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Abstract. We describe a variation of the Schnorr-Lyubashevsky ap-
proach to devising signature schemes that is adapted to rank based cryp-
tography. This new approach enables us to obtain a randomization of
the signature, which previously seemed difficult to derive for code-based
cryptography. We provide a detailed analysis of attacks and an EUF-
CMA proof for our scheme. Our scheme relies on the security of the Ideal
Rank Support Learning and the Ideal Rank Syndrome problems and a
newly introduced problem: Product Spaces Subspaces Indistinguishabil-
ity, for which we give a detailed analysis. Overall the parameters we
propose are efficient and comparable in terms of signature size to the
Dilithium lattice-based scheme, with a signature size of 4kB for a public
key of size less than 20kB.

1 Introduction

During the last few years and especially since the 2017 call for proposals of the
NIST for post-quantum cryptosystems, there has been a burst of activity in
post-quantum cryptography and notably in code-based cryptography.

As far as encryption schemes are concerned, code-based cryptography has
satisfactory solutions, in the form of cryptosystems whose security is reduced to
well known problems: decoding random structured matrices like ideal or quasi-
cyclic matrices ([?,?,?]). However, the situation is very different for signature
schemes.

Essentially there exist two types of signature schemes: hash-and-sign schemes
and proof of knowledge based signatures.

For hash-and-sign schemes, signing consists in finding a small weight pre-
image of a random syndrome, with a non-negligible probability. For instance:
CFS in code based cryptography ([?]), GPV for lattices [?], Ranksign for rank
metric [?], NTRUSign for lattices [?], pqsigRM [?]... The main drawback of this
approach is that the system relies on hiding a trapdoor within the public key:
typically the secret is a decoding (or approximate decoding) algorithm which is
hidden in the public matrix that describes the code. Whereas for lattices this type
of masking can be efficiently randomized because of properties of the Euclidean



distance [?], it has proved much more difficult for coding theory. In practice there
exist two published code-based signature schemes: CFS [?] and RankSign [?] (see
also SURF [?]), but for these schemes the public key can be distinguished from a
random matrix [?], [?]. Overall, for signature, this approach is similar to classical
McEliece Encryption for which there is always a sword of Damocles lying over
its head, namely the possible existence of a structural attack which recovers the
hidden structure of and hence breaks the scheme. Relating the distinguishing
problem to another well known problem seems a difficult feature to obtain. For
the case of the RankSign scheme, a structural attack was recently found in [?];
it is always possible to repair and counter such attacks, like it was the case for
all the sequels of NTRUSign [?], but this illustrates the difficulty of relying on
this approach, when the secret trapdoor is not randomized.

The second approach for devising a signature scheme consists in proving that
one knows a small weight vector associated to a given syndrome. It can done in
two ways.

A first way consists in considering a zero-knowledge authentication algorithm
and turning it into a signature scheme through the Fiat-Shamir transform. If the
probability of cheating (associated to soundness) is very small, this approach
can be efficient, but when the cheating probability is of order 1/2, it leads to
very large signature sizes, since the number of necessary rounds is very large.
It is typically the case for the Stern authentication protocol [?] for which the
cheating probability is 2/3 (it was decreased to 1/2 in [?] and adapted to the
rank metrix in [?]). Overall this approach is very interesting in terms of security
reductions since one is reduced to generic problems without any masking, but
rather inefficient in terms of signature size which can easily reach several hundred
thousand bits, which is questionable in practice.

A second approach was proposed in a sequence of papers initiated by V.
Lyubashevsky [?] in 2009. This approach is in the spirit of the Schnorr signature
scheme [?] but adapted to the lattice context. The idea works as follows: for a
public random matrix H, the secret is a matrix S of small weight vectors, to
which one associates a matrix of syndromes HST . The signature consists in a
proof of knowledge of the small weight matrix S from a sparse challenge c. The
signature has the form z = y + cS, for y a random vector of moderate weight,
typically of several orders of magnitude higher than the weights of cS. The idea
of the proof of knowledge is that through z the verifier is convinced that the
prover knows the secret matrix S because of the use of cS in the signature.
At the same time, the vector y guarantees the randomization of the signature
since its more noisy distribution enables it to absorb the less noisy distribution
of cS. The main appeal of this approach is that it enables one to avoid the
repetition related to zero-knowledge protocols with high probability of cheating,
for instance the Dilithium [?] signature of NIST has a length of only 4kB.

This previous approach can be straightforwardly adapted globally to code-
based cryptography, but there is a problem is the randomization part: for the
Hamming metric the randomization has to be considered on the whole length
of the word, and not only on independent coordinates as when dealing with the



Euclidean metric. In practice it means that it seems difficult to randomize the
signature [?]: consequently, whenever a signature is produced, information leaks
from the secret, so that after only a few signatures it becomes possible to recover
the whole secret.

Overall, this second approach seems very promising but finding a good ran-
domization strategy is a challenge.

Our contribution. We build upon the Schnorr-Lyubashevsky approach in
a rank metric context and propose a way to efficiently randomize the signature.
The main idea consists in extending the number of small weight secret vectors
and adding another secret matrix S′, so that the signature has the form z =
y + cS + pS′ where p serves the purpose of providing extra randomization. In
this way, the prover benefits from relaxed conditions that he uses to derive
a randomization of the signature. We give a proof in the EUF-CMA security
model, reducing the security of the scheme to the Rank Support Learning (RSL),
the (ideal) Rank Syndrome Decoding (RSD) problem and a newly introduced
problem, the Product Spaces Subspaces Indistinguishability (PSSI) problem for
which we give a detailed analysis of a distinguisher. Our approach is developed
for the rank metric and does not have an obvious Hamming metric counterpart.
Overall our scheme is efficient in terms of signature sizes (a few kB) and of key
sizes (of order 20kB), with a security reduction to the ideal-RSD problem (a
generalization of the quasi-cyclic RSD problem).

Roadmap. The paper is organized as follows: Section 2 recalls the required
material from rank based cryptography, Section 3 gives a general overview and
a precise description of the scheme, Section 4 is concerned with the security of
the scheme. Finally, Sections 5 and 6 describe the main practical attacks and
examples of parameters for our scheme.

2 Presentation of rank metric codes

Notation. In what follows, q denotes a power of a prime p. The finite field with
q elements is denoted by Fq and for any positive integerm the finite field with qm
elements is denoted by Fqm . We will frequently view Fqm as an m-dimensional
vector space over Fq. The Grassmannian Gr(k,Fqm) represents the set of all
subspaces of Fqm of dimension k.

We use bold lowercase and capital letters to denote vectors and matrices
respectively.

2.1 General definitions

Definition 1 (Rank metric over Fnqm). Let x = (x1, . . . , xn) ∈ Fnqm and
(β1, . . . , βm) ∈ Fmqm be a basis of Fqm viewed as an m-dimensional vector space
over Fq. Each coordinate xj is associated to a vector of Fmq in this basis: xj =∑m
i=1mijβi. The m×n matrix associated to x is given by M(x) = (mij)16i6m

16j6n
.



The rank weight ‖x‖ of x is defined as

‖x‖ def
= RankM(x).

The associated distance d(x,y) between elements x and y in Fnqm is defined by
d(x,y) = ‖x− y‖.

Definition 2 (Fqm-linear code). An Fqm-linear code C of dimension k and
length n is a subspace of dimension k of Fnqm embedded with the rank metric.
In this case we speak of an [n, k]qm code. A code C can be represented in two
equivalent ways:

– by a generator matrix G ∈ Fk×nqm . Each row of G is an element of a basis
of C,

C = {xG,x ∈ Fkqm}

– by a parity-check matrix H ∈ F(n−k)×n
qm . Each row of H determines a parity-

check equation satisfied by the elements of C:

C = {x ∈ Fnqm :HxT = 0}

We say that G (respectively H) is in systematic form if it is of the form (Ik|A)
(respectively (In−k|B)).

As in the Hamming metric case, the notion of the support of a word is crucial
to the rank metric. This notion appears very often in rank metric code-based
cryptography, notably to compute the complexity of some algorithms.

