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Abstract. Choosing safe post-quantum parameters for the new CSIDH
isogeny-based key-exchange system requires concrete analysis of the cost
of quantum attacks. The two main contributions to attack cost are the
number of queries in hidden-shift algorithms and the cost of each query.
This paper analyzes algorithms for each query, introducing several new
speedups while showing that some previous claims were too optimistic
for the attacker. This paper includes a full computer-verified simulation
of its main algorithm down to the bit-operation level.
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1 Introduction

Castryck, Lange, Martindale, Panny, and Renes recently introduced CSIDH [15],
an isogeny-based key exchange that runs efficiently and permits non-interactive
key exchange. Like the original CRS [20, 64, 68] isogeny-based cryptosystem,
CSIDH has public keys and ciphertexts only about twice as large as traditional
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elliptic-curve keys and ciphertexts for a similar security level against all pre-
quantum attacks known. CRS was accelerated recently by De Feo, Kieffer, and
Smith [23]; CSIDH builds upon this and chooses curves in a different way, ob-
taining much better speed.

For comparison, the SIDH (and SIKE) isogeny-based cryptosystems [37, 22,
36] are somewhat faster than CSIDH, but they do not support non-interactive
key exchange, and their public keys and ciphertexts are 6 times larger3 than
in CSIDH. Furthermore, there are concerns that the extra information in SIDH
keys might allow attacks; see [58].

These SIDH disadvantages come from avoiding the commutative structure
used in CRS and now in CSIDH. SIDH deliberately avoids this structure because
the structure allows quantum attacks that asymptotically take subexponential
time; see below. The CRS/CSIDH key size thus grows superlinearly in the post-
quantum security level. For comparison, if the known attacks are optimal, then
the SIDH key size grows linearly in the post-quantum security level.

However, even in a post-quantum world, it is not at all clear how much
weight to put on these asymptotics. It is not clear, for example, how large the
keys will have to be before the subexponential attacks begin to outperform the
exponential-time non-quantum attacks or an exponential-time Grover search.
It is not clear when the superlinear growth in CSIDH key sizes will outweigh
the factor 6 mentioned above. For applications that need non-interactive key
exchange in a post-quantum world, the SIDH/SIKE family is not an option, and
it is important to understand what influence these attacks have upon CSIDH
key sizes. The asymptotic performance of these attacks is stated in [15], but it is
challenging to understand the concrete performance of these attacks for specific
CSIDH parameters.

1.1. Contributions of this paper. The most important bottleneck in the
quantum attacks mentioned above is the cost of evaluating a group action, a
series of isogenies, in superposition. Each quantum attack incurs this cost many
times; see below. The goals of this paper are to analyze and optimize this cost.
We focus on CSIDH because CSIDH is much faster than CRS.

Our main result has the following shape: the CSIDH group action can be
carried out in B nonlinear bit operations (counting ANDs and ORs, allowing
free XORs and NOTs) with failure probability at most ε. (All of our algorithms
know when they have failed.) This implies a reversible computation of the CSIDH
group action with failure probability at most ε using at most 2B Toffoli gates
(allowing free NOTs and CNOTs). This in turn implies a quantum computation
of the CSIDH group action with failure probability at most ε using at most 14B

3 When the goal is for pre-quantum attacks to take 2λ operations (without regard to
memory consumption), CRS, CSIDH, SIDH, and SIKE all choose primes p ≈ 24λ.
The CRS and CSIDH keys and ciphertexts use (approximately) log2 p ≈ 4λ bits,
whereas the SIDH and SIKE keys and ciphertexts use 6 log2 p ≈ 24λ bits for 3
elements of Fp2 . There are compressed variants of SIDH that reduce 6 log2 p to
4 log2 p ≈ 16λ (see [1]) and to 3.5 log2 p ≈ 14λ (see [19] and [75]), at some cost in
run time.
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T -gates (allowing free Clifford gates). Appendix A reviews these cost metrics
and their relationships.

We explain how to compute pairs (B, ε) for any given CSIDH parameters.
For example, we show how to compute CSIDH-512 for uniform random exponent
vectors in {−5, . . . , 5}74 using

• 1118827416420 ≈ 240 nonlinear bit operations using the algorithm of Sec-
tion 7, or

• 765325228976 ≈ 0.7 · 240 nonlinear bit operations using the algorithm of
Section 8,

in both cases with failure probability below 2−32. CSIDH-512 is the smallest
parameter set considered in [15]. For comparison, computing the same action
with failure probability 2−32 using the Jao–LeGrow–Leonardi–Ruiz-Lopez algo-
rithm [38], with the underlying modular multiplications computed by the same
algorithm as in Roetteler–Naehrig–Svore–Lauter [63], would use approximately
251 nonlinear bit operations.

We exploit a variety of algorithmic ideas, including several new ideas pushing
beyond the previous state of the art in isogeny computation, with the goal of
obtaining the best pairs (B, ε). We introduce a new constant-time variable-degree
isogeny algorithm, a new application of the Elligator map, new ways to handle
failures in isogeny computations, new combinations of the components of these
computations, new speeds for integer multiplication, and more.

1.2. Impact upon quantum attacks. Kuperberg [46] introduced an algo-
rithm using exp

(
(logN)1/2+o(1)

)
queries and exp

(
(logN)1/2+o(1)

)
operations on

exp((logN)1/2+o(1)) qubits to solve the order-N dihedral hidden-subgroup prob-
lem. Regev [61] introduced an algorithm using only a polynomial number of
qubits, although with a worse o(1) for the number of queries and operations. A
followup paper by Kuperberg [47] introduced further algorithmic options.

Childs, Jao, and Soukharev [17] pointed out that these algorithms could be
used to attack CRS. They analyzed the asymptotic cost of a variant of Regev’s
algorithm in this context. This cost is dominated by queries, in part because the
number of queries is large but also because the cost of each query is large. Each
query evaluates the CRS group action using a superposition of group elements.

We emphasize that computing the exact attack costs for any particular set of
CRS or CSIDH parameters is complicated and requires a lot of new work. The
main questions are (1) the exact number of queries for various dihedral-hidden-
subgroup algorithms, not just asymptotics; and (2) the exact cost of each query,
again not just asymptotics.

The first question is outside the scope of our paper. Some of the simpler
algorithms were simulated for small sizes in [46], [10], and [11], but Kuperberg
commented in [46, page 5] that his “experiments with this simulator led to a
false conjecture for [the] algorithm’s precise query complexity”.

Our paper addresses the second question for CSIDH: the concrete cost of
quantum algorithms for evaluating the action of the class group, which means
computing isogenies of elliptic curves in superposition.
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1.3. Comparison to previous claims regarding query cost. Bonnetain
and Schrottenloher claim in [11, online versions 4, 5, and 6] that CSIDH-512
can be broken in “only” 271 quantum gates, where each query uses 237 quantum
gates (“Clifford+T” gates; see Appendix A.4).

We work in the same simplified model of counting operations, allowing any
number of qubits to be stored for free. We further simplify by counting only T -
gates. We gain considerable performance from optimizations not considered in
[11]. We take the best possible distribution of input vectors, disregarding the 22

overhead estimated in [11]. Our final gate counts for each query are nevertheless
much higher than the 237 claimed in [11]. Even assuming that [11] is correct
regarding the number of queries, the cost of each query pushes the total attack
cost above 280.

The query-cost calculation in [11] is not given in enough detail for full re-
producibility. However, some details are provided, and given these details we
conclude that costly parts of the computation are overlooked in [11] in at least
three ways. First, to estimate the number of quantum gates for multiplication in
Fp, [11] uses a count of nonlinear bit operations for multiplication in F2[x], not
noticing that all known methods for multiplication in Z (never mind reduction
modulo p) involve many more nonlinear bit operations than multiplication in
F2[x]. Second, at a higher level, the strategy for computing an `-isogeny requires
first finding a point of order `, an important cost not noticed in [11]. Third,
[11] counts the number of operations in a branching algorithm, not noticing the
challenge of building a non-branching (constant-time) algorithm for the same
task, as required for computations in superposition. Our analysis addresses all
of these issues and more.

1.4. Memory consumption. We emphasize that our primary goal is to min-
imize the number of bit operations. This cost metric pays no attention to the
fact that the resulting quantum algorithm for, e.g., CSIDH-512 uses a quantum
computer with 240 qubits.

Most of the quantum-algorithms literature pays much more attention to the
number of qubits. This is why [17], for example, uses a Regev-type algorithm
instead of Kuperberg’s algorithm. Similarly, [15] takes Regev’s algorithm “as a
baseline” given “the larger memory requirement” for Kuperberg’s algorithm.

An obvious reason to keep the number of qubits under control is the difficulty
of scaling quantum computers up to a huge number of qubits. Post-quantum
cryptography starts from the assumption that there will be enough scalability
to build a quantum computer using thousands of logical qubits to run Shor’s
algorithm, but this does not imply that a quantum computer with millions of
logical qubits will be only 1000 times as expensive, given limits on physical chip
size and costs of splitting quantum computation across multiple chips.

On the other hand, [11] chooses Kuperberg’s algorithm, and claims that the
number of qubits used in Kuperberg’s algorithm is not a problem:

The algorithm we consider has a subexponential memory cost. More
precisely, it needs exactly one qubit per query, plus the fixed overhead
of the oracle, which can be neglected.
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Concretely, for CSIDH-512, [11, online versions 1, 2, 3] claim 229.5 qubits, and
[11, online versions 4, 5, 6] claim 231 qubits. However, no justification is provided
for the claim that the number of qubits for the oracle “can be neglected”. There
is no analysis in [11] of the number of qubits used for the oracle.

We are not saying that our techniques need 240 qubits. On the contrary: later
we mention various ways in which the number of qubits can be reduced with
only moderate costs in the number of operations. However, one cannot trivially
extrapolate from the memory consumption of CSIDH software (a few kilobytes)
to the number of qubits used in a quantum computation. The requirement of
reversibility makes it more challenging and more expensive to reduce space, since
intermediate results cannot simply be erased. See Appendix A.3.

