
Proof-of-Stake Protocols for Privacy-Aware
Blockchains

Chaya Ganesh1?, Claudio Orlandi1?, and Daniel Tschudi1,2?

{ganesh,orlandi,tschudi}@cs.au.dk

1 Department of Computer Science, DIGIT, Aarhus University
2 Concordium

Abstract. Proof-of-stake (PoS) protocols are emerging as one of the
most promising alternative to the wasteful proof-of-work (PoW) proto-
cols for consensus in Blockchains (or distributed ledgers). However, cur-
rent PoS protocols inherently disclose both the identity and the wealth
of the stakeholders, and thus seem incompatible with privacy-preserving
cryptocurrencies (such as ZCash, Monero, etc.). In this paper we initiate
the formal study for PoS protocols with privacy properties. Our results
include:
1. A (theoretical) feasibility result showing that it is possible to con-

struct a general class of private PoS (PPoS) protocols; and to add
privacy to a wide class of PoS protocols,

2. A privacy-preserving version of a popular PoS protocol, Ouroboros
Praos.

Towards our result, we define the notion of anonymous verifiable random
function, which we believe is of independent interest.

1 Introduction

Popular decentralized cryptocurrencies like Bitcoin [Nak08] crucially rely on the
existence of a distributed ledger, known as the Blockchain. The original protocols
used to build and maintain the Blockchain were based on proof-of-work consensus
protocols (PoW). While blockchain protocols mark a significant breakthrough in
distributed consensus, reliance on expensive PoW components result in enormous
waste of energy [OM14, CDE+16], therefore it is an important open problem
to find alternative consensus mechanisms which are less wasteful than PoW
but at the same time maintain the positive features offered by PoW. Proof-
of-stake consensus protocols (PoS) are one of the most promising technology to
replace PoW and still preserve similar robustness properties: while PoW provides
robustness assuming that a (qualified) majority of the computing power is honest,
? This work was supported by the Danish Independent Research Council under Grant-

ID DFF-6108-00169 (FoCC), the European Research Council (ERC) under the Euro-
pean Unions’s Horizon 2020 research and innovation program under grant agreement
No 669255 (MPCPRO) and No 803096 (SPEC), and the Concordium Blockchain Re-
search Center, Aarhus University, Denmark.

PoS instead relies on the assumption that a majority of the wealth in the system
is controlled by honest participants. The rationale behind PoS is that users who
have significant stakes in the system have an economic incentive in keeping the
system running according to the protocol specification, as they risk that their
stakes will become worthless if trust in the cryptocurrency vanishes. As is usual
in this research space, the initial idea of proof-of-stake appeared informally in
an online Bitcoin forum [bit11], and since then, there have been a series of
candidates for such protocols [KN12, BLMR14, BGM16]. Recently, there have
been works on formal models for proof-of-stake and protocols with provable
security guarantees [BPS16, KRDO17, GHM+17, DGKR18, BGK+18].

Consensus based on lottery. Very informally, a lottery-based consensus pro-
tocol works in the following way: some publicly verifiable “lottery” mechanism
is implemented to elect the next committee or a block “leader” who is then al-
lowed to add the next block to the blockchain. The probability of a user being
elected is proportional to the amount of some “scarce resource” owned by the
user. In PoW, the probability is proportional to the computing power of the
user, while in PoS it is proportional to the amount of coins the user owns. Since
the resource is scarce and cannot be replicated, Sybil attacks are prevented (e.g.,
a user cannot inflate its probability of become the block leader). This, combined
with the assumption that some majority of the resource is controlled by honest
parties guarantees that the honest participants are in charge of the blockchain,
thus guaranteeing integrity of the stored information.

Proof-of-work. In PoW, such as Bitcoin, for every block, all users try to solve
some computationally challenging puzzle. The first user to have solved the puzzle
publishes the solution together with the new block, and often together with a new
address that allows to collect the transaction fees and the block reward, which
act as economic incentives for users to participate in the consensus protocol. All
other participants can verify that the received block is valid (e.g., contains a valid
solution to the puzzle) and, if so, append it to their local view of the Blockchain.
Note that, if we assume that users are connected to each other using anonymous
communication channels (e.g., Tor), then PoW provides full anonymity i.e., given
two blocks it is hard to tell whether they came from the same user or not.

Proof-of-stake. On the other hand, PoS systems follow a different approach:
here we must assume that the Blockchain contains information about the wealth
owned by the users in the system. Then, for every block, each user has a way to
locally compute (using a pseudorandom process) whether they won the lottery.
The lottery has the property that the higher the stakes in the system, the higher
the probability of becoming the block leader or committee member. If a user
wins, then, in the case of block leadership, they publish a block together with a
proof of winning the lottery, and in the case of committee membership publish
a message along with proof of lottery win. As in PoW, it is important that
the other users in the system can efficiently verify the correctness of this claim,
that is, the user claiming to be the block leader has in fact won the lottery.
Unfortunately, in existing PoS protocols, this requires the users to be able to

2

link the newly generated block with some account in the system. Thus, everyone
in the system will learn the identity of the block producer (and their wealth).
Privacy in PoS? As privacy-preserving cryptocurrencies (such as ZCash, Mon-
ero, Dash, etc.) increase in popularity, it is natural to ask the following question:

Is it possible to design consensus protocols which
are as energy-efficient as PoS, but as private as PoW?

In this paper we address this problem and provide the first positive results in
this direction. In particular we offer two contributions: 1) we provide a feasibility
result showing that it is possible to construct a Private PoS (PPoS) protocol,
that is one where the identity of the lottery winner (and their wealth) is kept
secret by the protocol; and 2) we show how to adapt a popular PoS protocol,
Ouroboros Praos [DGKR18], to satisfy our anonymity requirement. In doing so,
we introduce a novel cryptographic primitive – anonymous verifiable random
function (AVRF) which might be of independent interest.
Related Work. In a recent independent and concurrent work [KKKZ18], the
authors present a privacy-preserving proof-of-stake protocol. While our work
is more modular and treats privacy of proof-of-stake consensus independently
of the cryptocurrency layer, the work of [KKKZ18] builds an overall private
transaction ledger system. Additionally, our construction guarantees full privacy
(at the cost of assuming anonymous channels), while [KKKZ18] allows for the
leakage of a function of the stake.

1.1 Technical Overview

All current proof-of-stake proposals rely on stake distribution being available in
the clear. As a first step, let us consider how to hide the wealth of the lottery
winner: a simple idea that might come to mind is to encrypt the stakes on the
blockchain, and to replace the proof of winning the lottery (e.g. in form of a
correct block) with a proof that uses the encrypted stakes instead. However,
this falls short of our goal in at least two ways. For instance, in case of block
leaders: 1) it is still possible to distinguish (for instance) whether two blocks were
generated by the same block leader or not and, crucially 2) since the probability
of being elected as block leader is proportional to one’s wealth, the frequency
with which a user wins the lottery indirectly leaks information about their stakes
(i.e., a user who is observed to win t out of n blocks has relative stakes in the
system close to t/n). Thus, we conclude that even if block leaders are only
interested in hiding their wealth, a PPoS must necessarily hide their identity as
well. Similar concerns are true for committee based protocols as well, where the
number of times a user becomes a committee member reveals information about
their wealth.

In Section 4 we provide a framework for VRF-based private stake lottery.
Our framework is parametrized by a lottery mechanism, and allows therefore to
construct PPoS protocols for some of the most popular lottery mechanisms used
in current (non-private) PoS protocols (e.g., Algorand [GHM+17], Ouroboros
Praos [DGKR18], etc.).

3

After having established the first feasibility result in this area, in Section 5
we investigate how to efficiently implement PPoS. Our starting point is one of
the main PoS candidates which comes with a rigorous proof of security, namely
Ouroboros Praos.

In a nutshell, Ouroboros Praos works as follows: Every user in the system
registers a verification key for a verifiable random function e.g., a PRF for which
it is possible to prove that a given output is in the image of the function relative
to the verification key. Then, at every round (or slots), users can apply the VRF
to the slot number and thus receive a (pseudorandom) value. If the value is less
than (a function of) their wealth, then that user has won the election process
and can generate a new block. Thanks to the VRF property, all other users can
verify that the VRF has been correctly computed, and since the wealth of the
user is public as well, every other user can compare the output of the VRF with
the (function of) the user’s wealth.

Using the private stake lottery of Section 4, it would be possible for the
elected leader to prove correctness of all steps above (without revealing any
further information) using the necessary zero-knowledge proofs. However, this
would result in a very inefficient solution. To see why, we need to say a few
more words about the winning condition of Ouroboros Praos: one of the goals of
Ouroboros Praos is to ensure that a user cannot artificially increase their prob-
ability of winning the lottery, therefore Ouroboros Praos compares the output
of the VRF with a function of the wealth that satisfies the “independent aggre-
gation” property i.e., a function such that the probability that two users win
the lottery is the same as the probability of winning for a single user who owns
the same wealth as the two users combined. In particular, the function used by
Ouroboros Praos has the form

φf (x) = 1− (1− f)stk/Stake

where stk is wealth of the user, Stake is the total amount of stakes in the system
and f is a difficulty parameter. Implementing such a function using the circuit
representation required by zero-knowledge proofs would be very cumbersome,
due to the non-integer division and the exponentiation necessary to evaluate φ.
Finally, the variable difficulty level would require to update the circuit in the
ZK-proof as the difficulty changes.