Definition 3 (Support of a word). Let x = (x1, . . . , xn) ∈ Fnqm . The sup-
port E of x, denoted Supp(x), is the Fq-subspace of Fqm generated by the coor-
dinates of x:

E = 〈x1, . . . , xn〉Fq

This definition is coherent with the definition of the rank weight since we have
dimE = ‖x‖.

The number of supports of dimension w of Fqm is denoted by the Gaussian
coefficient [

m
w

]
q

=

w−1∏
i=0

qm − qi

qw − qi
= Θ(qw(m−w))

We also need to define homogeneous matrices.

Definition 4 (Homogeneous matrices). Let M ∈ Fk×nqm be a matrix over
Fqm . The matrix M = (mij) is said to be homogeneous of support E if the Fq-
subspace of Fqm spanned by its coefficients mij is equal to E. If d = dimE, then
M is also said to be homogeneous of weight d.



2.2 Double circulant and ideal codes

To describe an [n, k]qm linear code, we can give its systematic generator ma-
trix or its systematic parity-check matrix. In both cases, the number of bits
needed to represent such a matrix is k(n − k)m dlog2 qe. To reduce the size of
the representation of a code, we introduce double circulant codes.

First we need to define circulant matrices.

Definition 5 (Circulant matrix). A square n × n matrix M is said to be
circulant if it is of the form

M =


m0 m1 . . . mn−1

mn−1 m0
. . . mn−2

...
. . . . . .

...
m1 m2 . . . m0


We denoteMn(Fqm) the set of circulant matrices of size n× n over Fqm .

The following proposition states an important property of circulant matrices.

Proposition 1. Mn(Fqm) is an Fqm-algebra isomorphic to Fqm [X]/(Xn − 1).
The canonical isomorphism is given by

ϕ : Fqm [X]/(Xn − 1) −→ Mn(Fqm)

n−1∑
i=0

miX
i 7−→


m0 m1 . . . mn−1

mn−1 m0
. . . mn−2

...
. . . . . .

...
m1 m2 . . . m0


In the following, in order to simplify notation, we will identify the polynomial

G(X) =
∑n−1
i=0 giX

i ∈ Fqm [X] with the vector g = (g0, . . . , gn−1) ∈ Fnqm . We
will denote ug mod P the vector of the coefficients of the polynomialn−1∑

j=0

ujX
j

(n−1∑
i=0

giX
i

)
mod P

or simply ug if there is no ambiguity in the choice of the polynomial P .

Definition 6 (Double circulant codes). A [2n, n]qm linear code C is said to
be double circulant if it has a generator matrix G of the form G = (A|B) where
A and B are two circulant matrices of size n.

With the previous notation, we have C = {(xa,xb),x ∈ Fnqm}. If a is in-
vertible in Fqm [X]/(Xn − 1), then C = {(x,xg),x ∈ Fnqm} where g = a−1b. In
this case we say that C is generated by g (mod Xn − 1). Thus we only need
nm dlog2 qe bits to describe a [2n, n]qm double circulant code.

We can generalize double circulant codes by choosing another polynomial P ,
rather than Xn − 1, to define the quotient-ring Fqm [X]/(P ). These codes are
called ideal codes.



Definition 7 (Ideal codes). Let P (X) ∈ Fq[X] be a polynomial of degree n
and g1, g2 ∈ Fnqm . Let G1(X) =

∑n−1
i=0 g1iX

i and G2(X) =
∑n−1
j=0 g1jX

j be the
polynomials associated respectively to g1 and g2.

The [2n, n]qm ideal code C with generator (g1, g2) is the code with generator
matrix

G =


G1(X) mod P G2(X) mod P
XG1(X) mod P XG2(X) mod P

...
...

Xn−1G1(X) mod P Xn−1G2(X) mod P


More concisely, we have C = {(xg1 mod P,xg2 mod P ),x ∈ Fnqm}. We will
often omit mentioning the polynomial P if there is no ambiguity. If g1 is invert-
ible, we may express the code in systematic form, C = {(x,xg),x ∈ Fnqm} with
g = g−11 g2 mod P .

The advantage of ideal codes over double circulant codes is that they are
resistant to the folding attack of [?]. Such codes have been used for NIST propo-
sitions LAKE and LOCKER.

2.3 Difficult problems in rank metric

In order to design rank metric code-based cryptosystems, we need to define
difficult problems in rank metric. The first problem corresponds to the classical
problem of syndrome decoding, adapted to the rank metric.

Problem 1. Rank Support Decoding (RSD). LetH be an (n−k)×n parity-
check matrix of an [n, k] Fqm-linear code, s ∈ Fn−kqm and r an integer. The
RSDq,m,n,k,r problem is to find e such that ‖e‖ = r and HeT = sT .

This problem is probabilistically reduced to the well-known NP-complete
Syndrome Decoding problem in the Hamming metric [?].

The following problem was introduced in [?]. It is similar to the RSD prob-
lem, the difference is that instead of having one syndrome, we are given several
syndromes of errors of same support and the goal is to find this support.

Problem 2. Rank Support Learning (RSL). [?] Let H be a random full-
rank (n − k) × n matrix over Fqm . Let O be an oracle which, given H, gives
samples of the form HsT1 ,Hs

T
2 , . . . ,Hs

T
N , with the vectors si randomly chosen

from a space En, where E is a random subspace of Fqm of dimension r. The
RSLq,m,n,k,r problem is to recover E given only access to the oracle.

We denote RSLq,m,n,k,r,N the RSLq,m,n,k,r problem where we are allowed to
make exactly N calls to the oracle, meaning we are given exactly N syndrome
values HsTi . By an instance of the RSL problem, we shall mean a sequence

(H,HsT1 ,Hs
T
2 , . . . ,Hs

T
N )

that we can also view as a pair of matrices (H,T ), where T is the matrix whose
columns are the HsTi .



The last problem we need before introducing our scheme is a variant of the
RSD problem. Instead of searching for the error associated to a syndrome, this
problem consists in finding an error associated to a syndrome which belongs to
a given Fq-affine subspace of Fn−kqm . Formally:

Problem 3. Affine Rank Syndrome Decoding (ARSD). Let H be an (n −
k)×n parity-check matrix of an [n, k] Fqm -linear code,H ′ an (n−k)×n′ random
matrix over Fqm , F an Fq-subspace of Fqm of dimension r′, s ∈ Fn−kqm and r an
integer. The ARSDq,m,n,k,r,n′,F problem is to find e ∈ Fnqm and e′ ∈ Fn′qm such
that He

T +H ′e′T = s
‖e‖ = r
Supp(e′) ⊆ F

Remark: This problem can seen as that of finding a vector x of weight r such
that HxT = s′ with s′ ∈ {s−H ′x′T : Supp(x′) ⊆ F}. This set is an Fq-affine
subspace of Fn−kqm , which explains the name of the problem.

The following proposition shows that the ARSD problem in the worst case
is as hard as the RSD problem for large values of m.

Proposition 2. Let A be an algorithm which can solve the ARSDq,m,n,k,r,n′,F

problem with m > r(n−r)+n′ dimF
n−k−r . Then A can be used to solve the RSDq,m,n,k,r

problem with non negligible probability.

Proof. Let H ∈ F(n−k)×n
qm , s ∈ Fn−kqm such that s = HeT with ‖e‖ = r be an

instance of the RSDq,m,n,k,r problem. First we need to transform this instance
into an instance of the ARSD problem. Let H ′ ∈ F(n−k)×n′

qm and let F be a
subspace of Fqm of dimension r′ such that m > r(n−r)+n′ dimF

n−k−r . Let s′ = s +

H ′e′T with Supp(e′) = F .
(H, s′, r,H ′, F ) is an instance of the ARSDq,m,n,k,r,n′,F problem. Let (x,x′)

be a solution of this instance given by algorithm A. Now we will prove that this
solution is unique with a non negligible probability.

Let us consider the application f defined by

f : SFn
qm

(r)× Fn
′
→ Fn−kqm

(x,x′) 7→HxT +H ′x′T

where SFn
qm

(r) is the set of words of Fnqm of rank r. By definition of the ARSD

problem, we have (x,x′) ∈ f−1({s′}).
Let S(Fnqm , r) denote the cardinality of SFn

qm
(r). By definition of the rank

metric, S(Fnqm , r) is equal to the number of matrices of Fm×nq of rank r and we
have

S(Fnqm , r) =
r−1∏
i=0

(qm − qi)(qn − qi)
qr − qi

= Θ
(
qr(m+n−r)

)
.

