
Unbounded Dynamic Predicate Compositions in
Attribute-Based Encryption

Nuttapong Attrapadung

National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan.

n.attrapadung@aist.go.jp

Abstract. We present several transformations that combine a set of
attribute-based encryption (ABE) schemes for simpler predicates into
a new ABE scheme for more expressive composed predicates. Previous
proposals for predicate compositions of this kind, the most recent one
being that of Ambrona et al. at Crypto’17, can be considered static
(or partially dynamic), meaning that the policy (or its structure) that
specifies a composition must be fixed at the setup. Contrastingly, our
transformations are dynamic and unbounded: they allow a user to specify
an arbitrary and unbounded-size composition policy right into his/her
own key or ciphertext. We propose transformations for three classes of
composition policies, namely, the classes of any monotone span programs,
any branching programs, and any deterministic finite automata. These
generalized policies are defined over arbitrary predicates, hence admitting
modular compositions. One application from modularity is a new kind of
ABE for which policies can be “nested” over ciphertext and key policies.
As another application, we achieve the first fully secure completely un-
bounded key-policy ABE for non-monotone span programs, in a modular
and clean manner, under the q-ratio assumption. Our transformations
work inside a generic framework for ABE called symbolic pair encoding,
proposed by Agrawal and Chase at Eurocrypt’17. At the core of our
transformations, we observe and exploit an unbounded nature of the
symbolic property so as to achieve unbounded-size policy compositions.

1 Introduction

Attribute-based encryption (ABE), introduced by Sahai and Waters [32], is a
paradigm that generalizes traditional public key encryption. Instead of encrypting
to a target recipient, a sender can specify in a more general way about who
should be able to view the message. In ABE for predicate P : X × Y → {0, 1},
a ciphertext encrypting message M is associated with a ciphertext attribute,
say, y ∈ Y, while a secret key, issued by an authority, is associated with a key
attribute, say, x ∈ X, and the decryption will succeed if and only if P (x, y) = 1.
From an application point of view, we can consider one kind of attributes as
policies, and the other kind as inputs to policies. In this sense, we have two basic
forms of ABE called key-policy (KP) and ciphertext-policy (CP), depending on
which side has a policy associated to.

2

Predicate Compositions. A central theme to ABE has been to expand the
expressiveness by constructing new ABE for more powerful predicates (e.g.,
[21,12,28,29,30,20]). In this work, we continue this theme by focusing on how
to construct ABE for compositions of predicates. We are interested in devising
transformations that combine ABE schemes for based predicates to a new ABE
scheme for their composed predicate. To motivate that this can be powerful in
the first place, we introduce an example pritimive called Nested-policy ABE.

Example: Nested-policy ABE. As the name suggests, it allows a key policy
and a ciphertext policy to be nested to each other. This might be best described
by an example. Suppose there are three categories for attributes: Person, Place,
Content. Attached to a key, we could have attribute sets/policies categorized
to three categories, Person:{Trainee, Doctor}, Place:{Paris, Zip:75001},
Content:‘(Kidney and Disease) or Emergency’, with a “composition policy”
such as ‘Person or (Place and Content)’, which plays the role of concluding
the whole policy. A ciphertext could be associated to Person:‘Senior and
Doctor’, Place:‘Paris or London’, Content:{Kidney, Disease, Cancer}.
Now we argue that the above key can be used to decrypt the ciphertext since
the attribute set for Place satisfies the corresponding policy in the ciphertext,
while the policy for Content is satisfied by the corresponding attribute sets
in the ciphertext, and the concluding policy (attached to the key) states that if
both Place and Content categories are satisfied, then it can decrypt.

We can consider this as a composition of two CP-ABE sub-schemes for the
first two categories and KP-ABE for the last category, while on the top of that,
a KP-ABE scheme over the three categories is then applied. To the best of our
knowledge, no ABE with nested-policy functionality has been proposed so far,
and it is not clear in the first place how to construct even for specific policies.

Our Design Goal. We aim at constructing unbounded, dynamic, and generic
transformations for predicate compositions. Dynamicity refers to the property
that one can choose any composition policy (defined in some sufficiently large
classes) when composing predicates. In the above example, this translates to
the property that the concluding policy is not fixed-once-and-for-all, where, for
instance, one might want to define it instead as ‘(Person and Content) or
Place’, when a key is issued. Moreover, we aim at modular compositions where
we can recursively define policies over policies, over and over again. Furthermore,
for highest flexibility, we focus on unbounded compositions, meaning that the sizes
of composition policies and attribute sets are not a-priori bounded at the setup.
Generality refers to that we can transform any ABE for any based predicates.
This level of generality might be too ambitious, since this would imply an attempt
to construct ABE from ID-based Encryption (IBE), of which no transformation
is known. We thus confine our goal to within some well-defined ABE framework
and/or a class of predicates. Towards this, we first confine our attention to ABE
based on bilinear groups, which are now considerably efficient and have always
been the main tool for constructing ABE since the original papers [32,21].

Previous Work on Predicate Compositions. We categorize as follows.

3

– Static & Specific. Dual-policy ABE (DP-ABE), introduced in [4], is the AND
composition of KP-ABE and CP-ABE (both fixed for the Boolean formulae
predicate). The fixed AND means that it is static. The underlying ABE schemes
are also specific schemes, namely, those of [21,33].

– Static & Small-class & Generic. Attrapadung and Yamada [10] proposed
a more general conversion that can combine ABE for any predicates that can
be interpreted in the so-called pair encoding framework [5,6,1,2], but again,
fixed for only the AND connector. A generic DUAL conversion, which swaps
key and ciphertext attribute, was also proposed in [5,10]. All in all, only a
small class of compositions were possible at this point.

– Static/Partially-dynamic & Large-class & Generic. Most recently, at
Crypto’17, Ambrona, Barthe, and Schmidt [3] proposed general tranformations
for DUAL, AND, OR, and NOT connectors, hence complete any Boolean for-
mulation, and thus enable a large class of combinations. Their scheme is generic
and can combine ABE for any predicates in the so-called predicate encoding
framework [36,16]. However, their compositions are static ones, where such a
composition policy has to be fixed at the setup. A more flexible combination (§2
of [3]), which we call partially dynamic, is also presented, where the structure
of the boolean combination must be fixed.

Our Contributions: Dynamic & Large-class & Generic. We propose
unbounded, dynamic, and generic transformations for predicate compositions that
contain a large class of policies. They are generic in the sense that applicable ABE
schemes can be any schemes within the generic framework of pair encoding, see
below. These transformation convert ABE schemes for a set of “atomic” predicates
P = {P1, . . . , Pk} to an ABE scheme for what we call policy-augmented predicate
over P. Both key-policy and ciphertext-policy augmentations are possible. In
the key-policy case, the dynamicity allows a key issuer to specify a policy over
atomic predicates, like the concluding policy over three sub-schemes in the above
nested example. In the ciphertext-policy case, it allows an encryptor to specify
such a policy. Below, we focus on the key-policy variant for illustrating purpose.

We propose the following four composition transformations.

1. Span Programs over Predicates. In this class, we let a composition policy
be dynamically defined as any monotone span program (MSP) [22] where each
of their Boolean inputs comes from each evaluation of atomic predicate. This is
illustrated in Fig. 1. A key attribute is a tuple M = (A, (i1, x1), . . . , (im, xm))
depicted on the left, where A is a span program (or, think of it as a boolean
formula). A ciphertext attribute is a set Y = {(j1, y1), . . . , (jt, yt)}. The
indexes id and jh specify the index of predicates in P, that is, id, jh ∈ [1, k]. To
evaluate M on Y , we proceed as follows. First, we evaluate a “link” between
node (id, xd) and node (jh, yh) to on if id = jh =: i and Pi(xd, yh) = 1. Then,
if one of the edges adjacent to the d-th node is on, then we input 1 as the
d-th input to A, and evaluate A. Our transformation is unbounded, meaning
that m and t can be arbitrary. Note that since span programs imply boolean
formulae, we can think of it as boolean formula over atomic predicates.

4

i1
x1

OR

i2
x2 OR

...

im
xm

OR

j1
y1

...

jt
yt

input Y

A0/1

Fig. 1: Span program over predicates

q1

q2 q3

q4

q5 q6accept

j1
y1

...

jt
yt

input Y
i1, x1 i2, x2

i3, x3

i4, x4 i5, x5

i6, x6 i7, x7

i8, x8 OR

Fig. 2: Branching program over predicates

2. Branching Programs over Predicates. In this class, we let a composition
policy be dynamically defined as any branching program (BP) where each
edge is evaluated in a similar manner as in each link in the case of span
program composition above. This is depicted in Fig. 2. A branching program
is described by a direct acyclic graph (DAG) with labels. It accepts Y if the
on edges include a directed path from the start node to an accept node. A
direct application for this is a predicate that comprises if-then clauses. We
achieve this by a general implication from the first transformation, similarly
to the implication from ABE for span programs to ABE for BP in [6].

3. DFA over Predicates. In this class, a composition policy can be defined
as any deterministic finite automata (DFA) where each transition in DFA is
defined based on atomic predicates. Such a DFA has an input as a vector
y = ((j1, y1), . . . , (jt, yt)) which it reads in sequence. It allows any direct graph,
even contains directed cycles and loops (as opposed to DAG for branching
programs), and can read arbitrarily long vectors y. This transformation fully
generalizes ABE for regular languages [35,5], which can deal only with the
equality predicate at each transition, to any predicates.

4. Bundling ABE with Parameter Reuse. We propose a generic way to
bundle ABE schemes (without a policy over them, and where each scheme
works separately) so that almost all of their parameters can be set to the same
set of values among those ABE schemes. This is quite surprising in the first
place since usually parameters for different schemes would play different roles
(in both syntax and security proof). Nevertheless, we show that they can be
reused. Loosely speaking, to combine k schemes where the maximum number
of parameters (i.e., public key size) among them is n, then the number of
parameters for the combined scheme is n+2k. Trivially combining them would
yield O(nk) size. We call this as the direct sum with parameter reuse.

We denote the above first three key-policy-augmented predicates over P as KP[P],
KB[P], KA[P], respectively. For ciphertext-policy case, we use C instead of K. Also,
we call the generalized machines in the above classes as predicative machines.

Scope of Our Transformations. Our conversions apply to ABE that can
be interpreted in the pair encoding framework, which is a generic framework

5

q0

start
q1 q2

accept
i1, x1

i2, x2

i3, x3

i4, x4 i5, x5

j1
y1

start
j2
y2

j3
y3

j4
y4

· · ·

input y

Fig. 3: DFA over predicates

for achieving fully secure ABE from a primitive called Pair Encoding Scheme
(PES), proposed by Attrapadung [5]. PESs for many predicates have been pro-
posed [5,10,6,2], notably, including regular language functionality [35,5]. Agrawal
and Chase [2], at Eurocrypt’17, recently extended such a framework by intro-
ducing a notion called symbolic security for PES, which greatly simplifies both
designing and security analysis of PES and ABE. A symbolically secure PES for
predicate P can be used to construct fully secure ABE for the same predicate
under the k-linear and the q-ratio assumption [2] in (prime-order) bilinear groups.
Our conversions indeed work by converting PESs for a set P of predicates to a
PES for KP[P], KB[P], and KA[P], that preserves symbolic security.
Applications. Among many applications, we obtain:

– ABE with multi-layer/multi-base functionalities and nested-policy. The gen-
erality of our transformations make it possible to augment ABE schemes in
a modular and recursive manner. This enables multi-layer functionalities in
one scheme, e.g., ABE for predicate KP[KB[KA[P]]], which can deal with first
checking regular expression (over predicates) via DFA, then inputting to an if-
clause in branching program, and finally checking the whole policy. By skewing
key and ciphertext policy, we can obtain a nested-policy ABE, e.g., predicate
KP[CP[P]]. Moreover, the fact that we combine a set of predicates into a
composed one enables multiple based functionalities, e.g., revocation [3,37],
range/subset membership [8], regular string matching [35], etc. This level of
“plug-and-play” was not possible before this work.

