutation of [n]. We can associate an m-input functionality with a Latin
hypercube, which maps the index vector to the corresponding entry in the
hypercube.

In the case of m = 2, an n-ary Latin square functionality f always is
(or, technically, embeds into) an (n,2)-CPS (Xi, X2). However, this is
not true in higher dimensions (see the full version for an explicit counter
example). So not all Latin hypercube functions can have MPC protocols.
We obtain an exact characterization of all Latin hypercube functionalities
that have UNIMPC™* (or MPC) protocols. Recall that by Theorem 2 only
CPS functionalities can have UNIMPC* (or even MPC) protocols. We
show that all Latin hypercube functionalities that are CPS functionalities
indeed have UNIMPC* protocols. To prove this, we relate this class —
Latin hypercube functionalities that are CPS functionalities — to CPSS
functionalities (which have UNIMPC* protocols). Firstly, a Latin hyper-
cube functionality that is a CPS functionality forms a Complete CPS
(CCPS) functionality, as defined in Definition 7. Then we use the follow-
ing theorem:

Theorem 5. For m > 2, an (n,m)-CCPS is an (n,m)-CPSS.

The proof of this theorem, given in the full version, has two parts:
Firstly, we show that for m > 2, the permutations in an (n,m)-CCPS
enjoy “full-commutativity,” rather than commutativity when applied to 1.
Then we show that any (n, m)-CPS functionality with such full-commutativity
embeds into an (n,m)-CPSS. Further, since a CCPS has the maximal
number of possible inputs for every party in a CPS (namely, n), this em-
bedding must use a surjective mapping for the inputs, making the original
CCPS itself a CPSS.

The following can be stated as a corollary of the above theorems (see
the full version).

Corollary 1. A Latin hypercube functionality has a UNIMPC* protocol
if and only if it is a CPS functionality.

8 Towards a Characterization of Strong Security

While security against active corruption is often stronger than security
against passive corruption, this is not always the case. This is because,
in the ideal world model for active corruption, the adversary (i.e., simu-
lator) is allowed to send any inputs of its choice to the functionality, the

S We let X1 = {m | m(f(1,3)) = £(i,) Vi € [nl}, and Xz = {p; | ps(f(i,1)) =
f(4,4) Vi € [n]}. These functions are well-defined permutations because of f being a
Latin square functionality, and it is a CPS because, mjop;(f(1,1)) = pjomi(f(1,1)) =
f(i, 7). With a bijective embedding that relabels the outputs of f so that f(1,1) =1,
this meets the definition of a CPS.

adversary in the passive corruption setting is required to send the same
input as the corrupt parties received. To reconcile this discrepancy, one
could weaken the notion of passive security by allowing the simulator to
change the input sent to the functionality. However, the resulting security
guarantee is quite pessimistic, as it assumes that even passively corrupt
parties will alter their inputs, and may not be appropriate in scenarios
where the passively corrupt parties will not do so (see Footnote 3). In-
stead, we propose using a stronger definition — which we simply call strong
security — which requires the simulator to not alter the inputs if the parties
are corrupted passively, but allows it to use arbitrary inputs if they are
corrupted actively. Formally, we use the following information-theoretic
security definition:

Definition 9 (Strong security). A protocol I is said to be a strongly
secure protocol for a functionality F if it is both passive secure and UC
secure (with selective abort) for F against computationally unbounded ad-
VETSATIES.

Note that strong security admits composition as both semi-honest se-
curity and UC security are composable. From a practical point of view,
strong security (possibly weakened to hold only against PPT adversaries)
is important, and arguably the “right” notion in many cases. Here we
initiate the study of characterizing multi-party functionalities that are
strongly securely realizable. Clearly, the impossibility results for both UC
security and passive security apply to strong security.

