
Locality-Preserving Oblivious RAM

Gilad Asharov1?, T-H. Hubert Chan2, Kartik Nayak3??,
Rafael Pass1, Ling Ren4∗∗, and Elaine Shi1

1 Cornell/Cornell Tech
2 The University of Hong Kong

3 University of Maryland
4 MIT

Abstract. Oblivious RAMs, introduced by Goldreich and Ostrovsky
[JACM’96], compile any RAM program into one that is “memory oblivi-
ous”, i.e., the access pattern to the memory is independent of the input.
All previous ORAM schemes, however, completely break the locality of
data accesses (for instance, by shuffling the data to pseudorandom posi-
tions in memory).
In this work, we initiate the study of locality-preserving ORAMs —
ORAMs that preserve locality of the accessed memory regions, while
leaking only the lengths of contiguous memory regions accessed. Our
main results demonstrate the existence of a locality-preserving ORAM
with poly-logarithmic overhead both in terms of bandwidth and local-
ity. We also study the tradeoff between locality, bandwidth and leakage,
and show that any scheme that preserves locality and does not leak the
lengths of the contiguous memory regions accessed, suffers from pro-
hibitive bandwidth.
To the best of our knowledge, before our work, the only works combin-
ing locality and obliviousness were for symmetric searchable encryption
[e.g., Cash and Tessaro (EUROCRYPT’14), Asharov et al. (STOC’16)].
Symmetric search encryption ensures obliviousness if each keyword is
searched only once, whereas ORAM provides obliviousness to any input
program. Thus, our work generalizes that line of work to the much more
challenging task of preserving locality in ORAMs.

Keywords: Oblivious RAM, locality, randomized algorithms.

1 Introduction

Oblivious RAM [23, 25, 36], originally proposed in the seminal work by Goldre-
ich and Ostrovsky [23, 25], allows a client to outsource encrypted data to an
untrusted server, and access the data in a way such that the access patterns
observed by the server are provably obfuscated.

Thus far, the primary metric used to analyze ORAM schemes has been band-
width which is the number of memory blocks accessed for every logical access.
After a long sequence of works (e.g., [25,34,36,38,42]) it is now understood that
ORAM schemes can be constructed incurring only logarithmic bandwidth [6];
and moreover, this is asymptotically optimal [25,33].

? Currently a researcher at JP Morgan AI Research.
?? Currently at VMware Research

2 G. Asharov, T-H.H. Chan, K. Nayak, R. Pass, L. Ren and E. Shi

An important performance metric that has been traditionally overlooked in
the ORAM literature is data locality. The majority of real-world applications and
programs exhibit a high-degree of data locality, i.e., if a program or application
accesses some address it is very likely to access also a neighboring address. This
observation has profoundly influenced the design of storage systems — for ex-
ample, commodity hard-drive and SSD disks support sequential accesses faster
than random accesses.

Unfortunately, existing ORAM schemes (e.g., [6,18,23,25,36,38,42]) are not
locality-friendly. Randomization in ORAMs is inherent due to the requirement to
hide the access pattern of the program, and ORAM schemes (pseudo-)randomly
permute blocks and shuffle them in the memory. As a result, if a client wants to
read a large file consisting of Θ(N) contiguous blocks, all known ORAM schemes
would have to access more than Ω(N logN) random (i.e., discontiguous) disk
locations, introducing significant delays due to lack of locality.

In this paper, we ask the question: can we design ORAM schemes with data
locality? At first sight, this seems impossible. Intuitively, an ORAM scheme
must hide whether the client requests N random locations or a single contiguous
region of size N . As a result, such a scheme cannot preserve locality, and indeed
we formalize this intuition and formally show that any ORAM scheme that hides
the differences between the above two extreme cases must necessarily suffer from
either high bandwidth or bad locality.

However, this does not mean that providing oblivious data accesses and pre-
serving locality simultaneously is a hopeless cause. In particular, in many prac-
tical applications, it may already be public knowledge that a user is accessing
contiguous regions; e.g., consider the following two motivating scenarios:

– Outsourced file server. Imagine that a client outsources encrypted files to
a server, and then repeatedly queries the server to retrieve various files. In
this case, each file captures a contiguous region in logical memory. Note that
unless we pad all files to the maximum size possible (which can be very
expensive if files sizes vary greatly), we would already leak the file size (i.e.,
length of contiguous memory region visited) on each request.

– Outsourced range query database. Consider an outsourced (encrypted) database
system where a client makes range queries on a primary search key, e.g., an
IoT database that allows a client to retrieve all sensor readings during a spec-
ified time range. We would like to protect the client’s access patterns from
the server. As previous works argued [16, 30], in this case one can leverage
differential privacy to hide the number of matching records and it may be
safe to reveal a noisy version of the length of the contiguous region accessed.

Note that in both of the above scenarios, some length leakage seems unavoidable
unless we always pad to the maximum with every request — and this is true
even if we employ ORAM to outsource the files/database! Further, disk IO may
be more costly than network bandwidth depending on the deployment scenario:
for example, if the server is serving many clients simultaneously (e.g., serving
many users from the same organization sharing a secret key, or if the server has
a trusted CPU such as Intel SGX and is serving multiple mutually distrustful

Locality-Preserving Oblivious RAM 3

clients), the system’s bottleneck may well be the server’s disk I/O rather than
the server’s aggregate bandwidth.

Motivated by these practical scenarios, we ask the following question.

Can we construct a bandwidth-efficient ORAM that preserves data
locality while leaking only the lengths of contiguous regions accessed?

We answer the question in the affirmative and prove the following result:

Theorem 1.1 (Informal). Let N be the size of the logical address space. There
is an ORAM scheme that makes use of only 2 disks and O(1) client storage,
such that upon receiving a sufficiently long request sequence containing T logical
addresses, the ORAM can correctly answer the requests paying only T ·poly logN
bandwidth; and moreover, if the T addresses requested contains ` discontiguous
regions, the ORAM server visits only ` · poly logN discontiguous regions on its
2 disks.

To the best of our knowledge, we are the first to consider and formulate the
problem of locality-friendly ORAM. Even formulating the problem turns out to
be non-trivial, since it requires teasing out the boundaries between theoretical
feasibility and impossibility, and capturing what kind of leakage is reasonable
in practical applications and yet does not rule out constructions that are both
bandwidth-efficient and locality-friendly. Besides the conceptual definitional con-
tributions, we also describe novel algorithmic techniques that result in the first
non-trivial locality-friendly ORAM construction.

To help the reader understand the technical nature of our work, we point
out that our problem formulation in fact generalizes a line of work on optimiz-
ing locality in Searchable Symmetric Encryption (SSE) schemes. The issue of
locality was encountered in recent implementations [12] of searchable symmetric
encryption in real-world databases, showing that the practical performance of
known schemes that overlook the issue of locality do not scale well to large data
sizes. The problem of optimizing locality in searchable symmetric schemes has
received considerable attention recently (see, e.g., [7,8,13,20,21]). Our problem
generalizes this line of work, and achieving good locality in oblivious RAM is
significantly more challenging due to the following reasons: (1) In SSE, oblivious-
ness is guaranteed only if each “file” is accessed at most once (and the length of
the file is also leaked in SSE)5; and (2) SSE assumes that rebuilding the “server-
side oblivious data structure” happens on a powerful client with linear storage,
and thus the rebuilding comes “for free”. We show, for the first time, how to
remove both of these above restrictions, and provide a generalized, full-fledged
oblivious memory abstraction that supports unbounded polynomial accesses and
yet preserves both bandwidth and locality.

2 Technical Roadmap

In the following we provide a summary of results and techniques. In Section 2.1
we discuss our modeling of locality. In Section 2.2 we discuss our lower bounds,

5 Intuitively, a file stores the identifiers of the documents matching a keyword search
in SSE schemes.

4 G. Asharov, T-H.H. Chan, K. Nayak, R. Pass, L. Ren and E. Shi

providing tradeoffs between the locality of a program, leakage and bandwidth.
Towards introducing our construction, we start in Section 2.3 with a warmup–
oblivious sort with “good” locality. In Section 2.4 we introduce range ORAM, our
core building block for achieving locality, in which in Section 2.5 we overview its
construction. In Section 2.6 we overview a variant of Range ORAM, called “On-
line Range ORAM”, which can also be viewed as a locality preserving ORAM.

2.1 A Generalized Model of Locality

How do we model locality of an algorithm (e.g., an ORAM or SSE algorithm)?
A natural option is to use the well-accepted approach adopted by the SSE line
of work [7,8,13,20]. Imagine that every time an algorithm (e.g., SSE or ORAM)
needs to read an item from disk, it has two choices: (1) read the next contiguous
address; and (2) jump to a new address (often called “seek” in the systems
literature). While both types of operations contribute to the bandwidth measure;
only the latter type contributes to the locality measure [7,8,13,20] since seeks are
significantly more expensive than sequential reads on real-world disks. We point
out that locality alone is not a meaningful measure since we can always achieve
better locality and minimize jumps by scanning through the entire memory
extracting the values we want along the way. Thus we always use locality in
conjunction with a bandwidth metric too, i.e., how many blocks we must must
fetch from the disk upon each request. This model was adopted by the SSE line of
work, however, is very constraining in the sense that they assume that the server
has access to only 1 disk. In practice, cloud-hosting services such as EC2 and
Azure provide servers with multiple disks. Constraining to such a single-disk
model might rule out interesting cryptographic algorithms of practical value.
Therefore, we generalize the locality definition as follows.

Defining (D, `)-locality. We consider the scenario where the ORAM server
may have multiple (but ideally a small number) of disks, where eack disk still
supports the aforementioned two types of instructions: “read the next contigu-
ous address” and “jump to a new address”. Henceforth, we say that an ORAM
scheme satisfies (D, `)-locality and β bandwidth cost iff for a sufficiently long
input sequence containing B requests spanning L non-contiguous regions, the
ORAM server, with access to D disks, may access at most β ·B blocks and issue
at most ` · L jump instructions. Of course, the adversary can observe all disks,
and all movements operations in these disks. We refer the readers to Section 3.1
for the formal definition.