– The first fully secure completely-unbounded KP-ABE for non-monotone span
programs (NSP) over large universe.1 Previous ABE for NSP is either only
selectively secure [28,9,38] or has some bounded attribute reuse [29,30]. See
Table 1 in §9.2 for a summary. Our approach is simple as we can obtain
this modularly. As a downside, we have to rely on the q-type assumption
inherited from the Agrawal-Chase framework [2]. Nevertheless, all the current
completely unbounded KP-ABE for even monotone span programs still need
q-type assumptions [31,5,2], even selectively secure one [31].

– Mixed-policy ABE. In nested-policy ABE, the nesting structure is fixed. Mixed-
policy ABE generalizes it so as to be able to deal with arbitrary nesting struc-
ture in one scheme. The scheme crucially uses the direct sum with parameter
reuse, so that its parameter size will not blow up exponentially.

1 For large-universe ABE, there is no known conversion from ABE for monotone span
programs. Intuitively, one would have to include negative attributes for all of the
complement of a considering attribute set, which is of exponential size.

6

Comparing to ABS17 [3]. Here, we compare our transformations to those of
Ambrona et al. [3]. The most distinguished features of our transformations are
finite automata based, and branching program based compositions. Moreover,
all of our transformations are unbounded. For monotone Boolean formulae over
predicates, our framework allows dynamic compositions, as opposed to static
or partially-dynamic (thus, bounded-size) ones in ABS. As for applicability to
based predicates, ours cover a larger class due to the different based frameworks
(ours use symbolic pair encoding of [2], while ABS use predicate encoding of [16]).
Notable differences are that pair encodings cover unbounded ABE for MSP, ABE
for MSP with constant-size keys or ciphertexts, ABE for regular languages, while
these are not known for predicate encodings. One drawback of using symbolic
pair encoding is that we have to rely on q-type assumptions. A result in ABS also
implies (static) non-monotone Boolean formulae composition (via their negation
conversion). Although we do not consider negation conversion, we can use known
pair encoding for negation of some common predicates such as IBE and negated
of IBE (as we will do in §9). In this sense, non-monotone formulae composition
can be done in our framework albeit in a semi-generic (but dynamic) manner.

We provide more related works and some future directions in the full version.

2 Intuition and Informal Overview

This section provides some intuition on our approaches in an informal manner.

Pair Encoding. We first informally describe PES [5] as refined in [2]. It consists
of two encoding algorithms as the main components. The ciphertext encoding
EncCt encodes y ∈ Y to a vector c = c(s, ŝ,b) = (c1, . . . , cw3

) of polynomials
in variables s = (s0, . . . , sw1

), ŝ = (ŝ1, . . . , ŝw2
), and b = (b1, . . . , bn). The key

encoding EncKey encodes x ∈ X to a vector k = k(r, r̂,b) = (k1, . . . , km3
) of

polynomials in variables r = (r1, . . . , rm1
), r̂ = (α, r̂1, . . . , r̂m2

), and b. The
correctness requires that if P (x, y) = 1, then we can “pair” c and k to to obtain
αs0, which refers to the property that there exists a linear combination of terms
ciru and kjst that is αs0. Loosely speaking, to construct ABE from PES, we use
a bilinear group G = (G1,G2) that conforms to dual system groups [17,1,2]. Let
g1, g2 be their generators. The public key is (gb

2 , e(g1, g2)α), a ciphertext for y
encrypting a message M consists of gc

2 , g
s
2, and e(g1, g2)αs0 ·M , and a key for x

consists of gk
1 , g

r
1. (In particular, the hatted variables are only internal to each

encoding.) Decryption is done by pairing c and k to obtain αs0 in the exponent.

Symbolic Security. In a nutshell, the symbolic security [2] of PES involves
“substitution” of scalar variables in PES to vectors/matrices so that all the
substituted polynomials in the two encodings c and k will evaluate to zero for
any pair x, y such that P (x, y) = 0. The intuition for zero evaluation is that,
behind the scene, there are some cancellations going on over values which cannot
be computed from the underlying assumptions. To rule out the trivial all-zero
substitutions, there is one more rule that the inner product of the substituted
vectors for special variables that define correctness, namely, α and s0, cannot

7

x1

OR

x2
OR

...

xm

OR

y1

...

yt

A

(a) one predicate

x1

x2

...

xm

yA

(b) one input

x OR

y1

...

yt

(c) ciphertext-policy OR

Fig. 4: Simpler variants of span program over predicates, for modular approach

be zero. In some sense, this can be considered as a generalization of the already
well-known Boneh-Boyen cancellation technique for IBE [13].

Note that one has to prove two flavors of symbolic security: selective and
co-selective. The former allows the substitutions of variables in b, c to depend
only on y, while those in k to depend on both x, y. In the latter, those in b,k
can depend only on x, while those in c can depend on both x, y. Intuitively,
the framework of [2] uses each flavor in the two different phases—pre and post
challenge—in the dual system proof methodology [34,23,26,36,5,2].

Our Modular Approach. In constructing a PES for KP[P], we first look into
the predicate definition itself and decompose to simpler ones as follows. Instead
of dealing with predicates in the set P all at once, we consider its “direct sum”,
which allows us to view P as a single predicate, say P . Intuitively, this reduces
KP[P] of Fig. 1 to KP[P] of Fig. 4a. We then observe that KP[P] of Fig. 4a is,
in fact, already a nested predicate. It contains ciphertext-policy with the OR
policy in the lower layer, followed by key-policy augmentation in the upper layer,
as decomposed and shown in Fig. 4c and Fig. 4b, respectively. Hence, we can
consider a much simpler variant that deal with only one input at a time.

Our Starting Point: Agrawal-Chase Unbounded ABE. To illustrate the
above decomposition, we consider a concrete predicate, namely, unbounded KP-
ABE for monotone span program (MSP), along with a concrete PES, namely,
an instantiation by Agrawal and Chase [2], which is, in fact, our starting point
towards generalization. First we recall this PES (Appendix B.2 of [2])2:

cY =
(
b1s0 + (yjb2 + b3)s(j)

1
)
j∈[q]

k(A,π) =
(
Air̂

> + r
(i)
1 b1, r

(i)
1 (π(i)b2 + b3)

)
i∈[m]

(1)

where (A, π) is an MSP with A ∈ Zm×`N , Ai is its i-th row, r̂ = (α, r̂1, . . . , r̂`−1),
and Y = {y1, . . . , yq}. (The exact definition for MSP is not important for now.)
We now attempt to view this as being achieved by two consecutive transformations.
2 This encoding or closed variants are utilized in many works, e.g., [25,31,5,18]. Rouse-
lakis and Waters [31] were the first to (implicitly) use this exact encoding. Attra-
padung [5] formalized it as PES. Agrawal and Chase [2] gave its symbolic proof.

8

We view the starting PES as the following PES for IBE (P IBE(x, y) = 1 iff x = y):

cy = b1s0 + (yb2 + b3)s1

kx =
(
α+ r1b1, r1(xb2 + b3)

) (2)

denoted as ΓIBE, which is first transformed to the following PES for IBBE
(ID-based broadcast encryption, P IBBE(x, Y) = 1 iff x ∈ Y), denoted as ΓIBBE:

cY =
(
b1s0 + (yjb2 + b3)s(j)

1
)
j∈[q] = (cj)j∈[q]

kx =
(
α+ r1b1, r1(xb2 + b3)

) (3)

which is then finally transformed to the above PES for KP-ABE. We aim to
generalize this process to any PES for arbitrary predicate.

The two transformations already comprise a nested policy augmentation
process: the first (IBE to IBBE) is a ciphertext-policy one with the policy being
simply the OR policy, while the second (IBBE to KP-ABE for MSP) is a key-
policy one with policy (A, π). To see an intuition on a policy augmentation, we
choose to focus on the first one here which is simpler since it is the OR policy. To
see the relation of both PESs, we look into their matrix/vector substitutions in
showing symbolic property. We focus on selective symbolic property here. It can
be argued by showing matrix/vector substitutions that cause zero evaluations in
all encodings, when x 6= y. For the base PES ΓIBE, this is:

3

cy : 1
0

B1 (s0)>
↑
1 +

(
y 0
−1

B2

+ −1
y

B3)(s1)>
↑
1 = 0

0

kx :
(

1 + −1, − 1
y−x

1
0 = 0, −1, − 1

y−x

(
x 0
−1 + −1

y

)
= 0
) (4)

where each rectangle box represents a matrix of size 1× 2 or 2× 1. On the other
hand, the selective symbolic property for the PES ΓIBBE can be shown below,
where we let 1j be the length-q row vector with 1 at the j-th entry and 11,1 be
the (q+ 1)× q matrix with 1 at the entry (1, 1) (and all the other entries are 0).

cY :

B′1
↑

11,1

(s′0)>
↑

(11)> +
(
yj

(
0 ··· 0
−1

...
−1

)B′2

+
(−1 ··· −1

y1
...

yq

)B′3)(s′(j)
1)>

↑

(1j)
> = 0

kx : 11 +
(
−1, − 1

y1−x
, . . . , − 1

yq−x

)
11,1 = 0,(

−1, − 1
y1−x

, . . . , − 1
yq−x

)(
x

(
0 ··· 0
−1

...
−1

)
+
(−1 ··· −1

y1
...

yq

))
= 0.

(5)

Our Observation on Unboundedness. We now examine the relation of
substituted matrices/vectors between the two PESs: we observe that those for
3 As a convention throughout the paper, the substitution matrices/vectors are written
in the exact order of appearance in their corresponding encodings (here is Eq. (3)).

9

ΓIBBE contains those for ΓIBE as sub-matrices/vectors. For example, B3 for the
substituted cy in Eq. (4) is “embedded” in B′3 for the substituted cY in Eq. (5),
for y ∈ Y . We denote such a sub-matrix as B(j)

3 =
(−1
yj

)
.

We crucially observe that the unbounded property (of IBBE) stems from
such an ability of embedding all the matrices from the base PES—(B(j)

3)j∈[q]—
regardless of size q, into the corresponding matrix in the converted PES—B′3 in
this case. Our aim is unbounded-size policy augmentation for any PES. We thus
attempt to generalize this embedding process to work for any sub-matrices.

Difficulty in Generalizing to Any PES. Towards generalization, we could
hope that such an embedding of sub-matrices/vectors has some patterns to follow.
However, after a quick thought, we realize that the embedding here is quite
specialized in many ways. The most obvious specialized form is the way that
sub-matrices B(j)

3 are placed in B′3: the first row of B(j)
3 are placed in the same

row in B′3, while the other row are placed in all different rows in B′3. Now the
question is that such a special placement of sub-matrices into the composed
matrices also applies to any generic PES. An answer for now is that this seems
unlikely, if we do not restrict any structure of PES at all (which is what we aim).

We remark that, on the other hand, such a special embedding seems essential
in our example here since, in each cj , in order to cancel out the substitution of
b1s0, which is the same for all j, we must have the substitution for (yjb2 + b3)s(j)

1
to be the same for all j ∈ [q]. Therefore, we somehow must have a “projection”
mechanism; this is enabled exactly by the placement in the first row of B′2,B

′
3.

Our First Approach: Layering. Our first approach is to modify the trans-
formed PES so that sub-matrices can be placed in a “generic” manner into the
composed matrices. (It will become clear shortly what we mean by “generic”.) In
the context of IBBE, we consider the following modified PES, denoted as Γ̄IBBE:

cY =
(
f2snew + f1s

(j)
0 , b1s

(j)
0 + (yjb2 + b3)s(j)

1
)
j∈[q]

kx =
(
αnew + rnewf2, rnewf1 + r1b1, r1(xb2 + b3)

) (6)

This is modified from the PES in Eq. (3) by introducing one more layer involving
the first element in each encoding, where f1, f2 are two new parameters. The
main purpose is to modify the element b1s0 to b1s

(j)
0 so that it varies with j,

which, in turn, eliminating the need for “projection” as previously. This becomes

10

clear in the following assessment for its selective symbolic property:

cY : 1̂1,1(11)> + F1(1j)
> = 0, 1

0
...

