
Compact Adaptively Secure ABE for NC1 from
k-Lin

Lucas Kowalczyk1,? and Hoeteck Wee2,??

1 Columbia University
luke@cs.columbia.edu

2 CNRS, ENS, PSL
wee@di.ens.fr

Abstract. We present compact attribute-based encryption (ABE) schemes
for NC1 that are adaptively secure under the k-Lin assumption with poly-
nomial security loss. Our KP-ABE scheme achieves ciphertext size that is
linear in the atttribute length and independent of the policy size even in
the many-use setting, and we achieve an analogous efficiency guarantee
for CP-ABE. This resolves the central open problem posed by Lewko and
Waters (CRYPTO 2011). Previous adaptively secure constructions either
impose an attribute “one-use restriction” (or the ciphertext size grows
with the policy size), or require q-type assumptions.

1 Introduction

Attribute-based encryption (ABE) [31,17] is a generalization of public-key encryp-
tion to support fine-grained access control for encrypted data. Here, ciphertexts
and keys are associated with descriptive values which determine whether decryp-
tion is possible. In a key-policy ABE (KP-ABE) scheme for instance, ciphertexts
are associated with attributes like ‘(author:Waters), (inst:UT), (topic:PK)’ and keys
with access policies like ((topic:MPC) OR (topic:SK)) AND (NOT(inst:UCL)), and
decryption is possible only when the attributes satisfy the access policy. A
ciphertext-policy (CP-ABE) scheme is the dual of KP-ABE with ciphertexts
associated with policies and keys with attributes.

Over past decade, substantial progress has been made in the design and
analysis of ABE schemes, leading to a large families of schemes that achieve various
trade-offs between efficiency, security and underlying assumptions. Meanwhile,

? Supported in part by an NSF Graduate Research Fellowship DGE-16-44869; The
Leona M. & Harry B. Helmsley Charitable Trust; ERC Project aSCEND (H2020
639554); the Defense Advanced Research Project Agency (DARPA) and Army
Research Office (ARO) under Contract W911NF-15-C-0236; and NSF grants CNS-
1445424, CNS-1552932 and CCF-1423306. Any opinions, findings and conclusions or
recommendations expressed are those of the authors and do not necessarily reflect
the views of the the Defense Advanced Research Projects Agency, Army Research
Office, the National Science Foundation, or the U.S. Government.

?? Supported in part by ERC Project aSCEND (H2020 639554).

ABE has found use as a tool for providing and enhancing privacy in a variety of
settings from electronic medical records to messaging systems and online social
networks. Moreover, we expect further deployment of ABE, thanks to the recent
standardization efforts of the European Telecommunications Standards Institute
(ETSI).

In this work, we consider KP-ABE schemes for access policies in NC1 that
simultaneously:

(1) enjoy compact ciphertexts whose size grows only with the length of the
attribute and is independent of the policy size, even for complex policies that
refer to each attribute many times;

(2) achieve adaptive security (with polynomial security loss);
(3) rely on simple hardness assumptions in the standard model;
(4) can be built with asymmetric prime-order bilinear groups.

We also consider the analogous question for CP-ABE schemes with compact keys.
In both KP and CP-ABE, all four properties are highly desirable from both a
practical and theoretical stand-point and moreover, properties (1), (2) and (4) are
crucial for many real-world applications of ABE. In addition, properties (2), (3)
and (4) are by now standard cryptographic requirements pertaining to speed and
efficiency, strong security guarantees under realistic and natural attack models,
and minimal hardness assumptions. There is now a vast body of works on ABE
(e.g. [17,23,27,26], see Fig 1) showing how different combinations of (1) – (4),
culminating in several unifying frameworks that provide a solid understanding of
the design and analysis of these schemes [2,34,6,3,1]. Nonetheless, prior to this
work, it was not known how to even simultaneously realize (1) – (3) for NC1

access policies3; indeed, this is widely regarded one of the main open problems
in pairing-based ABE.

Our results. We present the first KP-ABE and CP-ABE schemes for NC1

that simultaneously realize properties (1) – (4). Our KP-ABE scheme achieves
ciphertext size that is linear in the attribute length and independent of the
policy size even in the many-use setting; the same holds for the key size in our
CP-ABE. Both schemes achieve adaptive security under the k-Lin assumption
in asymmetric prime-order bilinear groups with polynomial security loss. We
also present an “unbounded” variant of our compact KP-ABE scheme with
constant-size public parameters.

As an immediate corollary, we obtain delegation schemes for NC1 with public
verifiability and adaptive soundness under the k-Lin assumption [30,26,9].

Our construction leverages a refinement of the recent “partial selectivization”
framework for adaptive security [20] (which in turn builds upon [13,12,18,21])
along with the classic dual system encryption methodology [33,26].

3 Note that there exist constructions of ABE for more general access policies like
monotone span programs / Boolean formulas with threshold gates [17], and even
polynomial-sized Boolean circuits [16,14], but all such constructions sacrifice at least
one of the properties (1)-(3).

2

reference adaptive compact assumption unbounded

GPSW [17] X static X
LOSTW [23,27] X static X
LW [26] X X q-type
OT [28] X 2-Lin X X
Att [3] X X q-type X
CGKW [7] X k-Lin X X
ours, Section 6 X X static X
ours, Section ?? X X static X X

Fig. 1. Summary of KP-ABE schemes for NC1

1.1 Technical overview

Our starting point is the Lewko-Waters framework for constructing compact
adaptively secure ABE [26] based on the dual system encryption methodology4

[33,25,23]. Throughout, we focus on monotone NC1 circuit access policies, and
note that the constructions extend readily to the non-monotone setting5. Let
(G1, G2, GT) be an asymmetric bilinear group of prime order p, where g, h are
generators of G1, G2 respectively.

Warm-up. We begin with the prior compact KP-ABE for monotone NC1

[26,23,17]; this is an adaptively secure scheme that comes with the downside of
relying on q-type assumptions (q-type assumptions are assumptions of size that
grows with some parameter q. It is known that many q-type assumptions become
stronger as q grows [10], and in general such complex and dynamic assumptions
are not well-understood). The construction uses composite-order groups, but here
we’ll suppress the distinction between composite-order and prime-order groups
for simplicity. We associate ciphertexts ctx with attribute vectors6 x ∈ {0, 1}n

4 Essentially, the dual system proof method provides guidance for transforming suitably-
designed functional encryption schemes which are secure for one adversarial secret
key request to the multi-key setting where multiple keys may be requested by the
adversary. Our main technical contribution involves the analysis of the initial single-
key-secure component, which we refer to later as our “Core 1-ABE” component.

5 Most directly by pushing all NOT gates to the input nodes of each circuit and using
new attributes to represent the negation of each original attribute. It is likely that
the efficiency hit introduced by this transformation can be removed through more
advanced techniques à la [29,24], but we leave this for future work.

6 Some works associate ciphertexts with a set S ⊆ [n] where [n] is referred to as the
attribute universe, in which case x ∈ {0, 1}n corresponds to the characteristic vector
of S.

3

and keys skf with Boolean formulas f :

msk := (µ,w1, . . . , wn) (1)

mpk := (g, gw1 , . . . , gwn , e(g, h)µ),

ctx := (gs, {gswi}xi=1, e(g, h)µs ·M)

skf := ({hµj+rjwρ(j) , hrj}j∈[m]), ρ : [m]→ [n]

where µ1, . . . , µm are shares of µ ∈ Zp w.r.t. the formula f ; the shares satisfy
the requirement that for any x ∈ {0, 1}n, the shares {µj}xρ(j)=1 determine µ if
x satisfies f (i.e., f(x) = 1), and reveal nothing about µ otherwise; and ρ is a
mapping from the indices of the shares (in [m]) to the indices of the attributes (in
[n]) to which they are associated. For decryption, observe that we can compute
{e(g, h)µjs}xi=1, from which we can compute the blinding factor e(g, h)µs via
linear reconstruction “in the exponent”.

Here, m is polynomial in the formula size, and we should think of m =
poly(n)� n. Note that the ciphertext consists only of O(n) group elements and
therefore satisfies our compactness requirement.

Proving adaptive security. The crux of the proof of adaptive security lies in
proving that µ remains computationally hidden given just a single ciphertext and
a single key and no mpk (the more general setting with mpk and multiple keys
follows via what is by now a textbook application of the dual system encryption
methodology). In fact, it suffices to show that µ is hidden given just

ct′x := ({wi}xi=1) // “stripped down” ctx

skf := ({hµj+rjwρ(j) , hrj}j∈[m])

where x, f are adaptively chosen subject to the constraint f(x) = 0. Henceforth,
we refer to (ct′x, skf) as our “core 1-ABE component”. Looking ahead to our
formalization of adaptive security for this core 1-ABE, we actually require that
µ is hidden even if the adversary sees hw1 , . . . , hwn ; this turns out to be useful
for the proof of our KP-ABE (for improved concrete efficiency).

Core technical contribution. The technical novelty of this work lies in proving
adaptive security of the core 1-ABE component under the DDH assumption.
Previous analysis either relies on a q-type assumption [26,4,2,1], or imposes the
one-use restriction (that is, ρ is injective and m = n, in which case security can
be achieved unconditionally) [23,34]. Our analysis relies on a piecewise guessing
framework which refines and simplifies a recent framework of Jafargholi et al. for
proving adaptive security via pebbling games [20] (which in turn builds upon
[13,12,18,21]).

Let G0 denote the view of the adversary (ct′x, skf) in the real game, and G1

denote the same thing except we replace {µj} in skf with shares of a random
value independent of µ. Our goal is to show that G0 ≈c G1. First, let us define
an additional family of games {HU} parameterized by U ⊆ [m]: HU is the same

4

as G0 except we replace {µj : j ∈ U} in skf with uniformly random values. In
particular, H∅ = G0.