To state our results for all multi-party functions, we need to go be-
yond aggregating functionalities. Firstly, we shall need the notion of dis-
seminating functionalities: An (m + 1)-party disseminating functionality
f={(f1, -, fm) has a single party Py with an input z, so that every other
party P; receives the output f;(x). The class of disseminating functions
is denoted by DISS. Secondly, we need to consider functions which are
“essentially” aggregating or disseminating, but not strictly so because of
the presence of additional information in each party’s local output which
is derived solely from its own inputs. The idea that a function can be
essentially the same as another function is captured using the notion of
isomorphism among functionalities, as defined in [MPR13|. We reproduce
this below, adapted to strong security. Here, a protocol 7T.g7_— for F, using
G as a setup, is said to be local if each party (deterministically) maps
its input to an input for the functionality G, then calls G once with that
input and, based on their private input and the output obtained from G,
locally computes the final output (deterministically), without any other
communication.

Definition 10 (Isomorphism [MPR13]). We say F and G are isomor-
phic to each other if there exist two local protocols ﬂ]gr and Tré: that strongly

securely realize F and G respectively.

Now we are ready to state and prove our main results regarding
strongly secure MPC.

Theorem 6. If a functionality has a strongly secure protocol, then it is
isomorphic to a functionality in DISS U CPS.

Proof: Tt follows from [PR08] that all strongly securely realizable function-
alities are isomorphic to a disseminating functionality (i.e., a functionality
in DISS), or an aggregating functionality (as defined in here).Further, if
a functionality F that has a strongly secure protocol is isomorphic to an
aggregating functionality F’, then from the definition of isomorphism, F’
too has a strongly secure (and in particular, a passive secure) protocol.
Then, by Theorem 2, ' € CPS. O

We contrast this with our positive result below, which refers to CCPS
(Definition 7), instead of CPS. We point out that our protocols below are
efficient in the sense of having polynomial complexity in the statistical
security parameter, but can be polynomial (rather than logarithmic) in
the domain sizes or exponential in the number of parties.

Theorem 7. If a functionality is isomorphic to one in DISS U CCPS,
then it has a strongly secure protocol.

Proof: We show in Section 8.2 that every disseminating functionality has
a UC secure protocol. A UC secure protocol for a disseminating function-
ality is always passive secure as well: only the disseminator has any input,
and if the disseminator is passively corrupt, the correctness guarantee un-
der UC security (when no party is corrupt) ensures that the simulator can
send the disseminator’s actual input to the functionality.

In the full version, we prove that the UNIMPC* protocol in Section 6
is UC secure for every Complete CPSS functionality. By Theorem 5, this
covers all Complete CPS functionalities of more than 2 dimensions. For
2-dimensional Complete CPS functionalities (which are precisely Latin
Squares), we give a UC secure protocol in the full version. In Section 8.1,
we show a compiler that extends these results to functionalities embedded
in a CCPS functionality.

Finally, we note that for aggregating CPS functionalities too, UC se-
curity implies strong security: If the aggregator is honest, the correctness
guarantee under UC security allows the simulator to send the corrupt

parties’ actual input to the functionality; if the aggregator is corrupt, a
simulator which sends the correct inputs of the passively corrupt players
obtains the honest parties’ residual function, and can internally execute
the UC simulator (which may send arbitrary inputs to the functionality
and expect the output). O

8.1 Restricting Input Domains While Retaining UC Security

In this section we give a compiler to transform a UC secure protocol for a
CPS functionality F to a UC secure protocol for the same functionality,
but with restricted input domains for each party. To illustrate the need
for this compiler, suppose m input parties wish to total their votes (0
or 1) and provide it to an aggregator, securely. We do have a UC secure
protocol for addition modulo m + 1, and this functionality can correctly
compute the total of m bits. However, this is not a UC secure protocol for
our functionality, as the corrupt parties can provide inputs other than 0
or 1. Nevertheless, we show that the original protocol can be transformed
into one which restricts the domain as desired.

Definition 11 (Domain Restriction). Given a functionality F with
mput domain X = X1 X -+ X X, we define a domain restriction of F to
D=D; x---x Dy CX as a functionality Fp which is defined only on
iputs in D, where it behaves identically as F.