1
0

(1j)
> +

yj
 0
−1

...
0
−1

+

−1
y1

...
−1
yq

 (1j)

> = 0

kx : 11 + (−1̂1)1̂1,1 = 0,

(−1̂1)F1 +
(
−1, − 1

y1−x , . . . ,
−1, − 1

yq−x

) 1
0

...
1
0

 = 0,

(
−1, − 1

y1−x , . . . ,
−1, − 1

yq−x

)x
 0
−1

...
0
−1

+

−1
y1

...
−1
yq

 = 0.

(7)

where we let 1̂1,1 be of size (2q) × q and 1̂1 be of length 2q (defined similarly
to 11,1,11, resp.), and let F1 be the (2q)× q matrix with all entries in the first
row being −1 (and all the other entries are 0). Here, we observe that all the
composed matrices regarding the parameters (b1, b2, b3) of the PES ΓIBBE are
formed exactly by including the substituted matrices of the base PES in the
“diagonal blocks”, namely, we can now “generically” define, for i ∈ [n],

B′i =
(

B(1)
i

...

B(q)
i

)
.

Moreover, arranging the vector substitutions in their corresponding slots will result
in exactly the zero evaluation of each substituted equation of the base PES. This
approach is naturally generalized to any base PES. Put in other words, intuitively,
we can obtain the proof of symbolic property of the composed PES from that of
the base PES generically, via this conversion. Such a conversion, transforming
any PES (cy,kx) for predicate P to its ciphertext-policy augmentation (with OR
policy), can be described by

c′Y =
(
f2snew + f1s

(i)
0 , cyj

)
j∈[q]

, k′x =
(
αnew + rnewf2, (kx)|α7→rnewf1

)
(8)

where the variables su in cyj are superscripted as s(j)
u , and “ 7→” denotes the

variable replacement. This PES is for the predicate of “ciphertext-OR-policy”
over P—returning true iff ∃j P (x, yj) = 1. In fact, one can observe that Eq. (8)
is a generalization of Eq. (6).

Our Second Approach: Admissible PES. One disadvantage with our first
approach is the inefficiency due to the additional terms. Comparing PES Γ̄IBBE

11

to ΓIBBE, the former requires 2q more elements than the latter (note that we
include also (s(j)

0)j∈[q] when counting overall ciphertext elements). However, we
already knew that the additional terms are not necessary for some specific PESs
and predicates, notably our ΓIBE for IBE.

We thus turn to the second approach which takes the following two steps.
First, we find a class of “admissible” PESs where there exists a conversion for
ciphertext-policy augmentation without additional terms. Second, we provide a
conversion from any PES to a PES that is admissible.

As a result of our finding, the admissible class of PESs turns out to have a
simple structure: k consists of k1 = α+ r1b1, and α, b1 do not appear elsewhere
in k, while in c, we allow b1, s0 only if they are multiplied—b1s0. Intuitively,
this “isolation” of b1, α, s0 somewhat provides a sufficient structure4 where the
“projection” can be enabled, but without mitigating to additional elements as
done in the above first approach. The ciphertext-OR-policy augmentation can
then be done by simply setting

c′Y =
(

(cyj)|s(j)
0 7→snew

)
j∈[q], k′x = kx. (9)

One can observe that this is a generalization of Eq. (3), and that there is no
additional terms as in Eq. (8). Our conversion from any PES to an admissible
one (for the same predicate) is also simple: we set

c′y =
(
f2snew + f1s0, cy

)
, k′x =

(
αnew + rnewf2, (kx)|α7→rnewf1

)
(10)

where s0 is the variable in y, while snew is the new special variable (that defines
correctness). It is easy to see also that combining both conversions, that is,
Eq. (10) followed by Eq. (9), we obtain the conversion of the first approach
(Eq. (8)). But now, for any PES that is already admissible such as ΓIBE, we do
not have to apply the conversion of Eq. (10), which requires additional terms.
Towards General Policies. Up to now, we only consider the OR policy. It
ensures that P ′(x, Y) = 0 implies P (x, yj) = 0 for all j. However, for general poli-
cies, this is not the case, that is, if we let P̄ be such a ciphertext-policy augmented
predicate over P (this will be formally given in Definition 5), P̄ (x, (A, π)) = 0
may hold even if P (x, π(j)) = 1 for some j. Consequently, we have no available
substituted matrices/vectors for the key encoding for such problematic j. Another
important issue is how to embed the policy (A, π) without knowledge of x (cf.
the selective property), but be able to deal with any x such that P̄ (x, (A, π)) = 0.

We solve both simultaneously by a novel way of embedding (A, π) so that,
intuitively, only the “non-problematic” blocks will turn “on”, whatever x will
be, together with a novel way of defining substituted vectors for k so that all
the “problematic” blocks will turn “off”. To be able to deal with any x, the
former has to be done in the “projection” part, while the latter is done in the
4 Note that we indeed require a few more simple requirements in order for the proof to
go through: see Definition 4.

12

“non-projection” part of matrices. By combining both, we will have only the
non-problematic blocks turned on, and thus can use the base symbolic property.
Towards Other Predicative Machines: Automata. At the core of the above
mechanism is the existence of “mask” vectors which render problematic blocks to 0.
We crucially observe that such “mask” vectors depend on and only on (x, (A, π))
and the sole fact that P̄ (x, (A, π)) = 0, i.e., the non-acceptance condition of MSP.
Notably, it does not depend on the actual PES construction. This feature provides
an insight to extend our approach to other types of predicative machines—finite
automata in particular—by finding appropriate combinatorial vectors that encode
non-acceptance conditions. (See more discussions in the full version.)
Wrapping up. Up to now, we mainly consider the selective symbolic property.
The co-selective property (for the ciphertext-policy case) is simpler to achieve,
since each substitution matrix of the converted PES is now required to embed
only one matrix from the base PES, as our modular approach allows to consider
one input at a time (for key attribute). The situation becomes reversed for the
key-policy case: the co-selective property is harder. Nonetheless, we can always
use the DUAL conversion to convert from ciphertext-policy to key-policy type.
Comparing to Unboundedness Approach in CGKW [18]. Chen et al. [18]
recently proposed unbounded ABE for MSP. Their approach conceptually converts
a specific bounded scheme ([27]) to an unbounded one for the same specific
predicate—MSP. This is already semantically different to our conversion, which
takes any pair encoding for a predicate P and outputs another for a different
predicate—namely, the (unbounded) policy-augmented predicate over P .

3 Preliminaries

Notations. N denotes the set of positive integers. For a, b ∈ N such that a ≤ b, let
[a, b] = { a, . . . , b }. For m ∈ N, let [m] = { 1, . . . ,m } and [m]+ = { 0, 1, . . . ,m }.
For a set S, we denote by 2S the set of all subsets of S. Denote by S∗ the set
of all (unbounded-length) sequences where each element is in S. For N ∈ N,
we denote by Zm×`N the set of all matrices of dimension m × ` with elements
in ZN . For a matrix M ∈ Zm×`N , its i-th row vector is denoted by Mi: (in
Z1×`
N). Its (i, j)-element is Mi,j . Its transpose is denoted as M>. For vectors

a ∈ Z1×c
N ,b ∈ Z1×d

N , we denote (a,b) ∈ Z1×(c+d)
N as the concatenation. The i-th

entry of a is denoted as a[i]. For i < j, denote a[i, j] := (a[i],a[i+ 1], . . . ,a[j]).
Let M(ZN) be the set of all matrices (of any sizes) in ZN , and Mm(ZN) be
the set of those with m rows. For a set S of vectors of the same length (say,
in Z`N), we denote span(S) as the set of all linear combinations of vectors in
S. For polynomials p = p(x1, . . . , xn) and g = g(y1, . . . , yn), we denote a new
polynomial p|x1 7→g := p(g(y1, . . . , yn), x2, . . . , xn). Matrices and vectors with all
0’s are simply denoted by 0, of which the dimension will be clear from the context.
We define some useful fixed vectors and matrices.
– 1`i is the (row) vector of length ` with 1 at position i where all others are 0.
– 1m×`i,j is the matrix of size m× ` with 1 at position (i, j) and all others are 0.

13

3.1 Definitions for General ABE

Predicate Family. Let P = { Pκ : Xκ × Yκ → {0, 1} | κ ∈ K } be a predicate
family where Xκ and Yκ denote “key attribute" and “ciphertext attribute” spaces.
The index κ or “parameter” denotes a list of some parameters such as the
universes of attributes, and/or bounds on some quantities, hence its domain K

will depend on that predicate. We will often omit κ when the context is clear.

General ABE Syntax. Let M be a message space. An ABE scheme5 for
predicate family P is defined by the following algorithms:

– Setup(1λ, κ) → (PK,MSK): takes as input a security parameter 1λ and a
parameter κ of predicate family P , and outputs a master public key PK and
a master secret key MSK.

– Encrypt(y,M,PK) → CT: takes as input a ciphertext attribute y ∈ Yκ, a
message M ∈M, and public key PK. It outputs a ciphertext CT. We assume
that Y is implicit in CT.

– KeyGen(x,MSK,PK) → SK: takes as input a key attribute x ∈ Xκ and the
master key MSK. It outputs a secret key SK.

– Decrypt(CT,SK) → M : given a ciphertext CT with its attribute y and the
decryption key SK with its attribute x, it outputs a message M or ⊥.

Correctness. Consider all parameters κ, all M ∈M, x ∈ Xκ, y ∈ Yκ such that
Pκ(x, y) = 1. If Encrypt(y,M,PK)→ CT and KeyGen(x,MSK,PK)→ SK where
(PK,MSK) is generated from Setup(1λ, κ), then Decrypt(CT,SK)→M .

Security. We use the standard notion for ABE, called full security. We omit it
here and refer to e.g., [5] (or the full version of this paper), as we do not work
directly on it but will rather infer the implication from pair encoding scheme (cf.
§3.3).

Duality of ABE. For a predicate P : X × Y → {0, 1}, we define its dual as
P̄ : Y×X→ {0, 1} by setting P̄ (Y,X) = P (X,Y). In particular, if P is considered
as key-policy type, then its dual, P̄ , is the corresponding ciphertext-policy type.

3.2 Pair Encoding Scheme Definition

Definition 1. Let P = { Pκ }κ where Pκ : Xκ × Yκ → { 0, 1 }, be a predicate
family, indexed by κ = (N, par), where par specifies some parameters. A Pair
Encoding Scheme (PES) for a predicate family P is given by four deterministic
polynomial-time algorithms as described below.

– Param(par)→ n. When given par as input, Param outputs n ∈ N that specifies
the number of common variables, which we denote by b := (b1, . . . , bn).

5 It is also called public-index predicate encryption, classified in the definition of
Functional Encryption [15]. It is simply called predicate encryption in [2].

14

– EncCt(y,N)→ (w1, w2, c(s, ŝ,b)). On input N ∈ N and y ∈ Y(N,par), EncCt
outputs a vector of polynomial c = (c1, . . . , cw3

) in non-lone variables s =
(s0, s1, . . . , sw1

) and lone variables ŝ = (ŝ1, . . . , ŝw2
). For p ∈ [w3], the p-th

polynomial is given as follows, where ηp,z, ηp,t,j ∈ ZN :∑
z∈[w2]

ηp,z ŝz +
∑

t∈[w1]+
,j∈[n]

ηp,t,jbjst.