One of our insights is to exploit the “independent aggregation” property of
the function for efficiency purpose, and in fact our solution uses the function φ in
a completely black-box way, and thus allows to replace the specific function above
with any other function that satisfies the “independent aggregation” property.
Thanks to the independent aggregation property, we can let the users commit to
their wealth in a bit-by-bit fashion, thus effectively splitting their account into
a number of “virtual parties” such that party i has wealth 0 or 2i. Then, the
values Vi = φ(2i) can be publicly computed (outside of the ZK-proof) and what
is left to do for the user is to prove that the output of the VRF (for at least
one of the virtual parties i), is less than than the corresponding public value Vi
(without revealing which one).

4

The solution as described so far allows to prove that one has won the election
for a “committed” stake but, as described above, the frequency with which an
account wins the election reveals information about the user’s wealth as well.
Therefore we need to replace the VRF with an “anonymous VRF” or AVRF.
In a nutshell, an AVRF is a VRF in which there exist multiple verification keys
for the same secret key, and where it is hard, given two valid proofs for different
inputs under different verification keys, to tell whether they were generated by
the same secret key or not. We show that it is possible to turn existing efficient
VRF constructions into anonymous VRF with an very small efficiency loss, and
we believe that AVRF is a natural cryptographic primitive which might have
further applications.

2 Preliminaries

Notation. We use [1, n] to represent the set of numbers {1, 2, . . . , n}. If A is
a randomized algorithm, we use y ← A(x) to denote that y is the output of A
on x. We write x R← X to mean sampling a value x uniformly from the set X .
We write PPT to denote a probabilistic polynomial-time algorithm. Throughout
the paper, we use κ to denote the security parameter or level. A function is
negligible if for all large enough values of the input, it is smaller than the inverse
of any polynomial. We use negl to denote a negligible function. We denote by H
a cryptographic hash function.

2.1 Zero-knowledge proofs

Let R be an efficiently computable binary relation which consists of pairs of the
form (x,w) where x is a statement and w is a witness. Let L be the language
associated with the relation R, i.e., L = {x | ∃w s.t. R(x,w) = 1}. L is an NP
language if there is a polynomial p such that every w in R(x) has length at most
p(x) for all x.

A zero-knowledge proof for L lets a prover P convince a verifier V that x ∈ L
for a common input x without revealing w. A proof of knowledge captures not
only the truth of a statement x ∈ L, but also that the prover “possesses” a
witness w to this fact. This is captured by requiring that if P can convince V
with reasonably high probability, then a w can be efficiently extracted from P
given x.

Non-interactive Zero-knowledge Proofs. A model that assumes a trusted
setup phase, where a string of a certain structure, also called the public param-
eters of the system is generated, is called the common reference string (CRS)
model. Non-interactive zero-knowledge proofs (NIZKs) in the CRS model were
introduced in [BFM88]. We give a formal definition of NIZKs in AppendixB.1.
In this paper, we will be concerned with non-interactive proofs.

5

2.2 Commitment schemes

A commitment scheme for a message space is a triple of algorithms (Setup, Com,
Open) such that Setup(1κ) outputs a public commitment key; Com given the
public key and a message outputs a commitment along with opening information.
Open given a commitment and opening information outputs a message or ⊥ if the
commitment is not valid. We require a commitment scheme to satisfy correctness,
hiding and binding properties. Informally, the hiding property guarantees that no
PPT adversary can generate two messages such that it can distinguish between
their commitments. The binding property guarantees that, informally, no PPT
adversary can open a commitment to two different messages.

2.3 Sigma Protocols

A sigma protocol for a language L is a three round public-coin protocol between
a prover P and a verifier V . P ’s first message in a sigma protocol is denoted by
a← P (x;R). V ’s message is a random string r ∈ {0, 1}κ. P ’s second message is
e = P (w, a, r, R). (a, r, e) is called a transcript, and if the verifier accepts, that
is V (x, a, r, e) = 1, then the transcript is accepting for s.

Definition 1 (Sigma protocol). An interactive protocol 〈P, V 〉 between prover
P and verifier V is a Σ protocol for a relation R if the following properties are
satisfied:

1. It is a three move public coin protocol.
2. Completeness: If P and V follow the protocol then Pr[〈P (w), V 〉 (x) = 1] = 1

whenever (x,w) ∈ R.
3. Special soundness: There exists a polynomial time algorithm called the ex-

tractor which when given s and two transcripts (a, r, e) and (a, r′, e′) that are
accepting for s, with r 6= r′, outputs w′ such that (x,w′) ∈ R.

4. Special honest verifier zero knowledge: There exists a polynomial time sim-
ulator which on input s and a random r outputs a transcript (a, r, e) with
the same probability distribution as that generated by an honest interaction
between P and V on (common) input s.

Sigma protocols and NIZK. The Fiat-Shamir transform [FS87] may be used
to compile a Σ protocol into a non-interactive zero-knowledge proof of knowledge
in the random oracle model. In this paper, we will be concerned with transfor-
mations in the CRS model [Dam00, Lin15]. The transformation of [Dam00] gives
a 3-round concurrent zero-knowledge protocol, while [Lin15] is non-interactive.

OR composition of Σ-protocols. In [CDS94], the authors devise a compo-
sition technique for using sigma protocols to prove compound OR statements.
Essentially, a prover can efficiently show ((x0 ∈ L) ∨ (x1 ∈ L)) without reveal-
ing which xi is in the language. More generally, the OR transform can handle
two different relations R0 and R1. If Π0 is a Σ-protocol for R0 and Π1 a Σ-
protocol for R1, then there is a Σ-protocol ΠOR for the relation ROR given by
{((x0, x1), w) : ((x0, w) ∈ R0) ∨ ((x1, w) ∈ R1)}.

6

Pedersen Commitment. Throughout the paper, we use an algebraic com-
mitment scheme that allows proving polynomial relationships among committed
values. The Pedersen commitment scheme [Ped92] is one such example that pro-
vides computational binding and unconditional hiding properties based on the
discrete logarithm problem. It works in a group of prime order q. Given two
random generators g and h such that logg h is unknown, a value x ∈ Zq is com-
mitted to by choosing r randomly from Zq, and computing Cx = gxhr. We write
Comq(x) to denote a Pedersen commitment to x in a group of order q. There are
Sigma protocols in literature to prove knowledge of a committed value, equality
of two committed values, and so on, and these protocols can be combined in
natural ways. In particular, Pedersen commitments allow proving polynomial
relationships among committed values: Given Com(x) and Com(y), prove that
y = ax+ b for some public values a and b. In our constructions, we make use of
existing sigma protocols for proving statements about discrete logarithms, and
polynomial relationships among committed values [Sch91, FO97, CS97, CM99].
Throughout, we use the following notation:

PK{(x, y, . . .) : statements about x, y, . . .}

In the above, x, y, . . . are secrets (discrete logarithms), the prover claims knowl-
edge of x, y, . . . such that they satisfy statements. The other values in the protocol
are public.

2.4 Merkle Tree

A Merkle tree is a hash based data structure that is used both to generically
extend the domain of a hash function and as a succinct commitment to a large
string. To construct a Merkle tree from a string m ∈ {0, 1}n, we split the string
into blocks bi ∈ {0, 1}k. Each block is then a leaf of the tree, and we use a hash
function H to compress two leaves into an internal node. Again, at the next level,
each pair of siblings is compressed into a node using the hash function, and this
is continued until a single node is obtained which is the root of the Merkle tree.
In order to verify the membership of a block in a string represented by a Merkle
tree root, it is sufficient to provide a path from the leaf node corresponding to
the claimed block all the way up to the public root node. This is easily verified
given the hash values along the path together with the hash values of sibling
nodes.

2.5 Decisional Diffie-Hellman Assumption

Let G be the description of cyclic group of prime order q for q = Θ(2κ) output
by a PPT group generator algorithm G on input 1κ. Let g be a generator of
G. The decisional Diffie–Hellman (DDH) problem for G is the following: given
group elements (α, β, γ), distinguish whether they are independent and uniformly
random in G or whether α = ga and β = gb are independent and uniformly
random and γ = gab.

7

The DDH assumption is said to hold in G if there exists a function negl
such that no PPT algorithm A can win in the above distinguishing game with
probability more that 1/2 + negl(κ).

3 Model

In this section, we define certain functionalities that are used in our later proto-
cols.

Stake Distribution. We assume that parties have access to a list of (static)
stakeholder accounts. Each such account consists of the committed stake or
voting-power and a signature verification key. Each stakeholder additionally has
access to his own stake value, the signing key, and the randomness used for the
stake commitment. In our protocols the functionality FCom,SIG

Init is used to provide
the static stake information. In practice, this information could for instance be
stored in the genesis block of a blockchain.

More generally, the stake distribution is dynamic and can be read from the
the blockchain. We discuss the extension to dynamic stake in Section 4.4.