We begin with the “selective” setting, where the adversary specifies x at the
start of the game. Suppose we can show that G0 ≈c G1 in this simpler setting via
a series of L+ 1 hybrids of the form:

G0 = Hh0(x) ≈c Hh1(x) ≈c · · · ≈c HhL(x) = G1

where h0, . . . , hL : {0, 1}n → {U ⊆ [m] : |U | ≤ R′} are functions of the adver-
sary’s choices x. Then, the piecewise guessing framework basically tells us that
G0 ≈c G1 in the adaptive setting with a security loss roughly mR′ · L, where the
factor L comes from the hybrid argument and the factor mR′ comes from guessing
hi(x) (a subset of [m] of size at most R′). Ideally, we would want mR′ � 2n,
where 2n is what we achieve from guessing x itself

First, we describe a straight-forward approach which achieves L = 2 and
R′ = m implicit in [26] (but incurs a huge security loss 2m � 2n) where

h1(x) = {j : xρ(j) = 0}.

That is, Hh1(x) is G0 with µj in skf replaced by fresh µ′j ← Zp for all j satisfying
xρ(j) = 0. Here, we have

– G0 ≈c Hh1(x) via DDH, since hµj+wρ(j)rj , hrj computationally hides µj when-
ever xρ(j) = 0 and wρ(j) is not leaked in ctx;

– Hh1(x) ≈s G1 via security of the secret-sharing scheme since the shares
{µj : xρ(j) = 1} leak no information about µ whenever f(x) = 0.

This approach is completely generic and works for any secret-sharing scheme.
In our construction, we use a variant of the secret-sharing scheme for NC1 in

[20] (which is in turn a variant of Yao’s secret-sharing scheme [32,19]), for which
the authors also gave a hybrid argument achieving L = 8d and R′ = O(d logm)
where d is the depth of the formula; this achieves a security loss 2O(d logm).
Recall that the circuit complexity class NC1 is captured by Boolean formulas of
logarithmic depth and fan-in two, so the security loss here is quasi-polynomial in
n. We provide a more detailed analysis of the functions h0, h1, . . . , hL used in their
scheme, and show that the subsets of size O(d) output by these functions can be
described only O(d) bits instead of O(d logm) bits. Roughly speaking, we show
that the subsets are essentially determined by a path of length d from the output
gate to an input gate, which can be described using O(d) bits since the gates
have fan-in two. Putting everything together, this allows us to achieve adaptive
security for the core 1-ABE component with a security loss 2O(d) = poly(n).

Our ABE scheme. To complete the overview, we sketch our final ABE scheme
which is secure under the k-Linear Assumption in prime-order bilinear groups.

To obtain prime-order analogues of the composite-order examples, we rely
on the previous framework of Chen et al. [6,15,5] for simulating composite-
order groups in prime-order ones. Let (G1, G2, GT) be a bilinear group of prime

5

order p. We start with the KP-ABE scheme in (1) and carry out the following
substitutions:

gs 7→ [s>A]1, h
rj 7→ [rj]2, wi 7→Wi ← Z(k+1)×k

p , µ 7→ v← Zk+1
p (2)

where A← Zk×(k+1)
p , s, rj ← Zkp, k corresponds to the k-Lin Assumption desired

for security7, and [·]1, [·]2 correspond respectively to exponentiations in the prime-
order groups G1, G2. We note that the naive transformation following [6] would
have required Wi of dimensions at least (k + 1)× (k + 1); here, we incorporated
optimizations from [15,5]. This yields the following prime-order KP-ABE scheme
for NC1:

msk := (v,W1, . . . ,Wn)

mpk := ([A]1, [AW1]1, . . . , [AWn]1, e([A]1, [v]2)),

ctx :=

(
[s>A]1, {[s>AWi]1}xi=1, e([s>A]1, [v]2) ·M

)
skf := ({[vj + Wρ(j)rj]2, [rj]2}j∈[m])

where vj is the j’th share of v. Decryption proceeds as before by first computing

{e([s>A]1, [vj]2)}ρ(j)=0∨xρ(j)=1

and relies on the associativity relations AWi · rj = A ·Wirj for all i, j [8].
In the proof, in place of the DDH assumption which allows us to argue

that (hwirj , hrj) is pseudorandom, we will rely on the fact that by the k-Lin
assumption, we have

(A,AWi, [Wirj]2, [rj]2) ≈c (A,AWi, [Wirj + δija
⊥]2, [rj]2)

where A ← Zk×(k+1)
p ,Wi ← Z(k+1)×2k

p , rj ← Z2k
p and a⊥ ∈ Zk+1

p satisfies

A · a⊥ = 0.

Organization. We describe the piecewise guessing framework for adaptive
security in Section 3 and a pebbling strategy (used to define h0, . . . , hL) in
Section 4. We describe a secret-sharing scheme and prove adaptive security of
the core 1-ABE component in Section 5. We present our full KP-ABE scheme in
Section 6, and present a CP-ABE and unbounded KP-ABE scheme in the full
version of this paper [22].

2 Preliminaries

Notation. We denote by s← S the fact that s is picked uniformly at random
from a finite set S. By PPT, we denote a probabilistic polynomial-time algorithm.

7 e.g: k = 1 corresponds to security under the Symmetric External Diffie-Hellman
Assumption (SXDH), and k = 2 corresponds to security under the Decisional Linear
Assumption (DLIN).

6

Throughout this paper, we use 1λ as the security parameter. We use lower case
boldface to denote (column) vectors and upper case boldcase to denote matrices.
We use ≡ to denote two distributions being identically distributed, and ≈c to
denote two distributions being computationally indistinguishable. For any two
finite sets (also including spaces and groups) S1 and S2, the notation “S1 ≈c S2”
means the uniform distributions over them are computationally indistinguishable.

2.1 Monotone Boolean formulas and NC1

Monotone Boolean formula. A monotone Boolean formula f : {0, 1}n → {0, 1} is
specified by a directed acyclic graph (DAG) with three kinds of nodes: input gate
nodes, gate nodes, and a single output node. Input nodes have in-degree 0 and
out-degree 1, AND/OR nodes have in-degree (fan-in) 2 and out-degree (fan-out)
1, and the output node has in-degree 1 and out-degree 0. We number the edges
(wires) 1, 2, . . . ,m, and each gate node is defined by a tuple (g, ag, bg, cg) where
g : {0, 1}2 → {0, 1} is either AND or OR, ag, bg are the incoming wires, cg is the
outgoing wire and ag, bg < cg. The size of a formula m is the number of edges in
the underlying DAG and the depth of a formula d is the length of the longest
path from the output node.

NC1 and log-depth formula. A standard fact from complexity theory tells us that
the circuit complexity class monotone NC1 is captured by monotone Boolean
formulas of log-depth and fan-in two. This follows from the fact that we can
transform any depth d circuit with fan-in two and unbounded fan-out into an
equivalent circuit with fan-in two and fan-out one (for all gate nodes) of the
same depth, and a 2d blow-up in the size. To see this, note that one can start
with the root gate of an NC1 circuit and work downward by each level of depth.
For each gate g considered at depth i, if either of its two input wires are coming
from the output wire of a gate (at depth i− 1) with more than one output wire,
then create a new copy of the gate at depth i− 1 with a single output wire going
to g (note that this copy may increase the output wire multiplicity of gates at
depth strictly lower than i− 1). This procedure preserves the functionality of the
original circuit, and has the result that at its end, each gate in the circuit has
input wires which come from gates with output multiplicity 1. The procedure
does not increase the depth of the circuit (any duplicated gates are added at a
level that already exists), so the new circuit is a formula (all gates have fan-out
1) of depth d with fan-in 2, so its size is at most 2d. d is logarithmic in the size of
the input for NC1 circuits, so the blowup from this procedure is polynomial in n.
Hence we will consider the class NC1 as a set of Boolean formulas (where gates
have fan-in 2 and fan-out 1) of depth O(log n) and refer to f ∈ NC1 formulas.

2.2 Secret sharing

A secret sharing scheme is a pair of algorithms (share, reconstruct) where share
on input f : {0, 1}n → {0, 1} and µ ∈ Zp outputs µ1, . . . , µm ∈ Zp together with
ρ : [m]→ {0, 1, . . . , n}.

7

– Correctness stipulates that for every x ∈ {0, 1}n such that f(x) = 1, we have

reconstruct(f, x, {µj}ρ(j)=0∨xρ(j)=1) = µ.

– Security stipulates that for every x ∈ {0, 1}n such that f(x) = 0, the shares
{µj}ρ(j)=0∨xρ(j)=1 perfectly hide µ.

Note the inclusion of ρ(j) = 0 in both correctness and security. All the secret
sharing schemes in this work will in fact be linear (in the standard sense): share
computes a linear function of the secret µ and randomness over Zp, and reconstruct
computes a linear function of the shares over Zp, that is, µ =

∑
ρ(j)=0∨xρ(j)=1

ωjµj .

2.3 Attribute-based encryption

An attribute-based encryption (ABE) scheme for a predicate pred(· , ·) consists
of four algorithms (Setup,Enc,KeyGen,Dec):

Setup(1λ,X ,Y,M)→ (mpk,msk). The setup algorithm gets as input the secu-
rity parameter λ, the attribute universe X , the predicate universe Y, the
message space M and outputs the public parameter mpk, and the master
key msk.

Enc(mpk, x,m)→ ctx. The encryption algorithm gets as input mpk, an attribute
x ∈ X and a message m ∈ M. It outputs a ciphertext ctx. Note that x is
public given ctx.

KeyGen(mpk,msk, y) → sky. The key generation algorithm gets as input msk
and a value y ∈ Y. It outputs a secret key sky. Note that y is public given
sky.

Dec(mpk, sky, ctx) → m. The decryption algorithm gets as input sky and ctx
such that pred(x, y) = 1. It outputs a message m.

Correctness. We require that for all (x, y) ∈ X × Y such that pred(x, y) = 1 and
all m ∈M,

Pr[Dec(mpk, sky,Enc(mpk, x,m)) = m] = 1,

where the probability is taken over (mpk,msk) ← Setup(1λ,X ,Y,M), sky ←
KeyGen(mpk,msk, y), and the coins of Enc.

Security definition. For a stateful adversary A, we define the advantage function

AdvabeA (λ) := Pr

b = b′ :

(mpk,msk)← Setup(1λ,X ,Y,M);
(x∗,m0,m1)← AKeyGen(msk,·)(mpk);
b←r {0, 1}; ctx∗ ← Enc(mpk, x∗,mb);
b′ ← AKeyGen(msk,·)(ctx∗)

− 1

2

with the restriction that all queries y that A makes to KeyGen(msk, ·) satisfy
pred(x∗, y) = 0 (that is, sky does not decrypt ctx∗). An ABE scheme is adaptively
secure if for all PPT adversaries A, the advantage AdvabeA (λ) is a negligible
function in λ.