Under these new definitions, our result can be stated technically as “an
ORAM scheme with (2, poly logN)-locality and poly logN bandwidth (amor-
tized) cost” where N is the total number of logical blocks. Moreover, as men-
tioned, our ORAM scheme leaks only the length of each contiguous region in the
request sequence and nothing else (and as mentioned, some leakage is inherent
if we desire efficiency).

Open questions. Given our new modeling techniques and results, we also sug-
gest several exciting open questions, e.g., is it possible to have an ORAM scheme
that achieves (1, `)-locality and β bandwidth cost where ` and β are small? Can

Locality-Preserving Oblivious RAM 5

we compile source programs that exhibit (D, `)-locality where D > 1 with mean-
ingful leakage? For the former question, if there is a lower bound that shows a
sharp separation between 1 and 2 disks, it would be technically really intriguing.
For the latter question, the constructions in this paper directly imply that if one
is willing to leak the disk each request wants to access, such schemes are pos-
sible. However, depending on the practical application such leakage vary from
reasonable to extremely harmful. Thus the challenge is to understand the fea-
sibility/infeasibility of achieving such compilation while hiding which disk each
request wants to access. We refer the reader to Section 7 for other open problems.

2.2 Locality with No Leakage

As we already discussed, preserving both bandwidth and locality with no leak-
age is impossible. We formalize this claim, and study tradeoffs between leakage
profiles and performance. We consider schemes that leak only the total number
of accesses (just as in standard ORAM6) and show that a scheme with good
locality must incur a high bandwidth, even when allowing large client-side space
blowup. We prove the following:

Theorem 2.1. For any `, c ≤ N
10 , any (D, `)-local ORAM scheme with c blocks

of client storage that leaks no information (besides the total number of requests)
must incur Ω(ND) bandwidth.

To intuitively understand the lower bound, consider a simplified case where
the ORAM must satisfy (1, 1)-locality. Consider the following two scenarios: (1)
requesting contiguous blocks at addresses 1, 2, . . . N ; and (2) requesting blocks at
random addresses. By the locality constraint, in the former scenario the ORAM
scheme can access only 1 contiguous region on 1 disk. Now the oblivious re-
quirement says that the address distributions under these two scenarios must
be indistinguishable, and thus even for the second scenario the ORAM server
can only access a single contiguous region too. Now, if each request’s address
is generated at random, in expectation the desired block is at least N/2 far
from where the disk’s head currently is — and this holds no matter how one
arranges the contents stored on the disk, and even when the server’s disk may
be unbounded! Since the ORAM scheme must perform a single linear scan even
in the second scenario, it must read in expectation N/2 locations to serve each
randomized request. Note that one key idea in this lower bound proof is that
we generate the request sequence at random in the second scenario, such that
even if the ORAM scheme is allowed to perform arbitrary, possibly randomized
setup, informally speaking it does not help. In Section 6, we make non-trivial
generalizations to the above intuition and prove a lower bound for generalized
choices of D and `.

On leaking the lengths. Given our lower bound, our constructions presented

6 We emphasize that many practical applications leak some more information even
when using standard ORAM, e.g., in the form of communication volume. See dis-
cussion in below.

6 G. Asharov, T-H.H. Chan, K. Nayak, R. Pass, L. Ren and E. Shi

next leak the lengths of the accessed regions to achieve good locality. Before
proceeding with our construction, we remark the following points regarding this
leakage: (1) The input program can always break locality (say, via fictitious
non-contiguous accesses) and therefore our scheme can be viewed as a strict
generalization of ordinary ORAM schemes. In other words, the user can choose
to opt out of the locality feature. (2) As we mentioned above, in many applica-
tions it is already public knowledge that the client accesses contiguous regions.
In those cases, the leakage is the same had we used an ordinary ORAM [29].
(3) Finally, we stress that just like the case of ordinary ORAM, our locality-
friendly ORAM can be combined with differential privacy techniques as Kellaris
et al. [30] suggested to offer strengthened privacy guarantees.

Despite these arguments, in some applications with good locality, such leak-
age might be harmful. For example, a program may access several regions of
different lengths and which regions are accessed depend on some sensitive data.
Whether the locality feature of our scheme should be used or not is application
dependent, and we encourage using the locality feature only in places where the
leakage pattern is clear and is public information to begin with.

2.3 Warmup: Locality-Friendly Oblivious Sort

Before describing our main construction, we first introduce a new building block
called locality-friendly oblivious sort which we will repeatedly use. First, we ob-
serve that not all known oblivious sorting algorithms are “locality-friendly”. For
example, algorithms such as AKS sort [2] and Zig-zag sort [26] are described
with a sorting circuit whose wiring has good randomness-like properties (e.g., in
AKS the wiring involve expander graphs, which have proven random-walk prop-
erties), thus making these algorithms difficult to implement with small locality
consuming a small number of disks (while preserving the algorithm’s runtime).

Fortunately, we observe that there is a particular method to implement the
Bitonic Sort [9] algorithm such that with only 2 disks, the algorithm can be ac-
complished using O(log2 n) “jumps” (note also that “natural” implementations
of the Bitonic Sort circuit do not seem to have such locality friendliness).

We defer the details of this specific locality-friendly implementation of Bitonic-
Sort to Appendix A, stating only the theorem here:

Theorem 2.2 (Locality-friendly oblivious sort). Bitonic sort (when implemented
as in Appendix A) is a perfectly oblivious sorting algorithm that sorts n elements
using O(n log2 n) bandwidth and (2, O(log2 n))-locality.

2.4 Range ORAM: An Intermediate, Relaxed Abstraction

We now start to give an informal exposition of our upper bound results. This is
perhaps the most technically sophisticated part of our work.

To achieve the final result, we will do it in two steps. In our final ORAM
scheme (henceforth called Online Range ORAM), the ORAM client receives
the requests one by one in an online fashion, and it is not informed a-priori
when a contiguous scan would occur in the request sequence. That is, it has
exactly the same syntax as an ordinary ORAM, but when the client accesses

Locality-Preserving Oblivious RAM 7

contiguous addresses, the online range ORAM has to recognize this fact, and
fetch contiguous regions from the memory. To reach this final goal, however, we
need an intermediate stepping stone called Range ORAM, which is an “offline”
version of Online Range ORAM. In a Range ORAM, imagine that the ORAM
client receives a request sequence that can look ahead into the future, i.e., the
client is informed that the next len requests will scan contiguously through the
logical memory.

More formally, in a Range ORAM, the ORAM client receives requests of the
form Access(op, [s, t], data), where op ∈ {read, write}, s, t ∈ [N], s < t, and

data ∈ ({0, 1}b)(t−s+1) where b is the block size. Upon each request, the client
interacts with the server to update the server-side data structure and fetch the
data it needs:

– If op = read, at the end of the request, all blocks whose logical addresses
belong to the range [s, t] are written down in server memory starting at
a designated address; the server may then return the blocks to the client
one-by-one in a single contiguous scan.

– If op = write, then imagine that the client has already written down a data
array consisting of t− s+ 1 blocks on the server in a designated, contiguous
region; the client and the server then perform interactions to update the
server-side data structure to reflect that the logical address range [s, t] should
now store the contents of data.

Note that as described above, a Range ORAM is well-defined even for a client
that has only O(1) blocks of storage — and indeed we give a more general
formulation by assuming O(1) client storage.

As for obliviousness, we require that the distribution of memory addresses
accessed by the Range ORAM can be simulated from the lengths of the accessed
ranges only, which implies that there is no other leakage other than these lengths.
We prove the following theorem:

Theorem 2.3. There exists a perfectly secure Range ORAM construction con-
suming O(N logN) space with (amortized) len · poly logN bandwidth and (2,
poly logN)-locality, for accessing a range of length len.

In comparison, for all existing ORAM schemes, accessing a single region of
len contiguous blocks involves accessing Ω(len · logN) blocks residing at dis-
contiguous physical locations. We now overview the high level ideas behind our
range ORAM construction.

Strawman scheme: read-only Range ORAM. Assuming that the CPU
sends only read instructions, we can achieve locality and obliviousness as follows.
The idea is to make replications of a set of super-blocks that form contiguous
memory regions. Specifically, let N be a power of 2 that bounds the size of the
logical memory. A size-2i super-block consists of 2i consecutive blocks with the
starting address being a multiple of 2i. We call size-1 blocks as “primitive blocks”.
We store logN different ORAMs, where the i-th ORAM (for i = 0, . . . , logN−1)
stores all size-2i (super-)blocks (exactly N/2i blocks of size 2i each). Since any
contiguous memory region of length 2i is “covered” by two super-blocks of that

8 G. Asharov, T-H.H. Chan, K. Nayak, R. Pass, L. Ren and E. Shi

0 1 2 3 4 5 6 7

0 1 2 3

4 5

6 7

0 1 2 3

0 1 2 3 4 5 6 7

4 5

6 7

1 2 5 6

1 2 5 6

1 2 5 6

h = 3

h = 2

h = 1

h = 0

T0T1T2T3

ORAM[T3, 3]

ORAM[T3, 2]

ORAM[T3, 1]

ORAM[T3, 0]

ORAM[T2, 2]

ORAM[T2, 1]

ORAM[T2, 0]

Fig. 1: Hierarchy of range trees. Logically, data is divided into trees of
exponentially increasing sizes. In each tree block, a parent super-block stores
the contents of both its children. If a block appears in more than one tree, the
smallest tree contains the freshest copy. The above figure shows the state of the
data structure after two accesses (read, 5, 2,⊥) and (read, 1, 2,⊥). h denotes
height of a node in the Range Tree.

length, reading any contiguous memory of length 2i region would boil down to
making two accesses to the i-th ORAM.

However, this approach breaks down once we also need to support writes. The
main challenge is to achieve data coherency in different ORAMs. Since there are
multiple replicas of each data block, either a write must update all replicas, or
a read must fetch all replicas to retrieve the latest copy. Both strategies break
data locality.

2.5 Constructing Range ORAM

Range Trees. The aforementioned strawman scheme demonstrates the chal-
lenges we face if we want a Range ORAM supporting both reads and writes. To
achieve this we need more sophisticated data structures.