We give a compiler that transforms a UC secure protocol for a CPS
functionality F to a UC secure protocol for Fp for any D = Dy X -+ X Dy,.
Our compiler can be presented as a protocol RDom]l;’fAND — a protocol
in a hybrid model with access to the ideal functionalities F and (m-
input) aggregating functionality Fanp. We note that while Fanp is not
a CPS functionality (and hence cannot have a passive secure protocol),
it does have a UC secure protocol. Specifically, one can reduce Fanp to
summation over an exponentially large abelian group, where each party
P, maps its input z; to a group element g; as follows: if x; = 0, let g;
be random, and if z; = 1, let g; = 0. The aggregator receives), g; and
outputs 1 if the sum is 0, and 0 otherwise.

Protocol RDomg’}—AND The high-level idea of this protocol is to first
invoke F on random inputs from the domain D, and use a cut-and-choose
phase to verify that indeed most of the invocations used inputs in the do-
main D. Then, using access to FanD, the executions involving the correct
input from all the parties are isolated, and the aggregator Py outputs what

it received from F in those executions (if there is a consistent output).
The formal description follows.

Let F represent the functionality to be realized and k be the security
parameter. Let £ be the input domain of F and D be the desired domain.
Let P;,i € [m]U{0} be the set of parties with inputs {z;};c[m). Let Py be
the aggregator with output space [n].

1. Random Execution: Invoke k sessions of the functionality F with
domain &. Each honest party P;,i € [m] chooses input uniformly at
random from domain D. Let u;; be the input used by party P; in the
4t execution and let v; be its output.

2. Opening: Py chooses S C [k], where every element has a probabil-
ity of 0.5 of being picked up (thus E(|S|) = k/2), and announces it.
Every party P;,i € [m] sends u;;,Vj € S to Fy. Then, Py checks the
consistency of all the inputs and outputs it received: i.e., if Vj € S,
F({uijtiepm)) = vj- It also confirms that each input is chosen from the
domain D. Otherwise Py aborts.

3. Tallying with actual inputs: Invoke k& — |S| sessions of the Fanp
functionality, indexed by S = [m] \ S. Each honest party P; sets its
input to session j of Fanp a;; as

1 if Vij = T4
aij =

0 otherwise

and let the output for j* Fanp be b;. Also let T = {j : b; = 1}.

4. Computing the result: If |T| > ¢/2 where t = k/(2 - [[, [Xil) is
the expected size of T', and if JvVj € T', v; = v, then Py outputs v.
Otherwise Py Aborts.

In the full version, we prove the following.

Theorem 8. If F is an m-input CPS functionality, and D = Dy X -+ - X
D, is a subset of its domain, then RDomﬁ’fAND is a UC secure protocol

for Fp.

8.2 Disseminating Functionalities

We rely on the disseminated-OR functionality Dogr to show that all dis-
seminated functionalities are UC secure. The functionality Dogr takes
(1, ,2m) from the disseminator Py and outputs (b, x;) to P; where
b=x1V - -V ay. We start by giving a UC secure protocol for Dog.

Protocol for Dogr. In [PR0O8| a UC secure protocol for 3-party Dor was
given. We present a variant that works for all values of m (please see the
full version for the proof).

Py broadcasts (UC-securely [GLO02|) b :=\/,5z; to all P;.
If b =0, for each i > 0, P; outputs (0,0) and halts. Else, they continue.
Py sends z; to each P;.

L=

For i € [m], j € [k], Py samples r;; from a large group (e.g., k-bit
strings) s.t. Vj, >, ri; = 0.
5. For each 1, if z; = 0, Py sends r;; for all j to P; (and otherwise sends
nothing to P;).
6. Cut-and-choose:
(a) Py picks a random subset S C [k] of size k/2 and sends it to Pp.
(b) Forall j € S, Py broadcasts r;; for all 7, and all parties verify that
>, mij = 0. Py verifies that the set S used is what it picked.
(c) Any P; with z; = 0 aborts if it sees that for some j, r;; broadcast
by Py is not equal to 7;; it received.
7. For each j € S, Py,---, Py, do the following:
(a) For each i, if x; = 0, P; sets sij = r;j, and otherwise samples s;;
randomly.
(b) They use the standard semi-honest secure protocol to compute
> Sij-
(c) Each P; aborts if it gets the sum as 0.
8. If no abort has been observed, each P; outputs (1,x;), where x; is as
received from Py in the beginning. Otherwise it aborts.