8

2.4 Prime-Order Bilinear Groups and the Matrix Diffie-Hellman
Assumption

A generator G takes as input a security parameter λ and outputs a group
description G := (p,G1, G2, GT , e), where p is a prime of Θ(λ) bits, G1, G2 and
GT are cyclic groups of order p, and e : G1 × G2 → GT is a non-degenerate
bilinear map. We require that the group operations in G1, G2 and GT as well
the bilinear map e are computable in deterministic polynomial time with respect
to λ. Let g1 ∈ G1, g2 ∈ G2 and gT = e(g1, g2) ∈ GT be the respective generators.
We employ the implicit representation of group elements: for a matrix M over
Zp, we define [M]1 := gM1 , [M]2 := gM2 , [M]T := gMT , where exponentiation is
carried out component-wise. Also, given [A]1, [B]2, we let e([A]1, [B]2) = [AB]T .

We define the matrix Diffie-Hellman (MDDH) assumption on G1 [11]:

Definition 1 (MDDHm
k,` Assumption). Let ` > k ≥ 1 and m ≥ 1. We say

that the MDDHm
k,` assumption holds if for all PPT adversaries A, the following

advantage function is negligible in λ.

Adv
MDDHmk,`
A (λ) :=

∣∣Pr[A(G, [M]1, [MS]1) = 1]− Pr[A(G, [M]1, [U]1) = 1]
∣∣

where M←r Z`×kp , S←r Zk×mp and U←r Z`×mp .

The MDDH assumption on G2 can be defined in an analogous way. Escala et
al. [11] showed that

k-Lin⇒ MDDH1
k,k+1 ⇒ MDDHm

k,` ∀` > k,m ≥ 1

with a tight security reduction (that is, Adv
MDDHmk,`
A (λ) = Advk-LinA′ (λ)). In fact,

the MDDH assumption is a generalization of the k-Lin Assumption, such that
the k-Lin Assumption is equivalent to the MDDH1

k,k+1 Assumption as defined
above.

Definition 2 (k-Lin Assumption). Let k ≥ 1. We say that the k-Lin As-
sumption holds if for all PPT adversaries A, the following advantage function is
negligible in λ.

Advk-LinA (λ) := Adv
MDDH1

k,k+1

A (λ)

Henceforth, we will use MDDHk to denote MDDH1
k,k+1. Lastly, we note that

the k-Lin Assumption itself is a generalization, where setting k = 1 yields the
Symmetric External Diffie-Hellman Assumption (SXDH), and setting k = 2
yields the standard Decisional Linear Assumption (DLIN).

3 Piecewise Guessing Framework for Adaptive Security

We now refine the adaptive security framework of [20], making some simplifications
along the way to yield the piecewise guessing framework that will support our
security proof. We use 〈A,G〉 to denote the output of an adversary A in an

9

interactive game G, and an adversary wins if the output is 1, so that the winning
probability is denoted by Pr[〈A,G〉 = 1].

Suppose we have two adaptive games G0 and G1 which we would like to show
to be indistinguishable. In both games, an adversary A makes some adaptive
choices that define z ∈ {0, 1}R. Informally, the piecewise guessing framework tells
us that if we can show that G0,G1 are ε-indistinguishable in the selective setting
where all choices defining z are committed to in advance via a series of L + 1
hybrids, where each hybrid depends only on at most R′ � R bits of information
about z, then G0,G1 are 22R

′ · L · ε-indistinguishable in the adaptive setting.

Overview. We begin with the selective setting where the adversary commits to
z = z∗ in advance. Suppose we can show that G0 ≈c G1 in this simpler setting
via a series of L+ 1 hybrids of the form:

G0 = Hh0(z
∗) ≈c Hh1(z

∗) ≈c · · · ≈c HhL(z
∗) = G1

where h0, . . . , hL : {0, 1}R → {0, 1}R′ and {Hu}u∈{0,1}R′ is a family of games

where the messages sent to the adversary in Hu depend on u.8 In particular, the
`’th hybrid only depends on h`(z

∗) where |h`(z∗)| � |z∗|.
Next, we describe how to slightly strengthen this hybrid sequence so that

we can deduce that G0 ≈c G1 even for an adaptive choice of z. Note that
{Hu}u∈{0,1}R′ is now a family of adaptive games where z is adaptively defined as
the game progresses. We have two requirements:

The first, end-point equivalence, just says the two equivalences

G0 = Hh0(z
∗), G1 = HhL(z

∗)

hold even in the adaptive setting, that is, even if the adversary’s behavior defines
an z different from z∗. In our instantiation, h0 and hL are constant functions, so
this equivalence will be immediate.

The second, neighbor indistinguishability, basically says that for any ` ∈ [L],
we have

Hu0 ≈c Hu1 , ∀u0, u1 ∈ {0, 1}R
′

as long as the adversary chooses z such that h`−1(z) = u0 ∧ h`(z) = u1 It is easy
to see that this is a generalization of Hh`−1(z

∗) ≈c Hh`(z
∗) if we require z = z∗. To

formalize this statement, we need to formalize the restriction on the adversary’s
choice of z by having the game output 0 whenever the restriction is violated.
That is, we define a pair of “selective” games Ĥ`,0(u0, u1), Ĥ`,1(u0, u1) for any

u0, u1 ∈ {0, 1}R
′
, where

8 Informally, {Hu} describes the simulated games used in the security reduction, where
the reduction guesses R′ bits of information described by u about some choices z
made by the adversary; these R′ bits of information are described by h`(z) in the

`’th hybrid. In the `’th hybrid, the reduction guesses a u ∈ {0, 1}R
′

and simulates
the game according to Hu and hopes that the adversary will pick an z such that
h`(z) = u; note that the adversary is not required to pick such an z. One way to think
of Hu is that the reduction is commited to u, but the adversary can do whatever it
wants.

10

Ĥ`,b(u0, u1) is the same as Hub , except we replace the output with
0 whenever (h`−1(z), h`(z)) 6= (u0, u1).

That is, in both games, the adversary “commits” in advance to u0, u1. Proving
indistinguishability here is easier because the reduction knows u0, u1 and only
needs to handle adaptive choices of z such that (h`−1(z), h`(z)) = (u0, u1).

Adaptive security lemma. The next lemma tells us that the two requirements
above implies that G0 ≈c G1 with a security loss 22R′ · L (stated in the contra-
positive). In our applications, 2R

′
and L will be polynomial in the security

parameter.

Lemma 1 (adaptive security lemma). Fix G0,G1 along with h0, h1, . . . , hL :
{0, 1}R → {0, 1}R′ and {Hu}u∈{0,1}R′ such that

∀ z∗ ∈ {0, 1}R : Hh0(z
∗) = G0, H

hL(z
∗) = G1

Suppose there exists an adversary A such that Pr[〈A,G0〉 = 1]−Pr[〈A,G1〉 = 1] ≥ ε
then there exists ` ∈ [L] and u0, u1 ∈ {0, 1}R

′
such that

Pr[〈A, Ĥ`,0(u0, u1)〉 = 1]− Pr[〈A, Ĥ`,1(u0, u1)〉 = 1] ≥ ε

22R′L

This lemma is essentially a restatement of the main theorem of [20, Theorem 2];
we defer a comparison to the end of this section.

Proof. For the proof, we need to define the game H`(z
∗) for all ` = 0, 1, . . . , L

and all z∗ ∈ {0, 1}R

H`(z
∗) is the same as Hh`(z

∗), except we replace the output with 0
whenever z 6= z∗.

Roughly speaking, in H`(z
∗), the adversary “commits” to making choices z = z∗

in advance.

– Step 1. We begin the proof by using “random guessing” to deduce that

Pr
z∗←{0,1}R

[〈A,H0(z∗)〉 = 1]− Pr
z∗←{0,1}R

[〈A,HL(z∗)〉 = 1] ≥ ε

2R

This follows from the fact that Hh0(z) = G0,H
hL(z) = G1 which implies

Pr
z∗←{0,1}R

[〈A,H0(z∗)〉 = 1] =
1

2R
Pr[〈A,G0〉 = 1]

Pr
z∗←{0,1}R

[〈A,HL(z∗)〉 = 1] =
1

2R
Pr[〈A,G1〉 = 1].

11

– Step 2. Via a standard hybrid argument, we have that there exists ` such
that

Pr
z∗←{0,1}R

[〈A,H`−1(z∗)〉 = 1]− Pr
z∗←{0,1}R

[〈A,H`(z∗)〉 = 1] ≥ ε

2RL

which implies that:∑
z′∈{0,1}R

[〈A,H`−1(z′)〉 = 1]−
∑

z′∈{0,1}R
[〈A,H`(z′)〉 = 1] ≥ ε

L

– Step 3. Next, we relate Ĥ`,0, Ĥ`,1 and H`−1,H`. First, we define the set

U` := {(h`−1(z′), h`(z
′)) : z′ ∈ {0, 1}R} ⊆ {0, 1}R

′
× {0, 1}R

′
, ` ∈ [L]

Observe that for all (u0, u1) ∈ U`, we have

Pr[〈A, Ĥ`,1(u0, u1)〉 = 1] =
∑

z′:(h`−1(z′),h`(z′))=(u0,u1)

Pr[〈A,H`(z′)〉 = 1]

Then, we have∑
z′∈{0,1}R

Pr[〈A,H`(z′)〉 = 1]

=
∑

(u0,u1)∈U`

 ∑
z′:(h`−1(z′),h`(z′))=(u0,u1)

Pr[〈A,H`(z′)〉 = 1]


=

∑
(u0,u1)∈U`

Pr[〈A, Ĥ`,1(u0, u1)〉 = 1]

By the same reasoning, we also have∑
z′∈{0,1}R

Pr[〈A,H`−1(z′)〉 = 1] =
∑

(u0,u1)∈U`

Pr[〈A, Ĥ`,0(u0, u1)〉 = 1]

This means that∑
(u0,u1)∈U`

(
Pr[〈A, Ĥ`,0(u0, u1)〉 = 1]− Pr[〈A, Ĥ`,1(u0, u1)〉 = 1]

)
=

∑
z′∈{0,1}R

Pr[〈A,H`−1(z′)〉 = 1]−
∑

z′∈{0,1}R
Pr[〈A,H`(z′)〉 = 1] ≥ ε

L

where the last inequality follows from Step 2.
– Step 4. By an averaging argument, and using the fact that |U`| ≤ 22R

′
, there

exists (u0, u1) ∈ U` such that

Pr[〈A, Ĥ`,0(u0, u1)〉 = 1]− Pr[〈A, Ĥ`,1(u0, u1)〉 = 1] ≥ ε

22R′L

This completes the proof. Note that 22R
′

can be replaced by max` |U`|. ut

12

Comparison with [20]. Our piecewise guessing framework makes explicit the
game Hu which are described implicitly in the applications of the framework in
[20]. Starting from Hu and h0, . . . , hL, we can generically specify the intermediate

games Ĥ`,0, Ĥ`,1 as well as the games H0, . . . ,HL used in the proof of security.
The framework of [20] does the opposite: it starts with the games H0, . . . ,HL, and

the theorem statement assumes the existence of h0, . . . , hL and Ĥ`,0, Ĥ`,1 that
are “consistent” with H0, . . . ,HL (as defined via a “selectivization” operation).
We believe that starting from Hu and h0, . . . , hL yields a simpler and clearer
framework which enjoys the advantage of not having to additionally construct
and analyze Ĥ`,0, Ĥ`,1 and H` in the applications.