– EncKey(x,N) → (m1,m2,k(r, r̂,b)). On input N ∈ N and x ∈ X(N,par),
EncKey outputs a vector of polynomial k = (k1, . . . , km3

) in non-lone variables
r = (r1, . . . , rm1

) and lone variables r̂ = (α, r̂1, . . . , r̂m2
). For p ∈ [m3], the

p-th polynomial is given as follows, where φp, φp,u, φp,v,j ∈ ZN :

φpα+
∑

u∈[m2]

φp,ur̂u +
∑

v∈[m1],j∈[n]

φp,v,jrvbj .

– Pair(x, y,N) → (E,E). On input N , and both x, and y, Pair outputs two
matrices E,E of sizes (w1 + 1)×m3 and w3 ×m1, respectively. ♦

Correctness. A PES is said to be correct if for every κ = (N, par), x ∈ Xκ and
y ∈ Yκ such that Pκ(x, y) = 1, the following holds symbolically:

sEk> + cEr> = αs0. (11)

The left-hand side is indeed a linear combination of stkp and cqrv, for t ∈
[w1]+, p ∈ [m3], q ∈ [w3], v ∈ [m1]. Hence, an equivalent (and somewhat simpler)
way to describe Pair and correctness together at once is to show such a linear
combination that evaluates to αs0. We will use this approach throughout the
paper. (The matrices E,E will be implicitly defined in such a linear combination).

Terminology. In the above, following [2], a variable is called lone as it is
not multiplied with any bj (otherwise called non-lone). Furthermore, since α,
s0 are treated distinguishably in defining correctness, we also often call them
the special lone and non-lone variable, respectively. In what follows, we use
ct-enc and key-enc as a shorthand for polynomials and variables output by EncCt
(ciphertext-encoding) and EncKey (key-encoding), respectively. We often omit
writing w1, w2 and m1,m2 in the output of EncCt and EncKey.

3.3 Symbolic Property of PES

We now describe the symbolic property of PES, introduced in [2]. As in [2], we
use a : b to denote that a variable a is substituted by a matrix/vector b.

Definition 2. A PES Γ = (Param,EncCt,EncKey,Pair) for predicate family P
satisfies (d1, d2)-selective symbolic property for some d1, d2 ∈ N if there exists
three deterministic polynomial-time algorithms EncB,EncS,EncR such that for
all κ = (N, par), x ∈ Xκ, y ∈ Yκ with Pκ(x, y) = 0,

15

– EncB(y)→ B1, . . . ,Bn ∈ Zd1×d2
N ;

– EncS(y)→ s0, . . . , sw1
∈ Z1×d2

N , ŝ1, . . . , ŝw2
∈ Z1×d1

N ;
– EncR(x, y)→ r1, . . . , rm1

∈ Z1×d1
N , a, r̂1, . . . , r̂m2

∈ Z1×d2
N ;

we have that:
(P1). as>0 6= 0.
(P2). if we substitute, for all j ∈ [n], t ∈ [w1]+, z ∈ [w2], v ∈ [m1], u ∈ [m2],

ŝz : ŝ>z , bjst : Bjs
>
t , α : a, r̂u : r̂u, rvbj : rvBj ,

into all the polynomials output by EncCt(y) and EncKey(x), then they
evaluate to 0.

(P3). a = 1d2
1 .

Similarly, a PES satisfies (d1, d2)-co-selective symbolic property if there exists
EncB,EncS,EncR satisfying the above properties but where EncB and EncR
depends only on x, and EncS depends on both x and y.

Finally, a PES satisfies (d1, d2)-symbolic property if it satisfies both (d′1, d
′
2)-

selective and (d′′1 , d
′′
2)-co-selective properties for some d′1, d

′′
1 ≤ d1, d

′
2, d
′′
2 ≤ d2. ♦

Terminology. The original definition in [2] consists of only (P1) and (P2); we
refer to this as Sym-Prop, as in [2]. We newly include (P3) here, and refer to the
full definition with all (P1)-(P3) as Sym-Prop+. This is w.l.o.g. since one can
convert any PES with Sym-Prop to another with Sym-Prop+, with minimal cost.
Such a conversion, which we denote as Plus-Trans, also appears in [2]; we recap
it in the full version.

For convenience, for the case of selective property, we use EncBS(y) to simply
refer to the concatenation of EncB(y) and EncS(y). Similarly, we use EncBR(x)
for referring EncB(x) and EncR(x) for the case of co-selective property.
Implication to Fully Secure ABE. Agrawal and Chase [2] show that a PES
satisfying (d1, d2)-Sym-Prop implies fully secure ABE. They use an underlying
assumption called (D1, D2)-q-ratio, which can be defined in the dual system
groups [17] and can consequently be instantiated in the prime-order bilinear
groups. Note that paramater (D1, D2) are related to (d1, d2). Since their theorem
is not used explicitly in this paper, we recap it in the full version.

3.4 Definitions for Some Previous Predicates
ABE for Monotone Span Program. We recap the predicate definition for
KP-ABE for monotone span program (MSP) [21]. We will mostly focus on
completely unbounded variant [5,2], where the family index is simply κ = N ∈ N,
that is, any additional parameter par is not required.6 Below, we also state a
useful lemma which is implicit in e.g., [21,27].
6 Bounded schemes would use par for specifying some bounds, e.g., on policy or
attribute set sizes, or the number of attribute multi-use in one policy. The term
“Unbounded ABE” used in the literature [25,30,18] still allows to have a bound for
the number of attribute multi-use in one policy (or even a one-use restriction).

16

Definition 3. The predicate family of completely unbounded KP-ABE for mono-
tone span programs, PKP-MSP = { Pκ : Xκ × Yκ → {0, 1} }κ, is indexed by κ = (N)
and is defined as follows. Recall that Ai: denotes the i-th row of A.

– Xκ = { (A, π) | A ∈M(ZN), π : [m]→ ZN }.
– Yκ = 2(ZN).
– Pκ((A, π), Y) = 1 ⇐⇒ 1`1 ∈ span(A|Y), where A|Y := {Ai: | π(i) ∈ Y }.

where m× ` is the size of the matrix A. ♦

Proposition 1. Consider a matrix A ∈ Zm×`N . Let Q ⊆ [m] be a set of row
indexes. If 1`1 6∈ span {Ai: | i ∈ Q }, then there exists ω = (w1, . . . , w`) ∈ Z`N
such that w1 = 1 and Ai:ω

> = 0 for all i ∈ Q.

Specific Policies. It is well known that ABE for MSP implies ABE for monotone
Boolean formulae [21,11]. The procedure of embedding a boolean formula as
a span program can be found in e.g., §C of [24]. We will be interested in the
OR and the AND policy, for using as building blocks later on. For the OR
policy, the access matrix is of the form AOR,m = (1, . . . , 1)> ∈ Zm×1

N . For the
AND policy, it is AAND,m =

∑
i=1 1m×mi,i −

∑
j=2 1m×m1,j . For further use, we let

MOR(ZN) =
{

AOR,m
∣∣ m ∈ N

}
and MAND(ZN) =

{
AAND,m

∣∣ m ∈ N
}
.

Embedding Lemma. To argue that a PES for predicate P can be used to
construct a PES for predicate P ′, intuitively, it suffices to find mappings that
map attributes in P ′ to those in P , and argue that the predicate evaluation for
P ′ is preserved to that for P on the mapped attributes. In such a case, we say
that P ′ can be embedded into P . This is known as the embedding lemma, used
for general ABE in [14,7]. We prove the implication for the case of PES in the
full version.

4 Admissible Pair Encodings

We first propose the notion of admissible PES. It is a class of PESs where
a conversion to a new PES for its policy-augmented predicate exists without
additional terms, as motivated in the second approach in §2. We then provide
a conversion from any PES to an admissible PES of the same predicate (this,
however, poses additional terms).7 Together, these thus allow us to convert any
PES to a new PES for its policy-augmented predicate.

Definition 4. A PES is (d1, d2)-admissible if it satisfies (d1, d2)-Sym-Prop+ with
the following additional constraints.

(P4). In the key encoding k, the first polynomial has the form k1 = α + r1b1
and α, b1 do not appear elsewhere in k.

7 Interestingly, this conversion already appears in [2] but for different purposes.

17

(P5). In the ciphertext encoding c, the variables b1 and s0 can only appear in
the term b1s0.

8

(P6). In the symbolic property (both selective and co-selective), we have that
B1 = 1d1×d2

1,1 , s0 = 1d2
1 , and rv[1] 6= 0 for all v ∈ [m1]. ♦

We will use the following for the correctness of our conversion in §5.

Corollary 1. For any admissible PES, let c,k, s, r,E,E be defined as in Defini-
tion 1 with Pκ(x, y) = 1. Let s̃ = (s1, . . . , sw1

). There exists a PPT algorithm that
takes E and outputs a matrix Ẽ of size w1×m3 such that s̃Ẽk>+cEr> = −r1b1s0.

Proof. We re-write Eq. (11) as s0k1 + T + cEr> = αs0 (where T is a sum of
stkj with coefficients from E). Note that s0k1 has coefficient 1 since α appears
only in k1 and we match the monomial αs0 to the right hand side. Substituting
k1 = α+ r1b1, we have T + cEr> = −r1b1s0. We claim that s0 is not in T , which
would prove the corollary. To prove the claim, we first see that k1 is not in T ,
since α is not in the right hand side. Thus b1 is also not in T (as b1 only appears
in k1). Hence, s0 is not in T , since otherwise bjs0 where j ≥ 2 appears in T , but
in such a case, it cannot be cancelled out since such term is not allowed in c.

Construction 1. Let Γ be a PES construction for P . We construct another
PES Γ ′ for also the same P as follows. We denote this Γ ′ by Layer-Trans(Γ).

– Param′(par). If Param(par) returns n, then output n+2. Denote b = (b1, . . . , bn)
and b′ = (f1, f2,b).

– EncCt′(y,N). Run EncCt(y,N)→ c. Let s0 be the special variable in c. Let
snew be the new special variable. Output c′ = (f1snew + f2s0, c).

– EncKey′(x,N). Run EncKey(x,N)→ k. Let rnew be a new non-lone variable
and αnew be the new special lone variable. Let k̃ be exactly k but with α
being replaced by rnewf2. Output (αnew + rnewf1, k̃).

Pair/Correctness. Suppose P (x, y) = 1. From the correctness of Γ we have a
linear combination that results in αs0 = rnewf2s0. From then, we have (αnew +
rnewf1)snew − rnew(f1snew + f2s0) + rnewf2s0 = αnewsnew, as required.

Lemma 1. Suppose that Γ for P satisfies (d1, d2)-Sym-Prop+. Then, the PES
Layer-Trans(Γ) for P is (d1 + 1, d2)-admissible. (The proof is deferred to the full
version.)

5 Ciphertext-policy Augmentation

We now describe the notion of ciphertext-policy-span-program-augmented predi-
cate over a single predicate family. We then construct a conversion that preserves
admissibility. The case for a set of predicate families will be described in §7. The
key-policy case will be in the next section §6.
8 That is, bjs0 and b1st for j ∈ [2, n], t ∈ [1, n] are not allowed in c.

18

Definition 5. Let P = { Pκ }κ where Pκ : Xκ × Yκ → { 0, 1 }, be a predicate
family. We define the ciphertext-policy-span-program-augmented predicate over P
as CP1[P] =

{
P̄κ
}
κ
where P̄κ : X̄κ × Ȳκ → { 0, 1 } by letting

– X̄κ = Xκ.
– Ȳκ = { (A, π) | A ∈M(ZN), π : [m]→ Yκ }.
– P̄κ(x, (A, π)) = 1 ⇐⇒ 1`1 ∈ span(A|x), where A|x := {Ai: | Pκ(x, π(i)) = 1 }.

where m× ` is the size of the matrix A. ♦

Construction 2. Let Γ be a PES construction for P satisfying admissibility.
We construct a PES Γ ′ for CP1[P] as follows. Denote this Γ ′ by CP1-Trans(Γ).

– Param′(par) = Param(par) = n. Denote b = (b1, . . . , bn).
– EncKey′(x,N) = EncKey(x,N).