We first describe a logical data structure called a Range Tree (without spec-
ifying at this point how to actually store this logical Range Tree on physical
memory). A Range Tree of size 2i is the following (logical) data-structure: the
leaves store 2i primitive blocks sorted by their (possibly non-contiguous) ad-
dresses, whereas each internal node replicates and stores all blocks contained in
the leaves of its subtree. For example, in Figure 1, each of T0,T1,T2 and T3 is
a logical Range Tree of sizes 1, 2, 4, 8 respectively. In such a Range Tree, each
node at height j stores a super-block of size 2j (leaves have height 0 and store
primitive blocks).

Range ORAM’s data structure. As shown in Figure 1, our full Range ORAM
(supporting both reads and writes) will logically contain a hierarchy of such
Range Trees of sizes 1, 2, 4, 8, . . . , N , denoted T0,T1, . . . ,TL respectively where
L = O(logN). These trees form a hierarchy of stashes just like in hierarchical
ORAM [23, 25], i.e., each Ti is a stash for Ti+1 which is twice as large. Thus,
if a block at some logical address is replicated multiple times in multiple Range
Trees, the copy in a smaller Range Tree is always more fresh (e.g., in Figure 1,
notice that the block at logical address 1 appears in both T3 and T2). Within
each Range Tree, a logical block also appears multiple times within super-blocks

Locality-Preserving Oblivious RAM 9

(or primitive blocks) of different sizes, but all these copies within the same tree
contain the same value.

We now specify how these logical Range Trees are stored in the physical
memory. Basically, in each Range Tree, all super-blocks at the same height will
be stored in a separate ORAM — thus an ORAM at height j of the tree stores
super-blocks of size 2j .

Besides the ORAMs storing each height of each Range Tree, we also need
an auxiliary data structure that facilitates lookup. The client can access this
data structure to figure out, for a requested range [s, t], which super-blocks in a
specific tree height intersect the request. This auxiliary data structure is stored
on the server in an ORAM, and it can be viewed as a variant of “oblivious binary
search tree”.

Fetch phase of the Range ORAM. Let us now consider how to read and
write contiguous ranges of blocks (i.e., implement the read and write operations
of Range ORAM). Each request, no matter read or write requests, proceed in
two phases, a fetch phase and a maintain phase. We first describe the fetch phase
whose goal is to write down the requested range in a designated contiguous space
on the server.

Suppose that the range [s, t] is requested. Without loss of generality, assume
that the length of the range t− s+ 1 = 2i (otherwise round it up to the nearest
power of 2). Roughly speaking, we would like to achieve the following effect:

– For every Range Tree at least 2i in size, we would like to fetch all size-2i

super-blocks that intersect the range requested — it is not difficult to see
that there are at most two such super-blocks.

– For every Range Tree smaller than 2i in size, we simply fetch the root.
– Write down all these super-blocks fetched in a contiguous region on the

server, and then obliviously reconstruct the freshest value of each logical
address (using locality-friendly oblivious sort).

Henceforth we focus only on the Range Trees that are at least 2i in size since
for the smaller trees it is trivial to read the entire root. To achieve the above,
roughly speaking, the client may proceed in the following steps. For each Range
Tree that is not too small,

1. Look up the auxiliary data structure (stored on the server) to figure out
which two super-blocks to request in the desired height that stores super-
blocks of size 2i;

2. Fetch these two desired super-blocks from the corresponding ORAM and
write down the fetched super-block in a contiguous region (starting at a
designated position) on the server’s memory.

All these fetched super-blocks are written down on the server’s memory con-
tiguously (including the root nodes for the smaller Range Trees which we have
ignored above). The client now relies on oblivious sorting to reconstruct the
freshest copy of each logical address requested, and the result is stored in a
designated contiguous region on the server.

Notice that the entire read procedure reads only polylogarithmically many
contiguous memory regions:

10 G. Asharov, T-H.H. Chan, K. Nayak, R. Pass, L. Ren and E. Shi

– Queries to the oblivious auxiliary data structure accesses polylogarithmically
many “small” metadata blocks using ordinary oblivious data structures;

– There are only logarithmically many requests to per-height ORAMs storing
super-blocks of size 2i. Using an ordinary ORAM scheme, this step requires
reading polylogarithmically many regions of size 2i. Here, since every super-
block of size 2i is bundled together, we do not need to read 2i separate small
blocks from an ORAM, and this is inherently why the algorithm’s locality is
independent of the length of the range requested.

– The oblivious sorting needed for reconstruction also consumes polylogarith-
mic locality as mentioned in Section 2.3.

Maintain phase of the Range ORAM. Inspired by the hierarchial ORAM [23,
25], here a super-block fetched will be written to the smallest Range Tree that
is large enough to fit this super-block. If this Range Tree is full, we will then
perform a cascading merge to merge consecutive, full Range Trees into the next
empty Range Tree.

During this rebuilding process, we must also maintain correctness, including
but not restricted to the following:

– for duplicated copies of each block, figure out the freshest copy and suppress
duplicates; and

– correctly rebuild the oblivious auxiliary data structure in the process.

Without going into algorithmic details at this point, most of this rebuilding
process can be accomplished through a locality-friendly oblivious sorting proce-
dure as mentioned earlier in Section 2.3. However, technically instantiating all
the details and making everything work together is non-trivial. To enable this,
we in fact introduce a new algorithmic abstraction, that is, an ordinary ORAM
scheme with a locality-friendly initialization procedure (see Section 4.3). We will
use this new building block to instantiate both the oblivious auxiliary data struc-
ture and each tree height’s ORAM. In comparison with a traditional ORAM
where rebuilding can be supported by writing the blocks one by one (which
will consume super-linear locality), here we would like to rebuild the server-side
ORAM data structure using a special locality-friendly algorithm upon receiving
a possibly large input array of the blocks. In subsequent technical sections, we
show how to have such a special ORAM scheme where initializing the server-side
data structure can be accomplished using locality-friendly oblivious sorting as a
building block. We refer the reader to Section 5 for the algorithmic details.

2.6 Online Range ORAM

Given our Range ORAM abstraction, we are now ready to construct Online
Range ORAM. The difference is that now, when the client receives request,
it is unaware whether the future requests will be contiguous. In fact, Online
Range ORAM provides the same interface as an ordinary ORAM: each request
the client receives is of the form (op, addr, data) where op ∈ {read, write}, and
addr ∈ [N] specifies a single address to read or write (with data). Yet the Online

Locality-Preserving Oblivious RAM 11

Range ORAM must preserve the locality that is available in the request sequence
up to polylogarithmic factors.

Roughly speaking, we can construct Online Range ORAM from Range ORAM
as follows, by using a predictive prefetching idea: when a request (containing a
single address) comes in, the client first requests that singe address. When a new
request comes in, it checks whether the request is consecutive to the address of
the previous request. If so, it requests 2 contiguous blocks – the specified ad-
dress and also its next address. This can be done by requesting a range in Range
ORAM. If the next 2 requests happen to be contiguous, then the client prefetches
the next 4 blocks with Range ORAM; and if the requests are still contiguous,
it will next prefetch 8 blocks with Range ORAM. At any time if the contiguous
pattern stops, back off and start requesting a region of size 1 again. It is not
hard to see that the Online Range ORAM still preserves polylogarithmic band-
width blowup; moreover, if the request sequence contains a contiguous region
of length len, it will be separated into at most log(len) Range ORAM requests.
Thus the Online Range ORAM’s locality is only a logarithmic factor worse than
the Range ORAM. The reader is referred to Section 5.5 for further details.

2.7 Related Work

Related work on locality. Algorithmic performance with data stored on the
disk has been studied in the external memory models (e.g., [4,35,40,41] and refer-
ences within). Fundamental problems in this area include scanning, permuting,
sorting, range searching, where there are known lower bounds and matching
upper bounds.

Relationship to locality-preserving SSE. Searchable symmetric encryption
(SSE) enables a client to encrypt an index of record/keyword pairs and later
retrieve all records matching a keyword. The typical approach (e.g., [17, 19, 28,
31,39], and references within) is to store an inverted index. Our work is inspired
by recent works that study locality in SSE schemes [7, 8, 13, 20, 21]. Our new
locality ORAM formulation can be viewed as a generalization of the one-time
ORAM (with free rebuild) construct adopted in recent SSE constructions.

In a concurrent work, Demertzis, Papadopoulos and Papamanthou [20] also
consider such a one-time ORAM (with free rebuild) abstraction for an SSE
application. In their construction, they leverage as a building block a perfectly
secure (multi-use) ORAM with O(1)-locality, by blowing up the bandwidth to

O(
√
N) and the client storage to O(N2/3). This construction fails to preserve

the locality of the input program, and when accessing a region of size len will
result in O(len)-locality, and O(len ·

√
N)-bandwidth. In contrast, we achieve

poly logN -locality and len · poly logN -bandwidth when accessing a region of size
len, and with O(1)-client space.

Oblivious RAM (ORAM). Numerous works [6, 27, 32, 34, 36, 38, 42–46] con-
struct ORAMs in different settings. Most of ORAM constructions follow one of
two frameworks: the hierarchical framework, originally proposed by Goldreich
and Ostrovsky [23,25], or the tree-based framework proposed by Shi et al. [36].

12 G. Asharov, T-H.H. Chan, K. Nayak, R. Pass, L. Ren and E. Shi

Up until recently, the asymptotically most efficient scheme was given by [32],
providing O(log2N/ log logN) bandwidth. A recent improvement was given by
Patel et al. [34], reducing the bandwidth to O(logN ·poly log logN). The scheme
of Asharov et al. [6] achieves O(logN) bandwidth, and matches the lower bounds
given by Goldreich and Ostrovsky [23,25] and Larsen and Nielsen [33]. Further,
the Goldreich-Ostrovsky lower bound is also known not to hold when the memory
(i.e., ORAM server) is capable of performing computation [3,22], which is beyond
the scope of this paper.

In a subsequent work, Chakraborti et al. [14] show an ORAM called rORAM
with good locality and with O(log2N) bandwidth assuming Ω(log2N) block
size. Their scheme is based on tree-based ORAM. The construction works with
large client storage (i.e., linear in the sequential data to be read/write), and
reducing this client storage to O(1) would incur multiplicative poly logN factors
in locality and bandwidth in addition to using more disks to achieve locality.