Furthermore, even if enough qubits are available, simply counting qubit oper-
ations ignores critical bottlenecks in quantum computation. Fault-tolerant quan-
tum computation corrects errors in every qubit at every time step, even if the
qubit is merely being stored; see Appendix A.5. Communicating across many
qubits imposes further costs; see Appendix A.6. It is thus safe to predict that
the actual cost of a quantum CSIDH query will be much larger than indicated
by our operation counts. Presumably the gap will be larger than the gap for,
e.g., the AES attack in [28], which has far fewer idle qubits and much less com-
munication overhead.

1.5. Acknowledgments. Thanks to Bo-Yin Yang for suggesting factoring the
average over vectors of the generating function in Section 7.3. Thanks to Joost
Renes for his comments.

2 Overview of the computation

We recall the definition of the CSIDH group action, focusing on the computa-
tional aspects of the concrete construction rather than discussing the general
case of the underlying algebraic theory.

Parameters. The only parameter in CSIDH is a prime number p of the form
p = 4 · `1 · · · `n − 1, where `1 < · · · < `n are (small) odd primes and n ≥ 1. Note
that p ≡ 3 (mod 8) and p > 3.

Notation. For each A ∈ Fp with A2 6= 4, define EA as the Montgomery curve
y2 = x3 + Ax2 + x over Fp. This curve EA is supersingular, meaning that
#EA(Fp) ≡ 1 (mod p), if and only if it has trace zero, meaning that #EA(Fp) =
p + 1. Here EA(Fp) means the group of points of EA with coordinates in Fp,
including the neutral element at ∞; and #EA(Fp) means the number of points.

Define Sp as the set of A such that EA is supersingular. For each A ∈ Sp and
each i ∈ {1, . . . , n}, there is a unique B ∈ Sp such that there is an `i-isogeny
from EA to EB whose kernel is EA(Fp)[`i], the set of points Q ∈ EA(Fp) with
`iQ = 0. Define Li(A) = B. One can show that Li is invertible: specifically,
L−1i (A) = −Li(−A). Hence Le

i is defined for each integer e.

Inputs and output. Given an element A ∈ Sp and a list (e1, . . . , en) of integers,
the CSIDH group action computes Le1

1 (Le2
2 (· · · (Len

n (A)) · · · )) ∈ Sp.
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2.1. Distribution of exponents. The performance of our algorithms de-
pends on the distribution of the exponent vectors (e1, . . . , en), which in turn
depends on the context.

Constructively, [15] proposes to sample each ei independently and uniformly
from a small range {−C, . . . , C}. For example, CSIDH-512 in [15] has n = 74
and uses the range {−5, . . . , 5}, so there are 1174 ≈ 2256 equally likely exponent
vectors. We emphasize, however, that all known attacks actually use consid-
erably larger exponent vectors. This means that the distribution of exponents
(e1, . . . , en) our quantum oracle has to process is not the same as the distribution
used constructively.

The first step in the algorithms of Kuperberg and Regev, applied to a finite
abelian group G, is to generate a uniform superposition over all elements of G.
CRS and CSIDH define a map from vectors (e1, . . . , en) to elements le11 · · · lenn
of the ideal-class group G. This map has a high chance of being surjective but
it is far from injective: its kernel is a lattice of rank n. Presumably taking, e.g.,
1774 length-74 vectors with entries in the range {−8, . . . , 8} produces a close-to-
uniform distribution of elements of the CSIDH-512 class group, but the literature
does not indicate how Kuperberg’s algorithm behaves when each group element
is represented as many different strings.

In his original paper on CRS, Couveignes [20] suggested instead generating
a unique vector representing each group element as follows. Compute a basis
for the lattice mentioned above; on a quantum computer this can be done using
Shor’s algorithm [67] which runs in polynomial time, and on a conventional
computer this can be done using Hafner and McCurley’s algorithm [29] which
runs in subexponential time. This basis reveals the group size #G and an easy-
to-sample set R of representatives for G, such as {(e1, 0, . . . , 0) : 0 ≤ e1 < #G}
in the special case that l1 generates G; for the general case see, e.g., [50, Section
4.1]. Reduce each representative to a short representative, using an algorithm
that finds a close lattice vector. If this algorithm is deterministic (for example, if
all randomness used in the algorithm is replaced by pseudorandomness generated
from the input) then applying it to a uniform superposition over R produces a
uniform superposition over a set of short vectors uniquely representing G.

The same idea was mentioned in the Childs–Jao–Soukharev paper [17] on
quantum attacks against CRS, and in the description of quantum attacks in the
CSIDH paper. However, close-vector problems are not easy, even in dimensions
as small as 74. Bonnetain and Schrottenloher [11] estimate that CSIDH-512
exponent vectors can be found whose 1-norm is 4 times larger than vectors
used constructively. They rely on a very large precomputation, and they do not
justify their assumption that the 1-norm, rather than the∞-norm, measures the
cost of a class-group action in superposition. Jao, LeGrow, Leonardi, and Ruiz-
Lopez [38] present an algorithm that guarantees (log p)O(1) bits in each exponent,
i.e., in the∞-norm, but this also requires a subexponential-time precomputation,
and the exponents appear to be rather large.

Perhaps future research will improve the picture of how much precomputation
time and per-vector computation time is required for algorithms that find vectors



Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 7

of a specified size; or, alternatively, will show that Kuperberg-type algorithms
can handle non-unique representatives of group elements. The best conceivable
case for the attacker is the distribution used in CSIDH itself, and we choose this
distribution as an illustration in analyzing the concrete cost of our algorithms.

2.2. Verification of costs. To ensure that we are correctly computing the
number of bit operations in our group-action algorithms, we have built a bit-
operation simulator, and implemented our algorithms inside the simulator. The
simulator is available from https://quantum.isogeny.org/software.html.

The simulator has a very small core that implements—and counts the number
of—NOT, XOR, AND, and OR operations. Higher-level algorithms, from basic
integer arithmetic up through isogeny computation, are built on top of this core.

The core also encapsulates the values of bits so that higher-level algorithms
do not accidentally inspect those values. There is an explicit mechanism to break
the encapsulation so that output values can be checked against separate compu-
tations in the Sage computer-algebra system.

2.3. Verification of failure probabilities. Internally, each of our group-
action algorithms moves the exponent vector (e1, . . . , en) step by step towards
0. The algorithm fails if the vector does not reach 0 within the specified num-
ber of iterations. Analyzing the failure probability requires analyzing how the
distribution of exponent vectors interacts with the distribution of curve points
produced inside the algorithm; each ei step relies on finding a point of order `i.

We mathematically calculate the failure probability in a model where each
generated curve point has probability 1 − 1/`i of having order divisible by `i,
and where these probabilities are all independent. The model would be exactly
correct if each point were generated independently and uniformly at random. We
actually generate points differently, so there is a risk of our failure-probability
calculations being corrupted by inaccuracies in the model. To address this risk,
we have carried out various point-generation experiments, suggesting that the
model is reasonably accurate. Even if the model is inaccurate, one can compen-
sate with a minor increase in costs. See Sections 4.3 and 5.2.

There is a more serious risk of errors in the failure-probability calculations
that we carry out within the model. To reduce this risk, we have carried out
107 simple trials of the following type for each algorithm: generate a random
exponent vector, move it step by step towards 0 the same way the algorithm
does (in the model), and see how many iterations are required. The observed
distribution of the number of iterations is consistent with the distribution that we
calculate mathematically. Of course, if there is a calculation error that somehow
affects only very small probabilities, then this error will not be caught by only
107 experiments.

2.4. Structure of the computation. We present our algorithms from bot-
tom up, starting with scalar multiplication in Section 3, generation of curve
points in Section 4, computation of Li in Section 5, and computation of the en-
tire CSIDH group action in Sections 6, 7, and 8. Lower-level subroutines for basic
integer and modular arithmetic appear in Appendices B and C respectively.

https://quantum.isogeny.org/software.html
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Various sections and subsections mention ideas for saving time beyond what
we have implemented in our bit-operation simulator. These ideas include low-
level speedups such as avoiding exponentiations in inversions and Legendre-
symbol computations (see Appendix C.4), and higher-level speedups such as
using division polynomials (Section 9) and/or modular polynomials (Section 10)
to eliminate failures for small primes. All of the specific bit-operation counts that
we state, such as the 1118827416420 ≈ 240 nonlinear bit operations mentioned
above, are fully implemented.

3 Scalar multiplication on an elliptic curve

This section analyzes the costs of scalar multiplication on the curves used in
CSIDH, supersingular Montgomery curves EA : y2 = x3 +Ax2 + x over Fp.

For CSIDH-512, our simulator shows (after our detailed optimizations; see
Appendices B and C) that a squaring S in Fp can be computed in 349596 nonlin-
ear bit operations, and that a general multiplication M in Fp can be computed in
447902 nonlinear bit operations, while addition in Fp takes only 2044 nonlinear
bit operations. We thus emphasize the number of S and M in scalar multipli-
cation (and in higher-level operations), although in our simulator we have also
taken various opportunities to eliminate unnecessary additions and subtractions.

3.1. How curves are represented. We consider two options for representing
EA. The affine option uses A ∈ Fp to represent EA. The projective option uses
A0, A1 ∈ Fp, with A0 6= 0, to represent EA where A = A1/A0.

The formulas to produce a curve in Section 5 naturally produce (A0, A1) in
projective form. Dividing A1 by A0 to produce A in affine form costs an in-
version and a multiplication. Staying in projective form is an example of what
Appendix C.5 calls “eliminating inversions”, but this requires some extra com-
putation when A is used, as we explain below.

The definition of the class-group action requires producing the output A
in affine form at the end of the computation. It could also be beneficial to
convert each intermediate A to affine form, depending on the relative costs of
the inversion and the extra computation.

3.2. How points are represented. As in [51, page 425, last paragraph] and
[53, page 261], we avoid computing the y-coordinate of a point (x, y) on EA. This
creates some ambiguity, since the points (x, y) and (x,−y) are both represented
as x ∈ Fp, but the ambiguity does not interfere with scalar multiplication.

We again distinguish between affine and projective representations. As in
[5], we represent both (0, 0) and the neutral element on EA as x = 0, and
(except where otherwise noted) we allow X/0, including 0/0, as a projective
representation of x = 0. The projective representation thus uses X,Z ∈ Fp to
represent x = X/Z if Z 6= 0, or x = 0 if Z = 0. These definitions eliminate
branches from the scalar-multiplication techniques that we use.