Thus the cardinality of the codomain of f is in Θ(qr(n+n−r)+n
′r′) and the cardi-

nality of its domain is equal to qm(n−k). We have m > r(n−r)+n′r′
n−k−r which implies



m(n−k) > r(m+n−r)+n′r′, hence s′ has only one preimage with a non negligi-
ble probability. ThusHxT+H ′x′T = s′ =HeT+He′T implies (x,x′) = (e, e′)
so x is a solution of the instance of the RSDq,m,n,k,r problem. ut

Remark: All these problems are defined for random codes but can straightfor-
wardly be specialized to the families of double circulant codes or of ideal random
codes. In this case, these problems are denoted I− RSD, I−ARSD and I− RSL
respectively. The reductions are unchanged, the only difference being that the
I− RSD problem is reduced to the Syndrome Decoding problem for ideal codes,
which has not been proven NP-complete. However this problem is considered
hard by the community since the best attacks stay exponential.

2.4 Bounds on rank metric codes

One can define bounds on the size or the minimum distance of rank metric
codes that are similar to well-known bounds for Hamming metric codes. The
rank Gilbert-Varshamov bound (or rank Gilbert-Varshamov distance, denoted
dRGV ) gives the maximum rank-weight for which the RSD problem has typically
a unique solution.

Definition 8 (Rank Gilbert-Varshamov (RGV) bound). Let B(Fnqm , t) be
the size of the ball of radius t in rank rank metric. The quantity dRGV is defined
as the smallest t such that B(Fnqm , t) > qm(n−k).

Asymptotically we have

dRGV (m,n, k) ∼
m+ n−

√
(m− n)2 + 4km

2

dRGV (n, n, k) ∼ n

(
1−

√
k

n

)
when m = n. (1)

The quantity qm(n−k) corresponds to the number of syndromes s ∈ Fn−kqm and
by definition,

B(Fnqm , t) =
t∑
i=0

S(Fnqm , i)

where S(Fnqm , i) is the size of the sphere of radius i, which correspond to the
number of matrices of size m×n and of rank i over Fq. This quantity is equal to∏i−1
j=0

(qm−qj)(qn−qj)
qi−qj = Θ

(
qi(m+n−i)). The asymptotic expressions are obtained

by solving for t the equation t(m+ n− t) = m(n− k) [?].

The rank Singleton bound gives the weight above which the RSD problem
becomes polynomial.

Definition 9 (Rank Singleton bound). The rank Singleton bound for an
Fqm-linear [n, k] code is defined as the quantity

dRS(m,n, k) =
m(n− k)
max(m,n)

.



We can obtain this equality by counting the number of equations and unknowns
over Fq of the RSD problem. Indeed, given a random support E of dimension r,
we can express the error e in a basis of E with nr unknowns over Fq (r unknowns
per coordinate). The parity-check equations gives us (n−k) equations over Fqm ,
meaning m(n− k) equations over Fq. If nr > m(n− k) then this instance of the
RSD problem has a solution e of support E with a non-negligible probability.
Such a solution can easily be found by solving a linear system. Therefore, the
RSD problem becomes polynomial if r >

⌈
m(n−k)

n

⌉
.

3 A new signature scheme based on the RSL problem

3.1 General overview

Our scheme consists of adapting to the rank metric the idea proposed in [?].
This idea can be viewed as a framework for an authentication scheme and can
be loosely described as follows. Two matrices, over some fixed finite field,H and
T , are public, and a Prover wishes to prove that she is in possession of secret
matrix S with “small” entries such that T =HST . She chooses a random vector
y of small norm (to be defined appropriately) according to some distribution
Dy. She computes the syndrome x =HyT of y and sends it to the verifier. The
verifier chooses a random vector c of the appropriate length and of small norm
according to some distribution Dc and sends it as a challenge to the Prover. The
Prover computes z = y + cS and sends it to the Verifier. The verifier checks
that z is of small norm, and that

HzT − TcT = x.

This scheme is described on Figure ??.

Prover Verifier

y
$← Dy

z = y + cS

x=HyT

−−−−−−−−−−→

c←−−−−−

z−−−−−−→

c
$← Dc

‖z‖ 6 ‖y‖+ ‖c‖‖S‖
Check HzT − TcT = x

Fig. 1. Overview of the authentication framework from [?]

The general idea is that cheating is difficult for the Prover because it requires
finding a vector z of small norm such that HzT equals a prescribed value, and



this is an instance of the decoding problem for a random code. Also, the vector
z sent by the legitimate Prover should yield no useful information on the secret
S, because the noisy random vector y drowns out the sensitive quantity cS.

If we instantiate this scheme in the rank metric, H would be a random
matrix over Fqm , and for S to be a matrix of small norm would mean it to be
homogeneous matrix of some small rank r. Requiring that the vectors y and c
are also small will mean that they are taken in random subspaces of Fqm of fixed
dimensions respectively w and d.

The problem with this approach in the rank metric is that adding y to cS
does not hide cS properly. Indeed, the verifier, or any witness to the protocol
of Figure ??, can recover the support of the secret matrix S even after a single
instance of the protocol, using techniques from the decoding of LRPC codes [?]:
since the verifier has c he can choose a basis f1, . . . , fd of Supp(c) and then with
high probability it will occur that:

d⋂
i=1

f−1i Supp(z) = Supp(S)

and with the support of S the verifier can compute S explicitely from the linear
equations HST = T . A less efficient version of this attack, requiring multiple
signatures, was described in [?].

To tackle this problem, we will modify the protocol of Figure ?? by adding
an other term to z.

3.2 An authentication scheme

We will first describe our scheme as an authentication scheme. It calls upon the
notion of product of Fq-linear subspaces of Fqm .

Definition 10. If E and F are two Fq-linear subspaces of Fqm , their product,
denoted EF , is defined as the Fq-subspace consisting of the Fq-linear span of the
set of vectors

{ef, e ∈ E, f ∈ F}

where ef stands for the product of e by f in the field Fqm . The product of E with
itself will be denoted E〈2〉, so as not to confuse it with the cartesian product.

The public key consists of a random (n − k) × n matrix H over Fqm and
two matrices T and T ′, of size (n − k) × lk and (n − k) × l′k respectively, and
such that (H,T |T ′) is an instance of the RSL problem, where | denotes matrix
concatenation. The private key consist of two homogeneous matrices S and S′ of
weight r such thatHST = T andHS′T = T ′. Accordingly, S and S′ are lk×n
and l′k × n matrices respectively. We denote by E the vector space spanned by
the coordinates of S and S′.

In the commitment step, we sample uniformly at random two vector spaces:
W ∈ Gr(w,Fqm) and F ∈ Gr(d,Fqm). We then randomly choose y ∈ (W +



EF )n. This vector will be used to mask the secret information in answer to the
challenge. The commitment consists of x =HyT together with the subspace F .

The verifier then chooses a challenge c ∈ F l′k.
To answer the challenge, the prover first computes y+cS′. Since the entries of

the vector c are in F and the entries of the matrix S′ are in E, we have that cS′

has its entries in the product space EF , and the vector y+cS′ has its entries in
the spaceW+EF , like the vector y. The linear span of the coordinates of y+cS′

is typically equal, or very close toW +EF , and this yields too much information
on the secret space E to be given to the verifier. To counter this, we add a vector
pS. Coordinates of p are chosen in F , so that the coordinates of pS fall in the
product space EF , and through linear algebra the prover chooses p such that
the the linear span of the coordinates of the sum z = y+ cS′ + pS is restricted
to a smaller subspace: namely a subspace W +U for U some subspace of EF of
codimension λ inside EF . In other words, z = y+cS′+pS is computed so as to
be of rank at most w+ rd−λ. The vector z is then sent to the verifier, together
with the vector p. This operation is at the heart of the present protocol and
the derived signature scheme. More details are given about this in the following
section and in Section ??.

The verifier accepts if ‖z‖ 6 rd + w − λ and HzT − T ′cT + TpT = x. An
overview of this protocol is given in Figure ??.