Functionality FCom,SIG
Init

The functionality is parametrized by a commitment scheme Com and a
signature scheme SIG = (KeyGen,Sign,Ver).
Initialization
The functionality initially contains a list of stakeholder id’s pid and their
relative stake αpid. For each stakeholder pid, the functionality does:

1. Compute commitment Com(αpid; rpid) with fresh randomness rpid;
2. Pick a random secret key skpid and compute vkpid = KeyGen(skpid).

Information

• Upon receiving input (GetPrivateData, sid) from a stakeholder
pid (or the adversary in the name of corrupted stakeholder) output
(GetPrivateData, sid, αpid, rpid, skpid).

• Upon receiving (GetList, sid) from a party (or the adversary in the
name of corrupted party) output the list L = {(Com(αpid), vkpid)pid}.

Common reference string. In our protocols stakeholders use zero-knowledge
proofs to show that they won the stake lottery. The functionality FDcrs provides
the common reference string required for those zero-knowledge proofs.

8

Functionality FDcrs

The functionality is parametrized by a distribution D.

• Sample a CRS, crs← D

• Upon receiving (Setup, sid) from a party, output (Setup, sid, crs).

Verifiable pseudorandom function. In our protocols, stakeholders use the
VRF functionality FCom

VRF to get the randomness in the stake lottery. The func-
tionality allows a stakeholder to generate a key and then evaluate the VRF under
that key. The evaluation returns a value and a commitment of that value. The
commitment can then used by parties to verify the claimed FCom

VRF evaluation.
The functionality also offers Verify queries, where anyone can check if a given
output of the VRF was computed correctly. Note that the Verify queries do not
disclose the identity of the party who have generated the output. In other words,
Verify checks if a given output is in the combined image of all the registered
VRF keys.

The VRF functionality FCom
VRF is defined as follows.

Functionality FCom
VRF

The functionality maintains a table T (·, ·) which is initially empty.
Key Generation
Upon input (KeyGen, sid) from a stakeholder pid generate a unique “ideal”
key vid, record (pid, vid). Return (KeyGen, sid, vid) to pid.
VRF Evaluation
Upon receiving a message (Eval, sid, vid,m) from stakeholder pid, verify
that pair (pid, vid) has been recorded. If not, ignore the request.

1. If T (vid,m) is undefined, pick random values y, r from {0, 1}`VRF and
set T (vid,m) = (y,Com(y; r), r).

2. Return (Evaluated, sid, T (vid,m)) to pid.

VRF Verification
Upon receiving a message (Verify, sid,m, c) from some party, do:

1. If there exists a vid such that T (vid,m) = (y, c, r) for some y, r then set
f = 1.

2. Else, set f = 0.

Output (Verified, sid,m, c, f) to the party.

9

Anonymous Broadcast. Stakeholders cannot publish their messages over a
regular network as this would reveal their identity. We therefore assume that
stakeholders use an anonymous broadcast channel. The functionality FABC allows
a party to send messages anonymously to all parties. The adversary is allowed
to send anonymous messages to specific parties.

Functionality FABC

Any party can register (or deregister). For each registered party the func-
tionality maintains a message buffer.
Send Message
Upon receiving (Send, sid,m) from registered party P add m to the mes-
sage buffers of all registered parties. Output (Sent, sid,m) to the adversary.
Receive Message
Upon receiving (Receive, sid) from registered party P remove all message
from P ’s message buffer and output them to P .
Adversarial Influence
Upon receiving (Send, sid,m, P ′) from A on behalf some corrupted regis-
tered party add m to the message buffer of registered party P ′. Output
(Sent, sid,m, P ′) to the adversary.

4 Feasibility of Private Proof-of-Stake

In order to make a proof-of-stake protocol private, a first solution that comes
to mind is to have the parties prove in zero-knowledge that they indeed won
the lottery (either for a slot or committee membership). This does hide the
identity, but it reveals the stake of the winning account. It might seem like one
can hide the stake too by having the parties commit to their stakes and give a
zero-knowledge proof of winning on committed stake. While this indeed hides
the stake in a single proof, it leaks how often a given account wins. One can infer
information about the stake in a given account from the frequency with which
an account participates in a committee or wins a slot. Therefore, the actual
statement that one needs to prove in a private lottery needs to take the list of
all accounts as input. Now, a party proves knowledge of corresponding secret
key of some public key in a list, and the stake in that account won the lottery.
We employ this idea to give a general framework for constructing a private
proof-of-stake protocol. The framework applies to proof-of-stake protocols that
work with lottery functions which are locally verifiable, that is, a party can
locally determine whether it wins or not. The lottery is a function of the party’s
stake and may depend on other parameters like slot, role etc that we call entry
parameters. The set E of entry parameters for the lottery depends on the type

10

of proof of stake. In a slot-based proof-of-stake, for instance, the lottery elects a
leader for a particular slot that allows the leader to publish a block for that slot.
Ouroboros Praos [KRDO17] is an example of such a slot-based proof-of-stake. In
protocols such as Algorand [GHM+17], where the protocol is committee-based,
the lottery is for determining a certain role in a committee, and our framework
applies to both type of protocols.

4.1 Private Lottery Functionality

The private lottery functionality is an abstraction that we introduce to capture
the privacy requirements discussed above. The functionality FLE,E

Lottery is parame-
trized by the set E of allowed entry parameters, and a predicate function LE.
The predicate LE takes as input the relative stake and randomness. It allows
stakeholder pid to locally check whether they won the lottery for entry e. If yes,
they can publish pairs of the form (e,m) where m is an allowed message as
determined and verified by the proof-of-stake protocol that uses the lottery; for
instance, when slot-based, m is a block, when committee-based, m is a committee
message.

Functionality FLE,E
Lottery

The functionality is parametrized by a set E of entries, and a predicate
function LE which takes as input the relative stake (represented by a bit
string in {0, 1}`α) and randomness (in {0, 1}`VRF).

Registered Parties. The functionality maintains a list P of registered
parties. For each registered party the functionality maintains a message
buffer.

Stakeholders. The functionality maintains a list of (the initial) stakehold-
ers pid1, . . . , pidk and their relative stakes pid1.α, . . . , pidk.α. Finally, the
functionality also manages a table T (,) where the entry T (pid, e) defines
whether pid is allowed to publish a message relative to entry e. Initially,
the table T is empty.

• Upon receiving (lottery, sid, e) from a stakeholder pid (or the adver-
sary in the name of corrupted participant pid) do the following:
1. If T (pid, e) is undefined sample a random value r ∈ {0, 1}` and set
T (pid, e) = LE(pid.α; r).

2. Output (lottery, sid, e, T (pid, e)) to pid (or the adversary).

• Upon receiving (send, sid, e,m) from a stakeholder pid (or the adver-
sary in the name of corrupted stakeholder pid) do the following:
1. If T (pid, e) = 1 add (e,m) to the message buffers of all registered

parties and output (send, sid, e,m) to the adversary.

11

• Upon receiving (send, sid, e,m, P ′) from the adversary in the name of
corrupted stakeholder pid) do the following:
1. If T (pid, e) = 1 add (e,m) to the message buffer of P ′ and output

(send, sid, e,m, P ′) to the adversary.

• Upon receiving (fetch-new, sid) from a party P (or the adversary on
behalf of P) do the following:
1. Output the content of P ’s message buffer and empty it.

Get Information

• Upon receiving (get-stake, sid) from a stakeholder pid (or the adver-
sary on behalf of pid) return (get-stake, sid, pid.α).

4.2 Private Lottery Protocol
The high level idea to implement FLE,E

Lottery is as follows. Parties collect information
available on the blockchain about the public keys and the corresponding stake of
stakeholders. A list L = {(Cstk1 , vk1), · · · , (Cstkn , vkn)} is compiled with tuples of
the form (Cstk, vk) where vk is a verification key for a signature scheme (KeyGen,
Sign, Ver), and Cstk is a commitment to the stake.

The lottery is defined relative to a lottery predicate LE. A stakeholder pid
wins the lottery for entry e, if LE(stk, r(e, pid)) = 1, where r is randomness that
depends on the entry e and stakeholder identity, ensuring that the lottery for dif-
ferent stakeholders is independent. The randomness for the lottery is generated
by the VRF functionality FCom

VRF . Winning the lottery for e allows a stakeholder
to publish messages for e.

To ensure privacy, the stakeholder proves in zero-knowledge that he indeed
won the lottery, and as part of this proof it is necessary to prove ownership of his
stake. We can do this by proving that the tuple containing the same committed
stake and a signing key is in the public list L (without revealing which one it
is), and ownership of the key by proving knowledge of the corresponding secret
key. The statement to prove is of the form “I know sk, vk, stk such that (vk, sk)
is a valid signature key pair, (Cstk, vk) ∈ L, and I won the lottery with stake stk
for entry e”. In addition, there needs to be a signature σ on (e,m) to ensure that
no other message can be published with this proof, and this signature is also
verified inside the zero-knowledge proof with respect to the verification key in
the same tuple. Note that since the proof is used to verify the correctness of the
signature, the proof itself (and public values for the statement) are not included
in the information that is signed. More formally, the proof is of the following
form.