– EncCt′((A, π), N). Parse A ∈ Zm×`N .
• For i ∈ [m], run EncCt(π(i), N) to obtain a vector c(i) = c(i)(s(i), ŝ(i),b)

of polynomials in variables s(i) = (s(i)
0 , s

(i)
1 , . . . , s(i)

w1,i
), ŝ(i) = (ŝ(i)

1 , . . . , ŝ(i)
w2,i

),
and b. Denote s̃(i) = (s(i)

1 , . . . , s(i)
w1,i

).
• Let snew be the new special non-lone variable. Let v2, . . . , v` be new lone
variables. Denote v = (b1snew, v2, . . . , v`).
• For i ∈ [m], define a modified vector by variable replacement as

c′(i) := c(i)|
b1s

(i)
0 7→Ai:v

> . (12)

Finally, output c′ = c′(s′, ŝ′,b′) as c′ =
(
c′(i)

)
i∈[m]. It contains variables

s′ =
(
snew,

(
s̃(i))

i∈[m]

)
, ŝ′ =

(
v2, . . . , v`,

(
ŝ(i))

i∈[m]

)
, and b′.

Pair/Correctness. For proving correctness, we suppose P̄κ(x, (A, π)) = 1.
Let S := { i ∈ [m] | Pκ(x, π(i)) = 1 }. For i ∈ S, we can run Pair(x, π(i), N) →
(E,E). From the correcteness of Γ , we derive Ẽ from E via Corollary 1, and
obtain a linear combination s̃(i)Ẽk> + c(i)Er> = −r1b1s

(i)
0 . With the variable

replacement in Eq. (12), this becomes s̃(i)Ẽk> + c′(i)Er> = −r1Ai:v
>. Now

since 1`1 ∈ span(A|x), we have linear combination coefficients { ti }i∈S such that∑
i∈S tiAi: = 1`1. Hence we have the following linear combination, as required:9

k1snew +
∑
i∈S ti

(
− r1Ai:v

>) = (α+ r1b1)snew − r1b1snew = αnewsnew.

Theorem 1. Suppose a PES Γ for P is (d1, d2)-admissible. Then, CP1-Trans(Γ)
for CP1[P] is (`+m(d1 − 1), md2)-admissible, where m× ` is the size of policy.
9 Note that, since s′ does not contain s(i)

0 , it is crucial that we use Corollary 1 where
the linear combination relies only on s̃(i) = (s(i)

1 , . . . , s
(i)
w1,i

).

19

Proof. We prove symbolic property of Γ ′ from that of Γ as follows.

Selective Symbolic Property. We define the following algorithms.

EncBS′(A, π) : For each i ∈ [m], run

EncBS(π(i))→
(
B(i)

1 , . . . ,B(i)
n ; s(i)

0 , . . . , s(i)
w1,i

; ŝ(i)
1 , . . . , ŝ(i)

w2,i

)
,

where B(i)
j ∈ Zd1×d2

N , s(i)
t ∈ Z1×d2

N , ŝ(i)
z ∈ Z1×d1

N . For j ∈ [2, n], we parse B(i)
j =:(

e(i)
j

B̃(i)
j

)
where e(i)

j ∈ Z1×d2
N and B̃(i)

j ∈ Z(d1−1)×d2
N (i.e., decomposing into the

first row and the rest). Let d′1 = `+m(d1−1) and d′2 = md2. Any vector of length
d′2 can be naturally divided into m blocks, each with length d2. Any d′1-length
vectors consists of the first ` positions which are then followed by m blocks of
length d1 − 1.10 Let B′1 = 1d

′
1×d

′
2

1,1 , snew = 1d
′
2

1 , v′ι = 1d
′
1
ι for ι ∈ [2, `], and

B′j =

e(1)
j A1,1 · · · e(m)

j Am,1
...

...

e(1)
j A1,` · · · e(m)

j Am,`

B̃(1)
j

B̃(2)
j

. . .

B̃(m)
j

∈ Zd

′
1×d

′
2

N , (13)

s′(i)t = (0, . . . , 0,

block i
↓

s(i)
t , 0, . . . , 0) ∈ Z1×d′2

N ,

ŝ′(i)z =
(
ŝ(i)
z [1]Ai:, 0, . . . , 0,

block i
↓

ŝ(i)
z [2, d1], 0, . . . , 0

)
∈ Z1×d′1

N , (14)

for j ∈ [2, n], i ∈ [m], t ∈ [w1,i], z ∈ [w2,i]. Output((
B′j
)
j∈[n]; snew,

(
s′(i)1 , . . . , s′(i)w1,i

)
i∈[m]; v′2, . . . ,v

′
`,
(
ŝ′(i)1 , . . . , ŝ′(i)w2,i

)
i∈[m]

)
.

EncR′(x, (A, π)) : First note that we have the condition P̄κ(x, (A, π)) = 0. Let
S = { i ∈ [m] | Pκ(x, π(i)) = 1 }.

1. From P̄κ(x, (A, π)) = 0 and from Proposition 1, we can obtain a vector
ω = (ω1, . . . , ω`) ∈ Z1×`

N such that ω1 = 1 and Ai:ω
> = 0 for all i ∈ S.

2. For each i 6∈ S, we can run EncR(x, π(i))→
(
r(i)

1 , . . . , r(i)
m1

; a, r̂(i)
1 , . . . , r̂(i)

m2

)
,

where r(i)
v ∈ Z1×d1

N , r̂(i)
u ∈ Z1×d2

N , and a = 1d2
1 ∈ Z1×d2

N .

10 That is, the i-th block of a vector h ∈ Z1×d′1
N is h[`+ (d1− 1)(i− 1) + 1, `+ (d1− 1)i].

20

3. For i ∈ [m], let gi = Ai:ω
>/r(i)

v [1]. Note that r(i)
v [1] 6= 0 due to admissibility.

4. Let anew = 1d
′
2

1 , and for v ∈ [m1], u ∈ [m2] let

r′v = −
(

ω, g1r(1)
v [2, d1], . . . , gmr(m)

v [2, d1]
)
∈ Z1×d′1

N , (15)

r̂′u = −(g1r̂(1)
u , . . . , gmr̂(m)

u) ∈ Z1×d′2
N . (16)

5. Output (r′1, . . . , r
′
m1

; anew, r̂
′
1, . . . , r̂

′
m2

).

Verifying Properties (sketch). Properties (P1),(P3)-(P6) are straightforward.
Due to limited space, we provide a sketch in verifying (P2)—zero evaluation of
substituted polynomials—here, and defer the full details to the full version.

In ct-enc c′, the p-th polynomial in c′(i) is c′(i)p =

∑
z∈[w2,i]

η(i)
p,z ŝ
′(i)
z + η

(i)
p,0,1(Ai,1b1snew +

∑̀
ι=2

Ai,ιvι) +
∑

t∈[w1,i]
j∈[2,n]

η
(i)
p,t,jbjs

′(i)
t . (17)

Substituting ŝ′(i)z : (ŝ′(i)z)>, b1snew : B′1(snew)>, vι : (v′ι)
>, bjs

′(i)
t : B′j(s

′(i)
t)>,

into c′(i)p will result in a column vector of length d′1 = `+m(d1 − 1). We denote
it as w>. We claim that w> = 0. We use the symbolic property of the base
PES, Γ , which ensures that the substitution of c(i)

p via EncBS(π(i)), denoted
u>, evaluates to 0. In fact, via elementary linear algebra, one can verify that
for j ∈ [`], w[j] is u[1] scaled by Ai,j , and that the i-th block of w is exactly
u[2, d1], while the rest of w is already 0 by construction. Hence the claim holds.

In key-enc k, the substitution for k1 is straightforward. For p ∈ [2,m3], we have
kp =

∑
u∈[m2] φp,ur̂u+

∑
v∈[m1],j∈[2,n] φp,v,jrvbj . Substituting r̂u : r̂′u, rvbj : r′vB

′
j

into kp will result in a row vector of length d′2 = md2. We denote it as w. We
claim that w = 0. Let ui be the substitution result for kp via EncR(x, π(i)). One
can eventually verify that the i-th block of w is giui, which evaluates to 0 since,
if i ∈ S we have gi = 0, while if i 6∈ S we have ui = 0 due to the symbolic
property of the base PES. Hence the claim holds.

Co-selective Symbolic Property. Let EncBR′(x) = EncBR(x).

EncS′(x, (A, π)) : First note that we have the condition P̄κ(x, (A, π)) = 0. Let
S = { i ∈ [m] | Pκ(x, π(i)) = 1 }.

1. For each i 6∈ S, we have Pκ(x, π(i)) = 0. Thus, we can run EncS(x, π(i))→(
s(i)

0 , . . . , s(i)
w1,i

; ŝ(i)
1 , . . . , ŝ(i)

w2,i

)
, where s(i)

t ∈ Z1×d2
N , and ŝ(i)

z ∈ Z1×d1
N .

2. From P̄κ(x, (A, π)) = 0 and Proposition 1, we can obtain a vector ω =
(ω1, . . . , ω`) such that ω1 = 1 and Ai:ω

> = 0 for all i ∈ S. Let qi = Ai:ω
>.

3. Let snew = 1d2
1 , s′(i)t = qis

(i)
t , ŝ′(i)z = qiŝ

(i)
z , and v′ι = ωι1

d1
1 , for i ∈ [m],

t ∈ [w1,i], ι ∈ [2, `], z ∈ [w2,i].

21

4. Output
(

snew,
(
s′(i)1 , . . . , s′(i)w1,i

)
i∈[m]

; v′2, . . . ,v
′
`,
(
ŝ′(i)1 , . . . , ŝ′(i)w2,i

)
i∈[m]

)
.

Verifying Properties. First we can verify that anews>new = 1d2
1 (1d2

1)> = 1 6= 0,
as required. Next, since we define EncBR′(x) = EncBR(x), the substitution for
key-enc is trivially evaluated to 0, due to the co-selective symbolic property of
Γ . It remains to consider the substitution for ct-enc c′. For i ∈ [m], p ∈ [w3,i],
the polynomial c(i)

p is depicted in Eq. (17). We have that the middle sum term
Ai:v

> is substituted and evaluated to qi(1
d2
1)>. Let u>i ∈ Zd1×1

N denote the
substitution result for c(i)

p (as a part of c(i)) via EncS(x, π(i)) (and EncBR(x)).
By our constructions of s′(i)t and ŝ′(i)z , it is straightforward to see that the
substitution for c′(i)p (as a part of c′(i)) via EncS′(x, (A, π)) (and EncBR′(x))
is indeed qiu

>
i . Note that u>i contains B1s>0 = 1d2

1 : this corresponds to the
substitution of Ai:v

>. Finally, we can see that qiu
>
i = 0 since if i ∈ S then

qi = 0, while if i 6∈ S, we have u>i = 0 due to the co-selective property of Γ .

Intuition. Due to an abstract manner of our scheme, it might be useful to relate
the above selective proof to the idea described in §2. Intuitively, the upper part
of B′j of Eq. (13) acts as a “projection”, generalizing B′j of Eq. (5) in §2, but
now we also embed the policy A in a novel way. Consider the multiplication
r′vB

′
j . Here, only “non-problematic” blocks (the i-th block where i 6∈ S) are

turned “on” by ω from r′v. All “problematic” blocks (i ∈ S) are turned “off” by
the “mask” vector (A1:ω

>, . . . ,Am:ω
>). We also note that this “mask” vector

encodes the non-acceptance condition as per Proposition 1. All in all, this gives
us the relation: r′vB

′
j = −

(
g1r(1)

v B(1)
j , . . . , gmr(m)

v B(m)
j

)
, where we recover the

substitution vectors of the base PES, namely, r(i)
v B(i)

j , and thus can use the base
symbolic property. We succeed in doing so despite having the “projection” part,
which seems to hinder the independency among blocks in the first place.