Prover Verifier

W
$← Gr(w,Fqm), F

$← Gr(d,Fqm)

y
$← (W + EF )n

z = y + cS′ + pS

x=HyT , F−−−−−−−−−−−−→

c←−−−−−

z,p−−−−−−−→

c
$← F l′k

‖z‖ 6 w + rd− λ
Check HzT − T ′cT + TpT = x

Fig. 2. Overview as an authentication scheme

Using the Fiat-Shamir heuristic, we turn this authentication scheme into a
signature scheme.

3.3 Signature scheme

Key generation

– Randomly choose an (n − k) × n ideal double circulant matrix H as in
definition ?? for an irreducible polynomial P , in practice we consider k = n

2
– Choose a random subspace E of dimension r of Fqm and sample l vectors si

and l′ vectors s′i of length n from the same support E of dimension r



– Set ti =HsTi and t′i =Hs′
T
i

– Output (H, t1, . . . , tl, t
′
1, . . . , t

′
l′) as public key, and (s1, . . . , sl, s

′
1, . . . , s

′
l′)

as secret key

Note that, sinceH has an ideal structure, each relation of the formHsTi = ti
can be shifted mod P to generate k syndrome relations. We denote S (respec-
tively S′) the matrix consisting of all si (respectively s′i) and their ideal shifts.
Let T =HST and T ′ =HS′T : the public key consists of (H,T ,T ′). T and T ′

are n
2 × lk and n

2 × l
′k matrices respectively, but can be described using only the

vectors (t1, . . . , tl) and (t′1, . . . , t
′
l′). The secret key consists of the homogeneous

matrices S and S′ of rank r such that HST = T and HS′T = T ′.
Figure ?? describes the key pair.

n− k

n

H . . .t1 tl . . .t′1 t′
′
l

. . .s1 sl . . .s′1 s′
′
l

Fig. 3. Overview of public and secret key

Signature of a message µ.

– Randomly choose W , a subspace of Fqm of dimension w.
– Randomly choose F , a subspace of Fqm of dimension d.
– Sample y ∈ (W + EF )n and set x =HyT .
– For some hash function H, set c = H(x, F, µ), c ∈ F l

′k. This is done by
using the output of H as the coordinates of c in a basis of F .

– Choose U , a subspace of the product space EF , of dimension rd − λ, and
such that U contains no non-zero elements of the form ef , for e ∈ E and
f ∈ F . More details on this process are given in subsection ??.

– Solve z = y + cS′ + pS with p ∈ F lk as unknown, such that Supp(z) ⊂
W + U : as mentioned in the previous section, p is computed through linear
algebra. Specifically, we write p = (p1, . . . , plk), and each coordinate pi ∈ F
of p is decomposed as

pi =

d∑
`=1

pi`f`



where f1, . . . , fd is a basis of F that will be used to describe the space F .
The j-th coordinate of the vector cS is therefore equal to

(cS)j =

lk∑
i=1

d∑
`=1

pi`f`Sij . (2)

Recall that f`Sij is in FE because S has support E. Choose a basis of EF
of the form u1, . . . , urd−λ, v1, . . . , vλ, where u1, . . . , urd−λ is a basis of U (the
typical dimension of EF is rd). Let π1, . . . , πλ be the projections of elements
of EF on the last λ coordinates of the above basis. For h = 1 . . . λ, applying
πh to all n coordinates of the vector y + cS′ + pS and declaring the result
to equal 0, we will obtain a linear system of λn equations in the variables
pij by using linearity in (??) to express πh[(cS)j ] as

lk∑
i=1

d∑
`=1

pi`πh(f`Sij). (3)

Parameters are chosen so that this system has more variables than equations
and typically has a solution. If it doesn’t, another space U is sampled.

– Output (z, F, c,p) as signature.

The signature consists therefore of the challenge c, computed through a hash
function, together with the answer to this challenge.

Verification of a signature (µ, z, F, c,p).

– Check that ‖zv‖ 6 rd+ w − λ,
– Verify that H(HzT − T ′cT + TpT , F, µ) = c.

To verify the signature, we have to check the rank weight of z and the equality
H(x, F, µ) = c. The vector x is recomputed using the answer to the challenge.
The complete signature scheme is summarized on Figure ??.

3.4 Filtering vector spaces

The goal of filtering U during the signature step is to ensure to there is no non-
zero element of the form ef in the support of z, for e ∈ E and f ∈ F . This
is to prevent an attack that would recover E through techniques for decoding
LRPC codes [?]. Indeed, if there is an element of the form ef in Supp(z), then
e ∈ E ∩ f−1 Supp(z) which allows an attack against the secret key (moreover
elements of this form can be used to distinguish between signatures and randomly
generated vectors, as explained in ??). To achieve that, we need to find a pair
(U,F ) such that:

– U is a subspace of EF of dimension rd− λ
– For every non-zero x = ef with e ∈ E and f ∈ F , we have that x /∈ U .



Key generation: E $← Gr(r,Fqm)

Signing key: S $← En×lk, S′ $← En×l′k

Verification key: H $← idealM
n
2
×n, T = HST ,T ′ = HS′T

Sign(µ,S,S′):

1. W $← Gr(w,Fqm),
F

$← Gr(d,Fqm)

2. y
$← (W + EF )n, x = HyT

3. c = H(x, F, µ), c ∈ F l′k

4. U $← filtered subspace of EF of di-
mension rd− λ

5. z = y + cS′ + pS, z ∈W + U
6. Output (z, F, c,p)

Verify(µ,z, F, c,p,H,T ,T ′):

1. Accept if and only if :
‖z‖ 6 w + rd− λ and
H(HzT − T ′cT + TpT , F, µ) = c

Fig. 4. The Durandal Signature scheme

We argue that, for a given F , finding the required space U is quite manage-
able. We use the following obvious proposition to check the second condition:

Proposition 3. Let U be a subspace of EF of dimension rd−λ. Let E/Fq be a
set of representatives of the equivalence relation x ≡ y ⇐⇒ ∃α ∈ F∗q such that
x = αy. We have the following equivalence:

{
ef : e ∈ E, f ∈ F

}
∩ U = {0} ⇐⇒ ∀e ∈ E/Fq, eF ∩ U = {0}.

Hence, the cost of this verification is (qr − 1)/(q − 1) intersections of subspaces
of dimension d and rd− λ, that is to say qr−1

q−1 (d+ rd− λ)2m operations in Fq.
We now briefly estimate the probability that a random U contains no element

x = ef . For simplicity, we only deal with a typical practical case, namely q = 2
and d = r.

The subspace U is chosen randomly and uniformly of codimension λ inside the
vector space EF : we study the probability that U contains no non-zero product
ef . Let x = ef be such a non-zero product. Let Ux be the event {x ∈ U}. We
are interested in 1− P (U) where

U =
⋃

x=ef, x6=0

Ux.



Clearly, P (Ux) = 2−λ. Our goal is to evaluate P (U) through inclusion-exclusion,
i.e.

P (U) =
∑
x

P (Ux)−
∑
x,y

P (Ux ∩ Uy) + · · ·+ (−1)i
∑

X∈Π,|X|=i

P

( ⋂
x∈X
Ux

)
+ · · · (4)

where Π denotes the set of non-zero elements of EF of the form x = ef . We
have |Π| = (2r − 1)2. Note that whenever X is made up of linearly independent
elements, then the events Ux, x ∈ X are independent in the sense of probability,
so that

P

( ⋂
x∈X
Ux

)
= 2−λ|X|.

More generally, since any linear combination of vectors that are in U is also in
U , we have

P

( ⋂
x∈X
Ux

)
= 2−λrk(X)

where rk(X) denotes the rank of X.
For λ = 2r − 1, tedious computations show that the contribution of the non

full-rank subsets X for a growing (with r) set of first terms of (??) is negligible,
so that we have

P (U) ≈ 2− 4

2!
+

8

3!
+ · · · ≈ 1− e−2

Giving 1− P (U) ≈ e−2.