In the full version we prove that this protocol is secure. The interesting
cases are when (1) a corrupt Py attempts to make all (honest) P;’s output
(1,0) (thwarted by the summation evaluating to 0, or the cut-and-choose
failing), and (2) when P is honest and a set of corrupt P;’s may learn all
sij (thwarted by s;; being distributed uniformly, either because a corrupt
P; does not know r;; as x; = 1, or because an honest P; used a random
5ij)~
Protocol for any disseminating functionality. A disseminating func-
tionality F with m output parties is specified by a function F': X — Y7 X
-+ X Y,,, for some finite domains X and Y;. We consider a boolean function
Invf:n 1 Y1 %o xY,, — {0, 1} (for “invalid”) as follows: Invgn] (Y1, ,yn) =
Liff Az € X s.t. F(z) = (y1, .-+, Yn)-

More generally, for any S C [m], define Inv% : Ys — {0,1} as follows
(denoting by Yg the input combinations of parties indexed by S): for

ys € Ys, InvE(y) = 1 iff 2 € X,yg € Yo s.t. F(2) = (ys,yg) (with the
output tuple understood as being sorted appropriately by the indices).
Protocol Diss?-OR (for disseminating functionality F computing F'):

1. On input z, Py sends y; to each P;, where F(z) = (Y1, , Ym)-
2. For each subset S C [m]
— For each g € Yg such that Invg(gjg) =1:
(a) Invoke Dog, with Py’s input being (a1,-- - ,ay,), where a; = 0
iff §; = y; and 1 otherwise.
(b) Each P; receives (b,a;). If b =0, or if a; = 1 but g; = y;, then
abort.
3. If no abort has been observed, each P; outputs y;, and else aborts.

We point out that it is important to have the protocol consider all
subsets S C [m] (which makes it take time exponential in m), and not
just the whole set [m], as otherwise Py can collude with a corrupt P;+ (who
never aborts), and ensure that b = 1 always, by setting a; = 1. Then Py
can make the honest parties accept any combination of outputs, valid or
not. In the full version we prove that the above protocol UC securely
realizes F.

References

BGIT14. Amos Beimel, Ariel Gabizon, Yuval Ishai, Eyal Kushilevitz, Sigurd
Meldgaard, and Anat Paskin-Cherniavsky. Non-interactive secure multiparty
computation. In Advances in Cryptology - CRYPTO 201/, Proceedings, Part
11, pages 387404, 2014.

BGWS88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation. In Proc.
20th STOC, pages 1-10, 1988.

Blu81. Manuel Blum. Three applications of the oblivious transfer: Part I: Coin
flipping by telephone; part II: How to exchange secrets; part III: How to send
certified electronic mail. Technical report, University of California, Berkeley,
1981.

CCD88. David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty uncondi-
tionally secure protocols. In Proc. 20th STOC, pages 11-19, 1988.

CI96. Benny Chor and Yuval Ishai. On privacy and partition arguments. In
Fourth Israel Symposium on Theory of Computing and Systems, ISTCS 1996,
Jerusalem, Israel, June 10-12, 1996, Proceedings, pages 191-194, 1996. Jour-
nal version appears in Information and Computation, 167(1).

CK91. Benny Chor and Eyal Kushilevitz. A zero-one law for boolean privacy. STAM
J. Discrete Math., 4(1):36-47, 1991.

CKL06. Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of
universally composable two-party computation without set-up assumptions.
J. Cryptology, 19(2):135-167, 2006.

FKN94.
GLO02.