3.3. Computing nP . We use the Montgomery ladder to compute nP , given
a b-bit exponent n and a curve point P . The Montgomery ladder consists of b



Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 9

“ladder steps” operating on variables (X2, Z2, X3, Z3) initialized to (1, 0, x1, 1),
where x1 is the x-coordinate of P . Each ladder step works as follows:

• Conditionally swap (X2, Z2) with (X3, Z3), where the condition bit in itera-
tion i is bit nb−1−i of n. This means computing X2 ⊕X3, ANDing each bit
with the condition bit, and XORing the result into both X2 and X3; and
similarly for Z2 and Z3.
• Compute Y = X2 − Z2, Y 2, T = X2 + Z2, T 2, X4 = T 2Y 2, E = T 2 − Y 2,

and Z4 = E(Y 2+((A+2)/4)E). This is a point doubling: it uses 2S+3M
and a few additions (counting subtractions as additions). We divide A+2 by
4 modulo p before the scalar multiplication, using two conditional additions
of p and two shifts.
• Compute C = X3 + Z3, D = X3 − Z3, DT , CY , X5 = (DT + CY )2, and
Z5 = x1(DT −CY )2. This is a differential addition: it also uses 2S+3M
and a few additions.
• Set (X2, Z2, X3, Z3)← (X4, Z4, X5, Z5).
• Conditionally swap (X2, Z2) with (X3, Z3), where the condition bit is again
nb−1−i. We merge this conditional swap with the conditional swap at the
beginning of the next iteration by using nb−i−i ⊕ nb−i−2 as condition bit.

Then nP has projective representation (X2, Z2) by [9, Theorem 4.5]. The overall
cost is 4bS+ 6bM plus a small overhead for additions and conditional swaps.

Representing the input point projectively as X1/Z1 means computing X5 =
Z1(DT +CY )2 and Z5 = X1(DT −CY )2, and starting from (1, 0, X1, Z1). This
costs bM extra. Beware that [9, Theorem 4.5] requires Z1 6= 0.

Similarly, representing A projectively as A1/A0 means computing X4 =
T 2(4A0Y

2) and Z4 = E(4A0Y
2 + (A1 + 2A0)E), after multiplying Y 2 by 4A0.

This also costs bM extra.

Other techniques. The initial Z2 = 0 and Z3 = 1 (for an affine input point)
are small, and remain small after the first conditional swap, saving time in the
next additions and subtractions. Our framework for tracking sizes of integers
recognizes this automatically. The framework does not, however, recognize that
half of the output of the last conditional swap is unused. We could use dead-value
elimination and other standard peephole optimizations to save bit operations.

Montgomery [53, page 260] considered carrying out many scalar multiplica-
tions at once, using affine coordinates for intermediate points inside each scalar
multiplication (e.g., x2 = X2/Z2), and batching inversions across the scalar mul-
tiplications. This could be slightly less expensive than the Montgomery ladder
for large b, depending on the S/M ratio. Our computation of a CSIDH group
action involves many scalar multiplications, but not in large enough batches
to justify considering affine coordinates for intermediate points. Computing the
group action for a batch of inputs might change the picture, but for simplicity
we focus on the problem of computing the group action for one input.

A more recent possibility is scalar multiplication on a birationally equivalent
Edwards curve. Sliding-window Edwards scalar multiplication is somewhat less
expensive than the Montgomery ladder for large b; see generally [8] and [34].
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On the other hand, for constant-time computations it is important to use fixed
windows rather than sliding windows. Despite this difficulty, we estimate that
small speedups are possible for b = 512.

3.4. Computing P, 2P, 3P, . . . , kP . An important subroutine in isogeny
computation (see Section 5) is to compute the sequence P, 2P, 3P, . . . , kP for
a constant k ≥ 1.

We compute 2P by a doubling, 3P by a differential addition, 4P by a dou-
bling, 5P by a differential addition, 6P by a doubling, etc. In other words, each
multiple of P is computed by the Montgomery ladder as above, but these compu-
tations are merged across the multiples (and conditional swaps are eliminated).
This takes 2(k − 1)S + 3(k − 1)M for affine P and affine A. Projective P adds
b(k − 1)/2cM, and projective A adds bk/2cM.

We could instead compute 2P by a doubling, 3P by a differential addition,
4P by a differential addition, 5P by a differential addition, 6P by a differential
addition, etc. This again takes 2(k− 1)S+ 3(k− 1)M for affine P and affine A,
but projective P and projective A now have different effects: projective P adds
(k−2)M if k ≥ 2, and projective A adds M if k ≥ 2. The choice here also has an
impact on metrics beyond bit operations: doublings increase space requirements
but allow more parallelism.

4 Generating points on an elliptic curve

This section analyzes the cost of several methods to generate a random point on
a supersingular Montgomery curve EA : y2 = x3 +Ax2 + x, given A ∈ Fp. As in
Section 2, p is a standard prime congruent to 3 modulo 8.

Sometimes one instead wants to generate a point on the twist of the curve.
The twist is the curve −y2 = x3+Ax2+x over Fp; note that −1 is a non-square
in Fp. This curve is isomorphic to E−A by the map (x, y) 7→ (−x, y). Beware
that there are several slightly different concepts of “twist” in the literature; the
definition here is the most useful definition for CSIDH, as explained in [15].

4.1. Random point on curve or twist. The conventional approach is as
follows: generate a uniform random x ∈ Fp; compute x3 + Ax2 + x; compute
y = (x3 +Ax2 + x)(p+1)/4; and check that y2 = x3 +Ax2 + x.

One always has y4 = (x3 + Ax2 + x)p+1 = (x3 + Ax2 + x)2 so ±y2 =
x3 + Ax2 + x. About half the time, y2 will match x3 + Ax2 + x; i.e., (x, y) will
be a point on the curve. Otherwise (x, y) will be a point on the twist.

Since we work purely with x-coordinates (see Section 3.2), we skip the com-
putation of y. However, we still need to know whether we have a curve point or
a twist point, so we compute the Legendre symbol of x3 +Ax2 + x as explained
in Appendix C.4.

The easiest distribution of outputs to mathematically analyze is the uniform
distribution over the following p+ 1 pairs:

• (x,+1) where x represents a curve point;
• (x,−1) where x represents a twist point.
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One can generate outputs from this distribution as follows: generate a uniform
random u ∈ Fp ∪ {∞}; set x to u if u ∈ Fp or to 0 if u = ∞; compute the
Legendre symbol of x3 +Ax2 + x; and replace symbol 0 with +1 if u = 0 or −1
if u =∞.

For computations, it is slightly simpler to drop the two pairs with x = 0:
generate a uniform random x ∈ F∗p and compute the Legendre symbol of the
value x3 + Ax2 + x. This generates a uniform distribution over the remaining
p− 1 pairs.

4.2. Random point on curve. What if twist points are useless and the goal
is to produce a point specifically on the curve (or vice versa)? One approach is
to generate, e.g., 100 random curve-or-twist points as in Section 4.1, and select
the first point on the curve. This fails with probability 1/2100. If a computation
involves generating 210 points in this way then the overall failure probability
is 1 − (1 − 1/2100)2

10 ≈ 1/290. One can tune the number of generated points
according to the required failure probability.

We save time by applying “Elligator” [7], specifically the Elligator 2 map.
Elligator 2 is defined for all the curves EA that we use, except the curve E0,
which we discuss below. For each of these curves EA, Elligator 2 is a fast injective
map from {2, 3, . . . , (p− 1)/2} to the set EA(Fp) of curve points. This produces
only about half of the curve points; see Section 5.2 for analysis of the impact of
this nonuniformity upon our higher-level algorithms.

Here are the details of Elligator 2, specialized to these curves, further sim-
plified to avoid computing y, and adapted to allow twists as an option:

• Input A ∈ Fp with A2 6= 4 and A 6= 0.
• Input s ∈ {1,−1}. This procedure generates a point on EA if s = 1, or on

the twist of EA if s = −1.
• Input u ∈ {2, 3, . . . , (p− 1)/2}.
• Compute v = A/(u2 − 1).
• Compute e, the Legendre symbol of v3 +Av2 + v.
• Compute x as v if e = s, otherwise −v −A.

To see that this works, note first that v is defined since u2 6= 1, and is nonzero
since A 6= 0. One can also show that A2 − 4 is nonsquare for all of the CSIDH
curves, so v3+Av2+v 6= 0, so e is 1 or −1. If e = s then x = v so x3+Ax2+x is a
square for s = 1 and a nonsquare for s = −1. Otherwise e = −s and x = −v−A
so x3+Ax2+x = −u2(v3+Av2+v), which is a square for s = 1 and a nonsquare
for s = −1. This uses that v and −v − A satisfy (−v − A)2 + A(−v − A) + 1 =
v2 +Av + 1 and −v −A = −u2v.

The (p− 3)/2 different choices of u produce (p− 3)/2 different curve points,
but we could produce any particular x output twice since we suppress y.

The caseA = 0.One way to extend Elligator 2 to E0 is to set v = u when A = 0
instead of v = A/(u2−1). The point of the construction of v is that x3+Ax2+x
for x = −v − A is a non-square times v3 + Av2 + v, i.e., that (−v − A)/v is a
non-square; this is automatic for A = 0, since −1 is a non-square.
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We actually handle E0 in a different way: we precompute a particular base
point on E0 whose order is divisible by (p + 1)/4, and we always return this
point if A = 0. This makes our higher-level algorithms slightly more effective
(but we disregard this improvement in analyzing the success probability of our
algorithms), since this point guarantees a successful isogeny computation start-
ing from E0; see Section 5. The same guarantee removes any need to generate
other points on E0, and is also useful to start walks in Section 10.

4.3. Derandomization. Rather than generating random points, we generate
a deterministic sequence of points by taking u = 2 for the first point, u = 3 for
the next point, etc. We precompute the inverses of 1 − 22, 1 − 32, etc., saving
bit operations.

An alternative, saving the same number of bit operations, is to precompute
inverses of 1 − u2 for various random choices of u, embedding the inverses into
the algorithm. This guarantees that the failure probability of the outer algorithm
for any particular input A, as the choices of u vary, is the same as the failure
probability of an algorithm that randomly chooses u upon demand for each A.