3.5 Value of λ

In order to find U that contains no element x = ef , we need to take the highest
value possible for λ. We denote z1 = y + cS′. When z1 is written as a rd × n
matrix over Fq by rewriting each of its coordinates in a basis of EF of the
form {u1, . . . , urd−λ, v1, . . . vλ} such that U = {u1, . . . , urd−λ}, we want pS to
be equal to z1 on the last λ lines, corresponding to {v1, . . . vλ}. This gives λn
equations in the base field, and the system has dlk unknowns (the coordinates
of p in a basis of F ). This gives the following condition on λ:

λn < dlk ⇔ λ <
dlk

n
.

Since we want to maximize the value of λ, we take λ = bdlkn c.

3.6 Computational cost

Key generation. The most costly operation of the key generation step is the
multiplication of H and the syndromes si. Each matrix-vector multiplication
costs n2 multiplications in Fqm , hence a total cost of (l + l′)n2 multiplications.



Signature of a message µ. The signature step splits naturally into two phases:
an offline phase during which the signature support is computed (this is the most
costly part) and an online phase to compute the actual signature. The two phases
are as follows:

1. Offline phase
– Choose the vector spaces W and F .
– Sample y ∈ (W + EF )n and set x =HyT .
– Choose U , a random subspace of EF of dimension rd− λ. If U contains

non-zero elements of the form ef , e ∈ E and f ∈ F , choose another U .
– Write the Fqm -coordinates of the vector pS in a basis of EF of the form
{u1, . . . , urd−λ, v1, . . . , vλ} where U = 〈u1, . . . , urd−λ〉 to obtain linear
expressions in the variables pij of the form (??). Compute a λn × λn
matrix D that inverts this linear mapping of the pij . This will allow to
compute p such that z ∈ U in the online phase with a matrix multipli-
cation instead of an inversion. If the linear map cannot be inverted to
produce the matrix D, choose another random subspace U of EF .

2. Online phase
– Set c = H(x, F, µ), c ∈ F l′k
– Solve z = y + cS′ + pS with p ∈ F lk, using the matrix D computed

during the offline phase
– Output (z, F, c,p) as signature.

The most costly step in the offline phase is the computation of the matrix
D, which requires inverting a linear system over Fq with λn equations, hence
the cost is (λn)3 multiplications in Fq.

The online phase consists in the computation of p which costs (λn)2 multi-
plications in Fq as well as the computation of z = y + cS′ + pS which costs
(l′k)2 + (lk)2 multiplications in Fqm for computing the matrix/vector products.

Verification of a signature. The most costly step during the verification phase
is the computation of HzT − T ′cT + TpT , which costs n2 + (l′k)2 + (lk)2 mul-
tiplications in Fqm .

4 Security of the scheme

4.1 Product Spaces Subspaces Indistinguishability (PSSI)

The PSSI problem is a new problem which appears naturally when we try to
prove the indistinguishability of the signatures.

Problem 4. Product Spaces Subspaces Indistinguishability. Let E be a
fixed Fq-subspace of Fqm of dimension r. Let Fi, Ui and Wi be subspaces defined
as follows:

– Fi
$← Gr(d,Fqm)

– Ui
$← Gr(rd− λ,EFi) such that {ef, e ∈ E, f ∈ F} ∩ Ui = {0}



– Wi
$← Gr(w,Fqm)

The PSSIr,d,λ,w,Fqm
problem consists in distinguishing samples of the form (zi, Fi)

where zi is a random vector of Fnqm of support Wi+Ui from samples of the form
(z′i, Fi) where z′i is a random vector of Fnqm of weight w + rd− λ.

In order to study the complexity of this problem, we first reduce it to the case
where the samples are of the form (Zi, Fi) with Zi = Supp(zi). Let us suppose
we have a distinguisher D for this last case. Then given N samples of the PSSI
problem, it is easy to compute the supports Zi of the vectors zi and to use D
to distinguish if Zi is a random subspace of dimension w + rd − λ or if it is of
the form Wi + Ui with Ui a subspace of the product space EFi.

Conversely, let us suppose we have a distinguisher D′ for the PSSI problem.
We are given N samples of the form (Zi, Fi). For each sample, we can compute a
random vector zi of support Zi and use D′ to distinguish whether zi is a random
vector of weight w + rd− λ or whether its support is of the form Wi + Ui.

Thus we can consider the case when the samples are only couples of subspaces
of Fqm .

This problem is related to the decoding of LRPC codes [?]. Indeed we can
consider a subspace Z = U+W as the noisy support of a syndrome for an LRPC
code, the noise corresponding to W . Consequently, it is natural to try and apply
techniques used for decoding LRPC codes in order to solve the PSSI problem.
The first idea is to use the basic decoding algorithm (see [?]). It consists in
computing intersections I of the form f−1Z ∩ f ′−1Z with (f, f ′) ∈ F 2. If Z is
of the form U +W then the probability that dim I 6= 0 is much higher than if
Z were truly random. However, this technique cannot be used because we filter
the subspace U .

The decoding algorithm for LRPC codes has been improved in [?]. The idea
is to consider product spaces of the form ZFi where Fi is a subspace of F of
dimension 2. The probability that dimZFi = 2(w+ rd−λ) depends on whether
Z is random or not. We study in detail the advantage of this distinguisher in
the following paragraphs.

Consider the product subspace EF inside Fqm with dimF = dimE = r.
Suppose E is unknown, the typical dimension of the product EF is then r2,
if we assume r2 � m. We now suppose we are given a subspace Q of Fqm of
dimension r2 that is either a product space EF or a randomly chosen one, and
we wish to distinguish between the two events. One easy way to do so, if the
dimension m of the ambient space Fqm is large enough, is to multiply Q by F . If
Q is random, we will get the typical product dimension dimFQ = r dimQ = r3.
Whereas if Q = EF , we will get dimFQ ≤

(
r+1
2

)
r < r3. In fact, to distinguish

the two cases it is enough to multiply Q by any subspace A of F of dimension
2, since we will have dimAQ ≤ 2r2− r when Q = EF and dimAQ = 2r2 in the
typical random Q case.

To make our two cases difficult to distinguish, our query space Q is actually
chosen to be constructed in one of two ways, making up a distinguishing problem:



Distinguishing problem. Distinguish whether Q is of the form (i) or (ii)
below:

(i) Q = U +W where U is a subspace of EF of codimension λ. The space E
is chosen randomly of dimension r as before. The subspace U is chosen in
such a way so that, for any subspace A of F dimension 2, we have dimAU =
2dimU . The space W is chosen randomly of dimension w, so that dimQ =
r2 − λ+ w.

(ii) Q is a random subspace of dimension r2 − λ + w. Equivalently we may
think of Q of the form Q = V +W where both V and W are random (and
independent) of dimensions r2 − λ and w respectively.

The purpose of choosing such a subspace U of EF is to make the dimension
of AU equal to that of AV for a random V . Adding the random space W to
U should keep the probability distributions of dim(AQ) equal for both ways of
constructing Q. The purpose of W is to make the dimension of Q sufficiently
large with respect to the dimension m of the ambient space, so that multiplying
Q by a space of dimension more than 2 will typically fill up the whole space Fqm
anyway. In this manner, the two ways of constructing Q will be indistinguishable
by measuring dimensions of the product of Q by a subspace.

First, we give a criterion for a subspace U of EF to have the property that
dim(AU) = 2 dimU for any subspace A of dimension 2 of F .

Let E,F be two subspaces of Fqm , both of dimension r over Fq. Let us
make the remark that the maximum possible dimension of F 〈2〉 is

(
r+1
2

)
, and the

maximum possible dimension of F 〈2〉E is therefore r
(
r+1
2

)
.

Let f1, f2, . . . , fr be a basis of F . Denote by F2 the subspace of F generated
by f1, f2, by F3 the subspace of F generated by f1, f2, f3, and so on.

Lemma 1. Suppose dimF 〈2〉E = r
(
r+1
2

)
. Then f1FE ∩ f2FE = f1f2E.

Proof. We have F2FE = f1FE + f2FE, and f1FE ∩ f2FE ⊃ f1f2E, therefore

dim(F2FE) ≥ 2 dim(EF )− dimF (5)

by using the formula dim(A + B) = dimA + dimB − dim(A ∩ B). Similarly,
Fi+1FE = FiFE+fi+1FE and FiFE ∩fi+1FE ⊃ fjfi+1E for all j = 1, 2, . . . i.
From which we have

dim(Fi+1FE) ≥ dim(FiFE) + dim(FE)− i dimE.