Finally, we point out that the sets U and W in [20, Theorem 2] corresponds
to U` and {0, 1}R over here (that is, we do obtain the same bounds), and the
i’th function hi corresponds to the `’th function h`−1 ◦ h` over here.

4 Pebbling Strategy for NC1

We now define a pebbling strategy for NC1 which will be used to define the
functions h0, . . . , hL we’ll use in the piecewise guessing framework. Fix a formula
f : {0, 1}n → {0, 1} of size m and an input x ∈ {0, 1}n for which f(x) = 0.
A pebbling strategy specifies a sequence of L subsets of [m], corresponding to
subsets of input nodes and gates in f that are pebbled. We refer to each subset
in the sequence as a pebbling configuration and the i’th term in this sequence is
the output of hi(f, x) (where the combination of f, x correspond to the adaptive
choices z made in our security game that will be later analyzed in the piecewise
guessing framework).

Our pebbling strategy is essentially the same as that in [20, Section 4]; the
main difference is that we provide a better bound on the size of the description
of each pebbling configuration in Theorem 1.

4.1 Pebbling Rules

Fix a formula f : {0, 1}n → {0, 1} and an input x ∈ {0, 1}n for which f(x) = 0.
We are allowed to place or remove pebbles on input nodes and gates in f , subject
to some rules. The goal of a pebbling strategy is to find a sequence of pebbling
instructions that follow the rules and starting with the initial configuration (in
which there are no pebbles at all), will end up in a configuration where only the
root gate has a pebble. Intuitively, the rules say that we can place a pebble a
node or a gate if we know that the out-going wire will be 0. More formally,

Definition 3 (Pebbling Rules).

1. Can place or remove a pebble on any AND gate for which (at least) one input
wire comes out of a node with a pebble on it.

2. Can place or remove a pebble on any OR gate for which all of the incoming
wires come out of nodes which have pebbles on them.

3. Can place or remove a pebble on any input node for which xi = 0.

13

Given (f, x), a pebbling strategy returns a sequence of pebbling instructions
of the form PEBBLE g or unPEBBLE g for some gate g, with the property that
each successively applied instruction follows the pebbling rules in Definition 3.

4.2 Pebbling Strategy

Given an NC1 formula f (recall Section 2.1) and an input x on which the
formula evaluates to 0, consider the pebbling instruction sequence returned by
the following recursive procedure, which maintains the invariant that the output
wire evaluates to 0 for each gate that the procedure is called upon. The strategy
is described in Figure 2 and begins by calling Pebble(f, x, g∗) on the root gate
g∗. We give an example in Figure 3.

Pebble(f, x, g):

Input: A node g of an NC1 formula f with children gL and gR along with input x
defining values along the wires of f .

1. (Base Case) If g is an input node, Return “PEBBLE g”.
2. (Recursive Case) If g = OR, first call Pebble(f, x, gL) to get a list of operations ΛL,

then call Pebble(f, x, gR) to get a second list of operations λR.
Return ΛL ◦ ΛR◦ “PEBBLE g” ◦ Reverse(ΛR) ◦ Reverse(ΛL)

3. (Recursive Case) If g = AND, call Pebble(f, x, ·) on the first child gate whose
output wire evaluates to 0 on input x to get a list of operations Λ.
Return Λ◦ “PEBBLE g” ◦ Reverse(Λ)

Reverse(Λ):
Input: A list of instructions of the form “PEBBLE g” or “unPEBBLE g” for a gate g.

1. Return the list Λ in the reverse order, additionally changing each original
“PEBBLE ” instruction to “unPEBBLE ” and each original “unPEBBLE ” in-
struction to “PEBBLE ”.

Fig. 2. NC1 formula pebbling strategy.

Note that if this procedure is called on the root gate of a formula f with
an input x such that f(x) = 0, then every AND gate on which the Pebble()
procedure is called will have at least one child node with an output wire which
evaluates to 0, and every OR gate on which the Pebble() procedure is called will
have child nodes with output wires which both evaluate to 0. Furthermore, by
inspection, Pebble(f, x, g∗) returns a sequence of pebbling instructions for the
circuit that follows the rules in Definition 3.

4.3 Analysis.

To be useful in the piecewise guessing framework, we would like for the sequence
of pebbling instructions to have the property that each configuration formed by

14

x1

0

x2

0

x1

0

x3

1

output

∨ ∧

∨

after step 5:

x1

0

x2

0

x1

0

x3

1

output

∨ ∧

∨

after step 6:

step move

1 pebble x1 (left)
2 pebble x2
3 pebble ∨ (left)
4 unpebble x2
5 unpebble x1 (left)
6 pebble x1 (right)
7 pebble ∧
8 unpebble x1 (right)
9 pebble ∨ (right)
10 pebble x1 (right)
11 unpebble ∧
12 unpebble x1 (right)
13 pebble x1 (left)
14 pebble x2
15 unpebble ∨ (left)
16 unpebble x2
17 unpebble x1 (left)

Fig. 3. Intermediate pebbling configurations on input x = 001. The thick black outline
around a node corresponds to having a pebble on the node. Note that steps 10-17
correspond to “undoing” steps 1-8 so that at the end of step 17, there is exactly one
pebble on the ∨ node leading to the output node.

successive applications of the instructions in the sequence is as short to describe
as possible (i.e., minimize the maximum representation size R′). One way to
achieve this is to have, at any configuration along the way, as few pebbles as
possible. An even more succinct representation can be obtained if we allow many
pebbles but have a way to succinctly represent their location. Additionally, we
would like to minimize the worst-case length, L, of any sequence produced. We
achieve these two goals in the following theorem.

Theorem 1 (pebbling NC1). For every input x ∈ {0, 1}n and any monotone
formula f of depth d and fan-in two for which f(x) = 0, there exists a sequence of
L(d) = 8d pebbling instructions such that every intermediate pebbling configuration
can be described using R′(d) = 3d bits.

Proof. Follows from the joint statements of Lemma 2 and Lemma 4 applied to
the pebbling strategy in Figure 2.

Comparison with [20]. Note that the strategy reproduced in Figure 2 is
essentially the same as one analyzed by [20], which argued that every configuration
induced by the pebbling instruction sequence it produces can be described using
d(logm+ 2) bits, where m is the number of wires in the formula. This follows
from the fact that each such pebbling configuration has at most d gates with
pebbled children, and we can specify each such gate using logm bits and the
pebble-status of its two children using an additional two bits. Our Lemma 4

15

analyzes the same pebbling strategy but achieves a more succinct representation
by leveraging the fact that not all configurations of d pebbled gates are possible
due to the pebbling strategy used, so we don’t need the full generality allowed by
d · logm bits. Instead, Lemmas 3 and 4 show that every configuration produced
follows a pattern that can be described using only 3d bits.

Lemma 2 ([20]). The pebbling strategy in Figure 2 called on the root gate g∗

for a formula f of depth d with assignment x such that f(x) = 0, Pebble(f, x, g∗),
returns a sequence of instructions of length at most L(d) ≤ 8d.

This bound is a special case of that shown in [20, Lemma 2] for fan-in two circuits.

Proof. This statement follows inductively on the depth of the formula on which
Pebble() is called.

For the base case, when d = 0 (and Pebble has therefore been called on an
input node) there is just one instruction returned, and: 1 ≤ 80

When Pebble() is called on a node at depth d > 0, the node is either an OR
gate or an AND gate.

When Pebble() is called on an OR gate, using our inductive hypothesis for the
instructions returned for the subformula of depth d− 1, notice that the number
of instructions returned is:

L(d−1)+L(d−1)+1+L(d−1)+L(d−1) = 8d−1+8d−1+1+8d−1+8d−1 = 4·8d−1+1 ≤ 8d

When Pebble() is called on an AND gate, using our inductive hypothesis
for the instructions returned for the subformula of depth d− 1, notice that the
number of instructions returned is:

L(d− 1) + 1 + L(d− 1) = 8d−1 + 1 + 8d−1 = 2 · 8(d−1) + 1 ≤ 8d ut

We note that the following lemma is new to this work and will be used to
bound the representation size R(d) of any configuration produced by application
of the instructions output by the pebbling strategy.

Lemma 3 (structure of pebbling configuration). Every configuration in-
duced by application of the instructions produced by the pebbling strategy in
Figure 2 called on the root gate g∗ of a formula f of depth d with assignment x
such that f(x) = 0, Pebble(f, x, g∗), has the following property for all gates g in
f with children gL, gR:

If any node in the sub-tree rooted at gR is pebbled, then there exists at
most one pebble on the sub-tree rooted at gL, namely a pebble on gL itself

Proof. Call a node “good” if it satisfies the property above. First, we make the
following observation about the behavior of Reverse(): Applying Reverse() to a
list of instructions inducing a list of configurations for which all nodes are “good”
produces a new list for which this is true. This holds since Reverse() does not
change the configurations induced by a list of instructions, just the ordering
(which is reversed). This follows from a simple proof by induction on the length

16

of the input instruction list and the fact that for an input list of instructions
parsed as L1 ◦L2 for two smaller-length lists, we can implement Reverse(L1 ◦L2)
as Reverse(L2) ◦ Reverse(L1).