PK{(Cstk, stk, σ,vk, sk, r) : LE(stk; r) = 1 ∧ Cstk = Com(stk)
∧ Vervk((e,m), σ) = 1 ∧ vk = KeyGen(sk) ∧ (Cstk, vk) ∈ L}

12

The published information now consists of entry e, the message m, zero-
knowledge proof for the above statement, and certain public values that form
the statement. We assume that the zero-knowledge proof requires a CRS which
is given by the functionality FDcrs. The actual publication of the message is done
via anonymous broadcast FABC to protect the identity of the stakeholder.

The detailed construction of the private lottery Lottery ProtocolE,LE is given
below. The protocol Lottery ProtocolE,LE is run by parties interacting with ideal
functionalities FABC,FCom,SIG

Init ,FDcrs,FCom
VRF and among themselves. Let the algo-

rithms (Setup, Prove, Verify) be a non-interactive zero-knowledge argument sys-
tem. Lottery ProtocolE,LE proceeds as follows.

Protocol Lottery ProtocolE,LE

This describes the protocol from the viewpoint of a party P . If the party is
a stakeholder, it additionally has stakeholder-id pid.
Initialization

• Send (GetList, sid) to FCom,SIG
Init to get the list L of stakeholders with

committed stake and verification key.

• Send (Setup, sid) to FDcrs and get the crs.

• If you are a stakeholder, send (GetPrivateData, sid) to functionality
FCom,SIG

Init and get αpid, rα,pid, skpid send (KeyGen, sid) to functionality
FCom

VRF and get vid; and initialize an empty table V (·).

Lottery and Publishing

• As a stakeholder upon receiving (lottery, sid, e) from the environment
do the following.
1. If e is not in E ignore the request.
2. If V (e) is undefined:

(a) Send (Eval, sid, vid, e) to functionality FCom
VRF and receive re-

sponse (Evaluated, sid, (y, c, r)).
(b) Compute b = LE(αpid, y), and set V (e) = (b, y, c, r).

3. Return (lottery, sid, e, b) where V (e) = (b, y, c, r).

• As a stakeholder upon receiving (send, sid, e,m) from the environment
do the following:
1. Ignore the request if V (e) = (0, · · ·) or is undefined.
2. Let V (e) = (1, y, c, r). Create the tuple (e,m, πzk) in the following

way:
(a) Compute a signature σ on (e,m) under skpid.

13

(b) πzk is a non-interactive zero-knowledge proof of knowledge ob-
tained by running Prove using crs for the following statement.

PK{(αpid, rα,pid, vkpid, skpid, cα,pid, σ, y, r) : Vervkpid((e,m), σ) = 1
∧ LE(αpid, y) = 1 ∧ vkpid = KeyGen(skpid) ∧ c = Com(y; r)
∧ cα,pid = Com(αpid; rα,pid) ∧ (cα,pid, vkpid) ∈ L}

3. Send (send, sid, (e,m, c, πzk)) to FABC.

• Upon receiving (fetch-new, sid) from the environment do the follow-
ing:
1. Send (Receive, sid) to FABC and receive as message vector ~m.
2. For each (e,m, c, πzk) ∈ ~m do:

(a) Check that e ∈ E .
(b) Send (Verify, sid, e, c) to functionality FCom

VRF . For response
(Verified, sid, e, c, b) from FCom

VRF , verify that b = 1.
(c) Verify the correctness of zero-knowledge proof πzk, i.e., check

that Verify(crs, πzk) = 1.
(d) If all check pass add (e,m, c, πzk) to ~o.

3. Output (fetch-new, sid, ~o).

Get Information

• As a stakeholder upon receiving (get-stake, sid) from the environment
output (get-stake, sid, αpid) where α is your lottery power.

Theorem 1. The protocol Lottery ProtocolE,LE realizes the FLE,E
Lottery functional-

ity in the (FABC,FCom,SIG
Init ,FDcrs,FCom

VRF)-hybrid world in the presence of a PPT
adversary.

Proof. Let Szk = (S1,S2) be the simulator of the zero-knowledge proof system
used in the protocol Lottery-ProtocolE,LE.

We construct a simulator Slottery and argue that the views of the adversary in
the simulated execution and real protocol execution are computationally close.
Here, we provide a high-level idea of simulation. The full description of the
simulator Slottery can be found in Appendix A. At the beginning, the simulator
gets the stake of dishonest stakeholders from FLE,E

Lottery and internally emulates the
FCom,SIG

Init . The simulator generates a CRS (with trapdoor) and emulates FDcrs.
Similarly, the VRF functionality FCom

VRF is emulated by the simulator. If a dishon-
est stakeholder ask the VRF for an entry e ∈ E , the simulator first asks FLE,E

Lottery
if the stakeholder wins for this entry and then samples the output accordingly.

14

The simulation of FABC consists of two parts. First, if the adversary wants to
send a message the simulator checks if the message is a valid tuple of the form
m′ = (e,m, c, πzk). If this is the case, the simulator submits (e,m) to FLE,E

Lottery
for publication. Second, if an honest stakeholder publishes a tuple (e,m) the
simulator creates a tuple (e,m, c, πzk) which contains a simulated proof πzk and
adds it to the message buffers of dishonest parties. ut

4.3 Flavors of Proof-of-Stake

As seen above any proof-of-stake lottery can be made private. In the following
we discuss how this process applies to two widely-used types of proof-of-stake
lotteries.

Slot-based PoS. In slot-based PoS protocols (e.g., the Ouroboros Praos pro-
tocol [KRDO17]), time is divided into slots and blocks are created relative to a
slot. Parties with stake can participate in a slot lottery, and winning the lottery
allows a stakeholder to create a block in a particular slot. Here, the set of lot-
tery entries are slots, i.e. E = N+. An (honest) lottery winner will publish one
message in the form of a new block via FLE,E

Lottery.

Committee-based PoS. In committee-based PoS protocols, such as Algo-
rand [GHM+17], a stakeholder wins the right to take part in a committee which
for example determines the next block. In such a protocol, the set of lottery
entries could be of the form (cid, role) where cid is the id of the committee and
role is the designated role of the winner. An (honest) lottery winner will then
publish his messages for the committee protocol via FLE,E

Lottery.

4.4 Dynamic Stake

Our protocol in Section 4.2 assumes that the stake distribution is fixed at the
onset of the computation (in the form of FCom,SIG

Init), which is the static stake
setting. In the following we give an intuition on how the protocol can be made
to support the dynamic stake setting where the set of stakeholders and the
distribution evolve over time.

Protocol idea. The idea is to collect information about the public keys and the
corresponding stake of stakeholders on the blockchain instead of using FCom,SIG

Init .
We assume that for each entry e the (honest) parties agree on the corresponding
stake distribution Le. This stake distribution might not be known from the
beginning of the protocol3. We assume that (if defined) Le can be computed
efficiently from the blockchain. The parties then use Le in the lottery protocol
when dealing with e.

Observe that computation of Le is completely separated from the actual
lottery protocol. The protocol therefore remains secure even in the dynamic
stake setting.
3 If, for example, the entries are slots (cf. Section 4.3) the stake distribution for a

particular entry is only defined once the blockchain has grown far enough.

15

4.5 Rewards

In many proof-of-stake based cryptocurrencies a stakeholder will include some
sort of identification (e.g. his verification key) in his messages (e.g. in a new
block) so that the rewards such as transaction fees are appropriately paid out.
This, of course leaks the identity of the lottery winner and thus also informa-
tion about his stake. This leakage can be prevented if the cryptocurrency allows
for anonymous transactions and anonymous account creation. For instance, one
could think of ZCash [BCG+14], which though not based on proof-of-stake al-
lows for such mechanisms. Each stakeholder maintains a list of fresh accounts.
Whenever the stakeholder needs to provide information for rewards, the stake-
holder uses one of the accounts as the reward destination. Since the account
was created anonymously it cannot be linked to the stakeholder. Later on, the
stakeholder can anonymously transfer the money from that account to any of
its other accounts.

5 Making Ouroboros Praos Private

In this section, we look at the Ouroboros Praos proof-of-stake protocol from
[DGKR18], and apply the technique from our private lottery framework. In par-
ticular, we describe how the zero-knowledge proofs necessary for πzk are instan-
tiated for the Ouroboros Praos lottery.

5.1 Ouroboros Praos Leader Election

Recall that the VRF leader election scheme in Ouroboros Praos works as follows.
The probability p that a stakeholder pid is elected as leader in a slot sl is indepen-
dent of other stakeholders. It depends only on pid’s relative stake α = stk/Stake
where Stake is the total stake in the system. More precisely, the probability p is
given by,

p = φf (α) , 1− (1− f)α

where f is the difficulty parameter. A stakeholder pid can evaluate the VRF
using private key k along with a proof of evaluation that can be verified using a
public key. To check if they are a leader in slot sl, the stakeholder computes their
threshold T = 2`αp where `α is the output length of the VRF. The stakeholder
wins if y < T where (y, π) = VRF(k, sl). The proof π allows any party to verify
pid’s claim given pid’s verification key. In other words, the LE predicate function
for Ouroboros Praos is given by:

LE(stk; y) =
{

1, if y < 2`α ·
(

1− (1− f) stk
Stake

)
0, otherwise

.