3 Definitions

Notations and conventions. We let [n] denote the set {1, . . . , n}. We denote
by p.p.t. probabilistic polynomial time Turing machines. A function negl(·) is
called negligible if for any constant c > 0 and all sufficiently large λ’s, it holds
that negl(λ) < λ−c. We let λ denote the security parameter. For an ensemble of
distributions {Dλ} (parametrized with λ), we denote by x← Dλ a sampling of
an instance according to the distribution Dλ. Given two ensembles of distribu-

tions {Xλ} and {Yλ}, we use the notation {Xλ}
ε(N)≡ {Yλ} to say that the two

ensembles are statistically (resp. computationally) indistinguishable if for any
unbounded (resp. p.p.t.) adversary A,∣∣∣∣ Pr

x←Xλ

[
A(1λ, x) = 1

]
− Pr
y←Yλ

[
A(1λ, y) = 1

]∣∣∣∣ ≤ ε(λ)

Throughout this paper, for underlying building blocks, we will use n to denote
the size of the instance and use λ to denote the security parameter. For our final
ORAM constructions, we use N to denote the size of the total logical memory
size as well as the security parameter — note that this follows the convention of
most existing works on ORAMs [23,25,27,32,36,38,42].

3.1 Memory with Multiple Disks and Data Locality

To understand the notion of data locality, it may be convenient to view the
memory as D rotational hard drives or other storage mediums where sequential
accesses are faster than random accesses. The program interacting with the
memory has to specify which disk to access. Each disk is equipped with one
read/write head. In order to serve a read or write request with address addr in
some disk d ∈ [D], the memory has to move the read/write head of the disk d to
the physical location addr to perform the operation. Any such movement of the
head introduces cost and delays, and the machine that interacts with the memory

Locality-Preserving Oblivious RAM 13

would like to minimize the number of move head operations. Traditionally, the
latter can be improved by ensuring that the program accesses contiguous regions
of the memory. However, this poses a great challenge for oblivious computation
in which data is often continuously shuffled across memory.

More formally, a memory is denoted as mem[N, b,D], consisting of D disks,
indexed by the address space [N] = {1, 2, . . . , N}, where D ·N is the size of the
logical memory. We refer to each memory word also as a block and we use b
to denote the bit-length of each block. The memory supports the following two
types of instructions.

– Move head operation (move, d, addr) moves the head of the d-th disk
(d ∈ [D]) to point to address addr within that disk.

– A read/write operation (op, d, data), where op ∈ {read, write}, d ∈ [D]

and data ∈ {0, 1}b ∪ {⊥}. If op = read, then data = ⊥ and mem should
return the content of the block pointed to by the d-th disk; If op = write,
the block pointed to by the d-th disk is updated to data. The d-th head
is then incremented to point to the next consecutive address, and wrapped
around when the end of the disk is reached.

Locality. A sequence of memory operations has (D, `) worst-case locality if it
contains ` move operations to a memory that is equipped with D disks.

Examples. The above formalism enables us to distinguish between different
degrees of locality, such that:

– An algorithm that just accesses an array sequentially can be described using
a program that is (1, O(1))-local.

– An algorithm that computes the inner product of two vectors can be imple-
mented with (2, O(1))-local (but cannot be implemented with O(1) locality
with 1 disk).

– An algorithm that merges two sorted arrays is (3, O(1))-local (and cannot
be implemented with O(1) locality with only 2 disks).

– An algorithm that makes N random accesses to an array is (D, Θ(N))-local
for any constant number of D disks with overwhelming probability.

Relation to the standard memory definition. Instead of specifying which
disk to read from/write to, we can define a memory of range [D ·N] = {1, . . . ,D ·
N}. The address space determines the disk index, and therefore also whether or
not to move the read/write head. Thus, one can consider the regular notion of a
RAM program, and our definition provides a way to measure the locality of the
program. Different implementations of the same functionality can have different
locality, similarly to other metrics.

3.2 Oblivious Machines

In this section, we define oblivious simulation of functionalities, either stateless
(non-reactive) or stateful (reactive). As most prior works, we consider oblivious

14 G. Asharov, T-H.H. Chan, K. Nayak, R. Pass, L. Ren and E. Shi

simulation of deterministic functionalities only. We capture a stronger notion
than what is usually considered, in which the adversary is adaptive and can
issue request as a function of previously observed access pattern.

Warmup: Oblivious simulation of a stateless deterministic functional-
ity. We consider machines that interact with the memory via move and read/write
operations. In case of a stateless (non-reactive) functionality, the machine M
receives one instruction I as input, interacts with the memory, computes the
output and halts. Formally, we say that the stateless algorithm M obliviously
simulates a stateless, deteministic functionality f w.r.t. to the leakage function
leakage : {0, 1}∗ → {0, 1}∗, iff

– Correctness: there exists a negligible function µ(·) such that for every λ
and I, M(1λ, I) = f(I) except with µ(λ) probability.

– Obliviousness: there exists a stateless p.p.t. simulator Sim, such that for

any λ and I, Addr(M(1λ, I))
ε(λ)≡ Sim(1λ, leakage(I)), where Addr(M(1λ, I))

is a random variable denoting the addresses incurred by an execution of M
over the input I.

Depending on whether
ε(λ)≡ refers to computational or statistical indistin-

guishability, we say M is computationally or statistically oblivious. If ε(·) = 0,
we say M is perfectly oblivious. For example, an oblivious sorting algorithm is
an oblivious simulation of the functionality that receives an array and sorts it
(according to some specified preference function), where the leakage function
contains only the length of the array being sorted.

Oblivious simulation of a stateful functionality. We often care about obliv-
ious simulation of stateful functionalities. For example, the ordinary ORAM is
an oblivious simulation of a logical memory abstraction. We define a composable
notion of security for oblivious simulation of a stateful functionality below. This
time, the machine M , the simulator Sim, the functionality f and the leakage
function leakage are all interactive machines that might receive instructions as
long as they are activated, and each might maintain a secret state. Moreover,
we explicitly introduce the distinguisher A, which is now also an interactive ma-
chine. In each step, the distinguisher A observes the access pattern and selects
the next command to perform. We write (outi, addri) ← M(Ii), where outi de-
notes the intermediate output of M for the instruction Ii, and addri denote the
memory addresses accessed by M when answering the instruction Ii. We have:

Definition 3.1 (Adaptively secure oblivious simulation of stateful functionali-
ties). Let M, leakage, f be interactive machines. We say that M obliviously simu-
lates a possibly randomized, stateful functionality f w.r.t. to the leakage function
leakage iff there exists an (interactive) p.p.t. simulator Sim, such that for any
non-uniform (interactive) p.p.t. adversary A, A’s view in the following two ex-

periments, Exptreal,MA and Exptideal,fA,Sim are computationally indistinguishable.

Locality-Preserving Oblivious RAM 15

Exptreal,MA (1λ):

out0 = addr0 = ⊥
For i = 1, 2, . . . poly(λ):

Ii ← A(1λ, outi−1, addri−1)
outi, addri ←M(Ii)

Exptideal,fA,Sim (1λ):

out0 = addr0 = ⊥
For i = 1, 2, . . . poly(λ):

Ii ← A(1λ, outi−1, addri−1)
outi ← f(Ii)
addri ← Sim(leakage(Ii))

In the above definition, if we replace computational indistinguishability with
statistical indistinguishability (or identically distributed resp.) and remove the
requirement for the adversary to be polynomially bounded, then we say that the
stateful machine M obliviously simulates the stateful functionality f with statis-
tical (or perfect resp.) security. Besides the leakage of the individual instruction,
the simulator might have some additional information in the form of the public
parameters of the functionality. We also remark that Definition 3.1 captures cor-
rectness and obliviousness simultaneously, and capture both deterministic and
randomized functionalities. We refer the reader to the relevant discussions in the
literature of secure computation for the importance of capturing correctness and
obliviousness simultaneously for the case of randomized functionalities [11,24].

Our definition of oblivious simulation is general and captures any stateless
or stateful functionality, and thus later in the paper, whenever we define any
oblivious algorithm, it suffices to state 1) what functionality it computes; 2)
what is the leakage; and 3) what security (i.e., computational, statistical, or
perfect) we achieve. We use ordinary ORAM as an example to show how to use
our definitions.

Ordinary ORAM. As an example, a conventional ORAM, first proposed by
Goldreich and Ostrovsky [23], is an oblivious simulation of a “logical memory
functionality”, parameterized by (N, b), where N is the size of the logical memory
and b is the block size:

– Functionality: The internal state of the functionality consists of an array

mem ∈ ({0, 1}b)N . Upon each instruction of the form (op, addr, data), with

op ∈ {read, write}, addr ∈ [N], and data ∈ {0, 1}b ∪ {⊥}, the functionality
proceeds as follows. If op = write, then mem[addr] = data. In both cases,
the functionality returns mem[addr].

– Leakage: The simulator has the public parameters of the functionality –
N and b. With each instruction (op, addr, data), the leakage is just that an
access has been performed.

We remark that previous constructions of ORAM [32, 38, 42] in fact satisfy
Definition 3.1.

Bandwidth, and private storage of oblivious machines. Throughout the
paper, we use the terminology bandwidth to denote the total number of memory
read/write operations of size Ω(logN) a machine needs to use. We assume the
machine/algorithm has only O(1) blocks of private storage.

Remark. In this paper, we focus on hiding the access patterns to the mem-

16 G. Asharov, T-H.H. Chan, K. Nayak, R. Pass, L. Ren and E. Shi

ory, but not the data contents. Therefore, we do not explicitly mention that
data is (re-)encrypted when it is accessed, but encryption should be added since
the adversary can observe memory contents. That is, while we assume that the
adversary completely sees the instructions (move, d, addr) and (op, d, data) that
are sent to the memory, data should be encrypted. Note, however, that the ad-
versary sees in particular the contents and accesses of all disks.

4 Locality-Friendly Building Blocks

In this section, we describe several locality-friendly building blocks that are
necessary for our constructions.

4.1 Oblivious Sorting Algorithms with Locality

An important building block for our construction is an oblivious sorting algo-
rithm that is locality-friendly. In Appendix A, we describe an algorithm for
Bitonic sort to achieve good locality, and provide a detailed analysis.

Theorem 4.1 ((Theorem 2.2, restated) Perfectly secure oblivious sort with lo-
cality). Bitonic sort (when implemented as in Appendix A) is a perfectly obliv-
ious sorting algorithm that sorts n elements using O(n log2 n) bandwidth and
(2, O(log2 n)) locality.