We proceed with our original proof via a proof by induction on the depth of
the formula upon which Pebble() is called.

Inductive Hypothesis: For formulas f of depth d− 1 with root gate g∗ and
assignment x such that f(x) = 0, Pebble(f, x, g∗) returns a sequence of instruc-
tions that induces a sequence of configurations that (1) end with a configuration
where g∗ is the only pebbled node, and satisfies: (2) in every configuration all
nodes are “good.”

Base Case: when Pebble(f, x, g∗) is called on a formula of depth 0, the formula
consists of just an input node g∗. The (single) returned instruction PEBBLE g∗

then satisfies that in both the initial and final configuration, the single node g∗ is
good. Also, the sequence ends in the configuration where g∗ is the only pebbled
node.

Inductive Step: when Pebble(f, x, g∗) is called on formula of depth d > 0. Let
g∗L, g

∗
R denote the children of the root gate g∗ (either an AND or OR gate). Note

that the sub-formulas fg∗L and fg∗R rooted at g∗L and g∗R have depth d − 1. We
proceed via a case analysis:

If g∗ is an AND gate, then suppose the sequence of instructions returned is

Pebble(fg∗R , x, g
∗
R) ◦ PEBBLE g∗ ◦ Reverse(Pebble(fg∗R , x, gR))

(The case with g∗L instead of g∗R is handled analogously, even simpler). Suppose
Pebble(fg∗R , x, g

∗
R) (and thus Reverse(Pebble(fg∗R , x, g

∗
R))) produces L0 instructions.

We proceed via a case analysis:

– Take any of the first L0 configurations (starting from 0’th). Here, all pebbles
are in the subformula rooted at g∗R. We can then apply part (2) of the
inductive hypothesis to the subformula fg∗R rooted at g∗R (of depth d− 1) to
deduce that property “good” holds for all nodes in fg∗R . All nodes in fg∗L are
unpebbled in all configurations, so they are automatically good. Lastly, the
root gate g∗ has no pebbled nodes in the subformula rooted at gL, so it is
also good.

– For the (L0 + 1)’th configuration reached after PEBBLE g∗, there are only
two pebbles, one on g∗ (from the PEBBLE g∗ instruction) and another on
g∗R (from part (1) of our inductive hypothesis applied to the (depth d− 1)
subformula fg∗R). It is clear that all nodes in this configuration are good.

– For the last L0 configurations, there is one pebble on g∗ and all remaining
pebbles are in the subformula rooted at g∗R. Clearly, g∗ is good. All nodes
in fg∗L are unpebbled in all configurations, so they are also good. Moreover,
we can apply the inductive hypothesis to fg∗R combined with our observation
that Reverse preserves property (2) of this hypothesis to deduce that all nodes
in the subformula are also good for all configurations.

Lastly, notice that since the last L0 instructions undo the first L0 instructions,
the final configuration features a single pebble on g∗.

17

If g∗ is an OR gate, then the sequence of instructions returned is

Pebble(fg∗
L
, x, g∗L) ◦ Pebble(fg∗

R
, x, g∗R) ◦ PEBBLE g∗ ◦ Reverse(Pebble(fg∗

R
, x, g∗R)) ◦ Reverse(Pebble(fg∗

L
, x, g∗L))

Suppose Pebble(fg∗R , x, g
∗
R),Pebble(fg∗L , x, g

∗
L), and thus Reverse(Pebble(fg∗R , x, g

∗
R)),

Reverse(Pebble(fg∗L , x, g
∗
L)), produces L0, L1 instructions. We proceed via a case

analysis:

– Take any of the first L0 configurations (starting from 0’th). Here, all pebbles
are in the subformula fg∗L rooted at g∗L. We can then apply part (2) of the
inductive hypothesis to (depth d − 1) fg∗L to deduce that property “good”
holds for all nodes in fg∗L . All nodes in the subformula rooted at g∗R, fg∗R , are
unpebbled in all configurations, so they are automatically good. Lastly, the
root gate g∗ has no pebbled nodes in the subformula rooted at g∗R, so it is
also good. Finally, by part (1) of this application of the inductive hypothesis,
we know that L0th configuration features a single pebble on g∗L.

– Take any of the next L1 configurations (starting from the L0’th). Here, all
pebbles are in the subformula rooted at g∗R except for the single pebble on
g∗L. We can then apply part (2) of the inductive hypothesis to (depth d− 1)
fg∗R (of depth d− 1) to deduce that property “good” holds for all nodes in
fg∗R . All nodes in the subformula rooted at g∗L have no pebbles in their own
subformulas, so they are automatically good. Lastly, the root gate g∗ may
have pebbled nodes in the subformula rooted at g∗R but the only pebbled
node in the subformula rooted at g∗L is g∗L itself, so it is also good. Finally,
we know that the L0 + L1th configuration features two pebbles: a pebble on
g∗L (from the first L0 instructions), and a pebble on g∗R (by part (1) of this
application of the inductive hypothesis).

– For the (L0 + L1 + 1)’th configuration reached after PEBBLE g∗, there are
only three pebbles, one on g∗ (from the PEBBLE g∗ instruction), one on
g∗L (from the first L0 instructions), and another on g∗R (from the next L1

instructions). It is clear that all nodes in this configuration are good.
– For the next L1 configurations (reversing the instructions of the set of size L1),

there is one pebble on g∗, one pebble on g∗L, and all remaining pebbles are in
the subformula rooted at g∗R, fg∗R . g∗ is good, since it only has one pebble
in the subformula rooted at g∗L, on g∗L itself. All nodes in the subformula
rooted at g∗L have no pebbles in their own subformulas, so they are also
good. Moreover, we can apply the inductive hypothesis to (depth d− 1) fg∗R
combined with our observation that Reverse preserves property (2) of this
hypothesis to deduce that all nodes in fg∗R are also good for all configurations.
Note the final configuration in this sequence then contains two pebbles, one
of g∗ and one on g∗L.

– For the final L0 configurations (reversing the instructions of the set of size L0),
there is one pebble on g∗, and all remaining pebbles are in the subformula
rooted at g∗L. g∗ is good, since it has no pebbles in the subformula rooted at g∗R.
Similarly, all nodes in the subformula rooted at g∗R are also good. Moreover,
we can apply the inductive hypothesis to (depth d−1) fg∗L combined with our
observation that Reverse preserves property (2) of this hypothesis to deduce
that all nodes in fg∗L are also good for all configurations.

18

Lastly, notice that since the last L0 + L1 instructions undo the first L0 + L1

instructions, the final configuration features a single pebble on g∗.

ut

Lemma 4 (R′(d) = 3d). Every configuration induced by application of the
instructions produced by the pebbling strategy in Figure 2 for a formula f of depth
d with assignment x such that f(x) = 0 can be described using R′(d) = 3d bits.

Proof. We can interpret 3d bits in the following way to specify a pebbling: the
first d bits specify a path down the formula starting at the root gate (moving left
or right based on the setting of each bit), the next 2(d− 1) bits specify, for each
of the (d− 1) non-input nodes along the path, which of its children are pebbled.
Finally one of the last 2 bits is used to denote if the root node is pebbled.

From Lemma 3, we know that for all gates g with children gL, gR, if any node
in the sub-tree rooted at gR is pebbled, then there exists at most one pebble
on the sub-tree rooted at gL, namely a pebble on gL itself. So, given a pebbling
configuration, we can start at the root node and describe the path defined by
taking the child with more pebbles on its subtree using d bits. All pebbles in the
configuration are either on the root node or on children of nodes on this path
and therefore describable in the remaining 2d bits. ut

5 Core Adaptive Security Component

In this section, we will describe the secret-sharing scheme (share, reconstruct)
used in our ABE construction. In addition, we describe a core component of our
final ABE, and prove adaptive security using the pebbling strategy defined and
analyzed in Section 4 to define hybrids in the piecewise guessing framework of
Section 3.

Overview. As described in the overview in Section 1.1, we will consider the
following “core 1-ABE component”:

ct′x := ({wi}xi=1) // “stripped down” ctx

skf := ({hµj}ρ(j)=0 ∪ {hµj+rjwρ(j) , hrj}ρ(j) 6=0)

where ({µj}, ρ)← share(f, µ). We want to show that under the DDH assumption,
µ is hidden given just (ct′x, skf) where x, f are adaptively chosen subject to the
constraint f(x) = 0. We formalize this via a pair of games G1-abe

0 ,G1-abe
1 and the

requirement G1-abe
0 ≈c G1-abe

1 . In fact, we will study a more abstract construction
based on any CPA-secure encryption with:

ct′x := ({wi}xi=1) // “stripped down” ctx

sk′f := {µj}ρ(j)=0 ∪ {CPA.Enc(wρ(j), µj)}ρ(j)6=0 where ({µj}, ρ)← share(f, µ)

19

5.1 Linear secret sharing for NC1

We first describe a linear secret-sharing scheme for NC1; this is essentially the
information-theoretic version of Yao’s secret-sharing for NC1 in [20,32,19]. It
suffices to work with Boolean formulas where gates have fan-in 2 and fan-out 1,
thanks to the transformation in Section 2.1. We describe the scheme in Figure 4,
and give an example in Figure 5. Note that our non-standard definition of
secret-sharing in Section 2.2 allows the setting of ρ(j) = 0 for shares that are
available for reconstruction for all x. We remark that the output of share satisfies

share(f, µ):
Input: A formula f : {0, 1}n → {0, 1} of size m and a secret µ ∈ Zp.

1. For each non-output wire j = 1, ...,m− 1, pick a uniformly random µ̂j ← Zp. For
the output wire, set µ̂m = µ

2. For each outgoing wire j from input node i, add µj = µ̂j to the output set of shares
and set ρ(j) = i.

3. For each AND gate g with input wires a, b and output wire c, add µc = µ̂c+µ̂a+µ̂b ∈
Zp to the output set of shares and set ρ(c) = 0.