We are heuristically assuming that failures are not noticeably correlated
across choices of A. To replace this heuristic with a proof, one can generate
the u sequence randomly for each input. This randomness, in turn, is indistin-
guishable from the output of a cipher, under the assumption that the cipher is
secure. In this setting one cannot precompute the reciprocals of 1− u2, but one
can still batch the inversions.

5 Computing an `-isogenous curve

This section analyzes the cost of computing a single isogeny in CSIDH. There
are two inputs: A, specifying a supersingular Montgomery curve EA over Fp;
and i, specifying one of the odd prime factors `i of (p + 1)/4 = `1 · · · `n. The
output is B = Li(A). We abbreviate `i as ` and Li as L.

Recall that B is characterized by the following property: there is an `-isogeny
from EA to EB whose kernel is EA(Fp)[`]. Beyond analyzing the costs of com-
puting B = L(A), we analyze the costs of applying the `-isogeny to a point on
EA, obtaining a point on EB . See Section 5.4.

The basic reason that CSIDH is much faster than CRS is that the CSIDH
construction allows (variants of) Vélu’s formulas [72, 18, 62] to use points in
EA(Fp), rather than points defined over larger extension fields. This section
focuses on computing B via these formulas. The cost of these formulas is ap-
proximately linear in `, assuming that a point of order ` is known. There are
two important caveats here:

• Finding a point of order ` is not easy to do in constant time. See Section 5.1.
We follow the obvious approach, namely taking an appropriate multiple of
a random point; but this is expensive—recall from Section 3 that a 500-bit
Montgomery ladder costs 2000S + 3000M when A and the input point are
affine—and has failure probability approximately 1/`.
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• In some of our higher-level algorithms, i is a variable. Then ` = `i is
also a variable, and Vélu’s formulas are variable-time formulas, while we
need constant-time computations. Generic branch elimination produces a
constant-time computation taking time approximately linear in `1 + `2 +
· · · + `n, which is quite slow. However, we show how to do much better,
reducing `1 + `2 + · · ·+ `n to max{`1, `2, . . . , `n}, by exploiting the internal
structure of Vélu’s formulas. See Section 5.3.

There are other ways to compute isogenies, as explored in [42, 23]:

• The “Kohel” strategy: Compute a univariate polynomial whose roots are the
x-coordinates of the points in EA(Fp)[`]. Use Kohel’s algorithm [45, Sec-
tion 2.4], which computes an isogeny given this polynomial. This strategy is
(for CSIDH) asymptotically slower than Vélu’s formulas, but could neverthe-
less be faster when ` is very small. Furthermore, this strategy is deterministic
and always works.

• The “modular” strategy: Compute the possible j-invariants of EB by factor-
ing modular polynomials. Determine the correct choice of B by computing
the corresponding isogeny kernels or, on subsequent steps, simply by not
walking back.

We analyze the Kohel strategy in Section 9, and the modular strategy in Sec-
tion 10.

5.1. Finding a point of order `. We now focus on the problem of finding
a point of order ` in EA(Fp). By assumption (p + 1)/4 is a product of distinct
odd primes `1, . . . , `n; ` = `i is one of those primes; and #EA(Fp) = p+ 1. One
can show that EA(Fp) has a point of order 4 and is thus cyclic:

EA(Fp) ∼= Z/(p+ 1) ∼= Z/4× Z/`1 × · · · × Z/`n .

We try to find a point Q of order ` in EA(Fp) as follows:

• Pick a random point P ∈ EA(Fp), as explained in Section 4.
• Compute a “cofactor” (p+ 1)/`. To handle the case ` = `i for variable i, we

first use bit operations to compute the list `′1, . . . , `′n, where `′j = `j for j 6= i
and `′i = 1; we then use a product tree to compute `′1 · · · `′n. (Computing
(p + 1)/` by a general division algorithm could be faster, but the product
tree is simpler and has negligible cost in context.)

• Compute Q = ((p+ 1)/`)P as explained in Section 3.

If P is a uniform random element of EA(Fp) then Q is a uniform random element
of EA(Fp)[`] ∼= Z/`. The order of Q is thus the desired ` with probability 1−1/`.
Otherwise Q is ∞, the neutral element on the curve, which is represented by
x = 0. Checking for x = 0 is a reliable way to detect this case: the only other
point represented by x = 0 is (0, 0), which is outside EA(Fp)[`].

Different concepts of constant time. Beware that there are two different
notions of “constant time” for cryptographic algorithms. One notion is that the
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time for each operation is independent of secrets. This notion allows the CSIDH
user to generate a uniform random element of EA(Fp)[`] and try again if the
point is ∞, guaranteeing success with an average of `/(` − 1) tries. The time
varies, but the variation is independent of the secret A.

A stricter notion is that the time for each operation is independent of all
inputs. The time depends on parameters, such as p in CSIDH, but does not
depend on random choices. We emphasize that a quantum circuit operating on
many inputs in superposition is, by definition, using this stricter notion. We
thus choose the sequence of operations carried out by the circuit, and analyze
the probability that this sequence fails.

Amplifying the success probability. Having each 3-isogeny fail with prob-
ability 1/3, each 5-isogeny fail with probability 1/5, etc. creates a correctness
challenge for higher-level algorithms that compute many isogenies.

A simple workaround is to generate many points Q1, Q2, . . . , QN , and use
bit operations on the points to select the first point with x 6= 0. This fails if
all of the points have x = 0. Independent uniform random points have overall
failure probability 1/`N . One can make 1/`N arbitrarily small by choosing N
large enough: for example, 1/3N is below 1/232 for N ≥ 21, and is below 1/2256

for N ≥ 162.
We return to the costs of generating so many points, and the costs of more

sophisticated alternatives, when we analyze algorithms to compute the CSIDH
group action.

5.2. Nonuniform distribution of points. We actually generate random
points using Elligator (see Section 4.2), which generates only (p− 3)/2 different
curve points P . At most (p+1)/` of these points produce Q =∞, so the failure
chance is at most (2/`)(p+ 1)/(p− 3) ≈ 2/`.

This bound cannot be simultaneously tight for ` = 3, ` = 5, and ` = 7
(assuming 3 · 5 · 7 divides p + 1): if it were then the Elligator outputs would
include all points having orders dividing (p+1)/3 or (p+1)/5 or (p+1)/7, but
this accounts for more than 54% of all curve points, contradiction.

Points generated by Elligator actually appear to be much better distributed
modulo each `, with failure chance almost exactly 1/`. Experiments support this
conjecture. Readers concerned with the gap between the provable 2/` and the
heuristic 1/` may prefer to add or subtract a few Elligator 2 outputs, obtaining
a distribution provably close to uniform (see [70]) at a moderate cost in perfor-
mance. A more efficient approach is to accept a doubling of failure probability
and use a small number of extra iterations to compensate.

We shall later see other methods of obtaining rational `-torsion points, e.g.,
by pushing points through `′-isogenies. This does not make a difference in the
analysis of failure probabilities.

For comparison, generating a random point on the curve or twist (see Sec-
tion 4.1) has failure probability above 1/2 at finding a curve point of order `.
See Section 6.2 for the impact of this difference upon higher-level algorithms.
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5.3. Computing an `-isogenous curve from a point of order `. Once
we have the x-coordinate of a point Q of order ` in EA(Fp), we compute the
x-coordinates of the points Q, 2Q, 3Q, . . . , ((`− 1)/2)Q. We use this information
to compute B = L(A), the coefficient determining the `-isogenous curve EB .

Recall from Section 3.4 that computing Q, 2Q, 3Q, . . . , ((` − 1)/2)Q costs
(`− 3)S+1.5(`− 3)M for affine Q and affine A, and just 1M extra for affine Q
and projective A. The original CSIDH paper [15] took more time here, namely
(` − 3)S + 2(` − 3)M, to handle projective Q and projective A. We decide,
based on comparing ` to the cost of an inversion, whether to spend an inversion
converting Q to affine coordinates.

Given the x-coordinates of Q, 2Q, 3Q, . . . , ((` − 1)/2)Q, the original CSIDH
paper [15] took approximately 3`M to compute B. Meyer and Reith [49] pointed
out that CSIDH benefits from Edwards-coordinate isogeny formulas from Moody
and Shumow [54]; we reuse this speedup. These formulas work as follows:

• Compute a = A+ 2 and d = A− 2.
• Compute the Edwards y-coordinates of Q, 2Q, 3Q, . . . , ((` − 1)/2)Q. The

Edwards y-coordinate is related to the Montgomery x-coordinate by y =
(x − 1)/(x + 1). We are given each x projectively as X/Z, and compute y
projectively as Y/T where Y = X − Z and T = X + Z. Note that Y and T
naturally occur as intermediate values in the Montgomery ladder.

• Compute the product of these y-coordinates: i.e., compute
∏
Y and

∏
T .

This uses a total of (`− 3)M.
• Compute a′ = a`(

∏
T )8 and d′ = d`(

∏
Y )8. Each `th power takes a loga-

rithmic number of squarings and multiplications; see Appendix C.4.
• Compute, projectively, B = 2(a′ + d′)/(a′ − d′). Subsequent computations

decide whether to convert B to affine form.

These formulas are almost three times faster than the formulas used in [15]. The
total cost of computing B from Q is almost two times faster than in [15].

Handling variable `. We point out that the isogeny computations for ` = 3,
` = 5, ` = 7, etc. have a Matryoshka-doll structure, allowing a constant-time
computation to handle many different values of ` with essentially the same cost
as a single computation for the largest value of `.

Concretely, the following procedure takes approximately `nS+ 2.5`nM, and
allows any ` ≤ `n. If the context places a smaller upper bound upon ` then one
can replace `n with that upper bound, saving time; we return to this idea later.

Compute the Montgomery x-coordinates and the Edwards y-coordinates of
Q, 2Q, 3Q, . . . , ((`n − 1)/2)Q. Use bit operations to replace each Edwards y-
coordinate with 1 after the first (`− 1)/2 points. Compute the product of these
modified y-coordinates; this is the desired product of the Edwards y-coordinates
of the first (`− 1)/2 points. Finish computing B as above. Note that the expo-
nentiation algorithm in Appendix C.4 allows variable `.

5.4. Applying an `-isogeny to a point. The following formulas define an
`-isogeny from EA to EB with kernel EA(Fp)[`]. The x-coordinate of the image
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of a point P1 ∈ EA(Fp) under this isogeny is

x(P1)
∏

j∈{1,2,...,(`−1)/2}

(
x(P1)x(jQ)− 1

x(P1)− x(jQ)

)2

.