4.2 Oblivious Deduplication with Locality

We define a handy subroutine that removes duplicates obliviously. Y ← Dedup(X,nY),
where X contains some real elements and dummy elements, and nY is some tar-
get output length. It is assumed that each real element is of the form ((k, k′), v)
where k is a primary key and k′ is a secondary key. The subroutine outputs an
array Y of length nY in which for each primary key k in X, only the element
with the smallest secondary key k′ remains (possibly with some dummies at the
end). It is assumed that the number of primary keys k is bounded by nY .

Given a locality-friendly oblivious sort, we can easily realize oblivious Dedup
with locality. We obliviously sort X by the (k, k′) tuple, scan X to replace du-
plicates with dummies, and sort X again to move dummies towards the end.
Finally, pad or truncate X to have length nY and output. The procedure is
just few scans of the array and 2 invocations of oblivious sort, and therefore
the bandwidth and locality is the same as the oblivious sort. Concretely, us-
ing Theorem 4.1 this can be implemented using O(|X| log2 |X|)-bandwidth and
(2, O(log2 |X|))-locality.

4.3 Locally Initializable ORAM

In this section, we show that the oblivious sort can be utilized to define an
(ordinary) ORAM scheme that is also locally initializable.

A locally initializable ORAM is an ORAM with the additional property that
it can be initialized efficiently and in a locality-friendly manner given a batch

Locality-Preserving Oblivious RAM 17

of initial blocks. The syntax and definitions of a locally initializable ORAM
is the same as a normal ORAM, except that the first operation in the se-
quence is a locality-friendly initialization procedure. More formally, a locally
initializable ORAM is an oblivious implementation of the following functional-
ity, parametrized by N and b:

– Secret state: an array mem of size N and block size b. Initially all are 0.

– T.Build(X) takes an input arrayX of |X| < N blocks of the form (addri, datai)

where each addri ∈ [N] and datai ∈ {0, 1}b . Blocks in X have distinct inte-
ger addresses that are not necessarily contiguous. The functionality has no
output, but it updates its internal state: For every i = 1, . . . , |X| it writes
mem[addri] = datai.

– B ← T.Access(op, addr, data) with op ∈ {read, write}, addr ∈ [N], and

data ∈ {0, 1}b. If op = write then mem[addr] = data. In both cases of
op = read and op = write, return mem[addr].

The leakage function of locally initializable ORAM reveals |X| and the number
of Access operations (as well as the public parameters N and b). Obliviousness
is defined as in Definition 3.1 with the above leakage and functionality.

Locality-friendly initialization. We now show that the hierarchical ORAM
by Goldreich and Ostrovsky [23] can be initialized in a locality-friendly manner,
i.e., how to implement Build with (2, O(poly log n)) locality, where n = |X|. To
initialize a hierarchical ORAM, it suffices to place all the n blocks in the largest
level of capacity n. In the Goldreich and Ostrovsky ORAM, each block is placed
into one of the n bins by applying a pseudorandom function PRFK(addr) where
K is a secret key known only to the CPU and addr is the block’s address. By a
simple application of the Chernoff bound, except with negl(λ) probability, each
bin’s utilization is upper bounded by α log λ for any super-constant function α.
Goldreich and Ostrovsky [23] show how to leverage oblivious sorting to oblivi-
ously initialize such a hash table. For us to achieve locality, it suffices to use a
locality-friendly oblivious sort algorithm such as Bitonic sort. This gives rise to
the following theorem:

Theorem 4.2 (Computationally secure, locally initializable ORAM). Assuming
one-way functions exist, there exists a computationally secure locally-initializable
ORAM scheme that has negl(λ) failure probability, and can be initialized with n
blocks using (n+ λ) · poly log(n+ λ) bandwidth and (2, poly log(n+ λ)) locality,
and can serve an access using poly log(n+ λ) bandwidth and (2, poly log(n+ λ))
locality.

Notice that for ordinary ORAMs, since the total work for accessing a singe
block is only polylogarithmic, obtaining polylogarithmic locality per access is
trivial. Our goal later is to achieve ORAMs where even if you access a large file
or large region, the locality is still polylogarithmic, i.e., one does not need to
split up the file into little blocks and access them one by one. Our constructions
later will leverage a locally initializable, ordinary ORAM as a building block.

18 G. Asharov, T-H.H. Chan, K. Nayak, R. Pass, L. Ren and E. Shi

5 Range ORAM

In this section, we define range ORAM and present a construction with poly-
logarithmic bandwidth and poly-logarithmic locality. The construction uses a
building block which we call an oblivious range tree (Section 5.2). It supports
read-only range lookup queries with low bandwidth and good locality. From an
oblivious range tree, we show how to construct a range ORAM, which supports
reads and updates (Section 5.3). Then, we discuss statistical and perfect secu-
rity in Section 5.4. Finally, we extend Range ORAM to online Range ORAM
(Section 5.5).

Our ORAM construction uses multiple disks only when it invokes an oblivious
sort operation (and Dedup operation which invokes an oblivious sort). Thus, for
the following algorithms, it can be assumed that the entire data is stored on a
single disk. Multiple disks are used only transiently using during an oblivious
sort or a Dedup operation.

5.1 Range ORAM Definition

A Range ORAM is an oblivious machine that supports read/write range instruc-
tions, and interacts with the memory while leaking only the size of the range.
Formally, using Definition 3.1, Range ORAM is defined as follows, parameterized
by N and b:

Functionality: The internal state is an array mem of size N and blocksize b.
Range ORAM takes as input range requests in the form Access(op, [s, t], data),

where op ∈ {read, write}, s, t ∈ [N], s < t, and data ∈ ({0, 1}b)(t−s+1). If op =
read, then it returns mem[s, . . . , t]. If op = write, then mem[s, . . . , t] = data.

Leakage: With each instruction Access(opi, [si, ti], datai), range ORAM leaks
ti − si + 1.

5.2 Oblivious Range Tree

A necessary building block for construction Range ORAM is a Range Tree. An
oblivious Range Tree is a read-only Range ORAM with an initialization proce-
dure from a list of blocks with possibly non-contiguous addresses. Formally, it is
an oblivious simulation of the following reactive functionality with the following
leakage (where obliviousness is defined using Definition 3.1):

Functionality: Formally, an oblivious Range Tree T supports the following
operations:

– T.Build(X) takes in a list X of blocks of the form (addr, data). Blocks in X
have distinct integer addresses that are not necessarily contiguous. Store X
as the secret state. Build has no output.

– B← T.Access(read, [s, t],⊥) takes in a range [s, t] and returns all (and only)
blocks in X that has addr in the range [s, t]. We assume len = t− s+ 1 = 2i

is a power of 2 for simplicity.

Locality-Preserving Oblivious RAM 19

0 1 2 3 5 6 8 9

0 1 2 3

5 6

8 9

0 1 2 3

0 1 2 3 5 6 8 9

5 6

8 9

ORAM[3]

ORAM[2]

ORAM[1]

ORAM[0]

(Stores 2 super-blocks of size 4)

ORAMmeta

height[2]

Data structures for logical region tree Data structures for oblivious region tree

8 95 6

(Stores 4 super-blocks of size 2)

(Stores 8 blocks of size 1)

(Stores 1 super-blocks of size 8)

[0,5,9]

0 1 2 3 5 6 8 9

[5,8,9][0,2,3]

[8,9,9][5,6,6][2,3,3][0,1,1]

Stores super-block
(5, 6, 8, 9)

8 Shorthand for [8,8,8]

[5,9],8
Stores range [5,9], key 8 for
BST and addr for super-block
(5,6,8,9) in ORAM[1]

[5,8,9]

Fig. 2: An oblivious Range Tree with Locality.

Leakage: T.Build(X) leaks |X|. Each T.Access(read, [s, t],⊥) leaks t− s+ 1.

A logical Range Tree. For simplicity, assume n := |X| is a power of 2; if
not, we simply pad with dummy blocks that have addr = ∞. A logical Range
Tree is a full binary tree with n leaves. Each leaf contains a block in X, sorted by
addr from left to right. Each internal node is a super-block, i.e., blocks from all
leaves in its subtree concatenated and ordered by addresses. A height-i super-
block thus has size 2i. The leaves are at height 0, and the root is at height
log2 n.

Metadata tree. Each super-block in the logical Range Tree defines a range:
[as, am, at] where as is the lowest address, at is the highest address, and am is
the middle address (the address of the 2i−1-th block for a height-i super-block).
We use another full binary tree to store the range metadata of each super-block,
henceforth referred to as the metadata tree. The metadata tree is a natural binary
search tree that supports the following search operations:

– Given a request range [s, t] with len := t− s+ 1 = 2i, find the leftmost and
rightmost height-i (super)-blocks whose ranges intersect [s, t], or return ⊥ if
none is found.

Since t − s + 1 = 2i, the leftmost and rightmost height-i (super-)blocks that
intersect [s, t] (if they exist) are either contiguous or the same node.

Next, to achieve obliviousness, we will put the metadata tree and each height
of the logical range tree into a separate ORAM, as shown in Figure 2.

Algorithm 5.1: T.Build(X). The Build algorithm takes a list of blocks X,
constructs the logical Range Tree and metadata tree, and then puts them into
ORAMs through local initialization (Section 4.3).

20 G. Asharov, T-H.H. Chan, K. Nayak, R. Pass, L. Ren and E. Shi

1. Create leaves. Obliviously sort X by the addresses. Pad X to the nearest
power of 2 with dummy blocks that have addr =∞. Let height[0] denote the
sorted X, which will be the leaves of the logical Range Tree.

2. Create super-blocks. For each height i = 1, 2, . . . , L := log2 n, create
height-i super-blocks by concatenating their two child nodes. Let height[i]
denote the set of height-i super-blocks. Tag each super-block with its offset
in the height.

3. Create metadata tree. Let metadata be the resulting metadata tree rep-
resented as an array, i.e., metadata[i] is the parent of metadata[2i + 1] and
metadata[2i + 2]. Tag each node in the metadata tree with its offset in
metadata.