4. For each OR gate g with input wires a, b and output wire c, add µca = µ̂c + µ̂a ∈ Zp

and µcb = µ̂c + µ̂b ∈ Zp to the output set of shares and set ρ(ca) = 0 and ρ(cb) = 0.
5. Output {µj}, ρ.

Fig. 4. Information-theoretic linear secret sharing scheme share for NC1

|{µj}| ≤ 2m since each of the m nodes adds a single µj to the output set, except
for OR gates which add two: µja and µjb .

The reconstruction procedure reconstruct of the scheme is essentially applying
the appropriate linear operations to get the output wire value µ̂c at each node
starting from the leaves of the formula to get to the root µ̂m = µ.

– Given µ̂a, µ̂b associated with the input wires of an AND gate, we recover the
gate’s output wire value µ̂c by subtracting their values from µc (which is
available since ρ(c) = 0).

– Given one of µ̂a, µ̂b associated with the input wires of an OR gate, we recover
the gate’s output wire value µ̂c by subtracting it from the appropriate choice
of µca or µcb (which are both available since ρ(ca) = ρ(cb) = 0).

Note that reconstruct(f, x, {µj}ρ(j)=0∨xρ(j)=1) computes a linear operation with
respect to the shares µj . This follows from the fact that the operation at each
gate in reconstruction is a linear operation, and the composition of linear oper-
ations is itself a linear operation. Therefore, reconstruct(f, x, {µj}ρ(j)=0∨xρ(j)=1)
is equivalent to identifying the coefficients ωj of this linear function, where
µ =

∑
ρ(j)=0∨xρ(j)=1

ωjµj .

20

x1 x2 x1 x3

output

∨ ∧

∨

1 2 3 4

5 6

7
j 1 2 3 4 5a

µj µ̂1 µ̂2 µ̂3 µ̂4 µ̂1 + µ̂5

ρ(j) 1 2 1 3 0

j 5b 6 7a 7b

µj µ̂2 + µ̂5 µ̂3 + µ̂4 + µ̂6 µ̂5 + µ µ̂6 + µ
ρ(j) 0 0 0 0

Fig. 5. Left: Formula (x1 ∨ x2) ∨ (x1 ∧ x3), where the wires are numbered 1, 2, . . . , 7.
Right: Shares (µ1, . . . , µ7b) and mapping ρ for the formula corresponding to secret
µ ∈ Zp

As with any linear secret-sharing scheme, share and reconstruct can be ex-
tended in the natural way to accommodate vectors of secrets. Specifically, for a
vector of secrets v ∈ Zkp, define:

share(f,v) := ({vj := (v1,j , ..., vk,j))}, ρ) where ({vi,j}, ρ)← share(f, vi)

(note that ρ is identical for all i). reconstruct can also be defined component-wise:

reconstruct(f, x, {vj}ρ(j)=0∨xρ(j)=1) :=
∑

ρ(j)=0∨xρ(j)=1

ωjvj where ωj are computed as above

Our final ABE construction will use this extension.

5.2 Core 1-ABE Security Game

Definition 4 (core 1-ABE security G1-abe
0 ,G1-abe

1). For a stateful adversary
A, we define the following games G1-abe

β for β ∈ {0, 1}.

〈A,G1-abe
β 〉 := I

{
µ(0), µ(1) ← Zp;wi ← CPA.Setup(λ)
b′ ← AOF(·),OX(·),OE(·,·)(µ(0))

}
where the adversary A adaptively interacts with three oracles:

OF(f) := {sk′f = {µj}ρ(j)=0 ∪ {CPA.Enc(wρ(j), µj)}ρ(j) 6=0 where ({µj}, ρ)← share(f, µ(β))

OX(x) := (ct′x = {wi}xi=1)

OE(i,m) := CPA.Encwi(m)

with the restrictions that (i) only one query is made to each of OF(·) and OX(·),
and (ii) the queries f and x to OF(·),OX(·) respectively, satisfy f(x) = 0.

21

To be clear, the β in G1-abe
β affects only the implementation of the oracle OF

(where µ(β) is shared). We will show that G1-abe
0 ≈c G1-abe

1 where we instantiate
share using the scheme in Section 5.1. That is, Theorem 2 will bound the quantity:

Pr[〈A,G1-abe
0 〉 = 1]− Pr[〈A,G1-abe

1 〉 = 1]

Comparison with [20]. Proving adaptive security for the core 1-ABE with
share is very similar to the proof for adaptive secret-sharing for circuits in [20].
One main difference is that in our case, the adaptive choices z correspond to
both (f, x), while in the adaptive secret-sharing proof of [20], f is fixed, and
the adaptive choices correspond to x, but revealed one bit at a time (that is,
OX(i, xi) returns wi if xi = 1). Another difference is the OE oracle included
in our core 1-ABE game, which enables the component to be embedded in a
standard dual-system hybrid proof for our full ABE systems. Lastly, we leverage
our improved analysis in Lemmas 3 and 4 to achieve polynomial security loss,
rather than the quasi-polynomial loss we would get from following their proof
more directly.

5.3 Adaptive Security for Core 1-ABE Component

We will show that G1-abe
0 ≈c G1-abe

1 as defined in Definition 4 using the piecewise
guessing framework. To do this, we need to first define a family of games {Hu}
along with functions h0, . . . , hL, using the pebbling strategy in Section 4. First,
we will describe shareu, which will be used to define Hu.

Defining shareu Recall that Lemma 4 describes how to parse a u ∈ {0, 1}3d
as a pebbling configuration: a subset of the nodes of f . Further, note that each
node contains one output wire, so we can equivalently view u as a subset of
[m] denoting the output wires of pebbled gates. Given a pebbling configuration
u of an NC1 formula, the shares are generated as in the secret-sharing scheme
in Figure 4, except for each pebbled node with output wire c, we replace µc
with an independent random µc ← Zp (in the case of a pebbled OR gate, we
replace both associated µca and µcb with independent random µca , µcb ← Zp, i.e:
both µca , µcb are associated with wire c.). In particular, we get the procedure
shareu(f, µ) defined in Figure 6.

Hybrid Distribution Hu We now define our hybrid games, and remark that
Section 3 used z ∈ {0, 1}R to denote the adaptive choices made by an adversary,
and the functions h` that define our hybrid games will depend on the adaptive
choices of both the f ∈ NC1 and x ∈ {0, 1}n chosen during the game, so in our
application of the piecewise guessing framework of Section 3, z will be (f, x). Note
that the conclusion of the framework is independent of the size of the adaptive
input (R = |f |+ n), and the framework allows its x to be defined in parts over
time, though in our application, x will be defined in one shot.

22

shareu(f, µ):
Input: A formula f : {0, 1}n → {0, 1}, a secret µ ∈ Zp, and a pebbling configuration u
of the nodes of f .

1. Compute ({µ′j}, ρ)← share(f, µ) as defined in Figure 4
2. For each µ′j , if j ∈ u (i.e: if j is the output wire of a pebbled node), then sample

µj ← Zp. Otherwise, set µj := µ′j .
3. Output {µj}, ρ.

Fig. 6. Pebbling-modified secret sharing scheme shareu

Definition 5 (Hu and h`). Let Hu be G1-abe
0 with shareu (f, µ(0)) used in the im-

plementation of oracle OF(f) (replacing share (f, µ(0))). Let h` : NC1×{0, 1}n →
{0, 1}R′ denote the function that on formula f with root gate g∗ and input
x ∈ {0, 1}n where f(x) = 0, outputs the pebbling configuration created from
following the first ` instructions from Pebble(f, x, g∗) of Figure 2.

Note that the first 0 instructions specify a configuration with no pebbles, so
h0 is a constant function for all f, x. Also, from the inductive proof in Lemma 3,
we know that all sequences of instructions from Pebble(f, x, g∗) when f(x) = 0
result in a configuration with a single pebble on the root gate g∗, so hL is a
constant function for all f, x where f(x) = 0. Furthermore, note that for all such
f, x:

– Hh0(f,x) is equivalent to G1-abe
0 (since shareh0(f,x)(f, µ(0)) = share(f, µ(0)));

– HhL(f,x) is equivalent to G1-abe
1 (since sharehL(f,x)(f, µ(0)) = share(f, µ(1)) for

an independently random µ(1) which is implicitly defined by the independently
random value associated with the output wire of the pebbled root gate: µm).

We now have a series of hybrids G1-abe
0 ≡ Hh0(f,x),Hh1(f,x), ...,HhL(f,x) ≡ G1-abe

1

which satisfy end-point equivalence and, according to the piecewise guessing
framework described in Section 3, define games Ĥ`,0(u0, u1), Ĥ`,1(u0, u1) for
` ∈ [0, L].

Lemma 5 (neighboring indistinguishability). For all ` ∈ [L] and u0, u1 ∈
{0, 1}R′ , Pr[〈A, Ĥ`,0(u0, u1)〉 = 1]− Pr[〈A, Ĥ`,1(u0, u1)〉 = 1] ≤ n · AdvCPA

B (λ)

Proof. First, observe that the difference between Ĥ`,0(u0, u1) and Ĥ`,1(u0, u1)

lies in OF(·): the former uses shareu0 and the latter uses shareu1 . Now, fix the
adaptive query f to OF. We consider two cases.

First, suppose there does not exist x′ ∈ {0, 1}n such that h`−1(f, x′) = u0
and h`(f, x

′) = u1. Then, both 〈A, Ĥ`,0(u0, u1)〉 and 〈A, Ĥ`,1(u0, u1)〉 output 0
(i.e., abort) with probability 1 and then we are done.

In the rest of the proof, we deal with the second case, namely there exists
x′ ∈ {0, 1}n such that h`−1(f, x′) = u0 and h`(f, x

′) = u1. This means that u0

23

and u1 are neighboring pebbling configurations in Pebble(f, x′, g∗), so they differ
by a pebbling instruction that follows one of the rules in Definition 3. We proceed
via a case analysis depending on what the instruction taking configuration u0 to
u1 is (the instruction is uniquely determined given u0, u1, f):

– pebble/unpebble input node with out-going wire j : Here, the only dif-

ference from shareu0(f, µ(0)) to shareu1(f, µ(0)) is that we change µj to a

random element of Zp (or vice-versa). The pebbling rule for an input node

requires that the input x to OX(·) in both Ĥ`,0(u0, u1) and Ĥ`,1(u0, u1) sat-
isfies xρ(j) = 0. Indistinguishability then follows from the CPA security of
(CPA.Setup,CPA.Enc,CPA.Dec) under key wρ(j); this is because xρ(j) = 0 and
therefore wρ(j) will not need to be supplied in the answer to the query to
OX(x). In fact, the two hybrids are computationally indistinguishable even if
the adversary sees all {wi : i 6= ρ(j)} (as may be provided by OX(x)).