Each x(jQ) appearing here was computed above in projective form X/Z. The
ratio (x(P1)x(jQ) − 1)/(x(P1) − x(jQ)) is (x(P1)X − Z)/(x(P1)Z − X). This
takes 2M to compute projectively if x(P1) is affine, and thus (`−1)M across all
j. Multiplying the numerators takes ((`−3)/2)M, multiplying the denominators
takes ((`−3)/2)M, squaring both takes 2S, and multiplying by x(P1) takes 1M,
for a total of (2`− 3)M+ 2S.

If x(P1) is instead given in projective form as X1/Z1 then computing X1X−
Z1Z and X1Z −Z1X might seem to take 4M, but one can instead compute the
sum and difference of (X1 −Z1)(X +Z) and (X1 +Z1)(X −Z), using just 2M.
The only extra cost compared to the affine case is four extra additions. This
speedup was pointed out by Montgomery [53] in the context of the Montgomery
ladder. The initial CSIDH software accompanying [15] did not use this speedup
but [49] mentioned the applicability to CSIDH.

In the opposite direction, if inversion is cheap enough to justify making x(P1)
and every x(jQ) affine, then 2M drops to 1M, and the total cost drops to
approximately 1.5`M.

As in Section 5.3, we allow ` to be a variable. The cost of variable ` is the
cost of a single computation for the maximum allowed `, plus a minor cost for
bit operations to select relevant inputs to the product.

6 Computing the action: basic algorithms

Jao, LeGrow, Leonardi, and Ruiz-Lopez [38] suggested a three-level quantum
algorithm to compute Le1

1 · · · Len
n . This section shows how to make the algorithm

an order of magnitude faster for any particular failure probability.

6.1. Baseline: reliably computing each Li. The lowest level in [38] reliably
computes Li as follows. Generate r uniform random points on the curve or twist,
as in Section 4.1. Multiply each point by (p + 1)/`i, as in Section 5.1, hoping
to obtain a point of order `i on the curve. Use Vélu’s formulas to finish the
computation, as in Section 5.3.

Each point has success probability (1/2)(1 − 1/`i), where 1/2 is the proba-
bility of obtaining a curve point (rather than a twist point) and 1− 1/`i is the
probability of obtaining a point of order `i (rather than order 1). The chance
of all r points failing is thus (`i + 1)r/(2`i)

r, decreasing from (2/3)r for `i = 3
down towards (1/2)r as `i grows . One chooses r to obtain a failure probability
as small as desired for the isogeny computation, and for the higher levels of the
algorithm.

The lowest level optionally computes L−1i instead of Li. The approach in [38],
following [15], is to use points on the twist instead of points on the curve; an
alternative is to compute L−1i (A) as −Li(−A).
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The middle level of the algorithm computes Le
i , where e is a variable whose

absolute value is bounded by a constant C. This level calls the lowest level
exactly C times, performing a series of C steps of L±1i , using bit operations on
e to decide whether to retain the results of each step. The ±1 is chosen as the
sign of e, or as an irrelevant 1 if e = 0.

The highest level of the algorithm computes Le1
1 · · · Len

n , where each ei is
between −C and C, by calling the middle level n times, starting with Le1

1 and
ending with Len

n . Our definition of the action applied Len
n first, but the Li oper-

ators commute with each other, so the order does not matter.

Importance of bounding each exponent. We emphasize that this algorithm
requires each exponent ei to be between −C and C, i.e., requires the vector
(e1, . . . , en) to have ∞-norm at most C.

We use C = 5 for CSIDH-512 as an illustrative example, but all known
attacks use larger vectors (see Section 2.1). C is chosen in [38] so that every
input, every vector in superposition, has ∞-norm at most C; smaller values of
C create a failure probability that needs to be analyzed.

We are not saying that the ∞-norm is the only important feature of the
input vectors. On the contrary: our constant-time subroutine to handle variable-
` isogenies creates opportunities to share work between separate exponents. See
Section 5.3 and Section 7.

Concrete example. For concreteness we consider uniform random input vec-
tors e ∈ {−5, . . . , 5}74. The highest level calls the middle level n = 74 times,
and the middle level calls the lowest level C = 5 times. Taking r = 70 guar-
antees failure probability at most (2/3)70 at the lowest level, and thus failure
probability at most 1− (1− (2/3)70)74·5 ≈ 0.750 · 2−32 for the entire algorithm.

This type of analysis is used in [38] to select r. We point out that the failure
probability of the algorithm is actually lower, and a more accurate analysis
allows a smaller value of r. One can, for example, replace (1 − (2/3)r)74 with∏

i(1−(`i+1)r/(2`i)
r), showing that r = 59 suffices for failure probability below

2−32. With more work one can account for the distribution of input vectors e,
rather than taking the worst-case e as in [38]. However, one cannot hope to do
better than r = 55 here: there is a 10/11 chance that at least one 3-isogeny is
required, and taking r ≤ 54 means that this 3-isogeny fails with probability at
least (2/3)54, for an overall failure chance at least (10/11)(2/3)54 > 2−32.

With the choice r = 70 as in [38], there are 74 · 5 · 70 = 25900 iterations,
in total using more than 100 million multiplications in Fp. In the rest of this
section we will reduce the number of iterations by a factor 30, and in Section 7
we will reduce the number of iterations by another factor 3, with only moderate
increases in the cost of each iteration.

6.2. Fewer failures, and sharing failures. We now introduce Algorithm 6.1,
which improves upon the algorithm from [38] in three important ways. First, we
use Elligator to target the curve (or the twist if desired); see Section 4.2. This
reduces the failure probability of r points from (2/3)r to, heuristically, (1/3)r
for `i = 3; from (3/5)r to (1/5)r for `i = 5; from (4/7)r to (1/7)r for `i = 7; etc.
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Algorithm 6.1: Basic class-group action evaluation.
Parameters: Odd primes `1 < · · · < `n, a prime p = 4`1 · · · `n − 1, and positive

integers (r1, . . . , rn).
Input: A ∈ Sp, integers (e1, . . . , en).
Output: Le11 · · · Lenn (A) or “fail”.

for i← 1 to n do
for j ← 1 to ri do

Let s = sign(ei) ∈ {−1, 0,+1}.
Find a random point P on EsA using Elligator.
Compute Q← ((p+ 1)/`i)P .
Compute B with EB ∼= EsA/〈Q〉 if Q 6=∞.
Set A← sB if Q 6=∞ and s 6= 0.
Set ei ← ei − s if Q 6=∞.

Set A← “fail” if (e1, . . . , en) 6= (0, . . . , 0).

Return A.

Second, we allow a separate ri for each `i. This lets us exploit the differences
in failure probabilities as `i varies.

Third, we handle failures at the middle level instead of the lowest level. The
strategy in [38] to compute Le

i with −C ≤ e ≤ C is to perform C iterations,
where each iteration builds up many points on one curve and reliably moves to
the next curve. We instead perform ri iterations, where each iteration tries to
move from one curve to the next by generating just one point. For C = 1 this
is the same, but for larger C we obtain better tradeoffs between the number of
points and the failure probability.

As a concrete example, generating 20 points on one curve with Elligator has
failure probability (1/3)20 for `i = 3. A series of 5 such computations, overall
generating 100 points, has failure probability 1− (1− (1/3)20)5 ≈ 2−29.37. If we
instead perform just 50 iterations, where each iteration generates one point to
move 1 step with probability 2/3, then the probability that we move fewer than
5 steps is just 3846601/350 ≈ 2−57.37; see Section 6.3. Our iterations are more
expensive than in [38]—next to each Elligator computation, we always perform
the steps for computing an `i-isogeny, even if Q = ∞—but (for CSIDH-512
etc.) this is not a large effect: the cost of each iteration is dominated by scalar
multiplication.

We emphasize that all of our algorithms take constant time. When we write
“Compute X ← Y if c” we mean that we always compute Y and the bit c, and
we then replace the jth bit Xj of X with the jth bit Yj of Y for each j if c is set,
by replacing Xj with Xj ⊕ c(Xj ⊕ Yj). This is why Algorithm 6.1 always carries
out the bit operations for computing an `i-isogenous curve, as noted above, even
if Q =∞.



Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 19

Table 6.1. Examples of choices of ri for Algorithm 6.1 for three levels of failure
probability for uniform random CSIDH-512 vectors with entries in {−5, . . . , 5}. Failure
probabilities ε are rounded to three digits after the decimal point. The “total” column
is

∑
ri, the total number of iterations. The “[38]” column is 74 · 5 · r, the number of

iterations in the algorithm of [38], with r chosen as in [38] to have 1− (1− (2/3)r)74·5

at most 2−1 or 2−32 or 2−256. Compare Table 6.2 for {−10, . . . , 10}.

ε
`i 3 5 7 11 13 17 . . . 359 367 373 587 total [38]

0.499 · 2−1 11 9 8 7 7 6 . . . 5 5 5 5 406 5920
0.178 · 2−32 36 25 21 18 17 16 . . . 10 10 10 9 869 25900
0.249 · 2−256 183 126 105 85 80 73 . . . 37 37 37 34 3640 167610

6.3. Analysis. We consider the inner loop body of Algorithm 6.1 for a fixed
i, hence write ` = `i, e = ei, and r = ri for brevity.

Heuristically (see Section 5.2), we model each point Q as independent and
uniform random in a cyclic group of order `, so Q has order 1 with proba-
bility 1/` and order ` with probability 1 − 1/`. The number of points of or-
der ` through r iterations of the inner loop is binomially distributed with pa-
rameters r and 1 − 1/`. The probability that this number is |e| or larger is
prob`,e,r =

∑r
t=|e|

(
r
t

)
(1− 1/`)

t
/`r−t. This is exactly the probability that Algo-

rithm 6.1 successfully performs the |e| desired iterations of Lsign(e).
Let C be a nonnegative integer. The overall success probability of the algo-

rithm for a particular input vector (e1, . . . , en) ∈ {−C, . . . , C}n is
n∏

i=1

prob`i,ei,ri ≥
n∏

i=1

prob`i,C,ri .