4. Put each height and metadata tree in ORAMs. For each height i =
0, 1, . . . , L, let Hi be a locally initializable ORAM from Section 4.3, and call
Hi.Build(height[i]) in which each height-i super-block behaves as an atomic
block. Let Hmeta be a locally initializable ORAM, and call Hmeta.Build(metadata).

Algorithm 5.2: T.Access(read, [s, t],⊥) (with len = t− s+ 1 = 2i)

1. Look up address. Call Hmeta.Access(·) 2L times to obliviously search for
the leftmost and rightmost height-i (super-)blocks in the logical Range Tree
that intersects [s, t]. Suppose they have addresses addr1 and addr2 (which
may be the same and may both be ⊥).

2. Retrieve super-blocks. Call B1 ← Hi.Access(read, addr1,⊥) and B2 ←
Hi.Access(read, addr2,⊥) to retrieve the two (super-)blocks.

3. Output. Remove blocks from B1 and B2 that are not in [s, t]. Output B =
Dedup(B1 || B2, len).

We prove the following theorem in the full version.

Theorem 5.3 (Oblivious Range Tree). Assuming one-way functions exist, there
exists a computationally secure oblivious Range Tree scheme that has correctness
except with negl(λ) probability, and
– Build requires n · poly log(n+ λ) bandwidth and (2, poly log(n+ λ)) locality,
– Access requires poly log(n+ λ) bandwidth and (2, poly log(n+ λ)) locality.

5.3 Range ORAM from Oblivious Range Tree

In this section, we show how to construct a Range ORAM from oblivious Range
Tree scheme. Since the underlying oblivious Range Tree has good efficiency/locality,
so will the resulting Range ORAM. The idea behind our construction is similar
to that of the standard hierarchical ORAM [23, 25]. Intuitively, where a stan-
dard hierarchical ORAM employs an oblivious hash table, we instead employ an
oblivious Range Tree.

Data structure. We use N to denote both the total size of logical data blocks
as well as the security parameter. There are logN+1 levels numbered 0, 1, . . . , L
respectively, where L := dlog2Ne is the maximum level. Each level is an obliv-
ious Range Tree denoted T0,T1, . . . ,TL where Ti has capacity 2i. Data will be

Locality-Preserving Oblivious RAM 21

replicated across these levels. We maintain the invariant that data in lower levels
are fresher. At any time, each Ti can be in two possible states, non-empty or
empty. Initially, the largest level is marked non-empty, whereas all other levels
are marked empty.

Algorithm 5.4: Range ORAM Access(op, [s, t], data) (with t− s+ 1 = 2i for
some i).

1. Retrieve all blocks in range trees of capacity no more than 2i, i.e., fetched :=
∪i−1j=0Tj . This can be easily done by fetching its root. Mark blocks in fetched

that are not in the range [s, t] as dummy.
Each real block in fetched is tagged with its level number j as a secondary
key so that later after calling Dedup(fetched, t−s+1), where Dedup is defined
in Section 4.2, only the most fresh version of each block remains. We assume
each block also carries a copy of its address.

2. For each j = i, i + 1, . . . , L , if Tj is non-empty, let fetched = fetched ∪
Tj .Access(read, [s, t],⊥).

3. Let data∗ := Dedup(fetched, 2i). If op = read , then data∗ will be returned
at the end of the procedure. Else, data∗ := data.

4. If all levels ≤ i are marked empty then perform Ti.Build(data∗) and mark it
as ready. Otherwise:
(a) Let ` denote the smallest level greater than i that is empty. If no such

level exists, let ` := L.

(b) Let S := ∪`−1j=0Tj . If ` = L, additionally include S := S ∪ TL. Call

T`.Build(Dedup(S, 2`)) and Ti.Build(data∗). Mark levels ` and i as non-
empty, and all other levels below ` as empty.

Example. We show a simple example for how levels are updated after some
accessed. We assume initially that all blocks are stored in the largest Range
Tree. Consider the following sequence of ranges [1, 1], [2, 3], [4, 5], [6, 6].

– Access [1, 1]: A block of size 1. Added to T0.
– Access [2, 3]: A block of size 2, and so i = 1. Levels ≤ i are not empty. The

smallest empty level larger than i = 1 is 2. Thus, move [1, 1] to T2 (which
has capacity 4), and then put [2, 3] to T1. At this point, T0 is empty and T1

and T2 are occupied.
– Access [4, 5]: A block of size 2, and so i = 1. Levels ≤ i are not empty.

The smallest empty level larger than i = 1 is 3. Thus, move {1, 2, 3} to T3

(which has capacity 8), and then put [4, 5] to T1. At this point, T0 and T2

are empty, and T1 and T3 are occupied.
– Access [6, 6]: A block of size 1, and so i = 0. Levels ≤ i are empty. [6, 6] is

added to T0. At this point, T2 is empty, and T0, T1 and T3 are occupied.

The following theorem is proven in the full version of the paper.

Theorem 5.5 (Range ORAM). Assuming one-way functions exist, there ex-
ists a computationally secure Range ORAM consuming O(N logN) space with
negl(N) failure probability, and len · poly logN bandwidth and (2, poly logN) lo-
cality for accessing a range of size len.

22 G. Asharov, T-H.H. Chan, K. Nayak, R. Pass, L. Ren and E. Shi

We remark that the both bandwidth and locality are in an amortized sense:
for sufficiently large amount of accesses of contiguous addresses len1, . . . , lenm,
the total bandwidth is (

∑m
i=1 leni) · poly logN and locality is (2,m · poly logN).

5.4 Perfectly Security Range ORAM

The computational security in our construction is due to the use of a computa-
tionally secure locally initializable hierarchical ORAM (Theorem 4.2).

We can achieve perfect security by making the perfectly secure ORAM con-
struction with polylogarithmic bandwidth in Chan et al. [15] locally initializable.

For a hierarchical ORAM, within each level, the position of a data block is
determined by applying a PRF to the block’s logical address. To achieve perfect
security, Chan et al. [15] replace the PRF with a truly random permutation. To
access a block within a level, the client must first figure out the block’s correct
location within the level. If the client had linear storage, it could simply store
the locations (or position labels). To achieve small client storage, Chan et al.
recursively store the position labels in a smaller ORAMs, similar to the idea
of recursion in tree-based ORAMs [37]. Thus, there are logarithmically many
ORAMs (each is a perfectly secure hierarchical ORAM), where the ORAM at
depth d stores position labels for the ORAM at depth d + 1; and finally, the
ORAM at the maximum depth D = O(logN) stores the real data blocks.

The Build procedure for one ORAM depth relies only on oblivious sorts and
linear scans, and thus consumes (2, poly logN) locality using locality-preserving
Bitonic sort. The Build procedure for one ORAM depth outputs its position map,
which is subsequently used to initialize the next ORAM depth. Thus, all ORAM
depths combined can be initialized with (2, poly logN) locality. Thus, we have
the following theorem.

Theorem 5.6 (Perfectly secure Range ORAM). There exists a perfectly se-
cure Range ORAM consuming O(N logN) space, len · poly logN bandwidth and
(2, poly logN) locality for accessing a range of size len.

5.5 Online Range ORAM

So far, our range ORAM assumes an abstraction where we have foresight on
how many contiguous locations of logical memory we wish to access. We now
consider an online variant, where the memory requests arrive one by one just as
in normal ORAM. Formally:

Functionality: A logical memory functionality that supports the fol-
lowing types of instructions:
– (op, addr, data): where op ∈ {read, write}, addr ∈ [N] and data ∈
{0, 1}b ∪ {⊥}. If op = write, then write mem[addr] = data. In both
cases, return mem[addr].

Leakage: Consider a sequence of requests I = ((op1, addr1, data1), . . . ,
(opi, addri, datai), . . .). Each instruction leaks one bit indicating whether
the last instruction is contiguous, i.e., for every i, the leakage is 1 iff
addri+1 = addri + 1.

Locality-Preserving Oblivious RAM 23

Blackbox construction of online range ORAM from range ORAM.
Given a range ORAM construction, we can convert it to an online range ORAM
scheme as follows, incurring only logarithmic further blowup. Intuitively, the
idea is to prefetch a contiguous region of size 2k every time a 2k contiguous re-
gion has been accessed. That is, if a contiguous region of overall size 2k is being
read, then it is fetched as k distinct blocks of size 1, 2, 4, 8, . . . , 2k. The detailed
construction is given below:

Let prefetch be a dedicated location in memory storing prefetched contiguous
memory regions. Initially, let rsize := 1, p = 1, and let prefetch := ⊥. Upon
receiving a memory request:

– If prefetch[p] does not match the logical address requested, then do the fol-
lowing.
1. First, write back the entire prefetch back into the range ORAM.

2. Next, request a region of length 1 consisting of only the requested logical
address, store the result in prefetch;

3. Reset p := 1 and rsize := 1;

– Read and write prefetch[p], and let p := p+ 1.

– If p > rsize, then do the following.
1. First, let rsize := 2 · rsize.
2. Next, write prefetch back into the range ORAM.

3. Now, prefetch the next contiguous region containing rsize logical ad-
dresses, and store them in prefetch, and let p := 1.

It is not hard to see that given the above algorithm, accessing each range
of size R will be broken up into at most O(logR) accesses, to regions of sizes
1, 2, 4, . . . , R respectively, and each size has one read request and one write re-
quest. Security is straightforward as range ORAM is oblivious, and the transfor-
mation between the leakage profiles of online range ORAM and range ORAM is
straightforward. Thus we have the following theorem.

Theorem 5.7 (Online Range ORAM). There exists a perfectly secure online
Range ORAM, which on receiving len consecutive memory locations online per-
forms len · poly logN bandwidth and achieves (2, poly logN) locality.

6 Lower Bound for More Restricted Leakage

In Section 5.5, the online range ORAM leaks which instructions form a contigu-
ous group of addresses. In this section, we show that if we restrict the leakage
and do not allow the adversary to learn whether adjacent instructions access
contiguous addresses, the lower bound for bandwidth to achieve locality will be
significantly worse.

Model assumptions. We first clarify the model in which we prove the lower
bound.

24 G. Asharov, T-H.H. Chan, K. Nayak, R. Pass, L. Ren and E. Shi

1. We restrict the leakage such that the adversary knows only the number N of
logical blocks stored in memory, and the total number T of online operations,
each of which has the form (op, addr, data), where op ∈ {read, write}, addr ∈
[N] and data ∈ {0, 1}b ∪ {⊥}.