Ouroboros Praos VRF. Ouroboros Praos uses the 2-Hash VRF of [JKK14]
based on the hardness of the computational Diffie-Hellman problem. Let G = 〈g〉

16

be a group of order q. VRF uses two hash functions H1 and H2 modeled as
random oracles. H1 has range {0, 1}`α and H2 has range G. Given a key k ∈ Zq,
the public key is v = gk, and (y, π) = VRF(m) is given by y = H1(m,u) where
u = H2(m)k, and π : PK{(k) : logH2(m)(u) = logg(v)}.

5.2 Anonymous Verifiable Random Function

We define a primitive that we call an anonymous VRF that captures a require-
ment necessary in the proof πzk; which is roughly that verification should not
reveal the public key. The high level idea is that there are many public keys as-
sociated with a secret key, and two different evaluations (on different messages)
under the same secret key cannot be linked to a public key. The verifiability prop-
erty is still preserved, that is, there is a public key, which allows to verify the
correctness of output with respect to a proof. We now give a formal definition.

Definition 2. A function family F(·)(·) : {0, 1}k → {0, 1}`(k) is a family of
anonymous VRFs, if there is a tuple of algorithms (Gen, Update, VRFprove,
VRFverify) such that: Gen(1k) generates a key pair (pk, k); Update takes the public
key pk and outputs an updated public key pk′; VRFprovek(pk′, x) outputs a tuple
(Fk(x), πk(x)) where πk(x) is the proof of correct evaluation; VRFverifypk′(x, y, π)
verifies that y = Fk(x) using the proof π. We require that the following properties
are satisfied.

– Pseudorandomness. For any pair of PPT (A1, A2), the following probability
is 1/2 + negl(k).

Pr

 b = b′

∧x 6∈ Q1 ∪Q2

∣∣∣∣∣∣∣
(pk, k)← Gen(1k); (Q1, x, state)← A

VRFprove(·)
1 (pk);

y0 = Fk(x); y1 ← {0, 1}`;
b← {0, 1}; (Q2, b

′)← A
VRFprove(·)
2 (yb, state)

 .

The sets Q1, Q2 contain all the queries made to the Prove oracle. The random
variable state stores information that A1 can save and pass on to A2.

– Uniqueness. There do not exist values (pk, x, y1, y2, π1, π2) such that y1 6= y2
and

VRFverifypk(x, y1, π1) = VRFverifypk(x, y2, π2) = 1

– Provability. VRFverifypk′(x, y, π) = 1 for (y, π) = VRFprovek(pk′, x), pk′ ←
Update(pk)

– Anonymity. For any PPT algorithm A, the following probability is 1/2 +
negl(k).

Pr

b = b′

∣∣∣∣∣∣∣∣
(pk0, k0)← Gen(1k); (pk1, k1)← Gen(1k);
x← A(pk0, pk1); pk′0 ← Update(pk0);

(y0, π0) = VRFprovek0(pk′0, x); pk′1 ← Update(pk1);
(y1, π1) = VRFprovek1(pk′1, x); b← {0, 1}; b′ ← A(pk′b, yb, πb)

 .

17

Intuitively, the above definition says that no adversary can tell which key an
output came from, given two public keys.

Anonymous VRF construction. We show how to instantiate the AVRF
primitive by adapting the 2-Hash VRF. Let AVRF be the tuple of algorithms
(Gen,VRFprove,VRFverify) which are defined as follows.

– Gen(1k): Choose a generator g of a group of order q such that q = Θ(2k),
and sample a random k ∈ Zq and output (pk, k), where pk = (g, gk).

– Update(pk): Let pk be (g, v). Choose a random r ∈ Zq, let g′ = gr, v′ = vr,
set pk′ = (g′, v′), output pk′.

– VRFprovek(pk′, x): Let pk′ be (g, v). Compute u = H2(x)k, y = H1(x, u), and
π′ : PK{(k) : logH2(x)(u) = logg(v)}. Output (pk′, y, π = (u, π′))

– VRFverifypk′(x, y, π): Output 1 if y = H1(x, u) and π verifies, and 0 otherwise.

It is clear that the above construction satisfies the standard properties of a
VRF. For anonymity, we reduce to DDH; we show that any adversary who
breaks anonymity can be used to break DDH. Let A be the adversary who
wins the anonymity game in Definition 2. We now show how to use A to break
DDH. Let B be an adversary who receives a challenge (g, ga, gb, gc) and has
to determine whether it is a DDH tuple or not. B works as follows: it chooses
random k0, k1 ∈ Zq, sets k0 = k0, pk0 = (ga, gk0a), k1 = k1, pk1 = (gb, gk1b) and
return pk0, pk1 to A. On receiving a x, B chooses β ∈ {0, 1} at random and
returns (pk′β , yβ , πβ) to A, where pk′β = (gc, gkβc) and yβ , πβ are evaluated with
key kβ . Let β′ be the output of A. If β = β′, B returns DDH tuple, otherwise B
decides not a DDH tuple.

Note that while AVRF gives the anonymous verifiability property, it does
not guarantee that the key used to evaluate comes from one of the two keys that
the adversary sees at the onset of the game. In applications, it is desirable to
satisfy this “key membership” property. Indeed, the FCom

VRF functionality that was
defined in Section 3 has the property that verification does not leak a public key
and also guarantees that it is one of the registered keys. The FCom

VRF functionality
also allows verifiability of y while keeping y secret. We use other techniques on
top of the AVRF primitive to realize the FCom

VRF functionality; in general, proving
membership of the corresponding AVRF secret key in a list of committed secret
keys will suffice for membership and we preserve privacy by committing to the
output and proving correct evaluation in zero-knowledge. We elaborate on this
in the next section.

“Approval Voting” via AVRF. To demonstrate the usefulness of AVRF out-
side of the context of PPoS, here is a simple example application, namely ap-
proval voting. In approval voting, a group of users can vote (e.g., approve) any
number of candidates, and the winner of the election is the candidate who is
approved by the highest number of voters. To implement such voting with cryp-
tographic techniques, one needs to ensure anonymity of the voters and, at the
same time, that each voter can approve each candidate at most once. This can
be easily done using our AVRF abstraction: Each user registers an AVRF pub-
lic key pk1, . . . , pkn. To vote on option x, user i publishes pk′ = Update(pki)

18

and gives a ZK-proof that ∃i : (pk′, pki) ∈ L (in our AVRF the language L
is simply the language of DDH tuple). Then the user computes and publishes
(y, π) = VRFprovek(pk′, x). If the proof π does not verify or if the value y has
already appeared in this poll, then the other users discard this vote. Otherwise,
they register a new vote for option x. Now, due to the anonymity and indistin-
guishability properties of the VRF, it is unfeasible to link any two casted votes,
except if the same user tries to approve the same candidate more than once,
since the value y is only a function of k and x.

5.3 Private Ouroboros Praos

Recall that our private lottery protocol now needs to prove that LE(stk; y) = 1
in zero-knowledge. For this, we need to prove y < T in zero knowledge, that
is, without revealing y or T 4. Note that, in addition, we need to prove the
correct computation of T which involves evaluating φ on a secret α involving
floating-point arithmetic. Using generic zero-knowledge proofs for a statement
like above would be expensive. We show how to avoid this and exploit the specific
properties of the statement. In particular, we take advantage of the “independent
aggregation” property that is satisfied by the above function φ to construct a
zero-knowledge proof for leader election i.e., that the function φ satisfies the
following property:

1− φ
(∑

i

αi

)
=
∏
i

(1− φ(αi))

The above implies that if a party were to split its stake among virtual parties,
the probability that the party is elected for a particular slot is identical to the
probability that one of the virtual parties is elected for that slot.

Remark 1. Due to rounding performed when evaluating the predicate LE, the
probability of winning is not identical under redistribution of stakes. However,
by setting the precision `α appropriately we can always ensure that the difference
between the winning probabilities above is at most negligible.

Proof of correct evaluation of LE predicate πLE. The idea behind our proof
is to split the stake among virtual parties and prove that one of the virtual
parties wins without revealing which one of them won. We also use the 2-hash
AVRF instantiation in the LE since we want to achieve verifiability of correct
evaluation without disclosing a public key. More precisely, each stakeholder has a
key pair (vk, sk) of a signature scheme (KeyGen,Sign,Ver), and a key pair (pk, k)
for an AVRF family F . To realize the key membership property for the AVRF,
we now include the public key for the AVRF in a stakeholder’s tuple. Thus, the
list L now consists of tuples (Cstk, vk, pk).
4 Since T is a direct function of stk, it should be clear why T should stay private. At

the same time, revealing the value y and the fact that LE output 1 allows to rule
out that stk = s for any value s such that LE(s; y) = 0.