Average over vectors to see that the success probability of the algorithm for a
uniform random vector in {−C, . . . , C}n is

∏n
i=1

(∑
−C≤e≤C prob`i,e,ri/(2C+1)

)
.

6.4. Examples of target failure probabilities. The acceptable level of fail-
ure probability for our algorithm depends on the attack using the algorithm. For
concreteness we consider three possibilities for CSIDH-512 failure probabilities,
namely having the algorithm fail for a uniform random vector with probabilities
at most 2−1, 2−32, and 2−256.

Our rationale for considering these probabilities is as follows. Probabilities
around 2−1 are easy to test, and may be of interest beyond this paper for con-
structive scenarios where failing computations can simply be retried. If each
computation needs to work correctly, and there are many computations, then
failure probabilities need to be much smaller, say 2−32. Asking for every input
in superposition to work correctly in one computation (for example, [38] asks for
this) requires a much smaller failure probability, say 2−256. Performance results
for these three cases also provide an adequate basis for estimating performance
in other cases.

Table 6.1 presents three reasonable choices of (r1, . . . , rn), one for each of the
failure probabilities listed above, for the case of CSIDH-512 with uniform random
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Table 6.2. Examples of choices of ri for Algorithm 6.1 for three levels of failure prob-
ability for uniform random CSIDH-512 vectors with entries in {−10, . . . , 10}. Failure
probabilities ε are rounded to three digits after the decimal point. The “total” column
is

∑
ri, the total number of iterations. The “[38]” column is 74 · 10 · r, the number of

iterations in the algorithm of [38], with r chosen as in [38] to have 1− (1− (2/3)r)74·10

at most 2−1 or 2−32 or 2−256. Compare Table 6.1 for {−5, . . . , 5}.

ε
`i 3 5 7 11 13 17 . . . 359 367 373 587 total [38]

0.521 · 2−1 20 15 14 13 12 12 . . . 10 10 10 10 786 13320
0.257 · 2−32 48 34 30 25 24 22 . . . 15 15 15 14 1296 52540
0.215 · 2−256 201 139 116 96 90 82 . . . 43 43 43 41 4185 335960

vectors with entries in {−5, . . . , 5}. For each target failure probability δ and each
i, the table chooses the minimum ri such that

∑
−C≤e≤C prob`i,e,ri/(2C + 1) is

at least (1 − δ)1/n. The overall success probability is then at least 1 − δ as
desired. The discontinuity of choices of (r1, . . . , rn) means that the actual failure
probability ε is somewhat below δ, as shown by the coefficients 0.499, 0.178, 0.249
in Table 6.1. We could move closer to the target failure probability by choosing
successively rn, rn−1, . . ., adjusting the probability (1 − δ)1/n at each step in
light of the overshoot from previous steps. The values ri for ε ≈ 0.499 · 2−1 have
been experimentally verified using a modified version of the CSIDH software.
To illustrate the impact of larger vector entries, we also present similar data in
Table 6.2 for uniform random vectors with entries in {−10, . . . , 10}.

The “total” column in Table 6.1 shows that this algorithm uses, e.g., 869
iterations for failure probability 0.178 · 2−32 with vector entries in {−5, . . . , 5}.
Each iteration consists mostly of a scalar multiplication, plus some extra cost for
Elligator, Vélu’s formulas, etc. Overall there are roughly 5 million field multipli-
cations, accounting for roughly 241 nonlinear bit operations, implying a quantum
computation using roughly 245 T -gates.

As noted in Section 1, using the algorithm of [38] on top of the modular-
multiplication algorithm from [63] would use approximately 251 nonlinear bit
operations for the same distribution of input vectors. We save a factor 30 in
the number of iterations compared to [38], and we save a similar factor in the
number of bit operations for each modular multiplication compared to [63].

We do not analyze this algorithm in more detail: the algorithms we present
below are faster.

7 Reducing the top nonzero exponent

Most of the iterations in Algorithm 6.1 are spent on exponents that are already 0.
For example, consider the 869 iterations mentioned above for failure probability
0.178 · 2−32 for uniform random CSIDH-512 vectors with entries in {−5, . . . , 5}.
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Algorithm 7.1: Evaluating the class-group action by reducing the top
nonzero exponent.
Parameters: Odd primes `1 < · · · < `n with n ≥ 1, a prime p = 4`1 · · · `n − 1,

and a positive integer r.
Input: A ∈ Sp, integers (e1, . . . , en).
Output: Le11 · · · Lenn (A) or “fail”.

for j ← 1 to r do
Let i = max{k : ek 6= 0}, or i = 1 if each ek = 0.
Let s = sign(ei) ∈ {−1, 0,+1}.
Find a random point P on EsA using Elligator.
Compute Q← ((p+ 1)/`i)P .
Compute B with EB ∼= EsA/〈Q〉 if Q 6=∞, using the `i-isogeny formulas from
Section 5.3 with maximum degree `n.

Set A← sB if Q 6=∞ and s 6= 0.
Set ei ← ei − s if Q 6=∞.

Set A← “fail” if (e1, . . . , en) 6= (0, . . . , 0).

Return A.

Entry ei has absolute value 30/11 on average, and needs (30/11)`i/(`i − 1) iter-
ations on average, for a total of

∑
i(30/11)`i/(`i − 1) ≈ 206.79 useful iterations

on average. This means that there are 662.21 useless iterations on average, many
more than one would expect to be needed to guarantee this failure probability.

This section introduces a constant-time algorithm that achieves the same
failure probability with far fewer iterations. For example, in the above scenario,
just 294 iterations suffice to reduce the failure probability below 2−32. Each
iteration becomes (for CSIDH-512) about 25% more expensive, but overall the
algorithm uses far fewer bit operations.

7.1. Iterations targeting variable `. It is obvious how to avoid useless
iterations for variable-time algorithms: when an exponent reaches 0, move on to
the next exponent. In other words, always focus on reducing a nonzero exponent,
if one exists.

What is new is doing this in constant time. This is where we exploit the
Matryoshka-doll structure from Section 5.3, computing an isogeny for variable
` in constant time. We now pay for an `n-isogeny in each iteration rather than
an `-isogeny, but the iteration cost is still dominated by scalar multiplication.
Concretely, for CSIDH-512, an average `-isogeny costs about 600multiplications,
and an `n-isogeny costs about 2000 multiplications, but a scalar multiplication
costs about 5000 multiplications.

We choose to reduce the top exponent that is not 0. “Top” here refers to
position, not value: we reduce the nonzero ei where i is maximized. See Algo-
rithm 7.1.
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7.2. Upper bounds on the failure probability. One can crudely estimate
the failure probability of Algorithm 7.1 in terms of the 1-norm E = |e1|+· · ·+|en|
as follows. Model each iteration as having failure probability 1/3 instead of
1/`i; this produces a loose upper bound for the overall failure probability of the
algorithm.

In this model, the chance of needing exactly r iterations to find a point of
order `i is the coefficient of xr in the power series

(2/3)x+ (2/9)x2 + (2/27)x3 + · · · = 2x/(3− x).

The chance of needing exactly r iterations to find all E points is the coefficient
of xr in the Eth power of that power series, namely cr =

(
r−1
E−1

)
2E/3r for r ≥ E.

See generally [74] for an introduction to the power-series view of combinatorics;
there are many other ways to derive the formula

(
r−1
E−1

)
2E/3r, but we make

critical use of power series for fast computations in Sections 7.3 and 8.3.
The failure probability of r iterations of Algorithm 7.1 is at most the failure

probability of r iterations in this model, namely f(r, E) = 1−cE−cE+1−· · ·−cr.
The failure probability of r iterations for a uniform random vector with entries
in {−C, . . . , C} is at most

∑
0≤E≤nC f(r, E)g[E]. Here g[E] is the probability

that a vector has 1-norm E, which we compute as the coefficient of xE in the nth
power of the polynomial (1+ 2x+2x2 + · · ·+2xC)/(2C +1). For example, with
n = 74 and C = 5, the failure probability in this model (rounded to 3 digits after
the decimal point) is 0.999 · 2−1 for r = 302; 0.965 · 2−2 for r = 319; 0.844 · 2−32
for r = 461; and 0.570 · 2−256 for r = 823. As a double-check, we observe that a
simple simulation of the model for r = 319 produces 241071 failures in 1000000
experiments, close to the predicted 0.965 · 2−2 · 1000000 ≈ 241250.

7.3. Exact values of the failure probability. The upper bounds from the
model above are too pessimistic, except for `i = 3. We instead compute the exact
failure probabilities as follows.

The chance that Le1
1 · · · Len

n requires exactly r iterations is the coefficient of
xr in the power series(

(`1 − 1)x

`1 − x

)|e1|
· · ·
(
(`n − 1)x

`n − x

)|en|
.

What we want is the average of this coefficient over all vectors (e1, . . . , en) ∈
{−C, . . . , C}n. This is the same as the coefficient of the average, and the average
factors nicely as ∑
−C≤e1≤C

1

2C + 1

(
(`1 − 1)x

`1 − x

)|e1| · · ·
 ∑
−C≤en≤C

1

2C + 1

(
(`n − 1)x

`n − x

)|en| .

We compute this product as a power series with rational coefficients: for example,
we compute the coefficients of x0, . . . , x499 if we are not interested in 500 or more
iterations. We then add together the coefficients of x0, . . . , xr to find the exact
success probability of r iterations of Algorithm 7.1.
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As an example we again take CSIDH-512 with C = 5. The failure probability
(again rounded to 3 digits after the decimal point) is 0.960 · 2−1 for r = 207;
0.998 · 2−2 for r = 216; 0.984 · 2−32 for r = 294; 0.521 · 2−51 for r = 319;
and 0.773 · 2−256 for r = 468. We double-checked these averages against the
results of Monte Carlo calculations for these values of r. Each Monte Carlo
iteration sampled a uniform random 1-norm (weighted appropriately for the
initial probability of each 1-norm), sampled a uniform random vector within
that 1-norm, and computed the failure probability for that vector using the
single-vector generating function.

7.4. Analysis of the cost. We have fully implemented Algorithm 7.1 in our
bit-operation simulator. One iteration for CSIDH-512 uses 9208697761 ≈ 233

bit operations, including 3805535430 ≈ 232 nonlinear bit operations. More than
95% of the cost is explained as follows:

• Each iteration uses a Montgomery ladder with a 511-bit scalar. (We could
save a bit here: the largest useful scalar is (p + 1)/3, which is below 2510.)
We use an affine input point and an affine A, so this costs 2044S+ 3066M.