2. Just like earlier ORAM lower bounds [10, 23, 25]), we assume the so-called
balls-and-bins model, i.e., the blocks are opaque objects and the algorithm,
for instance, cannot use encoding techniques to combine blocks in the stor-
age. Note that all known ORAM algorithms indeed fall within this model.

3. We assume that the algorithm has an offline phase in which it can preprocess
memory before seeing any instructions. However, recall that the instructions
are online, i.e., the algorithm must finish serving an instruction before seeing
the next one.

Notation. Recall that we use D to denote the number of disks (each of which has
a single head), ` to denote the locality (where we consider the very general case
` ≤ N

10), m to denote the memory size blowup7, and β to denote the bandwidth.
Moreover, suppose the CPU has only c block of local cache, where we just need
a loose bound c ≤ N

10 . We shall prove the following theorem.

Theorem 6.1. For any `, c ≤ N
10 , any Online Range ORAM satisfying the

restricted leakage that has (D, `)-locality with c blocks of cache storage will incur
Ω(ND) bandwidth.

Proof Intuition. By our leakage restriction assumption, the adversary cannot
distinguish between the following two scenarios.

1. There are N operations that access contiguous addresses in the order from
0 to N − 1.

2. There are N operations, each of which access an address chosen indepen-
dently uniformly at random from [N].

Observe that to achieve (D, `)-locality, in scenario 1, there can be at most `
jumping moves for the disk heads. Therefore, the same must hold for scenario 2.
To serve an online request in scenario 2, we consider the following cases.

1. The block of the requested address is already in the cache. (However, the
ORAM might still pretend to do some accesses.) Observe this happens with
probability at most c

N ≤ 1
10 , since the next requested address is chosen

independently uniformly at random.

2. The online request is served by some disk head jump, which takes O(1)
physical accesses. Again, the ORAM might make other accesses to hide the
access pattern. Observe at most ` ≤ N

10 requests can be served this way.

3. The online request is served by linear scan of the disk heads. By the Chernoff
Bound, except with e−Θ(N) probability, at least N

2 of the requests are served
by linear scan. The following lemma gives a stochastic lower bound on the
number of physical accesses in this case.

7 However, as we shall see, m does not play a role in the lower bound.

Locality-Preserving Oblivious RAM 25

For ease of notation, we assume that K := N−c
D is an integer.

Lemma 6.2 (Stochastic Lower Bound on the Number of Physical Accesses).
Suppose in Scenario 2, the block of the next random address requested is not in
the ORAM’s cache. Moreover, suppose this request is served by only linear scan
of disk heads, i.e., no jump move is made. Then, the random variable of the
number of physical accesses for serving this request stochastically dominates the
random variable with uniform distribution on {1, 2, . . . , N−cD }.

Proof. Consider some configuration of the disk heads. Without loss of generality,
assume that the cache currently stores the blocks for exactly c distinct addresses.
For each of the remaining N−c addresses, we can assign it to the disk head that
takes a minimum number of accesses to reach a corresponding block by linear
scan, where a tie can be resolved arbitrarily. For each j ∈ [D], let aj be the
number of addresses assigned to disk head j; observe that we have

∑
j∈[D] aj =

N − c.
For each integer 1 ≤ i ≤ K = N−c

D , observe that the number of addresses that
take at least i physical accesses to reach is at least

∑
j∈[D] max{0, aj − i+ 1} ≥

D · (K − i+ 1), where the last equality holds when all aj ’s equal K.
Hence, the probability that at least i physical accesses is needed is at least

D·(K−i+1)
N−c = K−i+1

K , which implies the required result.

Lemma 6.3 (Lower Bound on Bandwidth). Except with probability at most e−Θ(N),
the average number of physical accesses to serve each request in Scenario 2 is at
least Ω(ND).

Proof. As observed above, except with at most e−Θ(N) probability, at least N
2 of

the online requests must be served by linear scan of disk heads. By Lemma 6.2,
the number of physical accesses for each such request stochastically dominates
the uniform distribution on {1, 2, . . . , N−cD }, which has expectation Θ(ND), since

we assume the cache size c ≤ N
10 .

Since the addresses of the online requests are picked independently after the
previous requests are served, by Chernoff bound, except with probability e−Θ(N),
the average number of physical accesses to serve each such online request is at
least Ω(ND), as required.

7 Conclusions and Open Problems

We initiate a study of locality in oblivious RAM. For conclusion, we obtain the
following results:

– There is an ORAM scheme that makes use of only 2 disks, that preserves the
locality of the input program. Namely, if the input program accesses in total
` discontiguous regions, the ORAM scheme accesses at most ` · poly logN
discontiguous regions. Moreover, if the program accesses in total T logical
addresses, then the ORAM accesses in total T · poly logN addresses. The
ORAM leaks the sizes of the contiguous regions being accessed.

26 G. Asharov, T-H.H. Chan, K. Nayak, R. Pass, L. Ren and E. Shi

– Without leaking the sizes, we show a lower bound that the bandwidth of an
oblivious program must be Ω(N), assuming O(1)-disks.

Open problems. We hope that our result will inspire future work on this topic.
In the following, we provide several open questions on further understanding the
trade-off between locality and bandwidth in oblivious compilation.

Preserving the number of disks. Our ORAM construction compiles (1, `)-
local program into (2, poly logN)-local program that is oblivious. Is it possible
to achieve a compiler that preserve the number of disks? We emphasize that our
construction uses the second disk only in the oblivious sorting, and it unclear
whether sorting with (1, ` · poly logN)-locality is possible to achieve.

Supporting more expressive input programs. Our motivated appli-
cations (e.g., outsourced file server, outsourced range query database), involve
fetching some region from the memory and then accessing it in a streaming fash-
ion. That is, we focused so far on supporting ORAM for (1, `)-local programs.
A natural generalization is to construct an ORAM scheme that supports more
expressive input programs, such as (D, `)-local programs for D ≥ 2. This allows,
for instance, computing inner products of D-arrays, or merging D-arrays. The
input program sends to the memory instructions that also specify which disks to
access, i.e., instructions of the form (move, d, addr) and (op, d, data), as defined
in Section 3. As we discuss further in the appendices of the online full version [5],
depending on how we formulate the allowable leakage, the problem can be easy
or an open challenge.

Locality preserving OPRAM. We have considered a single CPU in this
work. A natural question is whether we can extend the construction to support
multiple CPUs, namely, to construct an oblivious parallel RAM (OPRAM) that
preserves locality.

Asymptotic efficiency. We have showed the theoretic feasibility of con-
structing a Range ORAM with poly-logarithmic work and locality. In this feasi-
bility result, we favored conceptual simplicity over optimizing poly-logarithmic
factors. Nevertheless, it is interesting to see to what extent the constructions can
be optimized. Perhaps locality-preserving ORAM can be constructed with the
same bandwidth efficiency as a regular ORAM?

Acknowledgments

This work was partially supported by a Junior Fellow award from the Simons
Foundation to Gilad Asharov. This work was supported in part by NSF grants
CNS-1314857, CNS-1514261, CNS-1544613, CNS-1561209, CNS-1601879, CNS-
1617676, an Office of Naval Research Young Investigator Program Award, a
Packard Fellowship, a Sloan Fellowship, Google Faculty Research Awards, a
VMWare Research Award, and a Baidu Faculty Research Award to Elaine Shi.
Kartik Nayak was partially supported by a Google Ph.D. Fellowship Award.
T-H. Hubert Chan was partially supported by the Hong Kong RGC under the
grant 17200418.

Locality-Preserving Oblivious RAM 27

References

1. Bitonic sorter. https://en.wikipedia.org/wiki/Bitonic_sorter, online; ac-
cessed October 2018

2. Ajtai, M., Komlós, J., Szemerédi, E.: An O(N logN) sorting network. In: ACM
Symposium on Theory of Computing (STOC ’83). pp. 1–9 (1983)

3. Apon, D., Katz, J., Shi, E., Thiruvengadam, A.: Verifiable oblivious storage. In:
Public Key Cryptography (PKC’14). pp. 131–148 (2014)

4. Arge, L., Ferragina, P., Grossi, R., Vitter, J.S.: On sorting strings in external
memory (extended abstract). In: ACM Symposium on the Theory of Computing
(STOC ’97). pp. 540–548 (1997)

5. Asharov, G., Chan, T.H.H., Nayak, K., Pass, R., Ren, L., Shi, E.: Locality-
preserving oblivious ram. Online full version of this paper, https://eprint.iacr.
org/2017/772

6. Asharov, G., Komargodski, I., Lin, W.K., Nayak, K., Peserico, E., Shi, E.: Op-
tORAMa: Optimal oblivious RAM. Cryptology ePrint Archive, Report 2018/892

7. Asharov, G., Naor, M., Segev, G., Shahaf, I.: Searchable symmetric encryption:
optimal locality in linear space via two-dimensional balanced allocations. In: ACM
Symposium on Theory of Computing (STOC ’16). pp. 1101–1114 (2016)

8. Asharov, G., Segev, G., Shahaf, I.: Tight tradeoffs in searchable symmetric encryp-
tion. In: CRYPTO (1). vol. 10991, pp. 407–436 (2018)

9. Batcher, K.E.: Sorting Networks and Their Applications. AFIPS ’68 (1968)
10. Boyle, E., Naor, M.: Is there an oblivious RAM lower bound? In: ACM Conference

on Innovations in Theoretical Computer Science (ITCS ’16). pp. 357–368 (2016)
11. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.