19

Let pid be a stakeholder with (absolute) stake stk, and wants to prove that it
won the election, that is LE(stk;Fk(sl)) = 1, where F is the AVRF function. Let
bi,∀i ∈ [0, s−1] be the bits of the stake of stakeholder pid, where stk =

∑s−1
i=0 2ibi

and the maximum stake in the system is represented in s-bits. Now, the stake
is split among s virtual parties “in the head” where the stake of the ith virtual
party is 2ibi. We now have by the aggregation property, that the probability
of winning with stake stk is equal to the probability of winning with one of
the above s stakes. Let the probability of winning with stake 2ibi be pi, let
(yi, πi) = VRFprovek(pki, i||sl), for pki ← Update(pk). Let Ti be the threshold
corresponding to the ith divided stake, Ti = 2`αpi. We use the AVRF key of the
stakeholder to evaluate yi corresponding to the ith stake by including the index
i along with the slot number in the evaluation, and prove that yi < Ti for at
least one i. Note that now, the thresholds Ti in the statement are public values,
in contrast to private threshold prior to the the stake being split among virtual
parties. In addition, the statement only uses the function φ in a blackbox way
and is independent of the difficulty parameter f . The zero-knowledge proofs,
therefore do not have to change with tuning of the difficulty parameter of the
leader election function. The proof is for the statement that there exists at least
one bit such that the bit is one, the corresponding virtual party won the lottery,
bits combine to yield the committed stake and correct evaluation of the AVRF.
The following is a proof that LE was evaluated correctly on stk.

PK{(y1, · · · ys, b1, · · · , bs, i∗, k, stk) :(
s∧
i=1

(bi ∈ {0, 1})
)
∧ (bi∗ = 1 ∧ yi∗ < Ti∗ ∧ yi∗ = Fk(i∗||sl)) ∧ stk =

∑
2jbj}

Proof πLE is about the correct evaluation of the predicate LE on private stake
and randomness, and correct evaluation of the yi’s. The above proof convinces
that a committed stake wins the lottery. It is still necessary to prove ownership
of this stake. We can do this by proving that the tuple containing the same
committed stake, signature verification key, and an APRF key is in the list L,
and ownership of the signature key by proving knowledge of the corresponding
signing key.
Proof of ownership πown. We represent the list L as a Merkle tree, where the
leaf are the tuples (Cstkpid , vkpid, pkpid)pid ∈ L. We can now prove membership
by proving a valid path to the public root given a commitment to a leaf. Let
L(root) denote the Merkle tree representation of the list L. Given the root of a
Merkle tree, an AVRF public key, and commitments to the signature verification
key, and stake, we want a party proposing a new block to prove that the stake
used in the proof of winning lottery corresponds to the signature key and AVRF
key it “owns”. That is, prove knowledge of (vk, stk, pk) such that Cstk||vk||pk is a
leaf of the Merkle tree with root root. To prove membership, one can reveal the
path along with the values of the sibling nodes up to the root. We want to prove
membership without disclosing the leaf node and therefore use a zero knowledge

20

proof πpath to prove a valid path from a committed leaf to a public root. Let li
be Cstk||vk||pk, H be the hash function function used to construct the Merkle
tree, and let sib1, . . . , sibt be the sibling nodes of the nodes on the path from li
to the root of a tree with depth t. πpath proves li ∈ L(root).

PK{(li, sib1, . . . , sibt) : H(· · ·H(H(li||sib1)||sib2) · · ·) = root}

Using the above proof πpath, we can prove ownership. Given root, we denote by
πown the following proof.

PK{(vk, stk, k, pk, Cstk) : (Cstk||vk||pk) ∈ L(root) ∧ pk = gk}

Proof of signature on a block under the winning key πsig. πzk also consists
of a proof that a block signature verifies under the winning key. πsig denotes the
following proof, where M is the public block information that is signed.

PK{(vk, sk, σ) : vk = KeyGen(sk) ∧ Vervk(σ,M) = 1}

Overall proof. The detailed construction of proof πzk is given below. If the com-
mitment to stake Cstk is an extended Pedersen commitment (e.g., hr ·Πs

i=1(gi)bi)
where the stakes are already committed bit by bit, the proof πLE is a standard
sigma protocol. If instead, it is a Pedersen commitment to the entire stake, one
can publish fresh commitments to bits and prove correct recombination. The
range proofs that are used in πLE allow one to prove that x ∈ [0, R] for a public
R and committed x. Range proofs may be instantiated using several known tech-
niques [CCs08, Bou00]. More recently, the technique of bulletproof [BBB+18] re-
sults in very efficient range proofs when the interval is [0, 2n−1] for some n. Since
we use SNARKs for other statements, we also implement the range check inside
a SNARK resulting in short proofs. The proof πLE also relies on the OR compo-
sition of sigma protocols. πown may be realized efficiently using SNARKs when
the Merkle tree hash function H is non-algebraic. While it might seems like such
a statement would result in inefficient proofs, this can in fact be done efficiently
in practice, and is implemented by ZCash’s private-pool transactions [BCG+14].
The predicate Eq that tests if two public keys comes from the same key is the
following predicate for the concrete 2-Hash AVRF: it outputs 1 if pk and pk′ form
a DDH tuple. For a public pk′ and private pk as in our case, this can be imple-
mented using double discrete logarithm sigma protocol proofs [CS97, MGGR13].
The proof for part of the statement represented as a circuit (the hash functions)
in the 2-Hash AVRF can be implemented using SNARKs, and we can use the
construction of [AGM18] for SNARK on algebraically committed input and out-
put so we can work with Pedersen commitments and sigma protocols for other
parts of the proof. The rest of the proof components may be implemented using
standard sigma protocol techniques.

21

Protocol Constructing πzk

– Given a list L = {(Cstkpid , vkpid, pkpid)pid}, construct a Merkle tree rep-
resentation. Let root be the root of the tree.

– For stakeholder pid, let b1, . . . , bs represent the bits of the stake stk. Let
the private information be (stk, Cstk, Ck, vk, sk, k). Let M be the part
of the block that is signed. Compute signature σ = Sign(sk,M). To
construct a proof πzk for submitting a new block:
• Compute pk′ ← Update(pk) and (yi, πi) = VRFprovek(pk′, i||sl).

Then publish pk′. Compute and publish Cσ = Com(σ), Cvk =
Com(vk), Csk = Com(sk). There is a predicate Eq(pki, pk, k) which
outputs 1 if pki, pk have the same secret key k. Compute proof of
correct evaluation of LE predicate πLE :

PK{(y1, · · · ys, b1, · · · , bs, πj , stk, Cstk) :
(∀i (bi ∈ {0, 1}))
∧
(
∃j
(
bj = 1 ∧ yj < Tj ∧ VRFverifypk′(j||sl, yj , πj) = 1

))
∧stk =

∑
2jbj ∧ Cstk = Com(stk)}

• Compute proof of signature on a block under the winning key πsig:

PK{(vk, sk, σ) : vk = KeyGen(sk)∧Cvk = Com(vk)∧Csk = Com(sk)
∧ Cσ = Com(σ) ∧ Vervk(σ,M) = 1}

• Compute proof of ownership of signature and AVRF key πown:

PK{(vk, stk, k, pk, Cstk) : (Cstk||vk||pk) ∈ L(root)∧Cvk = Com(vk)
∧ Eq(pk′, pk, k) = 1 ∧ Cstk = Com(stk)}

Set πzk to be (πLE, πsig, πown).

Usage of πzk in Ouroboros Praos. If a stakeholder has won the lottery for
slot sl, they will create a new block of the form (pt, sl, st, c, πzk) where pt is a
reference to a previous block, st the block payload, c is a commitment to y, the
output of the AVRF, and πzk is the proof as described above. The stakeholder
then publishes the block using an anonymous broadcast.

Corollary 1. Ouroboros Praos used with the private lottery protocol results in
a private proof-of-stake protocol.

Proof. The proof easily follows from the properties of the underlying building
blocks. Note that overall protocol remains the same as in the original Ouroboros
Praos, with only small differences: Instead of using a VRF, a stakeholder uses
an AVRF to determine whether they win the slot-lottery. Then, a slot leader

22

will publish a block with a zero-knowledge proof of the above form (instead
of adding his verification key and a VRF-proof). Due to the soundness of the
zero-knowledge protocol and the uniqueness property of the AVRF, the modified
protocol still has the same security properties as Ouroboros Praos i.e., the the
protocol still reaches consensus under the same security guarantees as the original
protocol.

The proof that the resulting protocol is a private proof of stake follows di-
rectly from the proof of Theorem 1.

We give an estimate of the proof size that determines the overhead that is
incurred by privacy preserving Ouroboros Praos compared to the non-private
version. The size of πLE is dominated by O(s) group/field elements due to the
sigma protocol OR composition, with the rest of the components resulting in
succinct SNARK proofs. πsig for the key-evolving signature scheme may be im-
plemented by using SNARK on committed input together with sigma protocols
with only a slight overhead in size over the SNARK proof. The size of πown is
dominated by the proof size for the predicate Eq which is O(κ) elements for a
statistical security parameter κ. The size of πzk is therefore roughly (ignoring the
size of proofs for statements that use SNARKs and standard sigma protocols),
O(s) +O(κ) group/field elements where s is the number of bits to represent the
stake in the system, κ is the statistical security parameter. We remark that the
actual complexity depends on the implementation of the signature scheme, and
potentially the hash functions of the VRF.