6 Key-policy Augmentation

For a predicate family P , we define its key-policy-span-program-augmented
predicate—denoted as KP1[P]—as the dual of CP1[P ′] where P ′ is the dual of P .
Therefore, we can use the dual conversion [10,2]—applying two times–sandwiching
CP1-Trans, to obtain a PES conversion for KP1[P]. However, this would incur
additional elements for encodings (from dual conversions). Below, we provide a
direct conversion without additional elements.

Construction 3. Let Γ be a PES construction for a P satisfying admissibility.
We construct a PES Γ ′ for KP1[P] as follows. Denote this Γ ′ by KP1-Trans(Γ).

– Param′(par) = Param(par) = n. Denote b = (b1, . . . , bn).
– EncCt′(y,N) = EncCt(y,N) = c(s, ŝ,b).

22

– EncKey′((A, π), N). Parse A ∈ Zm×`N . Let v := (αnew, v2, . . . , v`) be new lone
variables. For all i ∈ [m], do as follows.
• Run EncKey(π(i), N) to obtain a vector k(i) = k(i)(r(i), r̂(i),b) of poly-

nomials in variables r(i) = (r(i)
1 , . . . , r(i)

m1,i
), r̂(i) = (α(i), r̂

(i)
1 , . . . , r̂(i)

m2,i
),b.

• Define a modified vector by variable replacement as

k′(i) := k(i)|
α

(i) 7→Ai:v
> .

In fact, this only modifies k(i)
1 = α(i) + r

(i)
1 b1 to k′(i)1 = Ai:v

> + r
(i)
1 b1.

Finally, output k′ = k′(r′, r̂′,b) as k′ :=
(
k′(i)

)
i∈[m]. It contains variables

r′ := (r(i))i∈[m], r̂′ := (αnew, v2, . . . , v`, (r̂
(i))i∈[m]), and b.

Pair/Correctness. For proving correctness, we suppose P̄κ((A, π), y) = 1. Let
S := { i ∈ [m] | Pκ(π(i), y) = 1 }. For i ∈ S, we can run Pair(π(i), y,N)→ (E,E)
and obtain a linear combination sE(k′(i))> + cE(r(i))> = α(i)s0 = Ai:v

>s0.

Now since 1`1 ∈ span(A|y), we have linear combination coefficients { ti }i∈S such
that

∑
i∈S tiAi: = 1`1. Therefore, the above terms can be linearly combined to∑

i∈S ti(Ai:v
>)s0 = αnews0, as required.

Theorem 2. Suppose a PES Γ for P is (d1, d2)-admissible. Then, the the PES
KP1-Trans(Γ) for KP1[P] satisfies (md1, m

′d2)-Sym-Prop+, where m× ` is the
size of policy and m′ = max{m, `}.

The proof is analogous to CP1-Trans, and is deferred to the full version. Note
that, unlike CP1-Trans, KP1-Trans does not preserve admissibility, by construc-
tion.

7 Direct Sum and Augmentation over Predicate Set

In this section, we explore policy augmentations over a set of predicate families.
We will also introduce the direct sum predicate as an intermediate notion, which
is of an independent interest in its own right.

Notation. Throughout this section, let P = {P (1), . . . , P (k)} be a set of predicate
families. Each family P (j) = {P (j)

κj
}κj is indexed by κj = (N, parj). The domain

for each predicate is specified by P (j)
κj

: X(j)
κj
× Y

(j)
κj
→ { 0, 1 }. Unless specified

otherwise, we define the combined index as κ = (N, par) = (N, (par1, . . . , park)).
Let Xκ :=

⋃
i∈[k]({i} × X

(i)
κi

) and Yκ :=
⋃
i∈[k]({i} × Y

(i)
κi

).

Definition 6. We define the key-policy-span-program-augmented predicate over
set P as KP[P] =

{
P̄κ
}
κ
where P̄κ : X̄κ × Ȳκ → { 0, 1 } by letting

– X̄κ = { (A, π) | A ∈M(ZN), π : [m]→ Xκ }.
– Ȳκ = 2Yκ .

23

– P̄κ((A, π), Y) = 1 ⇐⇒ 1`1 ∈ span(A|Y), where11

A|Y :=
{

Ai:

∣∣∣ ∃(π1(i), y) ∈ Y s.t. P (π1(i)) (π2(i), y) = 1
}
.

where π(i) = (π1(i), π2(i)) ∈ Xκ, and m× ` is the size of the matrix A. ♦

Remark 1. When P has one element, say P = {P}, we abuse the notation and
write KP[P] := KP[{P}]. Note that KP[P] is still more powerful than KP1[P],
defined in §6, as it allows a ciphertext attribute to be a set.

Unbounded/Dynamic/Static/OR/AND. We consider (confined) variants
of the predicate KP[P] as follows. We will confine the domain of (A, π1), which
specifies a policy over predicates. Their full domain, inferred from Definition 6,
is D :=

⋃
m∈N Mm(ZN)× Fm,k, where Fm,k denotes the set of all functions that

map [m] to [k]. For a class C ⊆ D, the predicate KP[P] with the domain of
(A, π1) being confined to C is denoted by KPC [P] and is also called dynamic
span-program composition with class C. It is called unbounded if C = D. It is
called static if |C| = 1. We denote KPOR[P] as the shorthand for KPC [P] where
C =

⋃
m∈N{AOR,m} × Fm,k, and call it the key-OR-policy-augmented predicate

over P. (Recall that AOR,m is the matrix for the OR policy, see §3.4.) Analogous
notations go for the cases of KP1OR, KPAND, CPOR, and so on.

Definition 7. We define the predicate called the direct sum of P as DS[P] ={
P̄κ
}
κ
where we let the predicate be P̄κ : Xκ × Yκ → { 0, 1 } with

P̄κ
(
(i, x), (j, y)

)
= 1 ⇐⇒

(
i = j

)
∧
(
P (j)
κj

(x, y) = 1
)
.

For notational convenience, we also denote it as P (1) � · · · � P (k) = DS[P]. ♦

We are now ready to state a lemma for constructing KP[P]. The implication
is quite straightforward from definitions. We defer the proof to the full version.

Lemma 2. KP[P] can be embedded into KP1[CP1OR[DS[P]]].

Constructing PES for KP[P]. Now, since DS[P] is a single predicate family
(rather than a set of them), we can apply the CP1-Trans and KP1-Trans to a
PES for DS[P] to obtain a PES for KP[P]. Note that we apply Layer-Trans for
admissibility if necessary.

Constructing PES for Direct Sum. In the next two subsections, we provide
two constructions of PESs for direct sum of a set P of predicate families. The first
is a simpler one that simply “concatenates” all the base PESs for each predicate
family in P. The second is superior as the same parameter variables b can be
“reused” for all predicate families in P.
11 In the bracket, we write P (π1(i)) instead of P (π1(i))

κπ1(i)
for simplicity.

24

7.1 Simple Direct Sum by Parameter Concatenation

Construction 4. Let Γ (j) be a PES for P (j). Also let Γ = (Γ (1), . . . , Γ (k)). We
construct a PES Γ ′ for DS[P], where P = {P (1), . . . , P (k)}, as follows. For further
use, we denote this Γ ′ by Concat-Trans(Γ).

– Param′(par). For j ∈ [k], run Param(j)(parj) to obtain nj . Denote b(j) =
(b(j)

1 , . . . , b(j)
nj

). Output n = n1 + . . .+ nk. Denote b′ = (b(1), . . . ,b(k)).

– EncCt′((j, y), N). Run EncCt(j)(y,N)→ c = c(s, ŝ,b(j)) and output c.
– EncKey′((i, x), N). Run EncKey(i)(x,N)→ k = k(r, r̂,b(i)) and output k.

Pair/Correctness. This is straightforward from the base schemes. More pre-
cisely, for proving correctness, we suppose P̄κ

(
(i, x), (j, y)

)
= 1. That is, i = j

and P (j)
κj

(x, y) = 1. Hence, we can run Pair(j)(x, y,N) → (E,E) and obtain a
linear combination sEk> + cEr> = αs0, as required.

To prove symbolic security of Concat-Trans(Γ), we use one more intermediate
constraint for the underlying PESs, called Sym-Prop++, which, in turn, can be
converted from PES with normal Sym-Prop via Plus-Trans. We defer these proofs
to the full version. Below, we let ⊥ be a special symbol which is not in Yκ, Xκ,
and abuse notation by letting any predicate evaluate to 0 if at least one input is
the symbol ⊥.

Definition 8. A PES Γ for predicate family P satisfies (d1, d2)-Sym-Prop++ if
it satisfies (d1, d2)-Sym-Prop+ with the following further requirement.

(P7). In the selective symbolic property definition, the zero evaluation property
of key-enc (P2) also holds for EncB(⊥), EncR(x,⊥) for all x ∈ Xκ. ♦

Lemma 3. Suppose that, for all j ∈ [k], the PES Γ (j) for predicate family
P (j) satisfies (d1, d2)-Sym-Prop++. Then, the PES Concat-Trans(Γ) for predicate
family DS[P], where P = {P (1), . . . , P (k)}, satisfies (d1, d2)-Sym-Prop+.

7.2 Efficient Direct Sum with Parameter Reuse

Construction 5. Let Γ (j) be a PES for P (j). Also let Γ = (Γ (1), . . . , Γ (k)).
We construct a PES Γ ′ for DS[P], where P = {P (1), . . . , P (k)}, as follows. We
denote this scheme by Reuse-Trans(Γ). The intuition is to use two new parameters
gj , hj specific to Γ (j), where in the proof, their substituted matrices serve as the
“switches” that turn on only the j-th scheme, and that is why we can reuse the
same based parameters b (since the others are rendered zero by the switches).

– Param′(par). For j ∈ [k], run Param(j)(parj) to obtain nj . Let n = maxj∈[k] nj .
Output n′ = n + 2k. Denote b = (b1, . . . , bn, g1, . . . , gk, h1, . . . , hk). Also
denote bj = (b1, . . . , bnj).

25

– EncCt′((j, y), N). Run EncCt(j)(y,N)→ c = c(s, ŝ,bj). Let snew be the new
special non-lone variable. Output c′ =

(
c, gjs0 + hjsnew

)
.

– EncKey′((i, x), N). Run EncKey(i)(x,N)→ k = k(r, r̂,bi). Let rnew be a new
non-lone variable and αnew be the new special lone variable. Let k̃ be exactly
k but with α being replaced by rnewgi. Output k′ =

(
k̃, αnew + rnewhi

)
.

Pair/Correctness. Suppose P̄κ
(
(i, x), (j, y)

)
= 1. Thus, i = j and P (j)

κj
(x, y) =

1. Hence, we can run Pair(j)(x, y,N)→ (E,E) and obtain a linear combination
sEk> + cEr> = αs0 = (rnewgj)s0. Hence, we have the following, as required:(
αnew + rnewhj

)
snew − rnew

(
gjs0 + hjsnew

)
+ (rnewgj)s0 = αnewsnew.

Lemma 4. Suppose that PES Γ (j) for P (j) satisfies (d1, d2)-Sym-Prop+, for
all j ∈ [k]. Then, the PES Reuse-Trans(Γ) for predicate family DS[P], where
P = {P (1), . . . , P (k)}, satisfies (d1, d2)-Sym-Prop+. (The proof is deferred to the
full version.)

8 Predicative Automata

This section presents an augmentation via DFA over predicates. Due to direct
sum transformations, it is again sufficient to consider a single predicate variant.