Cryptology 13(1), 143–202 (2000)
12. Cash, D., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M., Steiner, M.: Highly-

scalable searchable symmetric encryption with support for boolean queries. In:
Advances in Cryptology - CRYPTO 2013. Proceedings, Part I. pp. 353–373 (2013)

13. Cash, D., Tessaro, S.: The locality of searchable symmetric encryption. In: Ad-
vances in Cryptology - EUROCRYPT 2014. vol. 8441, pp. 351–368 (2014)

14. Chakraborti, A., Aviv, A.J., Choi, S.G., Mayberry, T., Roche, D.S., Sion, R.:
rORAM: Efficient Range ORAM with O(log2 N) Locality. In: Network and Dis-
tributed System Security (NDSS) (2019)

15. Chan, T.H., Nayak, K., Shi, E.: Perfectly secure oblivious parallel RAM. In: Theory
of Cryptography Conference (TCC) (2018)

16. Chan, T.H., Chung, K.M., Maggs, B., Shi, E.: Foundations of differentially oblivi-
ous algorithms. In: Symposium on Discrete Algorithms (SODA) (2019)

17. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Asi-
acrypt. pp. 577–594. Springer (2010)

18. Chung, K.M., Liu, Z., Pass, R.: Statistically-secure ORAM with Õ(log2 n) over-
head. In: Asiacrypt (2014)

19. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric en-
cryption: improved definitions and efficient constructions. In: ACM Conference on
Computer and Communications Security (CCS ’06). pp. 79–88 (2006)

20. Demertzis, I., Papadopoulos, D., Papamanthou, C.: Searchable encryption with
optimal locality: Achieving sublogarithmic read efficiency. In: CRYPTO (2018)

21. Demertzis, I., Papamanthou, C.: Fast searchable encryption with tunable locality.
In: SIGMOD Conference. pp. 1053–1067. ACM (2017)

22. Devadas, S., van Dijk, M., Fletcher, C.W., Ren, L., Shi, E., Wichs, D.: Onion
ORAM: a constant bandwidth blowup oblivious RAM. In: TCC (2016)

https://en.wikipedia.org/wiki/Bitonic_sorter
https://eprint.iacr.org/2017/772
https://eprint.iacr.org/2017/772

28 G. Asharov, T-H.H. Chan, K. Nayak, R. Pass, L. Ren and E. Shi

23. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: STOC (1987)

24. Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press (2004)

25. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM (1996)

26. Goodrich, M.T.: Zig-zag sort: a simple deterministic data-oblivious sorting algo-
rithm running in o(n log n) time. In: STOC (2014)

27. Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data
via oblivious RAM simulation. In: ICALP (2011)

28. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Financial Cryptography and Data Security. pp. 258–274 (2013)

29. Kellaris, G., Kollios, G., Nissim, K., O’Neill, A.: Generic attacks on secure out-
sourced databases. In: ACM CCS. pp. 1329–1340 (2016)

30. Kellaris, G., Kollios, G., Nissim, K., O’Neill, A.: Accessing data while preserving
privacy. CoRR abs/1706.01552 (2017), http://arxiv.org/abs/1706.01552

31. Kurosawa, K., Ohtaki, Y.: How to update documents verifiably in searchable sym-
metric encryption. In: International Conference on Cryptology and Network Secu-
rity. pp. 309–328. Springer (2013)

32. Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in)security of hash-based oblivious
RAM and a new balancing scheme. In: SODA (2012)

33. Larsen, K.G., Nielsen, J.B.: Yes, there is an oblivious RAM lower bound! In:
CRYPTO. pp. 523–542 (2018)

34. Patel, S., Persiano, G., Raykova, M., Yeo, K.: Panorama: Oblivious RAM with
logarithmic overhead. FOCS (2018)

35. Ruemmler, C., Wilkes, J.: An introduction to disk drive modeling. IEEE Computer
27(3), 17–28 (1994)

36. Shi, E., Chan, T.H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)3)
worst-case cost. In: ASIACRYPT (2011)

37. Shi, E., Chan, T.H.H., Stefanov, E., Li, M.: Oblivious ram with o((logn)3) worst-
case cost. In: ASIACRYPT. pp. 197–214 (2011)

38. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.: Path
ORAM – an extremely simple oblivious ram protocol. In: CCS (2013)

39. Van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P., Jonker, W.: Computationally
efficient searchable symmetric encryption. In: Workshop on Secure Data Manage-
ment. pp. 87–100. Springer (2010)

40. Vitter, J.S.: External memory algorithms and data structures. ACM Comput. Surv.
33(2), 209–271 (2001)

41. Vitter, J.S.: Algorithms and data structures for external memory. Foundations and
Trends in Theoretical Computer Science 2(4), 305–474 (2006)

42. Wang, X., Chan, T.H., Shi, E.: Circuit ORAM: on tightness of the goldreich-
ostrovsky lower bound. In: ACM Conference on Computer and Communications
Security. pp. 850–861. ACM (2015)

43. Wang, X.S., Huang, Y., Chan, T.H.H., Shelat, A., Shi, E.: SCORAM: Oblivious
RAM for Secure Computation. In: CCS (2014)

44. Williams, P., Sion, R.: Usable PIR. In: Network and Distributed System Security
Symposium (NDSS) (2008)

45. Williams, P., Sion, R.: Round-optimal access privacy on outsourced storage. In:
ACM Conference on Computer and Communication Security (CCS) (2012)

46. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: practical access
pattern privacy and correctness on untrusted storage. In: CCS. pp. 139–148 (2008)

http://arxiv.org/abs/1706.01552

Locality-Preserving Oblivious RAM 29

A Appendix: Locality of Bitonic sort

In this section, we first analyze the locality of Bitonic sort, which runs in
O(n log2 n) time.

We call an array of numbers bitonic if it consists of two monotonic sequences,
the first one ascending and the other descending, or vice versa. For an array S,

we write it as Ŝ if it is bitonic, as
−→
S (resp.

←−
S) if it is sorted in an ascending

(resp. descending) order.

The algorithm is based on a “bitonic split” procedure
−−→
Split, which receives as

input a bitonic sequence Ŝ of length n and outputs a sorted sequence
−→
S .
−−→
Split

first separates Ŝ into two bitonic sequences Ŝ1, Ŝ2, such that all the elements in

S1 are smaller than all the elements in S2. It then calls
−−→
Split recursively on each

sequence to get a sorted sequence.

Procedure A.1:
−→
S =

−−→
Split(Ŝ)

– Let Ŝ1 =
〈
min(a0, an/2),min(a1, an/2+1), . . . ,min(an/2−1, an−1)

〉
.

– Let Ŝ2 =
〈
max(a0, an/2),max(a1, an/2+1), . . . ,max(an/2−1, an−1)

〉
.

–
−→
S 1 =

−−→
Split(Ŝ1),

−→
S 2 =

−−→
Split(Ŝ2) and

−→
S = (

−→
S 1,
−→
S 2).

Similarly,
←−
S =

←−−
Split(Ŝ) sorts the array in a descending order. We refer to [9]

for details.
To sort an array S of n elements, the algorithm first converts S into a bitonic

sequence using the Split procedures in a bottom up fashion, similar to the struc-
ture of merge-sort. Specifically, any size-2 sequence is a bitonic sequence. In each
iteration i = 1, . . . , log n − 1, the algorithm merges each pair of size-2i bitonic

sequences into a size-2i+1 bitonic sequence. Towards this end, it uses the
−−→
Split

and
←−−
Split alternately, as two sorted sequences (

−→
S 1,
←−
S 2) form a bitonic sequence.

The full bitonic sort algorithm is presented below:

Algorithm A.2: BitonicSort(S)

1. Convert S to a bitonic sequence: For i = 1, . . . , log n− 1:

(a) Let S = (Ŝ0, . . . , Ŝn/2i−1) be the size-2i bitonic sequences from the pre-
vious iteration.

(b) For j = 0, . . . , n/2i+1 − 1, B̂j = (
−−→
Split(Ŝ2j),

←−−
Split(Ŝ2j+1)).

(c) Set S = (B̂0, . . . , B̂n/2i+1−1).

2. The array Ŝ is now a bitonic sequence. Apply
−→
S =

−−→
Split(Ŝ) to obtain a

sorted sequence.

Locality and obliviousness. It is easy to see that the sorting algorithm is
oblivious, as all accesses to the memory are independent of the input data. For

locality, first note that procedure
−−→
Split and

←−−
Split are (2, O(log n))-local. No move

operations are needed between instances of recursions, as these can be executed
one after another as iterations (and using some vacuous reads). Thus, Algo-

rithm A.2 is (2, O(log2 n))-local as it runs in logn iterations, each invoking
−−→
Split

30 G. Asharov, T-H.H. Chan, K. Nayak, R. Pass, L. Ren and E. Shi

and
←−−
Split. Figure 3 gives a graphic representation of the algorithm for input size

8 and Figure 4 illustrates its locality. The (2, O(log2 n)) locality of Bitonic sort
is also obvious from the figure.

Remark. Observe that in each pass of
−−→
Split (or

←−−
Split), a min/max operation

is a read-compare-write operation. Thus, strictly speaking, each memory loca-
tion is accessed twice for this operation – once for reading and once for writing.
When the write is performed, the read/write head has already moved forward
and is thus not writing back to the same two locations that it read from. Going
back to the same two locations would incur an undesirable move head operation.
However, we can easily convert this into a solution that still preserves (2, O(1))-

locality for each pass of
−−→
Split by introducing a slack after every memory location

(and thus using twice the amount of storage). In this solution, every memory lo-
cation ai is followed by a′i; the entire array is stored as ((a0, a

′
0), . . . , (an−1, a

′
n−1))

where ai stores real blocks and a′i is a slack location. When ai and aj are com-
pared, the results can be written to a′i and a′j respectively without incurring a
move operation. Before starting the next iteration, we can move the data from
slack locations to the actual locations in a single pass, thus preserving (2, O(1))-

locality for each pass of
−−→
Split (and

←−−
Split).

Fig. 3: Bitonic sorting network for 8 inputs. Input come in from the left end,
and outputs are on the right end. When two numbers are joined by an arrow, they are
compared, and if necessary are swapped such that the arrow points from the smaller
number toward the larger number. This figure is modified from [1].

Disk 1

Disk 2

Operation

0

1

1

2

2

3

6

7

3

4

0 1 2 3

2 3 4 5

4

5

5

6

4 5

6 7

0

1

1

2

2

3

6

7

3

4

4

5

5

6

Pass 1 Pass 2 Pass 3

Time

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Fig. 4: Locality of Bitonic Sort for 8 elements. The figure shows the allocation
of the data in the two disks for an 8 element array. For each input, either a compare-
and-swap operation is performed in the specified direction or the input is ignored as
denoted by ⊥. The figure shows the first 3 passes out of the required 6 passes for 8
elements (see Figure 3).

	Locality-Preserving Oblivious RAM