References

[AGM18] Shashank Agrawal, Chaya Ganesh, and Payman Mohassel. Non-
interactive zero-knowledge proofs for composite statements. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, vol-
ume 10993 of LNCS, pages 643–673. Springer, Heidelberg, August 2018.
doi:10.1007/978-3-319-96878-0_22.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In 2018 IEEE Symposium on Security and Privacy,
pages 315–334. IEEE Computer Society Press, May 2018. doi:10.1109/
SP.2018.00020.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized
anonymous payments from bitcoin. In 2014 IEEE Symposium on Se-
curity and Privacy, pages 459–474. IEEE Computer Society Press, May
2014. doi:10.1109/SP.2014.36.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In 20th ACM STOC,
pages 103–112. ACM Press, May 1988. doi:10.1145/62212.62222.

[BGK+18] Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Rus-
sell, and Vassilis Zikas. Ouroboros genesis: Composable proof-of-stake
blockchains with dynamic availability. Cryptology ePrint Archive, Report
2018/378, 2018. https://eprint.iacr.org/2018/378.

23

http://dx.doi.org/10.1007/978-3-319-96878-0_22
http://dx.doi.org/10.1109/SP.2018.00020
http://dx.doi.org/10.1109/SP.2018.00020
http://dx.doi.org/10.1109/SP.2014.36
http://dx.doi.org/10.1145/62212.62222
https://eprint.iacr.org/2018/378

[BGM16] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryptocurrencies without
proof of work. In International Conference on Financial Cryptography and
Data Security, pages 142–157. Springer, 2016.

[bit11] Proof of stake instead of proof of work. https://bitcointalk.org/
index.php?topic=27787.0, July 2011.

[BLMR14] Iddo Bentov, Charles Lee, Alex Mizrahi, and Meni Rosenfeld. proof of
activity: Extending bitcoin’s proof of work via proof of stake [extended ab-
stract] y. ACM SIGMETRICS Performance Evaluation Review, 42(3):34–
37, 2014.

[Bou00] Fabrice Boudot. Efficient proofs that a committed number lies in an
interval. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of
LNCS, pages 431–444. Springer, Heidelberg, May 2000. doi:10.1007/
3-540-45539-6_31.

[BPS16] Iddo Bentov, Rafael Pass, and Elaine Shi. Snow white: Provably secure
proofs of stake. Cryptology ePrint Archive, Report 2016/919, 2016. http:
//eprint.iacr.org/2016/919.

[CCs08] Jan Camenisch, Rafik Chaabouni, and abhi shelat. Efficient protocols
for set membership and range proofs. In Josef Pieprzyk, editor, ASI-
ACRYPT 2008, volume 5350 of LNCS, pages 234–252. Springer, Heidel-
berg, December 2008. doi:10.1007/978-3-540-89255-7_15.

[CDE+16] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels,
Ahmed Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün
Sirer, et al. On scaling decentralized blockchains. In International Con-
ference on Financial Cryptography and Data Security, pages 106–125.
Springer, 2016.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of
partial knowledge and simplified design of witness hiding protocols. In
Yvo Desmedt, editor, CRYPTO’94, volume 839 of LNCS, pages 174–187.
Springer, Heidelberg, August 1994. doi:10.1007/3-540-48658-5_19.

[CM99] Jan Camenisch and Markus Michels. Proving in zero-knowledge that a
number is the product of two safe primes. In Jacques Stern, editor, EURO-
CRYPT’99, volume 1592 of LNCS, pages 107–122. Springer, Heidelberg,
May 1999. doi:10.1007/3-540-48910-X_8.

[CS97] Jan Camenisch and Markus Stadler. Efficient group signature schemes
for large groups (extended abstract). In Burton S. Kaliski Jr., editor,
CRYPTO’97, volume 1294 of LNCS, pages 410–424. Springer, Heidelberg,
August 1997. doi:10.1007/BFb0052252.

[Dam00] Ivan Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string
model. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of
LNCS, pages 418–430. Springer, Heidelberg, May 2000. doi:10.1007/
3-540-45539-6_30.

[DGKR18] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell.
Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-stake
blockchain. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part II, volume 10821 of LNCS, pages 66–98. Springer,
Heidelberg, April / May 2018. doi:10.1007/978-3-319-78375-8_3.

[FO97] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge pro-
tocols to prove modular polynomial relations. In Burton S. Kaliski Jr.,
editor, CRYPTO’97, volume 1294 of LNCS, pages 16–30. Springer, Hei-
delberg, August 1997. doi:10.1007/BFb0052225.

24

https://bitcointalk.org/index.php?topic=27787.0
https://bitcointalk.org/index.php?topic=27787.0
http://dx.doi.org/10.1007/3-540-45539-6_31
http://dx.doi.org/10.1007/3-540-45539-6_31
http://eprint.iacr.org/2016/919
http://eprint.iacr.org/2016/919
http://dx.doi.org/10.1007/978-3-540-89255-7_15
http://dx.doi.org/10.1007/3-540-48658-5_19
http://dx.doi.org/10.1007/3-540-48910-X_8
http://dx.doi.org/10.1007/BFb0052252
http://dx.doi.org/10.1007/3-540-45539-6_30
http://dx.doi.org/10.1007/3-540-45539-6_30
http://dx.doi.org/10.1007/978-3-319-78375-8_3
http://dx.doi.org/10.1007/BFb0052225

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987. doi:10.1007/3-540-47721-7_12.

[GHM+17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai
Zeldovich. Algorand: Scaling byzantine agreements for cryptocurrencies.
Cryptology ePrint Archive, Report 2017/454, 2017. http://eprint.iacr.
org/2017/454.

[JKK14] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal
password-protected secret sharing and T-PAKE in the password-only
model. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014,
Part II, volume 8874 of LNCS, pages 233–253. Springer, Heidelberg, De-
cember 2014. doi:10.1007/978-3-662-45608-8_13.

[KKKZ18] Thomas Kerber, Markulf Kohlweiss, Aggelos Kiayias, and Vassilis Zikas.
Ouroboros crypsinous: Privacy-preserving proof-of-stake. Cryptology
ePrint Archive, Report 2018/1132, 2018. To appear at IEEE Sympo-
sium on Security and Privacy - S&P 2019. URL: https://eprint.iacr.
org/2018/1132.

[KN12] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with
proof-of-stake. 2012.

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman
Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain pro-
tocol. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part I, volume 10401 of LNCS, pages 357–388. Springer, Heidelberg, Au-
gust 2017. doi:10.1007/978-3-319-63688-7_12.

[Lin15] Yehuda Lindell. An efficient transform from sigma protocols to NIZK
with a CRS and non-programmable random oracle. In Yevgeniy Dodis
and Jesper Buus Nielsen, editors, TCC 2015, Part I, volume 9014 of
LNCS, pages 93–109. Springer, Heidelberg, March 2015. doi:10.1007/
978-3-662-46494-6_5.

[MGGR13] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Ze-
rocoin: Anonymous distributed E-cash from Bitcoin. In 2013 IEEE Sym-
posium on Security and Privacy, pages 397–411. IEEE Computer Society
Press, May 2013. doi:10.1109/SP.2013.34.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.
[OM14] K. J. O’Dwyer and D. Malone. Bitcoin mining and its energy footprint.

In ISSC 2014/CIICT 2014, pages 280–285, 2014. doi:10.1049/cp.2014.
0699.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In Joan Feigenbaum, editor, CRYPTO’91, vol-
ume 576 of LNCS, pages 129–140. Springer, Heidelberg, August 1992.
doi:10.1007/3-540-46766-1_9.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Jour-
nal of Cryptology, 4(3):161–174, 1991.

25

http://dx.doi.org/10.1007/3-540-47721-7_12
http://eprint.iacr.org/2017/454
http://eprint.iacr.org/2017/454
http://dx.doi.org/10.1007/978-3-662-45608-8_13
https://eprint.iacr.org/2018/1132
https://eprint.iacr.org/2018/1132
http://dx.doi.org/10.1007/978-3-319-63688-7_12
http://dx.doi.org/10.1007/978-3-662-46494-6_5
http://dx.doi.org/10.1007/978-3-662-46494-6_5
http://dx.doi.org/10.1109/SP.2013.34
http://dx.doi.org/10.1049/cp.2014.0699
http://dx.doi.org/10.1049/cp.2014.0699
http://dx.doi.org/10.1007/3-540-46766-1_9

Appendix

A Private Proof of Stake Lottery

Theorem 1. The protocol Lottery ProtocolE,LE realizes the FLE,E
Lottery functional-

ity in the (FABC,FCom,SIG
Init ,FDcrs,FCom

VRF)-hybrid world in the presence of a PPT
adversary.
Proof. Let Szk = (S1,S2) be the simulator of the zero-knowledge proof system
used in Lottery-ProtocolE,LE. We construct a simulator Slottery and argue that the
views of the adversary in the simulated execution and real protocol execution
are computationally close. Consider the simulator Slottery.

Simulator Slottery

Initialization
Upon first activation the simulator does the following.