• Each iteration uses the formulas from Section 5.3 with ` = 587. This takes
602S+1472M: specifically, 584S+876M for multiples of the point of order
` (again affine); 584M for the product of Edwards y-coordinates; 18S+10M
for two `th powers; and 2M to multiply by two 8th powers. (We merge the
6S for the 8th powers into the squarings used for the `th powers.)
• Each iteration uses two inversions to obtain affineQ and A, each 507S+97M,

and one Legendre-symbol computation, 506S+ 96M.

This accounts for 4166S+4828M per iteration, i.e., 4166·349596+4828·447902 =
3618887792 ≈ 232 nonlinear bit operations.

The cost of 294 iterations is simply 294 · 3805535430 = 1118827416420 ≈ 240

nonlinear bit operations. This justifies the first (B, ε) claim in Section 1.

7.5. Decreasing the maximum degrees. Always performing isogeny com-
putations capable of handling degrees up to `n is wasteful: With overwhelming
probability, almost all of the 294 iterations required for a failure probability
of less than 2−32 with the approach discussed so far actually compute isoge-
nies of degree (much) less than `n. For example, with e uniformly random in
{−5, . . . , 5}, the probability that 10 iterations are not sufficient to eliminate all
587-isogenies is approximately 2−50. Therefore, using smaller upper bounds on
the isogeny degrees for later iterations of the algorithm will not do much harm
to the success probability while significantly improving the performance. We
modify Algorithm 7.1 as follows:

• Instead of a single parameter r, we use a list (r1, . . . , rn) of non-negative in-
tegers, each ri denoting the number of times an isogeny computation capable
of handling degrees up to `i is performed.

• The loop iterating from 1 through r is replaced by an outer loop on u from n
down to 1, and inside that an inner loop on j from 1 up to ru. The loop body
is unchanged, except that the maximum degree for the isogeny formulas is
now `u instead of `n.
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Table 7.1. Examples of choices of ri, . . . , ri for Algorithm 7.1 with reducing the
maximal degree in Vélu’s formulas for uniform random CSIDH-512 vectors with entries
in {−5, . . . , 5}. Failure probabilities ε are rounded to three digits after the decimal point.

ε rn . . . r1
∑
ri avg. `

0.594 · 2−1
5 3 4 5 3 5 5 4 3 5 4 3 4 4 3 4 3 4 3 3 3 4 3 3 3 4 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 4 2 3 3 3 3 2 3 3 3 2 3
3 2 3 2 3 2 3 2 2 3 2 2 2 1 1 1 0 0

218 205.0

0.970 · 2−32
9 5 5 5 5 5 4 5 5 5 4 5 4 5 5 4 5 4 4 5 5 4 4 4 5 4 4 4
4 4 3 5 3 4 4 4 3 4 4 4 3 4 4 3 4 3 4 3 4 4 3 4 3 3 4 4
3 3 4 3 3 4 3 4 3 3 4 3 3 3 4 3 3 4

295 196.0

0.705 · 2−256
34 8 6 6 5 6 6 5 5 6 5 6 5 5 5 5 6 5 5 5 5 6 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 6 5 5 5 5 5 4 6
5 5 5 5 5 5 5 6 5 5 6 6 6 6 7 7 11 16 38

469 182.7

For a given sequence (r1, . . . , rn), the probability of success can be computed as
follows:

• For each i ∈ {1, . . . , n}, compute the generating function

φi(x) =
∑

−C≤ei≤C

1

2C + 1

(
(`i − 1)x

`i − x

)|ei|
of the number of `i-isogeny steps that have to be performed.

• Since we are no longer only interested in the total number of isogeny steps to
be computed, but also in their degrees, we cannot simply take the product
of all φi as before. Instead, to account for the fact that failing to compute a
`i-isogeny before the maximal degree drops below `i implies a total failure,
we iteratively compute the product of the φi from k = n down to 1, but
truncate the product after each step. Truncation after some power xt means
eliminating all branches of the probabilistic process in which more than t
isogeny steps are needed for the computations so far. In our case we use
t =

∑n
j=i rj after multiplying by φi, which removes all outcomes in which

more isogeny steps of degree ≥ `i would have needed to be computed.
• After all φi have been processed (including the final truncation), the proba-

bility of success is the sum of all coefficients of the remaining power series.

Note that we have only described a procedure to compute the success probabilty
once r1, . . . , rn are known. It is unclear how to find the optimal values ri which
minimize the cost of the resulting algorithm, while at the same time respecting a
certain failure probability. We tried various reasonable-looking choices of strate-
gies to choose the ri according to certain prescribed failure probabilities after
each individual step. Experimentally, a good rule seems to be that the failure
probability after processing φi should be bounded by ε · 22/i−2, where ε is the
overall target failure probability. The results are shown in Table 7.1.

The average degree of the isogenies used constructively in CSIDH-512 is
about 174.6, which is not much smaller than the average degree we achieve.
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Since we still need to control the error probability, it does not appear that one
can expect to get much closer to the constructive case.

Also note that the total number of isogeny steps for ε ≈ 2−32 and ε ≈ 2−256 is
each only one more than the previous number r of isogeny computations, hence
one can expect significant savings using this strategy. Assuming that about 1/4 of
the total time is spent on Vélu’s formulas (which is close to the real proportion),
we get a speedup of about 16% for ε ≈ 2−32 and about 17% for ε ≈ 2−256.

8 Pushing points through isogenies

Algorithms 6.1 and 7.1 spend most of their time on scalar multiplication. This
section pushes points through isogenies to reduce the time spent on scalar mul-
tiplication, saving time overall.

The general idea of balancing isogeny computation with scalar multiplication
was introduced in [22] in the SIDH context, and was reused in the variable-
time CSIDH algorithms in [15]. This section adapts the idea to the context of
constant-time CSIDH computation.

8.1. Why pushing points through isogenies saves time. To illustrate
the main idea, we begin by considering a sequence of just two isogenies with the
same sign. Specifically, assume that, given distinct `1 and `2 dividing p+ 1, we
want to compute L1L2(A) = B. Here are two different methods:

• Method 1. The method of Algorithm 6.1 uses Elligator to find P1 ∈ EA(Fp),
computes Q1 ← [(p+ 1)/`1]P1, computes EA′ = EA/〈Q1〉, uses Elligator to
find P2 ∈ EA′(Fp), computes Q2 ← [(p + 1)/`2]P2, and computes EB =
EA′/〈Q2〉. Failure cases: if Q1 = ∞ then this method computes A′ = A,
failing to compute L1; similarly, if Q2 = ∞ then this method computes
B = A′, failing to compute L2.

• Method 2. The method described in this section instead uses Elligator to
find P ∈ EA(Fp), computes R ← [(p + 1)/`1`2]P , computes Q ← [`2]R,
computes ϕ : EA → EA′ = EA/〈Q〉 and Q′ = ϕ(R), and computes EB =
EA′/〈Q′〉. Failure cases: if Q =∞ then this method computes Q′ = R (which
has order dividing `2) and A′ = A, failing to compute L1; if Q′ = ∞ then
this method computes B = A′, failing to compute L2.

For concreteness, we compare the costs of these methods for CSIDH-512. The
rest of this subsection uses approximations to the costs of lower-level operations
to simplify the analysis. The main costs are as follows:

• For p a 512-bit prime, Elligator costs approximately 600M.
• Given P ∈ E(Fp) and a positive integer k, the computation of [k]P via

the Montgomery ladder, as described in Section 3.3, costs approximately
10(log2 k)M, i.e., approximately (5120− 10 log2 `)M if k = (p+ 1)/`.

• The computation of a degree-` isogeny via the method described in Sec-
tion 5.3 costs approximately (3.5`+ 2 log2 `)M.
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• Given an `-isogeny ϕ` : E → E′ and P ∈ E(Fp), the computation of ϕ`(P )
via the method described in Section 5.4 costs approximately 2`M.

Method 1 costs approximately

(1200 + 10240 + 3.5`1 + 3.5`2 − 8 log2 `1 − 8 log2 `2)M,

while Method 2 costs approximately

(600 + 5120 + 5.5`1 + 3.5`2 − 8 log2 `1 + 2 log2 `2)M.

The savings of (600 + 5120)M clearly outweighs the loss of (2`1 + 10 log2 `2)M,
since the largest value of `i is 587.

There are limits to the applicability of Method 2: it cannot combine two
isogenies of opposite signs, it cannot combine two isogenies using the same prime,
and it cannot save time in applying just one isogeny. We will analyze the overall
magnitude of these effects in Section 8.3.

8.2. Handling the general case, two isogenies at a time. Algorithm 8.1
computes Le1

1 · · · Len
n (A) for any exponent vector (e1, . . . , en). Each iteration of

the algorithm tries to perform two isogenies: one for the top nonzero exponent
(if the vector is nonzero), and one for the next exponent having the same sign
(if the vector has another exponent of this sign). As in Section 7, “top” refers to
position, not value.

The algorithm pushes the first point through the first isogeny, as in Sec-
tion 8.1, to save the cost of generating a second point. Scalar multiplication,
isogeny computation, and isogeny application use the constant-time subroutines
described in Sections 3.3, 5.3, and 5.4 respectively. The cost of these algorithms
depends on the bound `n for the prime for the top nonzero exponent and the
bound `n−1 for the prime for the next exponent. The two prime bounds have
asymmetric effects upon costs; we exploit this by applying the isogeny for the
top nonzero exponent after the isogeny for the next exponent.

Analyzing the correctness of Algorithm 8.1—assuming that there are enough
iterations; see Section 8.3—requires considering three cases. The first case is that
the exponent vector is 0. Then i, i′, s are initialized to 0, 0, 1 respectively, and i, i′
stay 0 throughout the iteration, so A does not change and the exponent vector
does not change.

The second case is that the exponent vector is nonzero and the top nonzero
exponent ei is the only exponent having sign s. Then i′ is 0 throughout the
iteration, so the “first isogeny” portion of Algorithm 8.1 has no effect. The point
Q = R in the “second isogeny” portion is cP where c = (p+1)/`i, so `iQ =∞. If
Q =∞ then i is set to 0 and the entire iteration has no effect, except for setting
A to sA and then back to s(sA) = A. If Q 6= ∞ then i stays nonzero and A
is replaced by Li(A), so A at the end of the iteration is Ls

i applied to A at the
beginning of the iteration, while s is subtracted from ei.