HIJ*t16.

HIJ*17.

HIKRI1S.

HM97.

IK97.

IKO00.

KMRO09.

Kus&9.

MPRO9.

MPR13.

OY16.

PROS.

Rysb1.

SRAT9.

Yao082.

Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure compu-
tation (extended abstract). In STOC, pages 554-563, 1994.

Shafi Goldwasser and Yehuda Lindell. Secure computation without agree-
ment. In DISC, pages 17-32, 2002.

Shai Halevi, Yuval Ishai, Abhishek Jain, Eyal Kushilevitz, and Tal Rabin.
Secure multiparty computation with general interaction patterns. In Proceed-
ings of the 2016 ACM Conference on Innovations in Theoretical Computer
Science, Cambridge, MA, USA, January 14-16, 2016, pages 157-168, 2016.
Shai Halevi, Yuval Ishai, Abhishek Jain, Ilan Komargodski, Amit Sahai, and
Eylon Yogev. Non-interactive multiparty computation without correlated
randomness. In ASIACRYPT 2017, Proceedings, Part III, pages 181-211,
2017.

Shai Halevi, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. Best possible
information-theoretic mpc. In To appear in the Proceedings of Theory of
Cryptography - 16th Theory of Cryptography Conference, TCC, 2018.
Martin Hirt and Ueli M. Maurer. Complete characterization of adversaries
tolerable in secure multi-party computation (extended abstract). In PODC,
pages 25-34, 1997.

Yuval Ishai and Eyal Kushilevitz. Private simultaneous messages protocols
with applications. In Israel Symp. Theory of Comp. and Systems, ISTCS,
pages 174-184, 1997.

Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new repre-
sentation with applications to round-efficient secure computation. In FOCS,
pages 294-304, 2000.

Robin Kiinzler, Jorn Miiller-Quade, and Dominik Raub. Secure computabil-
ity of functions in the IT setting with dishonest majority and applications
to long-term security. In T'C'C, pages 238-255, 2009.

Eyal Kushilevitz. Privacy and communication complexity. In FOCS, pages
416-421, 1989.

Hemanta Maji, Manoj Prabhakaran, and Mike Rosulek. Complexity of multi-
party computation problems: The case of 2-party symmetric secure function
evaluation. In TCC, pages 256273, 2009.

Hemanta Maji, Manoj Prabhakaran, and Mike Rosulek. Complexity of Multi-
Party Computation Functionalities, volume 10 of Cryptology and Information
Security Series, pages 249 — 283. 10S Press, Amsterdam, 2013.

Satoshi Obana and Maki Yoshida. An efficient construction of non-interactive
secure multiparty computation. In Cryptology and Network Security, CANS,
pages 604-614, 2016.

Manoj Prabhakaran and Mike Rosulek. Cryptographic complexity of multi-
party computation problems: Classifications and separations. In CRYPTO,
pages 262—-279, 2008. Full version available as ECCC Report TR08-050 from
https://eccc.weizmann.ac.il.

H. J. Ryser. A combinatorial theorem with an application to latin rect-
angles. Proceedings of the American Mathematical Society, 2(4):550-552,
August 1951.

Adi Shamir, R. L. Rivest, and Leonard M. Adleman. Mental poker. Technical
Report LCS/TR-125, Massachusetts Institute of Technology, April 1979.
Andrew Chi-Chih Yao. Protocols for secure computation. In Proc. 23rd
FOCS, pages 160-164, 1982.

https://eccc.weizmann.ac.il

	1 Introduction
	1.1 Related Work
	1.2 Technical Overview

	2 Preliminaries
	3 New Models
	4 Commuting Permutations System
	5 Only CPS Functionalities have (UNI)MPC Protocols
	5.1 Extensions to 1-Robust UNIMPC and NIMPC

	6 UNIMPC Protocols
	7 Latin Hypercubes
	8 Towards a Characterization of Strong Security
	8.1 Restricting Input Domains While Retaining UC Security
	8.2 Disseminating Functionalities