Now dimF 〈2〉E = r
(
r+1
2

)
only occurs when we have equality in all the above

inequalities, in particular we have equality in (??) which implies that the inclu-
sion f1f2E ⊂ f1FE ∩ f2FE is also an equality. ut

Lemma 2. Let U be a subspace of EF . If we suppose dim(F 〈2〉E) = r
(
r+1
2

)
, we

have that there exists a subspace A ⊂ F of dimension 2 such that,

dim(AU) < 2 dimU

if and only if U contains two non-zero elements of the form fe and f ′e f, f ′ ∈ F ,
e ∈ E where f and f ′ are two linearly independent elements of F .



Proof. Let A be a subspace of F of dimension 2 generated by f1, f2. We have
AS = f1U + f2U so that dim(AU) < 2 dimU if and only if f1U ∩ f2U 6= {0}.
But we have

f1U ∩ f2U ⊂ f1FE ∩ f2FE

and under the hypothesis dim(F 〈2〉E) = r
(
r+1
2

)
we have that dim(AFE) =

2r2 − r and f1FE ∩ f2FE = f1f2E. Therefore f1U ∩ f2U contains a non-zero
element if and only if U contains an element of the form f2e and an element of
the form f1e, for e ∈ E, e 6= 0. ut

Corollary 1. Suppose dim(F 〈2〉E) = r
(
r+1
2

)
, and that U is a subspace of FE

such that for any two non-zero elements f ∈ F and e ∈ E, ef 6∈ U . Then we
have, for any subspace A ⊂ F of dimension 2,

dim(AU) = 2 dimU.

Next, we study the probability distribution of the dimension of the product
space A(U + W ), where W is random of dimension w, and U is either con-
structed as above or uniform random. We only focus on the binary extension
field case q = 2, and from the previous discussion we only keep the property
that dim(AU) is maximal. In other words, for the purpose of the following anal-
ysis, U is a fixed subspace of F2m with dimU = u, A is a fixed subspace of F2m

of dimension dimA = 2 and we suppose that we have dim(AU) = 2u. Let W
be a random subspace of dimension dimW = w of F2m . The space W is chosen
by choosing x1, x2, . . . , xw random independent (in the sense of probability) el-
ements of F2m and W is taken to be the subspace generated by the xi. Strictly
speaking, x1, . . . , xw may turn out not to be linearly independent and not gen-
erate a space of dimension w. However, w will be taken to be much smaller than
m, so that this event happens with negligible probability.

Our goal is to study the probability that A(U +W ) does not have dimension
2(u+ w) and see how it may vary for two different spaces U1 and U2.

Consider the mapping:

Aw
Φ−→ F2m

(a1, a2, . . . , aw) 7→ a1x1 + a2x2 + · · ·+ awxw.

The product space A(U+W ) does not have maximal dimension, namely 2(u+w),
if and only if there is a non-zero a = (a1, a2, . . . , aw) in Aw such that Φ(a) ∈ AU .
This event E , over all choices of x = (x1, . . . , xw), can therefore be written as:

E =
⋃

a∈Aw

a6=0

Ea

where Ea denotes the event Φ(a) ∈ AU . Since P (Ea) = 4u

2m , the union bound
gives us

P (E) ≤ (4w − 1)
4u

2m
. (6)



We now study the lower bound

P (E) ≥
∑

a∈Aw

a6=0

P (Ea)−
∑
a,b

P (Ea ∩ Eb) (7)

where the second sum runs over all unordered pairs of distinct w-tuples a and b.
To evaluate this second sum we split the pairs a,b into two disjoint sets:

1. linearly independent pairs a,b. In which case the two random variables ax
and bx are independent, and we have

P (Ea ∩ Eb) = P (Ea)P (Eb) =
(
4u

2m

)2

.

2. linearly dependent pairs a, λa, for some λ ∈ F2m , λ 6= 1, such that λa ∈ Aw.
In this case, we have

P (Ea ∩ Eb) = |AU ∩ λAU |
1

2m
≤ 4u

2m
.

We now estimate the number of such pairs a, λa.
Denote the non-zero elements of A by a1, a2, a3 = a1 + a2 (recall that A is a
vector space). Suppose we have λa1 = a2 and λa2 = a3 = a1 + a2 (λa2 = a2
would imply λ = 1 and λa2 = a1 would imply λ2 = 1 hence λ = 1 in a field
of characteristic 2). Then a2a−11 = λ satisfies λ2+λ+1 which is not possible
for odd m and happens with negligible probability for even m. Assuming
this does not happen we have therefore that any a ∈ Aw such that λa ∈ Aw
must have all non-zero coefficients equal. Hence the number of such pairs
a, λa is at most 3.2w. Inequality (??) gives us therefore:

P (E) ≥ (4w − 1)
4u

2m
−
(
4w − 1

2

)
42u

22m
− 3.2w

4u

2m
. (8)

From which we get:

Proposition 4. If U and V are two spaces of dimension u such that dim(AU) =
dim(AV ) = 2u then

|P (dim[A(U +W )] < 2(u+ w))− P (dim[A(V +W )] < 2(u+ w)) |

≤
(
4w − 1

2

)
42u

22m
+ 3.2w

4u

2m
.

Product space distinguisher. We go back to our distinguishing problem
defined above. As mentioned in the discussion leading up to the problem, it is
natural to try and distinguish between (i) and (ii) by computing the dimension of
some AQ for many instances of Q and basing the decision on the number of times
an abnormal (less than 2 dimQ) turns up. The consequence of Proposition ?? is
that to distinguish confidently with this method requires a very large number of
queries. Specifically, if the two probabilities of producing an abnormal dimension
are p and p(1 + ε), then the number of products AQ that one must produce is
of the order 1/pε2. Proposition ?? gives p ≈ 22u+2w−m and ε = 2log2 3−w.



Proposition 5. By applying Proposition ?? to the PSSIr,d,λ,w,Fqm
problem, the

advantage with which one may distinguish the two distributions is of the order
of 2m−2(rd−λ).

Remark: One might also consider computing product spaces of the form ZE′

where E′ is a subspace of E of dimension larger than 2. However, we have
chosen our parameters such that 3(w + rd− λ) > m so this idea cannot work.

4.2 New Problem: Advanced Product Subspaces Indistinguishability
(PSSI+)

The PSSI+ problem is a generalization of the previous problem, with some extra
side information. We need to consider this problem for our security proof.

Problem 5. Advanced Product Spaces Subspaces Indistinguishability.
Let E be a fixed Fq-subspace of Fqm of dimension r. Let Fi, Ui and Wi be
subspaces defined as before:

– Fi
$← Gr(d,Fqm)

– Ui
$← Gr(rd− λ,EFi) such that {ef, e ∈ E, f ∈ F} ∩ Ui = {0}

– Wi
$← Gr(w,Fqm)

Let H be a randomly chosen (n− k)× n ideal double circulant matrix as in
Definition ?? for an irreducible polynomial P .

– Sample l vectors si and l′ vectors s′i of length n from the same support E
of dimension r

– Set S (respectively S′) the matrix consisting of all si (respectively s′i) and
their ideal shifts. Let T =HST and T ′ =HS′T .

The PSSI+(N)r,d,λ,w,Fqm
problem consists in distinguishing N samples of the

form (zi, Fi) where zi is a random vector of Fnqm of supportWi+Ui from samples
of the form (z′i, Fi) where z′i is a random vector of Fnqm of weight w + rd − λ
when additionally given H,T ,T ′.

The PSSI+ problem consists of an instance of the PSSI problem and an
instance of the RSL problem that share the same secret support E. The question
is to determine whether or not the instance of RSL can be used in order to reduce
the difficulty of PSSI.

In general, two difficult problems taken together do not necessarily make up
another hard problem. For example, two difficult instances of the factorization
of large integers n, n′ with n = pq and n′ = pq′ where p, q and q′ are prime is a
an easy problem.