Let P = { Pκ }κ where Pκ : Xκ × Yκ → { 0, 1 }, be a predicate family. A
Predicative Automata (PA) over Pκ is a 4-tuple (Q,T, q0, F) where Q is the set
of states, T ⊆ Q×Q× Xκ is the transition table, q0 ∈ Q is the start state, and
F ⊆ Q is the set of accept states. For simplicity and w.l.o.g., we can assume that
there is only one accept state, and it has no outgoing transition. An input to
such an automata is a sequence Y = (y1, . . . , y`) ∈ (Yκ)∗, where ` is unbounded.
A predicative automata M = (Q = {q0, . . . , qσ−1},T, q0, qσ−1) accepts Y if there
exists a sequence of states (q(1), . . . , q(`)) ∈ Q` such that for all i ∈ [1, `], it
holds that there exists (q(i−1), q(i), x(i)) ∈ T such that Pκ(x(i), yi) = 1, and
that q(0) = q0 and q(`) = qσ−1. Following the predicate for deterministic finite
automata (DFA) [35,5,2], we will assume determinism of such a predicative
automata. (So we may call it predicative DFA.) In our context, this is the
restriction that for any different transitions with the same outgoing state, namely
(q, q′, x′) and (q, q′′, x′′) with q′ 6= q′′, we require that for all y ∈ Yκ, it must be
that Pκ(x′, y) 6= Pκ(x′′, y). We can observe that if P is the equality predicate
(IBE), then the resulting predicative DFA over P is exactly the definition of DFA.
Example. We provide an example of languages. Suppose we have a list of
words which are considered bad. There exists a simple predicative DFA, depicted
in Fig. 5, that accepts exactly any sentences that start with a bad word and
contain an even number of the total bad words. This seems not possible with
span programs, since a sentence can be arbitrarily long.

Definition 9. Let P = { Pκ }κ where Pκ : Xκ × Yκ → { 0, 1 }, be a predicate
family, indexed by κ = (N, par). We define the Key-policy-Automata-augmented
predicate over P as KA1[P] =

{
P̄κ
}
κ
where P̄κ : X̄κ × Ȳκ → { 0, 1 } by letting

26

q0

start
q1 q2

accept
∈ Bad

∈ Bad

∈ Bad

6∈ Bad 6∈ Bad

y1

start

y2 y3 y4 · · ·

Fig. 5: Predicative DFA for language of sentences that start with a bad word and have
an even number of the total bad words. Based predicates for testing membership/non-
membership can use IBBE, IBR, defined in §9.2, respectively.

– X̄κ = {M |M is a predicative automata over Pκ }.
– Ȳκ = (Yκ)∗.
– P̄κ(M,Y) = 1 ⇐⇒ M accepts Y. ♦

Intuition. The intuition for constructing PESs for DFA over predicates is
similar to that of span program over predicates in that we follow the blueprint of
generalizing PESs for X over IBE to X over any predicates, where X is either
DFA or span program. Note that this blueprint was explained in §2 for the case of
span programs. Here, for the DFA case, the starting PES is the ABE for regular
languages (which can be considered as DFA over IBE) of [5], of which a symbolic
proof was given in §B.5 of [2]. In our construction below, one may notice that
the structure of PES contains “two copies” of the underlying PES. This feature
is inherited from the PES for ABE for regular languages of [5], which already
utilizes two copies of IBE encodings.

We note some differences from the case of span programs. For the constructions,
while our conversions for span programs use the second approach in §2 (based
on admissible PES), we will base our conversion for DFA instead on the first
approach (using the layering technique). This is done for simplicity. For the proofs,
we note that span programs and DFAs have completely different combinatorial
properties and thus different kinds of substituted matrices. See more discussions
below.

Construction 6. Let Γ be a PES construction for P . We construct a PES Γ ′
for KA1[P] as follows. For further use, we denote this Γ ′ by KA1-Trans(Γ).
– Param′(par). If Param(par) returns n, then output 2n + 5. Denote b1 =

(b1,1, . . . , b1,n), b2 = (b2,1, . . . , b2,n), and b′ = (b1,b2, h0, g1, h1, g2, h2).
– EncCt′(Y,N). Parse Y = (y1, . . . , y`). For i ∈ [`], run EncCt(yi, N) to obtain

a vector c(i) of polynomials. We will use two copies of it, with two different
sets of variables, written as:

c(1,i) := c(i)(s(1,i), ŝ(1,i),b1), c(2,i) := c(i)(s(2,i), ŝ(2,i),b2),

and relate these two sets of variables via:

s
′(i)
0 :=

s

(1,i+1)
0 if i = 0
s

(1,i+1)
0 = s

(2,i)
0 if i = 1, . . . , `− 1

s
(2,i)
0 if i = `

. (18)

27

We then define c′0 := h0s
(0)
new and, for i ∈ [`],

c′i := h1s
(i−1)
new + g1s

′(i−1)
0 + h2s

(i)
new + g2s

′(i)
0 ,

where s(0)
new, . . . , s

(`)
new are new non-lone variables with s(`)

new being special.
Finally, it outputs c′ :=

(
c′0, c

′
1, . . . , c

′
`, (c(1,i), c(2,i))i∈[`]

)
.

– EncKey′(M,N). ParseM = (Q,T, q0, qσ−1) and parse T =
{

(qυt , qωt , xt)
}
t∈[m]

where each υt, ωt ∈ [0, σ − 1]. 12 Let u0, u1, . . . , uσ−1 be new lone variables
with uσ−1 being special. For all t ∈ [m], run EncKey(xt, N) to obtain a
vector k(t) of polynomials. We use two copies of it, with two different sets of
variables. We then modify them via variable replacement as follows.

k(1,t) := k(t)(r(1,t), r̂(1,t),b1), k(2,t) := k(t)(r(2,t), r̂(2,t),b2),

k′(1,t) := k(1,t)|
α

(1,t) 7→ r
(t)
newg1

, k′(2,t) := k(2,t)|
α

(2,t) 7→ r
(t)
newg2

,

where r(t)
new is a new non-lone variable (the same one for both). We then define

k̃0 := −u0 + r(0)
newh0, k̃1,t := uυt + r(t)

newh1, k̃2,t := −uωt + r(t)
newh2.

for t ∈ [m]. Finally, it outputs k′ :=
(
k̃0,
(
k̃1,t, k̃2,t,k

′(1,t),k′(2,t),
)
t∈[m]

)
.

Pair/Correctness. Suppose P̄κ(M,Y) = 1. That is, there exists a sequence
(q(1), . . . , q(`)) ∈ Q` such that for all i ∈ [1, `], it holds that Pκ(x(i), yi) = 1
and (q(i−1), q(i), x(i)) ∈ T, and that q(0) = q0, while q

(`) = qσ−1. For i ∈ [`], we
proceed as follows. Denote ti ∈ [m] as the transition index that corresponds to
the i-th move; that is, let (qυti , qωti , xti) = (q(i−1), q(i), x(i)). From this, we have
qυti

= qωti−1
for all i ∈ [`]. Now since Pκ(xti , yi) = 1, we can run Pair(xti , yi, N)

to obtain linear combinations that are equal to

D1,i := α(1,ti)s
(1,i)
0 =

(
r(ti)

newg1
)
s
′(i−1)
0 ,

D2,i := α(2,ti)s
(2,i)
0 =

(
r(ti)

newg2
)
s
′(i)
0 .

We haveQi := D1,i+D2,i+s
(i−1)
new k̃1,ti+s

(i)
newk̃2,ti−c

′
ir

(ti)
new = s(i−1)

new uωti−1
−s(i)

newuωti
.

Let Q0 := s(0)
newk̃0− r

(0)
newc

′
0 = −s(0)

newu0. Combining them, we obtain −
∑`
i=0 Qi =

s(`)
newuσ−1, as required.

Theorem 3. Suppose a PES Γ for P satisfies (d1, d2)-Sym-Prop++. Then, the
the PES KA1-Trans(Γ) for KA1[P] satisfies (ψ1d1, ψ2d2)-Sym-Prop+, where ψ1 =
max{`+ 1,m}, ψ2 = max{`+ 1, 2m}, where ` is the size of ciphertext attribute
Y , and m is the size of transition table T for predicative automata M .

We defer the proof to the full version. At the core, we point out combinatorial
vectors that encode the non-acceptance condition of predicative DFA and use
them as the “mask” vectors in the proof. Since the combinatorial properties here
is richer than the KP1 case, the proof is somewhat more complex.
12
υt, ωt indicate the “from” and the “to” state of the t-th transition in T, respectively.

28

9 Applications

We provide applications from our framework. Due to limited space, we offer more
discussions in the full version, where we also motivate for real-world applications.

9.1 ABE for New Predicates
Predicative Branching Program. This is similar to and might be less powerful
than predicative DFA but may serve an independent interest, since its definition
and construction are simpler. A Predicative Branching Program (PBP) over a
predicate Pκ : Xκ × Yκ → {0, 1} is a 4-tuple (Γ, q1, qσ, L) where Γ = (V,E) is
a directed acyclic graph (DAG) with a set of nodes V = {q1, . . . , qσ} and a set
of directed edges E ⊆ V 2, q1 is a distinguished terminal node (a node with no
outgoing edge) called the accept node, qσ is the unique start node (the node with
no incoming edge), and L : E → Xκ is an edge labelling function. An input to
a PBP M = (Γ, q1, qσ, L) is y ∈ Yκ. Let Γy be an induced subgraph of Γ that
contains exactly all the edges e such that Pκ(L(e), y) = 1. Such a PBPM accepts
y if Γy contains a directed path from the start node, qσ, to the accept node, q1.
Following the deterministic characteristic of boolean branching programs, we
will assume determinism of PBP: for any node v, for any two outgoing edges
e1, e2 from the same node v, we require that Pκ(L(e1), y) 6= Pκ(L(e2), y) for any
y ∈ Yκ. We denote the key-policy-augmented predicate using PBP over P as
KB1[P]. We show that it can be embedded into KP1[P] by using almost the same
proof as in the case for the implication ABE for span programs to ABE for BP
in [6]. We provide this in the full version.
Nested-policy/Mixed-policy ABE. We can define new type of ABE that
nests policies. Nested-policy ABE is ABE for predicate CP[KP[P]] or KP[CP[P]],
or any arbitrarily hierarchically nested ones. In these schemes, however, the
structure of nesting is fixed. We define what we call Mixed-policy ABE to free
up this restriction altogether. It is defined in a recursive manner to make sure
that at level `, it includes all the possible nesting structures that have at most `
layers. To construct a transformation for this, we observe that a trivial scheme
using parameter concatenation would be inefficient as when going from level `− 1
to `, the number of parameters will become at least d times of level `− 1, where
d is the number of transformations plus one (e.g., if we want only KP[·] and
CP[·], then d = 3). Hence, the overall size at level ` would be O(d`). Fortunately,
thanks to our construction for direct sum with parameter reuse, Reuse-Trans, the
parameter size (which will correspond to the public key size for ABE) can be
kept small. For `-level scheme, the parameter size is O(n+ k + d`), where n is
the maximum parameter size among k based predicates in P. We explore this in
more details in the full version.

9.2 Revisiting Known Predicates

Known Predicates and Modular Constructions. We describe some known
predicates and how they are related to more basic predicates via the policy

29

augmented predicate notions (e.g., KP1[·], KP[·]). These relations directly suggest
what transformations (e.g., KP1-Trans) can be used so as to achieve PES for
more expressive predicates from only PESs for basic predicates, namely, IBE
and its negation (NIBE), in a modular way. We note that the ciphertext-policy
variants can be considered analogously, and can be obtained simply by applying
the dual conversion [5,2]. Let U = ZN be the attribute universe.

We consider the following predicates.

– P IBE : U× U→ {0, 1} is defined as P IBE(x, y) = 1⇔ x = y.
– PNIBE : U× U→ {0, 1} is defined as PNIBE(x, y) = 1⇔ x 6= y.
– P IBBE : U× 2U → {0, 1} is defined as P IBBE(x, Y) = 1⇔ x ∈ Y .13

• It is clear that P IBBE can be embedded into CP1OR[P IBE].
– P IBR : U× 2U → {0, 1} is defined as P IBR(x, Y) = 1⇔ x 6∈ Y .
• It is clear that P IBR can be embedded into CP1AND[PNIBE].