– pebble/unpebble AND gate with out-going wire c and input wires a, b

corresponding to nodes ga, gb. Here, the only difference from shareu0(f, µ(0))
to shareu1(f, µ(0)) is that we change µc from an actual share µ̂a + µ̂b + µ̂c
to a random element of Zp (or vice-versa). The pebbling rules for an AND
gate require that there is a pebble on either ga or gb, say ga. Therefore, µa
is independent and uniformly random in both distributions shareu0(f, µ(0))
and shareu1(f, µ(0)), and thus µ̂a is fresh and independently random in
both distributions (this uses the fact that ga has fan-out 1) and makes the
distribution of µc = µ̂a + µ̂b + µ̂c in hybrid ` − 1 independently random.
We may then deduce that shareu0(f, µ(0)) and shareu1(f, µ(0)) are identically
distributed, and therefore so is the output OF(f). (This holds even if the
adversary receives all of {wi : i ∈ [n]} from its query to OX(x)).

– pebble/unpebble OR gate with out-going wire c and input wires a, b cor-

responding to nodes ga, gb. Here, the only difference from shareu0(f, µ(0)) to
shareu1(f, µ(0)) is that we change µca , µcb from actual shares (µ̂a+µ̂c, µ̂b+µ̂c)

to random elements of Zp (or vice-versa). The pebbling rules for an OR gate
require that there are pebbles on both ga and gb. Therefore, µa and µb are
independent and uniformly random in both distributions shareu0(f, µ(0)) and
shareu1(f, µ(0)), and thus µ̂a, µ̂b are fresh and independently random in both
distributions (using the fact that ga, gb have fan-out 1), and make the distri-
butions of µca = µ̂a + µ̂c, µcb = µ̂a + µ̂b in hybrid `− 1 both independently
random. We may then deduce that shareu0(f, µ(0)) and shareu1(f, µ(0)) are
identically distributed, and therefore so is the output OF(f). (This holds
even if the adversary receives all of {wi : i ∈ [n]} in its query to OX(x)).

In all cases, the simulator can return an appropriately distributed answer to
OX(x) = {wi}xi=1 since it has all wi except in the first case, where it is missing
only a wi such that xi = 0. Additionally, we note that in all cases, a simulator
can return appropriately distributed answers to queries to the encryption oracle
OE(i,m) = Encwi(m), since only in the first case (an input node being pebbled
or unpebbled) is there a wi not directly available to be used to simulate the

24

oracle, and in that case, the simulator has oracle access to an Encwi(·) function
in the CPA symmetric-key security game, and it can uniformly guess which of
the n variables is associated with the input node being pebbled and answer OE

requests to that variable with the CPA Encwi(·) oracle (the factor of n due to
guessing is introduced here since the simulator may not know which variable is
associated with the input node at the time of the oracle request, e.g: for requests
to OE made before OX, so the simulator must guess uniformly and take a security
loss of n).

In all but the input node case, the two distributions 〈A, Ĥ`,0(u0, u1)〉 and

〈A, Ĥ`,1(u0, u1)〉 are identical, and in the input node case, we’ve bounded the
difference by the distinguishing probability of the symmetric key encryption
scheme, the advantage function AdvCPA

B (λ), conditioned on a correct guess of
which of the n input variables corresponds to the pebbled/unpebbled input node.

Therefore, Pr[〈A, Ĥ`,0(u0, u1)〉 = 1]−Pr[〈A, Ĥ`,1(u0, u1)〉 = 1] ≤ n·AdvCPA
B (λ) ut

5.4 CPA-secure symmetric encryption

We will instantiate (CPA.Setup,CPA.Enc,CPA.Dec) in our Core 1-ABE of Defini-
tion 4 with a variant of the standard CPA-secure symmetric encryption scheme
based on k-Lin from [11] that supports messages [M]2 ∈ G2 of an asymmetric
prime-order bilinear group G:

CPA.Setup(1λ) : Run G← G(1λ). Sample M0 ← Zk×kp , m1 ← Zkp,

output sk = (sk0, sk1) := (M0,m
>
1)

CPA.Enc(sk, [M]2) : Sample r← Zkp, output (ct0, ct1) := ([M + m>1 r]2, [M0r]2)

CPA.Dec((sk0, sk1), (ct0, ct1)) : Output ct0 · sk1 · sk−10 · ct1.

Correctness Note that: ct0 · sk1 · sk−10 · ct1 = [M + m>1 r−m>1 r]2 = [M]2.

Lemma 6. AdvCPA
B (λ) ≤ Adv k-LinB′ (λ)

Proof. Proof is contained in the full version of this paper [22] and omitted here
for brevity.

Theorem 2. The Core 1-ABE component of Definition 4 implemented with
(share, reconstruct) from Section 5.1 and the CPA-secure symmetric encryption
scheme (CPA.Setup,CPA.Enc,CPA.Dec) from Section 5.4 satisfies:

Pr[〈A,G1-abe
0 〉 = 1]− Pr[〈A,G1-abe

1 〉 = 1] ≤ 26d · 8d · n · Adv k-LinB∗ (λ)

Proof. Recall the hybrids G1-abe
0 ≡ Hh0(f,x),Hh1(f,x), ...,HhL(f,x) ≡ G1-abe

1 defined
in Section 5.3. Lemma 5 tells us that: for all ` ∈ [L] and u0, u1 ∈ {0, 1}R

′
,

Pr[〈A, Ĥ`,0(u0, u1)〉 = 1]− Pr[〈A, Ĥ`,1(u0, u1)〉 = 1] ≤ n · AdvCPA
B (λ)

These hybrids satisfy the end-point equivalence requirement, so Lemma 1
then tells us that:

Pr[〈A,G1-abe
0 〉 = 1]− Pr[〈A,G1-abe

1 〉 = 1] ≤ 22R
′
· L · n · AdvCPA

B (λ)

25

Lemma 4 tells us that R′ ≤ 3d, and Lemma 2 tells us that L ≤ 8d, where
d is the depth of the formula. Finally, Lemma 6 tells us that AdvCPA

B (λ) ≤
Adv k-LinB∗ (λ). So: Pr[〈A,G1-abe

0 〉 = 1]−Pr[〈A,G1-abe
1 〉 = 1] ≤ 26d·8d·n·Adv k-LinB∗ (λ)

ut

6 Our KP-ABE Scheme

In this section, we present our compact KP-ABE for NC1 that is adaptively secure
under the MDDHk assumption in asymmetric prime-order bilinear groups. For
attributes of length n, our ciphertext comprises O(n) group elements, independent
of the formula size, while simultaneously allowing attribute reuse in the formula.
As mentioned in the overview in Section 1.1, we incorporated optimizations from
[15,5] to shrink Wi and thus the secret key, and hence the need for the OE oracle
in the core 1-ABE security game.

6.1 The scheme

Our KP-ABE scheme is as follows:

Setup(1λ, 1n) : Run G = (p,G1, G2, GT , e)← G(1λ). Sample

A← Zk×(k+1)
p ,Wi ← Z(k+1)×k

p ∀i ∈ [n],v← Zk+1
p

and output:

msk := (v,W1, . . . ,Wn)

mpk := ([A]1, [AW1]1, . . . , [AWn]1, e([A]1, [v]2))

Enc(mpk, x,M) : Sample s← Zkp. Output:

ctx = (ct1, {ct2,i}xi=1, ct3)

:=

(
[s>A]1, {[s>AWi]1}xi=1, e([s>A]1, [v]2) ·M

)

KeyGen(mpk,msk, f) : Sample ({vj}, ρ)← share(f,v), rj ← Zkp. Output:

skf = ({sk1,j , sk2,j})
:= ({[vj + Wρ(j)rj]2, [rj]2})

where W0 = 0.

Dec(mpk, skf , ctx) : Compute ωj such that v =
∑

ρ(j)=0∨xρ(j)=1

ωjvj as described

in Section 5.1. Output:

ct3 ·
∏

ρ(j)=0∨xρ(j)=1

(
e(ct2,ρ(j), sk2,j)

e(ct1, sk1,j)

)ωj

26

6.2 Correctness

Correctness relies on the fact that for all j, we have

e(ct1, sk1,j)

e(ct2,ρ(j), sk2,j)
= [s>Avj]T

which follows from the fact that

s>Avj = s>A︸︷︷︸
ct1

·(vj + Wρ(j)rj︸ ︷︷ ︸
sk1,j

)− s>AWρ(j)︸ ︷︷ ︸
ct2,ρ(j)

· rj︸︷︷︸
sk2,j

Therefore, for all f, x such that f(x) = 1, we have:

ct3 ·
∏

ρ(j)=0∨xρ(j)=1

(
e(ct2,ρ(j), sk2,j)

e(ct1, sk1,j)

)ωj
= M · [s>Av]T ·

∏
ρ(j)=0∨xρ(j)=1

[s>Avj]
−ωj
T

= M · [s>Av]T · [−s>A
∑

ρ(j)=0∨xρ(j)=1

ωjvj]T

= M · [s>Av]T · [−s>Av]T

= M

6.3 Adaptive Security

Description of hybrids To describe the hybrid distributions, it would be
helpful to first give names to the various forms of ciphertext and keys that will
be used. A ciphertext can be in one of the following forms:

– Normal: generated as in the scheme.
– SF: same as a Normal ciphertext, except s>A replaced with c> ← Zk+1

p . That

is, ctx :=

(
[c>]1, {[c> Wi]1}xi=1, e([c>]1, [v]2) ·M

)
A secret key can be in one of the following forms:

– Normal: generated as in the scheme.
– SF: same as a Normal key, except v replaced with v + δa⊥, where a fresh
δ ← Zp is chosen per SF key and a⊥ is any fixed a⊥ ∈ Zk+1

p \ {0} such that

Aa⊥ = 0. That is, skf := ({[vj + Wρ(j)rj]2, [rj]2})

where ({vj}, ρ)← share(f, v + δa⊥), rj ← Zkp.