In our case, the knowledge of an instance of RSL could be useful if it gives us
some information on the support E. But, for our parameters, the best attacks on
the RSL problem are based on the GRS+ algorithm [?,?,?] and this algorithm
recovers the whole support or nothing. Moreover, the main idea behind the



GRS+ algorithm (which consists of looking for a subspace E′ which contains E)
cannot be applied to the PSSI+ problem since E is “multiplied” by an Fi at each
sample. Thus it appears that the knowledge of an instance of RSL that shares
the same secret support E does not help to solve the PSSI problem and we will
consider that the PSSI+ problem is as hard to attack as the PSSI problem.

4.3 Security model

One of the security models for signature schemes is existential unforgeability
under an adaptive chosen message attack (EUF-CMA). Basically, it means that
even if an adversary has access to a signature oracle, it cannot produce a valid
signature for a new message with a non negligible probability.

Existential Unforgeability under Chosen
Message Attacks [?] (EUF− CMA). Even
after querying N valid signatures on cho-
sen messages (µi), an adversary should
not be able to output a valid signature
on a fresh message µ. To formalize this
notion, we define a signing oracle OSign:

– OSign(vk, µ): This oracle outputs a
signature on µ valid under the verifi-
cation key vk. The requested message
is added to the signed messages set
SM.

Expeuf
S,A(λ)

1. param← Setup(1λ)
2. (vk, sk)← KeyGen(param)
3. (µ∗, σ∗)← A(vk,OSign(vk, ·))
4. b← Verify(vk, µ∗, σ∗)
5. IF µ∗ ∈ SM RETURN 0
6. ELSE RETURN b

The probability of success against this game is denoted by

Succeuf
S,A(λ) = P

(
Expeuf

S,A(λ) = 1
)
, Succeuf

S (λ, t) = max
A≤t

Succeuf
S,A(λ).

4.4 EUF − CMA proof

To prove the EUF− CMA security of our scheme, we proceed in two steps. In
the first step, we show that an adversary with access to N valid signatures has
a negligible advantage over the same adversary with only access to the public
keys. In other words, we prove that signatures do not leak information on the
secret keys. In the second step, we show that if we only have access to the public
keys, a valid signature allows us to solve an instance of the I−ARSD problem.

We will use the following technical Lemma.

Lemma 3. Let F be a family of functions defined by

F =

{
fH : (W + EF )n → Fn−kqm

y 7→ x = yHT

}
Since H is chosen uniformly at random amongst the (n−k)×n ideal double

circulant matrices, F is a pairwise independent family of functions.



The number of choices for y depends on W and F and on the choice of the
coordinates of y. Overall, the entropy of y is equal to

Θ

([
m
w

]
q

[
m
d

]
q

q(w+rd)n

)
= 2(w(m−w)+d(m−d)+(w+rd)n) log q+O(1)

Since ‖y‖ > dRGV , any vector of Fn−kqm can be reached, thus the entropy of x is
equal to 2(n−k)m log q. According to the Leftover Hash Lemma [?], we have

∆(DG0 ,U) <
ε

2

where ∆(X,Y ) denotes the statistical distance between X and Y , DG0 denotes
the distribution of x in game G0, U denotes the uniform distribution over Fn−kqm

(the distribution of x′ in game G1) and

ε = 2
((n−k)m−w(m−w)+d(m−d)+(w+rd)n) log q

2 +O(1).

Proofs. For the first step, we proceed in a sequence of games. We denote PGi

the probability that the adversary returns 1 in the end of the game Gi and
Adv(Gi) = |PGi

− 1
2 | the advantage of the adversary for the game Gi.

– G0: this is the real EUF− CMA game for S. The adversary has access to the
signature oracle OSign to obtain valid signatures.

PG0 = Succeuf
S,A(λ).

– G1: we replace z by a vector z′ of the same weight chosen uniformly at
random in the correct subspace U of W + EF , and sample c′,p′ uniformly
with support F .
Now set x′ = Hz′ − c′T ′ − p′T and use the Random Oracle to set c =
H(x′, F, µ).
In G0, x is the syndrome of the vector y of support of the form EF +W ,
while here x′ is not necessarily. Under Lemma ?? we conclude

Adv(G1) ≤ Adv(G0) + ε.

The parameters of the signature are chosen such that ε is lower than the
security parameter.

– G2: We now sample z at random in Fnqm with the same weight, and proceed
as in G2.
This corresponds to an instance of the PSSI+(N) problem ??. Since the
adversary can have access to at most N signatures, we have

|Adv(G2)− Adv(G1)| 6 Adv(PSSI+(N)).

– G3: We now pick T ,T ′ at random and proceed as before. The difference
between G3 and G2 resides in the public key, specifically whether it was
sampled using vectors in a given subspace or not.

|Adv(G3)− Adv(G2)| 6 Adv(DRSL).



At this step, everything we send to the adversary is random, and independent
from any secret keys. Hence the security of our scheme is reduced to the case
where no signature is given to the attacker.

If he can compute a valid signature after game G3, then the challenger can
compute a solution of the I−ARSD problem. Indeed, the couple (z,p) is a solu-
tion of the instance (H,−T , F,x+T ′cT , w+ rd−λ) of the I−ARSD problem.
According to Proposition ??, the I−ARSD problem is reduced to the I− RSD
problem.

Finally, we can now give our main theorem:

Theorem 1 (EUF-CMA security). Under the hypothesis of the hardness of
the PSSI+ problem ?? and of the DRSL, I− RSD problems ??, our signature
scheme is secure under the EUF-CMA model in the Random Oracle Model.

5 Attacks

5.1 Attacks on the RSL problem

In this section we will study the hardness of recovering the secret matrices S and
S′ from H,T ,T ′. This is exactly an instance of the RSLq,m,n,k,w,N problem.

We will use the setting proposed in [?]. First, we recall how the problem
is reduced to searching for a codeword of weight w in a code containing qN

codewords of this form. We introduce the following Fq-linear code:

C = {x ∈ Fnqm : Ax ∈WT }

whereWT is the Fq-linear subspace of Fn−kqm generated by the linear combinations
of the elements of the public matrices T and T ′. As in Lemma 1 in [?], we define:

C ′ = {
∑
i

αisi, αi ∈ Fq}.

We have: – dimFq
C 6 km+N

– C ′ ⊂ C
– the elements of C ′ are of weight6 w.

Combinatorial attack. In [?], the authors search for a codeword of rank w in
C by using information-set decoding techniques, using the fact that C ′ contains
qN words of weight w. As this codeword will very likely be a linear combina-
tions of the vectors si, it will reveal the secret support E with high probability.
Theorem 2 in [?] gives a complexity of qmin(e−,e+), where:

e− =

(
w −

⌊
N

n

⌋)(⌊
K

n

⌋
−
⌊
N

n

⌋)
e+ =

(
w −

⌊
N

n

⌋
− 1

)(⌊
K

n

⌋
−
⌊
N

n

⌋
− 1

)
+ n

(⌊
K

n

⌋
−
⌊
N

n

⌋
− 1

)
where K = km+N . See [?] for more details about this.



Algebraic attacks. We will now study how algebraic attacks can be used to
find codewords of weight w in C.

We are looking for X ∈ C such that X ∈ En. We can write X as:

X =

w∑
i=1

x
(i)
1 y

(i)
1 . . .

w∑
i=1

x
(i)
1 y

(i)
n

...
. . .

...
w∑
i=1

x
(i)
m y

(i)
1 . . .

w∑
i=1

x
(i)
m y

(i)
n

where (x(1), . . . , x(w)) represent a basis of E, and the (yji ), 1 6 i 6 w, 1 6 j 6 n
represent the coordinates of X written in this basis.

C has length nm and dimension N + km in Fq, which gives (n − k)m − N
parity check equations, and (n+m)w unknowns (the x(j)i and the (y

(j)
i )).

To decrease the number of unknowns, we will first write the basis of E in an
echelon form, which removes w2 unknowns:

∀(i, j) ∈ [1, w]2, i 6= j, x
(j)
i = 0

x
(i)
i = 1.

Then we will use the fact that for a fixed basis of E, the solution space has
dimension N , which allows us to set N of the (y

(j)
i ) to specialize one solution,

as in [?]: for a random subset I ⊆ [1, n]× [1, w] of size N − 1:

∀(i, j) ∈ I, y(j)i = 0

y
(j0)
i0

= 1, (i0, j0) /∈ I

which removes N unknowns.