1. For each dishonest stakeholder pid the simulator queries functionality
FLE,E

Lottery (using (get-stake, sid)) to get the lottery powers α. Then, the
simulator creates (cpid = Com(αpid; rpid), rpid, skpid, vkpid) the same way
as FCom,SIG

Init would do.
2. For each honest stakeholder pid the simulator creates the tuple (cpid =

Com(0), rpid, skpid, vkpid) similar to FCom,SIG
Init except that the relative

stake is set to 0.

Simulation of FDcrs

• Call S1 to generate a simulated CRS scrs and a trapdoor τ .

• Upon receiving (Setup, sid), output (Setup, sid, scrs).

Simulation of FCom,SIG
Init

• Upon receiving (GetPrivateData, sid) from the adversary in the
name of the dishonest stakeholder pid output (GetPrivateData, sid,
αpid, rpid, skpid).

• Upon receiving (GetList, sid) from the adversary in the name of a
dishonest party output the list L = {(cpid, vkpid)pid}.

Simulation of FCom
VRF

The simulator maintains a table T (·, ·) and a list of vids.

• Upon input (KeyGen, sid) from the adversary in the name of dishonest
stakeholder pid generate a unique key vid, record (pid, vid), and initialise
the table T (vid, ·) to be empty. Return (KeyGen, sid, vid) to the ad-
versary.

26

• Upon input (Eval, sid, vid, x) from the adversary in the name of dis-
honest stakeholder pid do the following:

Abort and ignore the request if (pid, vid) is undefined.
if T (vid, x) is undefined then

if If x ∈ E then
Send (lottery, sid, x) in the name of pid to FLE,E

Lottery.
Denote by (lottery, sid, x, b) the answer from FLE,E

Lottery.
Pick random value y from {0, 1}`VRF such that b = LE(αpid, y).a

else
Pick random value y from {0, 1}`VRF .

end if
Pick random value r from {0, 1}`VRF and set table T (vid, x) =

(y,Com(y; r), r).
end if
Output (Evaluated, sid, T (vid, x)).

• Upon receiving a message (Verify, sid, x, c) from the adversary in the
name of a dishonest party do the following:
1. If there exists a vid such that T (vid, x) = (y, c, r) for some y, r then

set f = 1.
2. Else, set f = 0.
3. Output (Verified, sid, x, c, f) to the adversary.

Simulation of FABC

The simulator maintains for each dishonest party a message buffer.

• Upon receiving (send, sid, e,m) from FLE,E
Lottery do the following:

1. Create an entry (⊥, vid) with unique vid for the internal FCom
VRF .

2. Pick random values y, r from {0, 1}`VRF and set table T (vid, e) =
(y,Com(y; r), r).

3. Create simulated proof πzk by calling the simulator S2 on (scrs, τ).

4. Add (e,m,Com(y; r), πzk) to the message buffers of all dishonest
parties.

5. Output (send, sid, (e,m,Com(y; r), πzk)) to the adversary.

• Upon receiving (send, sid,m′) from the adversary do the following:
1. Add m′ to all message buffers of dishonest parties.

2. If m′ = (e,m, c, πzk) do:
(a) Check that e ∈ E .

(b) Check that there is vid such that T (vid, e) = (y, c, r) for some
y, r.

27

(c) Check that Verify(scrs, πzk) = 1.

(d) If all checks pass send (send, sid, e,m) to FLE,E
Lottery.

3. Output (Sent, sid,m′) to the adversary.

• Upon receiving (Send, sid,m′, P ′) from the adversary do the following:
1. Add m′ to message buffers of dishonest party P ′.

2. If m′ = (e,m, c, πzk) do:
(a) Check that e ∈ E

(b) Check that there is vid such that T (vid, e) = (y, c, r) for some
y, r.

(c) Check that Verify(scrs, πzk) = 1.

(d) If all checks pass and P ′ is honest send (send, sid, e,m, P ′) to
FLE,E

Lottery.

3. Output (Sent, sid,m′, P ′) to the adversary.

• Upon receiving (Receive, sid) from the adversary in the name of cor-
rupted party P . Remove all message from P ’s message buffer and out-
put them to P .

a This requires that it is possible to efficiently sample randomness r satisfying
LE(stk, r) = b for given stake stk.

Let HYB0 be the (distribution) of the protocol execution (in the hybrid
world where the auxiliary functionalities are available). We consider the world
HYB1 which is the same as the protocol execution except for the following: calls
to FCom

VRF are answered as is done by the simulator Slottery consistent with the
outcome returned by FLE,E

Lottery. It follows that distributions of HYB0 and HYB1
are indistinguishable. We now argue that the world HYB1 is computationally
indistinguishable from the ideal world simulation.

Simulation of FCom,SIG
Init The only difference between HYB1 and the simulation

is that the list L consists of commitments to honest stakes in the protocol,
whereas the commitments are to 0 in the interaction with the simulator. By
the hiding property of the commitment scheme Com, the two distributions are
identical.

Simulation of FDcrs The CRS in HYB1 is distributed the same as in the simu-
lation.

Simulation of FCom
VRF

The key-generation and evaluation queries by the adversary are distributed
the same. The same holds for verification queries where the adversary verifies
a commitment which was created by an evaluation query by the adversary. In

28

HYB1, any other commitment message pair will be verified as true only if the
commitment was part of an honest tuple (e,m, c, πzk) which was sent to the
adversary via FABC. Similarly, in the simulation any other commitment message
pair will only be evaluated as true if the commitment was part of a simulated
honest tuple.

Simulation of FABC
If the adversary sends a tuple (e,m, c, πzk) in HYB1, parties will accept it

only if it is valid with respect to the information of FCom,SIG
Init , FDcrs, and FCom

VRF . In
the ideal world, the simulator does the same checks with respect to the simulated
functionalities. The simulator will then submit (e,m) to FLE,E

Lottery which will send
it to honest parties. The soundness of the zero-knowledge proof system and the
binding property of the commitment scheme guarantee that the adversary can
only submit tuples (e,m, c, πzk) where the dishonest stakeholder won the lottery
for e. Thus the distribution of HYB1 and the ideal world is indistinguishable.

If in HYB1 an honest stakeholder wins the lottery for entry e and publishes a
message m via FABC, the adversary will receive a tuple of the form (e,m, c, πzk).
In the ideal world, the simulator gets (e,m) and creates a simulated tuple. By
the zero-knowledge property of the proof system the distribution of HYB1 and
the ideal-world is indistinguishable. ut

B Extended Preliminaries

B.1 Non-interactive Zero-knowledge

Definition 3 (Non-interactive Zero-knowledge Argument). A non-inter-
active zero-knowledge argument for an NP relation R consists of a triple of
polynomial time algorithms (Setup,Prove,Verify) defined as follows.

– Setup(1κ) takes a security parameter κ and outputs a common reference
string σ.

– Prove(σ, x, w) takes as input the CRS σ, a statement x, and a witness w,
and outputs an argument π.

– Verify(σ, x, π) takes as input the CRS σ, a statement x, and a proof π, and
outputs either 1 accepting the argument or 0 rejecting it.

The algorithms above should satisfy the following properties.

1. Completeness. For all κ ∈ N, (x,w) ∈ R,

Pr
(

Verify(σ, x, π) = 1 : σ ← Setup(1κ)
π ← Prove(σ, x, w)

)
= 1.

2. Computational soundness. For all PPT adversaries A, the following proba-
bility is negligible in κ:

Pr
(

Verify(σ, x̃, π̃) = 1
∧ x̃ 6∈ L : σ ← Setup(1κ)

(x̃, π̃)← A(1κ, σ)

)
.

29

3. Zero-knowledge. There exists a PPT simulator (S1,S2) such that S1 outputs
a simulated CRS Σ and trapdoor τ ; S2 takes as input σ, a statement s and
τ , and outputs a simulated proof π; and, for all PPT adversaries (A1,A2),
the following probability is negligible in κ:∣∣∣∣∣∣Pr

 (x,w) ∈ R ∧
A2(π, st) = 1 :

σ ← Setup(1κ)
(x,w, st)← A1(1κ, σ)
π ← Prove(σ, x, w)

 −
Pr

 (x,w) ∈ R ∧
A2(π, st) = 1 :

(σ, τ)← S1(1κ)
(x,w, st)← A1(1κ, σ)

π ← S2(σ, τ, x)

∣∣∣∣∣∣ .

30

	Proof-of-Stake Protocols for Privacy-Aware Blockchains
	Introduction
	Technical Overview

	Preliminaries
	Zero-knowledge proofs
	Commitment schemes
	Sigma Protocols
	Merkle Tree
	Decisional Diffie-Hellman Assumption

	Model
	Feasibility of Private Proof-of-Stake
	Private Lottery Functionality
	Private Lottery Protocol
	Flavors of Proof-of-Stake
	Dynamic Stake
	Rewards

	Making Ouroboros Praos Private
	Ouroboros Praos Leader Election
	Anonymous Verifiable Random Function
	Private Ouroboros Praos

	Private Proof of Stake Lottery
	Extended Preliminaries
	Non-interactive Zero-knowledge