SF stands for semi-functional following the terminology in previous works [25,33].

Hybrid sequence. Suppose the adversary A makes at most Q secret key queries.
The hybrid sequence is as follows:

– H0: real game
– H1: same as H0, except we use a SF ciphertext.
– H2,`, ` = 0, . . . , Q: same as H1, except the first ` keys are SF and the remaining
Q− ` keys are Normal.

– H3: replace M with random M̃ .

27

Proof overview.

– We have H0 ≈c H1 ≡ H2,0 via k-Lin, which tells us ([A]1, [s
>A]1) ≈c

([A]1, [c
>]1). Here, the security reduction will pick W1, . . . ,Wn and v so

that it can simulate the mpk, the ciphertext and the secret keys.
– We have H2,`−1 ≈c H2,`, for all ` ∈ [Q]. The difference between the two is

that we switch the `’th skf from Normal to SF using the adaptive security of
our core 1-ABE component in G1-abe from Section 5. The idea is to sample

v = ṽ + µa⊥,Wi = W̃i + a⊥w>i

so that mpk can be computed using ṽ,W̃i and perfectly hide µ,w1, . . . ,wn.
Roughly speaking: the reduction
• uses OX(x) in G1-abe to simulate the challenge ciphertext
• uses OF(f) in G1-abe to simulate `’th secret key
• uses µ(0) from G1-abe together with OE(i, ·) = Enc(wi, ·) to simulate the

remaining Q− ` secret keys
– We have H2,Q ≡ H3. In H2,Q, the secret keys only leak v+δ1a

⊥, . . . ,v+δQa⊥.
This means that c>v is statistically random (as long as c>a⊥ 6= 0).

Theorem 3 (adaptive KP-ABE). The KP-ABE construction in Section 6.1
is adaptively secure under the MDDHk assumption.

Proof. The detailed proof is contained in the full version of this paper [22] and
omitted here for brevity.

Acknowledgments. We thank Allison Bishop, Sanjam Garg, Rocco Servedio,
and Daniel Wichs for helpful discussions.

References

1. S. Agrawal and M. Chase. Simplifying design and analysis of complex predicate
encryption schemes. In J. Coron and J. B. Nielsen, editors, EUROCRYPT 2017,
Part I, volume 10210 of LNCS, pages 627–656. Springer, Heidelberg, Apr. / May
2017.

2. N. Attrapadung. Dual system encryption via doubly selective security: Framework,
fully secure functional encryption for regular languages, and more. In P. Q. Nguyen
and E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 557–577.
Springer, Heidelberg, May 2014.

3. N. Attrapadung. Dual system encryption framework in prime-order groups via com-
putational pair encodings. In J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016,
Part II, volume 10032 of LNCS, pages 591–623. Springer, Heidelberg, Dec. 2016.

4. J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based en-
cryption. In 2007 IEEE Symposium on Security and Privacy, pages 321–334. IEEE
Computer Society Press, May 2007.

5. O. Blazy, E. Kiltz, and J. Pan. (Hierarchical) identity-based encryption from affine
message authentication. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014,
Part I, volume 8616 of LNCS, pages 408–425. Springer, Heidelberg, Aug. 2014.

28

6. J. Chen, R. Gay, and H. Wee. Improved dual system ABE in prime-order groups via
predicate encodings. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015,
Part II, volume 9057 of LNCS, pages 595–624. Springer, Heidelberg, Apr. 2015.

7. J. Chen, J. Gong, L. Kowalczyk, and H. Wee. Unbounded ABE via bilinear entropy
expansion, revisited. In J. B. Nielsen and V. Rijmen, editors, EUROCRYPT 2018,
Part I, volume 10820 of LNCS, pages 503–534. Springer, Heidelberg, Apr. / May
2018.

8. J. Chen and H. Wee. Fully, (almost) tightly secure IBE and dual system groups.
In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of
LNCS, pages 435–460. Springer, Heidelberg, Aug. 2013.

9. J. Chen and H. Wee. Semi-adaptive attribute-based encryption and improved
delegation for Boolean formula. In M. Abdalla and R. D. Prisco, editors, SCN 14,
volume 8642 of LNCS, pages 277–297. Springer, Heidelberg, Sept. 2014.

10. J. H. Cheon. Security analysis of the strong Diffie-Hellman problem. In S. Vaudenay,
editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 1–11. Springer, Heidelberg,
May / June 2006.

11. A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J. Villar. An algebraic framework for
Diffie-Hellman assumptions. In R. Canetti and J. A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 129–147. Springer, Heidelberg, Aug. 2013.

12. G. Fuchsbauer, Z. Jafargholi, and K. Pietrzak. A quasipolynomial reduction for
generalized selective decryption on trees. In R. Gennaro and M. J. B. Robshaw,
editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 601–620. Springer,
Heidelberg, Aug. 2015.

13. G. Fuchsbauer, M. Konstantinov, K. Pietrzak, and V. Rao. Adaptive security of
constrained PRFs. In P. Sarkar and T. Iwata, editors, ASIACRYPT 2014, Part II,
volume 8874 of LNCS, pages 82–101. Springer, Heidelberg, Dec. 2014.

14. S. Garg, C. Gentry, S. Halevi, A. Sahai, and B. Waters. Attribute-based encryp-
tion for circuits from multilinear maps. In R. Canetti and J. A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 479–499. Springer, Heidelberg,
Aug. 2013.

15. J. Gong, X. Dong, J. Chen, and Z. Cao. Efficient IBE with tight reduction to
standard assumption in the multi-challenge setting. In J. H. Cheon and T. Takagi,
editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 624–654. Springer,
Heidelberg, Dec. 2016.

16. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute-based encryption for
circuits. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors, 45th ACM
STOC, pages 545–554. ACM Press, June 2013.

17. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In A. Juels, R. N. Wright, and
S. Vimercati, editors, ACM CCS 06, pages 89–98. ACM Press, Oct. / Nov. 2006.
Available as Cryptology ePrint Archive Report 2006/309.

18. B. Hemenway, Z. Jafargholi, R. Ostrovsky, A. Scafuro, and D. Wichs. Adaptively
secure garbled circuits from one-way functions. In M. Robshaw and J. Katz,
editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 149–178. Springer,
Heidelberg, Aug. 2016.

19. Y. Ishai and E. Kushilevitz. Perfect constant-round secure computation via perfect
randomizing polynomials. In P. Widmayer, F. T. Ruiz, R. M. Bueno, M. Hennessy,
S. Eidenbenz, and R. Conejo, editors, ICALP 2002, volume 2380 of LNCS, pages
244–256. Springer, Heidelberg, July 2002.

29

20. Z. Jafargholi, C. Kamath, K. Klein, I. Komargodski, K. Pietrzak, and D. Wichs. Be
adaptive, avoid overcommitting. In J. Katz and H. Shacham, editors, CRYPTO 2017,
Part I, volume 10401 of LNCS, pages 133–163. Springer, Heidelberg, Aug. 2017.

21. Z. Jafargholi and D. Wichs. Adaptive security of Yao’s garbled circuits. In M. Hirt
and A. D. Smith, editors, TCC 2016-B, Part I, volume 9985 of LNCS, pages
433–458. Springer, Heidelberg, Oct. / Nov. 2016.

22. L. Kowalczyk and H. Wee. Compact adaptively secure ABE for NC1 from k-Lin.
IACR Cryptology ePrint Archive, 2019:224, 2019.

23. A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure
functional encryption: Attribute-based encryption and (hierarchical) inner product
encryption. In H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages
62–91. Springer, Heidelberg, May / June 2010.

24. A. B. Lewko, A. Sahai, and B. Waters. Revocation systems with very small private
keys. In 2010 IEEE Symposium on Security and Privacy, pages 273–285. IEEE
Computer Society Press, May 2010.

25. A. B. Lewko and B. Waters. New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In D. Micciancio, editor, TCC 2010, volume
5978 of LNCS, pages 455–479. Springer, Heidelberg, Feb. 2010.

26. A. B. Lewko and B. Waters. New proof methods for attribute-based encryp-
tion: Achieving full security through selective techniques. In R. Safavi-Naini and
R. Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 180–198. Springer,
Heidelberg, Aug. 2012.

27. T. Okamoto and K. Takashima. Fully secure functional encryption with general
relations from the decisional linear assumption. In T. Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 191–208. Springer, Heidelberg, Aug. 2010.

28. T. Okamoto and K. Takashima. Fully secure unbounded inner-product and attribute-
based encryption. In X. Wang and K. Sako, editors, ASIACRYPT 2012, volume
7658 of LNCS, pages 349–366. Springer, Heidelberg, Dec. 2012.

29. R. Ostrovsky, A. Sahai, and B. Waters. Attribute-based encryption with non-
monotonic access structures. In P. Ning, S. D. C. di Vimercati, and P. F. Syverson,
editors, ACM CCS 07, pages 195–203. ACM Press, Oct. 2007.

30. B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in
public: Verifiable computation from attribute-based encryption. In R. Cramer,
editor, TCC 2012, volume 7194 of LNCS, pages 422–439. Springer, Heidelberg, Mar.
2012.

31. A. Sahai and B. R. Waters. Fuzzy identity-based encryption. In R. Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Heidelberg,
May 2005.

32. V. Vinod, A. Narayanan, K. Srinathan, C. P. Rangan, and K. Kim. On the
power of computational secret sharing. In T. Johansson and S. Maitra, editors,
INDOCRYPT 2003, volume 2904 of LNCS, pages 162–176. Springer, Heidelberg,
Dec. 2003.

33. B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In S. Halevi, editor, CRYPTO 2009, volume 5677 of LNCS,
pages 619–636. Springer, Heidelberg, Aug. 2009.

34. H. Wee. Dual system encryption via predicate encodings. In Y. Lindell, editor,
TCC 2014, volume 8349 of LNCS, pages 616–637. Springer, Heidelberg, Feb. 2014.

30

	Compact Adaptively Secure ABE for NC1 from k-Lin