Proposition 6. Using this setting we obtain:

– (n− k)m−N equations
– (n+m)w − w2 −N unknowns.

We implemented this approach in Magma to try it on small examples, and the
combinatorial attacks become much more efficient than the algebraic approach
when the number of samples is around kr, whereas this attack is faster when
the number of samples is higher. Another drawback of this attack is the high
memory cost, making parameters as small as n = m = 30, k = 15, r = 3 with kr
samples too big for a computer using 16GB of RAM.

For concrete parameters (section ??), we chose N , the number of samples
for the RSL problem, equal to either k(r − 1) or k(r − 2). Our experiments on
smaller parameters showed that combinatorial attacks should be way faster for
this number of samples. This also defeats the setting proposed in [?] since it
needs at least kr samples.

The parameter set I gives 2117 unknowns for 23836 equations and the param-
eter set II gives 2809 unknowns for 29154 equations. Based on our experiments
on smaller parameters this seems really hard to reach.



5.2 Attack on the ARSD problem

As explained in the security proof in Section ??, a forgery attack consists in
solving an instance of the ARSD problem ??. In order to choose the parameters
of our signature, we need to deal with the complexity of the attacks on this
problem. These attacks are adapted from those against the RSD problem [?,?]
to which ARSD is very similar.

The following proposition gives a bound beyond which the problem becomes
polynomial.

Proposition 7. Let (H,H ′, s, F ) be an instance of the ARSDq,m,n,k,r,n′,F prob-
lem. If max(m,n)r + n′r′ > m(n− k) then the ARSD problem can be solved in
polynomial time with a probabilistic algorithm.

Proof. To prove this proposition, we will use the method used to compute the
Singleton bound.

Let us begin with the case n > m. Let E be a subspace of Fqm of dimension r
and suppose that there exists a solution (x,x′) of the ARSD problem such that
Supp(x) = E. Then, we can express the coordinate xj of x in a basis Ei of E:

∀j ∈ {1 . . . n}, xj =
r∑
i=1

λijEi

Likewise, we can express the coordinates x′t of x′ in a basis of F :

∀t ∈ {1 . . . n′}, x′t =
r′∑
s=1

λ′stFs

Let us write the linear system satisfied by the unknown (λij , λ
′
st):

HxT + H ′x′T = s

⇐⇒ ∀i ∈ {1 . . . n− k},
n∑
j=1

Hijxj +

n′∑
t=1

H ′itx
′
t = si

⇐⇒ ∀i ∈ {1 . . . n− k},
n∑
j=1

Hij

r∑
i=1

λijEi +

n′∑
t=1

H ′it

r′∑
s=1

λ′stFs = si (9)

The (n − k) linear equations (??) over Fqm can be projected on Fq to obtain
m(n− k) linear equations over Fq. Since we have nr+n′r > m(n− k), there are
more unknowns than equations so the system admits at least a solution with a
non negligible probability.

In the case m > n, we need to consider the matrixM(x) associated to x (cf
Definition ??) and express its rows in a basis of a subspace E of dimension r of
Fnq . Since the support of x′ is fixed, its coordinates still give us n′r′ unknowns
over Fq. This gives us mr + n′r′ unknowns over Fq in total. Then we transform
the equation HxT + H ′x′T = s into a linear system over Fq as previously.



This operation is not difficult but cumbersome and we do not give the explicit
equations. The resulting linear system has m(n − k) equations and mr + n′r′

unknowns over Fq. It has a solution with a non negligible probability since mr+
n′r′ > m(n− k).

In both cases, the solution of the system solves the ARSD problem. ut

In the case where max(m,n)r + n′r′ < m(n− k), we need to adapt the best
attacks against the RSD problem [?] to the ARSD case. The general idea is to
find a subspace E of dimension δ such that Supp(x) ⊂ E (in the case n > m).
Then we can express the coordinates of x if n > m or the rows of the matrix
M(x) if m > n in a basis of E exactly as in the previous proposition. We want
δ as large as possible to increase the probability that Supp(x) ⊂ E but we
have to take δ such that max(m,n)δ + n′r′ < m(n − k) in order to obtain an
over-constrained linear system. Hence δ =

⌊
m(n−k)−n′r′

max(m,n)

⌋
. The probability that

E ⊃ Supp(x) depends on m and n:

If n > m, then P(E ⊃ Supp(x)) =

[
δ
r

]
q

[
m
r

]
q

−1

= Θ(q−r(m−δ)).

If n < m, then P(E ⊃ Supp(x)) =

[
δ
r

]
q

[
n
r

]
q

−1

= Θ(q−r(n−δ)).

In order to respect the constraints of our signature, we have to insure that the in-
stance of the ARSD problem has several solutions. Thus, the average complexity
of this attack is equal to the inverse of the probability P(E ⊃ Supp(x)) divided
by the number of solutions times the cost of the linear algebra. The number of
solutions is in Θ

(
qr(m+n−r)+n′r′−m(n−k)

)
(see Proposition ?? for details).

Proposition 8. In the case max(m,n)r + n′r′ < m(n − k), the complexity of
the best attack against the ARSDq,m,n,k,r,n′,F problem is in

O
(
m3(n− k)3qr

⌈
km+n′r′
max(m,n)

⌉
−r(m+n−r)−n′r′+m(n−k)

)
.

Remark: We did not consider the improvement of the attack of the RSD problem
in [?] because this attack does not fit the case where there are several solutions
to the RSD problem.

6 Parameters

6.1 Constraints

In this section we recap the different constraints on our parameters.

Choice of l, l′, r and d. First we need to choose l′ such that the entropy of c
is high enough. For our parameters, l′ = 1 is always enough since c ∈ F l′dk and



dk > 512. In practice using less than dk coordinates for c is a possibility to make
the parameters a little smaller.

We then need to choose r high enough so that the attacks on both the RSD
and RSL problems are hard. d and l must be chosen such that λ > r + d: d = r
and l = 4 is a way to meet this condition. In the sets of parameters given below,
this value of l leads to N = k(r− 1) and N = k(r− 2) respectively, which allows
us to be pretty conservative with respect to the attacks on the RSL problem.

Choice of m. In order to avoid the distinguisher attack for a security parameter
of 128, the relation m − 2u > 128 + 64 (we use Proposition ??, setting u =
rd−λ), must be verified to fit the security proof: we consider that the adversary
has access to 264 signatures, so the probability of distinguishing signatures and
random vectors must be lower than 2−192. We choose a prime m (so there is no
intermediate field between Fq and Fqm) such that m > 192 + 2u.

Choice of n, k and w. They must be chosen such that 3(u+w) > m to avoid
the distinguisher attack using subspaces of dimension 3, and (u+w) < (n−k)−λ
in order to keep the weight of the signature below the Singleton bound −λ (due
to ARSD). k is taken prime for having access to really sparse polynomials to
define the ideal codes.

6.2 Example of parameters

The public key consists of:

– H which can be recovered from a seed (256 bits)
– l(n− k)m log(q) bits to describe the syndromes.

The signature consists of:

– (rd+w− λ)(n+m− rd−w+ λ) log(q) bits to describe z. We give Supp(z)
in echelon form as well as the coordinates in this basis

– A seed to describe F (256 bits)
– 512 bits to describe c
– dlk log(q) bits to describe p.

The complexity of the key recovery attack is computed using the complexity of
the combinatorial attack given in Section ??.

For our parameters, the complexity of the forgery attack using the algorithm
against ARSD described in Section ?? is disproportionately large compared to
the key recovery attack. Parameter sets were chosen for a security of 128 bits.

m n k l l’ d r w λ q Public key size Signature size Key recovery attack Distinguisher Security
I 241 202 101 4 1 6 6 57 12 2 15.25 kB 4.06 kB 461 193 128
II 263 226 113 4 1 7 7 56 14 2 18.61 kB 5.02 kB 660 193 128

The implementation of our scheme on an Intel(R) Core(TM) i5-7440HQ CPU
running at 2.80GHz gives the following computation times :



Parameter Keygen Online signature phase Verification
I 4ms 4ms 5ms
II 5ms 5ms 6ms

For the offline phase, the most costly step, the computation of the matrix D,
takes 350ms for parameter I and 700ms for parameter II.
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