– PTIBBE : ({1, 2} × U) × 2U → {0, 1} is defined as PTIBBE((i, x), Y) = 1 ⇔
(i = 1 ∧ x ∈ Y) ∨ (i = 2 ∧ x 6∈ Y).14

• It is clear that PTIBBE can be embedded into CP1OR[P IBBE � P IBR].
– The predicate for completely-unbounded KP-ABE for monotone span program
PKP-MSP (as defined in [5] and recapped in §3.4) is the same as KP1[P IBBE],
or equivalently, KP[P IBE].

– The predicate for completely-unbounded KP-ABE for non-monotone span
program PKP-NSP corresponds to exactly the definition of KP1[PTIBBE].

For self-containment, we provide PES constructions for P IBE and PNIBE in the
full version.

On ABE for Non-monotone Span Programs. To the best of our knowledge,
fully secure completely-unbounded large-universe KP-ABE for non-monotone
span program (NSP) had not been achieved before this work. We achieve a
scheme in prime-order groups, in a modular and clean manner from simple
PESs for P IBE and PNIBE. An explicit description of our PES for it is given in
the full version. We have to rely on the q-ratio assumption, inherited from the
framework of [2]15; nevertheless, all the current completely unbounded ABE for
even monotone span programs still also need q-type assumptions [31,5,2], even
selectively secure one [31]. We provide a comparison to known KP-ABE schemes
for NSP in prime-order groups in Table 1. We further discuss why large-universe
ABE for NSP is generally a more difficult task to achieve than ABE for MSP in
the full version.

For the CP-ABE case, a fully secure completely-unbounded scheme for NSP
was recently and independently reported in [39]. Their scheme is constructed in
composite-order groups. Our instantiated CP-ABE for NSP is in prime-order
13 IBBE is for ID-based broadcast encryption [19]; IBR is for ID-based revocation [9].
14 This is a unified notion for IBBE and IBR, and is called two-mode IBBE in [38].
15 In defense, we also provide a positive remark towards the q-ratio assumption in the

full version.

30

Table 1: Summary for KP-ABE for non-monotone span programs with large universe.
Schemes |PK| |SK| |CT| Unbounded Security Assumption

|policy|/multi-use/|attrib. set|

OSW07 [28] I O(T) O(m) O(T) X X selective DBDH
II O(T) O(m log(T)) O(t) X X selective DBDH

OT10 [29] O(TR) O(m) O(tR) X full DLIN
OT12 [30] O(1) O(m) O(tR) X X full DLIN
ALP11 [9] O(T) O(Tm) O(1) X X selective T -DBDHE†

YAHK14 [38] I O(T) O(Tm) O(1) X X selective T -DBDHE†

II O(T) O(m) O(T) X X selective DBDH
III O(T) O(m log(T)) O(t) X X selective DBDH
IV O(1) O(m) O(t) X X X selective t-A†

Our KP-NSP I O(1) O(m) O(t) X X X full qratio†

II O(T 2) O(T 3
m) O(1) X X full qratio†

III O(M2 +ML) O(1) O(t(M3 +M
2
L)) X X full qratio†

Note: t = |attribute set|, m×` is the span program size, R is the attribute multi-use bound, T,M,L are the maximum
bound for t,m, `, respectively (if required). Assumptions with † are q-type assumptions.

groups, and unlike [39] of which proof is complex and specific, ours can be
obtained in a modular manner. We defer a comparison table for CP-ABE for
NSP to the full version.
On Constant-size Schemes. One huge further advantage in using the symbolic
PES framework of [2] is that any symbolically secure PES can be transformed
to constant-size schemes (in ciphertext or key sizes) by bounding corresponding
terms and trading-off with the parameter size (n from Param). In particular, any
of our transformed PESs in this paper, e.g., KP[P], can be made constant-size.
We include such ABE for NSP in Table 1. More discussions on their detail
complexities are in the full version.

Revisiting the Okamoto-Takashima Definition. The Okamoto-Takashima
type ABE [29,30] for non-monotone span program was defined differently. We
recast it here in our terminology, and explain how to achieve a PES for it in a
modular manner in the full version.

Acknowledgement. This work was partially supported by JST CREST Grant
No. JPMJCR1688.

References

1. S. Agrawal, M. Chase. A Study of Pair Encodings: Predicate Encryption in Prime
Order Groups. In TCC 2016-A, LNCS, pp. 259–288, 2016.

2. S. Agrawal, M. Chase. Simplifying Design and Analysis of Complex Predicate
Encryption Schemes. In Eurocrypt 2017, LNCS, pp. 627–656, 2017.

3. M. Ambrona, G. Barthe, B. Schmidt. Generic Transformations of Predicate En-
codings: Constructions and Applications. In Crypto (1) 2017, LNCS, pp. 36–66,
2017.

4. N. Attrapadung, H. Imai. Dual-Policy Attribute Based Encryption. In ACNS 2009,
LNCS, pp. 168–185, 2009.

31

5. N. Attrapadung. Dual System Encryption via Doubly Selective Security: Framework,
Fully-secure Functional Encryption for Regular Languages, and More. In Eurocrypt
2014, LNCS, pp. 557–577, 2014.

6. N. Attrapadung. Dual System Encryption Framework in Prime-Order Groups via
Computational Pair Encodings. In Asiacrypt 2016, LNCS, pp. 591–623, 2016.

7. N. Attrapadung, G. Hanaoka, S. Yamada. Conversions among Several Classes of
Predicate Encryption and Applications to ABE with Various Compactness Tradeoffs.
In Asiacrypt 2015, LNCS, pp. 575–601, 2015.

8. N. Attrapadung, G. Hanaoka, K. Ogawa, G. Ohtake, H. Watanabe, S. Yamada.
Attribute-Based Encryption for Range Attributes. In SCN’16, LNCS, pp. 42–61,
2016.

9. N. Attrapadung, B. Libert, E. Panafieu. Expressive Key-Policy Attribute-Based
Encryption with Constant-Size Ciphertexts. In PKC 2011, LNCS, pp. 90–108.

10. N. Attrapadung, S. Yamada. Duality in ABE: Converting Attribute Based Encryp-
tion for Dual Predicate and Dual Policy via Computational Encodings. In CT-RSA
2015, LNCS, pp. 87–105, 2015.

11. A. Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD thesis,
Israel Institute of Technology, Technion, Haifa, Israel, 1996.

12. J. Bethencourt, A. Sahai, B. Waters. Ciphertext-Policy Attribute-Based Encryption.
In IEEE S&P 2007, pp. 321–334, 2007.

13. D. Boneh, X. Boyen. Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In Journal of Cryptology, 24 (4), pp. 659–693, 2011.
Extended abstract in Eurocrypt 2004, LNCS, pp. 223–238, 2004.

14. D. Boneh, M. Hamburg. Generalized Identity Based and Broadcast Encryption
Schemes. In Asiacrypt 2008, LNCS, pp. 455–470, 2008.

15. D. Boneh, A. Sahai, B. Waters. Functional Encryption: Definitions and Challenges.
In TCC 2011, LNCS, pp. 253–273, 2011.

16. J. Chen, R. Gay, H. Wee. Improved Dual System ABE in Prime-Order Groups via
Predicate Encodings. In Eurocrypt 2015, LNCS, pp. 595–624, 2015.

17. J. Chen, H. Wee. Fully, (Almost) Tightly Secure IBE from Standard Assumptions.
In Crypto 2013, LNCS, pp. 435-460, 2013.

18. J. Chen, J. Gong, L. Kowalczyk, H. Wee. Unbounded ABE via Bilinear Entropy
Expansion, Revisited. In Eurocrypt 2018, LNCS, pp. 503–534, 2018.

19. C. Delerablée. Identity-Based Broadcast Encryption with Constant Size Ciphertexts
and Private Keys. In Asiacrypt 2007, LNCS, pp. 200–215, 2007.

20. S. Gorbunov, V. Vaikuntanathan, H. Wee. Attribute-based encryption for circuits.
In STOC 2013, pp. 545–554, 2013.

21. V. Goyal, O. Pandey, A. Sahai, B. Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In ACM CCS 2006, pp. 89–98, 2006.

22. M. Karchmer, A.Wigderson. On span programs. In Proc. of the Eighth Annual
Structure in Complexity Theory Conference, IEEE, pp. 102–111, 1993.

23. A. Lewko, B. Waters. New Techniques for Dual System Encryption and Fully
Secure HIBE with Short Ciphertexts. In TCC 2010, LNCS, pp. 455–479, 2010.

24. A. Lewko, B. Waters. Decentralizing Attribute-Based Encryption In Eurocrypt
2011, LNCS, pp. 568-588, 2011.

25. A. Lewko, B. Waters. Unbounded HIBE and Attribute-Based Encryption In
Eurocrypt 2011, LNCS, pp. 547–567, 2011.

26. A. Lewko, B. Waters. New Proof Methods for Attribute-Based Encryption: Achiev-
ing Full Security through Selective Techniques. In Crypto 2012, LNCS, pp. 180–198.

32

27. A. Lewko, T. Okamoto, A. Sahai, K. Takashima, B. Waters. Fully Secure Func-
tional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product
Encryption. In Eurocrypt 2010, LNCS, pp. 62–91, 2010.

28. R. Ostrovsky, A. Sahai, B. Waters. Attribute-based encryption with non-monotonic
access structures. In ACM CCS 2007, pp. 195–203, 2007.

29. T. Okamoto, K. Takashima. Fully secure functional encryption with general
relations from the decisional linear assumption.In Crypto 2010, LNCS, pp. 191–208,
2010.

30. T. Okamoto, K. Takashima, Fully Secure Unbounded Inner-Product and Attribute-
Based encryption,. In Asiacrypt 2012, LNCS, pp. 349–366, 2012.

31. Y. Rouselakis, B. Waters Practical constructions and new proof methods for large
universe attribute-based encryption. In ACM CCS 2013, pp. 463–474, 2013.

32. A. Sahai, B. Waters. Fuzzy Identity-Based Encryption In Eurocrypt 2005, LNCS,
pp. 457–473, 2005.

33. B. Waters. Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient,
and Provably Secure Realization. In PKC 2011, LNCS, pp. 53–70, 2011.

34. B. Waters. Dual System Encryption: Realizing Fully Secure IBE and HIBE under
Simple Assumptions. In Crypto 2009, LNCS, pp. 619–636, 2009.

35. B. Waters. Functional Encryption for Regular Languages. In Crypto 2012, LNCS,
pp. 218–235, 2012.

36. H. Wee. Dual System Encryption via Predicate Encodings. In TCC 2014, LNCS,
pp. 616–637, 2014.

37. K. Yamada, N. Attrapadung, K. Emura, G. Hanaoka, K. Tanaka. Generic Con-
structions for Fully Secure Revocable Attribute-Based Encryption. In ESORICS
2017 (2), LNCS, pp. 532–551, 2017.

38. S. Yamada, N. Attrapadung, G. Hanaoka, N. Kunihiro. A Framework and Compact
Constructions for Non-monotonic Attribute-Based Encryption. In PKC 2014, LNCS,
pp. 275–292, 2014.

39. D. Yang, B. Wang, X. Ban. Fully secure non-monotonic access structure CP-ABE
scheme. In KSII Trans. on Internet and Information Systems, pp. 1315–1329, 2018.

	 Unbounded Dynamic Predicate Compositions in Attribute-Based Encryption
	Introduction
	Intuition and Informal Overview
	Preliminaries
	Definitions for General ABE
	Pair Encoding Scheme Definition
	Symbolic Property of PES
	Definitions for Some Previous Predicates

	Admissible Pair Encodings
	Ciphertext-policy Augmentation
	Key-policy Augmentation
	Direct Sum and Augmentation over Predicate Set
	Simple Direct Sum by Parameter Concatenation
	Efficient Direct Sum with Parameter Reuse

	Predicative Automata
	Applications
	ABE for New Predicates
	Revisiting Known Predicates

	References