The third case is that the exponent vector is nonzero and that ei′ is the next
exponent having the same sign s as the top nonzero exponent ei. By construction
i′ < i ≤ n so `i′ ≤ `n−1. Now R = cP where c = (p+1)/(`i`i′). The first isogeny



Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 27

Algorithm 8.1: Evaluating the class-group action by reducing the top
nonzero exponent and the next exponent with the same sign.
Parameters: Odd primes `1 < · · · < `n with n ≥ 1, a prime p = 4`1 · · · `n − 1,

and a positive integer r.
Input: A ∈ Sp, integers (e1, . . . , en).
Output: Le11 · · · Lenn (A) or “fail”.

for j ← 1 to r do
Set I ← {k : 1 ≤ k ≤ n and ek 6= 0}.
Set i← max I and s← sign(ei) ∈ {−1, 1}, or i← 0 and s← 1 if I = {}.
Set I ′ ← {k : 1 ≤ k < i and sign(ek) = s}.
Set i′ ← max I ′, or i′ ← 0 if I ′ = {}.
Twist. Set A← sA.
Isogeny preparation. Find a random point P on EA using Elligator.
Compute R← cP where c = 4

∏
1≤j≤n,j 6=i,j 6=i′ `j .

First isogeny. Compute Q← `iR, where `0 means 1.
[Now `i′Q =∞ if i′ 6= 0.] Set i′ ← 0 if Q =∞.
Compute B with EB ∼= EA/〈Q〉 if i′ 6= 0, using the `i′ -isogeny formulas from
Section 5.3 with maximum degree `n−1.

Set R to the image of R in EB if i′ 6= 0, using the `i′ -isogeny formulas from
Section 5.4 with maximum degree `n−1.

Set A← B and ei′ ← ei′ − s if i′ 6= 0.
Second isogeny. Set Q← R.
[Now `iQ =∞ if i 6= 0.] Set i← 0 if Q =∞.
Compute B with EB ∼= EA/〈Q〉 if i 6= 0, using the `i-isogeny formulas from
Section 5.3 with maximum degree `n.

Set A← B and ei ← ei − s if i 6= 0.
Untwist. Set A← sA.

Set A← “fail” if (e1, . . . , en) 6= (0, . . . , 0).

Return A.

uses the point Q = `iR, which is either ∞ or a point of order `i′ . If Q is ∞ then
i′ is set to 0; both A and the vector are unchanged; the point R must have order
dividing `i; and the second isogeny proceeds as above using this point. If Q has
order `i′ then the first isogeny replaces A with Li′(A), while subtracting s from
ei′ and replacing R with a point of order dividing `i on the new curve (note that
the `i′-isogeny removes any `i′ from orders of points); again the second isogeny
proceeds as above.

8.3. Analysis of the failure probability. Consider a modified dual-isogeny
algorithm in which the isogeny with a smaller prime is saved to handle later:

• Initialize an iteration counter to 0.



28 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny

• Initialize an empty bank of positive isogenies.
• Initialize an empty bank of negative isogenies.
• For each ` in decreasing order:
• While an `-isogeny needs to be done and the bank has an isogeny of the

correct sign: Withdraw an isogeny from the bank, apply the isogeny, and
adjust the exponent.

• While an `-isogeny still needs to be done: Apply an isogeny, adjust the
exponent, deposit an isogeny with the bank, and increase the iteration
counter.

This uses more bit operations than Algorithm 8.1 (since the work here is not
shared across two isogenies), but it has the same failure probability for the same
number of iterations. We now focus on analyzing the distribution of the number
of iterations used by this modified algorithm.

We use three variables to characterize the state of the modified algorithm
before each `:

• i ≥ 0 is the iteration counter;
• j ≥ 0 is the number of positive isogenies in the bank;
• k ≥ 0 is the number of negative isogenies in the bank.

The number of isogenies actually applied so far is 2i−(j+k) ≥ i. The distribution
of states is captured by the three-variable formal power series

∑
i,j,k si,j,kx

iyjzk

where si,j,k is the probability of state (i, j, k). Note that there is no need to track
which primes are paired with which; this is what makes the modified algorithm
relatively easy to analyze.

If there are exactly h positive `-isogenies to perform then the new state after
those isogenies is (i, j−h, k) if h ≤ j, or (i+h− j, h− j, k) if h > j. This can be
viewed as a composition of two operations on the power series. First, multiply
by y−h. Second, replace any positive power of y−1 with the same power of xy;
i.e., replace xiyjzk for each j < 0 with xi−jy−jzk.

We actually have a distribution of the number of `-isogenies to perform. Say
there are h isogenies with probability qh. We multiply the original series by∑

h≥0 qhy
−h, and then eliminate negative powers of y as above. We similarly

handle h < 0, exchanging the role of (j, y) with the role of (k, z).
As in the analyses earlier in the paper, we model each point Q for an `-

isogeny as having order 1 with probability 1/` and order ` with probability
1 − 1/`, and we assume that the number of `-isogenies to perform is a uniform
random integer e ∈ {−C, . . . , C}. Then qh for h ≥ 0 is the coefficient of xh in∑

0≤e≤C(((`− 1)x)/(`− x))e/(2C + 1); also, q−h = qh.
We reduce the time spent on these computations in three ways. First, we

discard all states with i > r if we are not interested in more than r iterations.
This leaves a cubic number of states for each `: every i between 0 and r inclusive,
every j between 0 and i inclusive, and every k between 0 and i− j inclusive.

Second, we use fixed-precision arithmetic, rounding each probability to an
integer multiple of (e.g.) 2−512. We round down to obtain lower bounds on success
probabilities; we round up to obtain upper bounds on success probabilities; we



Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies 29

choose the scale 2−512 so that these bounds are as tight as desired. We could save
more time by reducing the precision slightly at each step of the computation,
and by using standard interval-arithmetic techniques to merge computations of
lower and upper bounds.

Third, to multiply the series
∑

i,j,k si,j,kx
iyjzk by

∑
h≥0 qhy

−h, we actually
multiply

∑
j si,j,ky

j by
∑

h≥0 qhy
−h for each (i, k) separately. We use Sage for

these multiplications of univariate polynomials with integer coefficients. Sage, in
turn, uses fast multiplication algorithms whose cost is essentially bd for d b-bit
coefficients, so our total cost for n primes is essentially bnr3.

Concretely, we use under two hours on one core of a 3.5GHz Intel Xeon E3-
1275 v3 to compute lower bounds on all the success probabilities for CSIDH-512
with b = 512 and r = 349, and under three hours4 to compute upper bounds. Our
convention of rounding failure probabilities to 3 digits makes the lower bounds
and upper bounds identical, so presumably we could have used less precision.

We find, e.g., failure probability 0.943 · 2−1 after 106 iterations, failure prob-
ability 0.855 · 2−32 after 154 iterations, and failure probability 0.975 · 2−257 after
307 iterations. Compared to the 207, 294, 468 single-isogeny iterations required
in Section 7.3, the number of iterations has decreased to 51.2%, 52.3%, 65.6%
respectively.

8.4. Analysis of the cost. We have fully implemented Algorithm 8.1 in our
bit-operation simulator. An iteration of Algorithm 8.1 uses 4969644344 ≈ 232

nonlinear bit operations, about 1.306 times more expensive than an iteration of
Algorithm 7.1.

If the number of iterations were multiplied by exactly 0.5 then the total
cost would be multiplied by 0.653. Given the actual number of iterations (see
Section 8.3), the cost is actually multiplied by 0.669, 0.684, 0.857 respectively.
In particular, we reach failure probability 0.855 · 2−32 with 154 · 4969644344 =
765325228976 ≈ 0.7 ·240 nonlinear bit operations. This justifies the second (B, ε)
claim in Section 1.

8.5. Variants. The idea of pushing points through isogenies can be com-
bined with the idea of gradually reducing the maximum prime allowed in the
Matryoshka-doll isogeny formulas. This is compatible with our techniques for
analyzing failure probabilities.

A dual-isogeny iteration very late in the computation is likely to have a
useless second isogeny. It should be slightly better to replace some of the last
dual-isogeny iterations with single-isogeny iterations. This is also compatible
with our techniques for analyzing failure probabilities.

There are many different possible pairings of primes: one can take any two dis-
tinct positions where the exponents have the same sign. Possibilities include re-
ducing exponents from the bottom rather than the top; reducing the top nonzero
exponent and the bottom exponent with the same sign; always pairing “high”

4 It is unsurprising that lower bounds are faster: many coefficients qh round down to
0. We could save time in the upper bounds by checking for stretches of coefficients
that round up to, e.g., 1/2512, and using additions to multiply by those stretches.
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positions with “low” positions; always reducing the largest exponents in absolute
value; always reducing ei where |ei|`i/(`i − 1) is largest. For some of these ideas
it is not clear how to efficiently analyze failure probabilities.

This section has focused on reusing an Elligator computation and large scalar
multiplication for (in most cases) two isogeny computations, dividing the scalar-
multiplication cost by (nearly) 2, in exchange for some overhead. We could push
a point through more isogenies, although each extra isogeny has further overhead
with less and less benefit, and computing the failure probability becomes more
expensive. For comparison, [15] reuses one point for every `i where ei has the
same sign; the number of such `i is variable, and decreases as the computation
continues. For small primes it might also save time to push multiple points
through one isogeny, as in [22].

9 Computing `-isogenies using division polynomials

As the target failure probability decreases, the algorithms earlier in this paper
spend more and more iterations handling the possibility of repeated failures for
small primes `. This section presents and analyzes an alternative: a deterministic
constant-time subroutine that uses division polynomials to always compute `-
isogenies. See full version of paper online at https://ia.cr/2018/1059.

10 Computing `-isogenies using modular polynomials

Modular polynomials, like division polynomials, give a deterministic subroutine
to compute `-isogenies. The advantage of modular polynomials over division
polynomials is that modular polynomials are smaller for all ` ≥ 5. However,
using modular polynomials requires solving two additional problems. See full
version of paper online at https://ia.cr/2018/1059.
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