
On ELFs, Deterministic Encryption,
and Correlated-Input Security

Mark Zhandry

Princeton University

Abstract. We construct deterministic public key encryption secure for
any constant number of arbitrarily correlated computationally unpre-
dictable messages. Prior works required either random oracles or non-
standard knowledge assumptions. In contrast, our constructions are based
on the exponential hardness of DDH, which is plausible in elliptic curve
groups. Our central tool is a new trapdoored extremely lossy function,
which modifies extremely lossy functions by adding a trapdoor.

1 Introduction

The Random Oracle Model [7] is a useful model whereby one models a hash
function as a truly random function. Random oracles have many useful prop-
erties, such as collision resistance, pseudorandomness, correlation intractability,
extractability, and more. Unfortunately, random oracles do not exist in the real
world, and some random oracle properties are uninstantiable by concrete hash
functions [11]. This has lead to a concerted effort in the community toward con-
structing hash functions with various strong security properties from standard,
well-studied, and widely-accepted assumptions.

Correlated Input Security. In this work, we focus on one particular property
satisfied by random oracles, namely correlated input security. Here, the adversary
is given yi = f(xi) for inputs x1, . . . , xk which may come from highly non-
uniform and highly correlated distributions. At the simplest level, we ask that
the adversary cannot guess any of the xi, though stronger requirements such
as the pseudorandomness of the yi are possible. Correlated input security has
applications to password hashing and searching on encrypted data [16] and is
closely related to related-key security [4]. It is also a crucial security requirement
for deterministic public key encryption [3], which is essentially a hash function
with a trapdoor.

Correlated input secure functions follow trivially in the random oracle model,
and standard-model constructions for specific classes of functions such as low-
degree polynomials [16] or “block sources” [8,5,9,14,19] are known. However,
there has been little progress toward attaining security for arbitrary correlations
from standard assumptions, even in the case of just two correlated inputs.

This Work. In this work, we construct hash functions and deterministic public
key encryption (DPKE) with security for any constant number of arbitrarily
correlated sources. In addition, we only require computational unpredictability
for our sources, and our DPKE scheme even achieves CCA security. Our main
new technical tool is a new construction of extremely lossy functions (ELFs) [22]
that admit a trapdoor. Our construction is secure, assuming that DDH (or more
generally k-Lin) is exponentially hard to solve. Such an assumption is plausible
on elliptic curves.

1.1 Details

We now give an overview of our results and our approach. We start with correlated-
input security for one-way functions, and gradually build up to our ultimate goal
of deterministic public key encryption.

Correlated Input Secure OWFs. First, we observe that Zhandry’s Extremely Lossy
Functions (ELFs) [22] already give correlated-input secure one-way functions for
any constant number of inputs. Recall that an ELF is a variant of a lossy trapdoor
function (LTDF), which were introduced by Peikert and Waters [18]. LTDFs are
functions with two modes, an injective mode that contains a secret trapdoor for
inversion, and a lossy mode that is information-theoretically un-invertible. The
security requirement is that these modes are computationally indistinguishable,
if you do not know the trapdoor. LTDFs have many applications, including
CCA-secure public key encryption [18], deterministic public key encryption [8],
and more.

Similarly, and ELF also has two modes, injective and lossy similar to above.
However the key difference is that in the lossy mode, the image size is so small
that it is actually polynomial. Clearly, such a lossy mode can be distinguished
from injective by an adversary whose running time is a slightly larger polynomial.
So ELFs actually have a spectrum of lossy modes of differing polynomial image
sizes, and the exact image size is chosen based on the adversary just large enough
to fool it. The other main difference between ELFs and LTDFs is that, due to
the particulars of Zhandry’s construction, the injective mode for ELFs does not
contain a trapdoor. Zhandry constructs ELFs based on the exponential hardness
of the DDH assumption, or more generally exponential k-Lin.

Let f be an injective mode ELF. Consider a source S of d correlated inputs
x1, . . . , xd as well as auxiliary information aux. Our goal is to show that, given
aux and f(x1), . . . , f(xd), it is computationally infeasible to find any of the xi.
A necessary condition on S is that each xi are computationally unpredictable
given aux alone. Note that we will allow sources for which xi is predictable given
some of the other xj . Note that such a source captures the setting where, say,
x2 = x1 + 1, etc.

We now prove that f is one-way for any such computationally unpredictable
source. To prove security, we first switch f to be a lossy mode with polynomial
image size p. Since d is assumed to be constant, the number of possible value for
the vector f(x1), . . . , f(xd) is pd, also a polynomial. Therefore, this value can be

guessed by the adversary with inverse polynomial probability. As such, if xi can
be guessed given aux and f(x1), . . . , f(xd) with non-negligible probability ε, it
can also be guessed given just aux with probability at least ε/pd, contradicting
the unpredictability of S.

Correlated Input Secure PRGs. Next, we turn to the much harder task of
constructing a PRG G for a constant number of correlated inputs. Here, the
adversary is given aux, y1, . . . , yd where either (1) yi = G(xi) for all i or (2) yi is
chosen at random in the domain of G. The adversary tries to distinguish the two
cases. In order for security to be possible at all, we need to place some minimal
restrictions on the source S:

– As in the case of one-wayness, we must require that S is computationally
unpredictable

– All the xi must be distinct, with high probability. Otherwise, the adversary
identify the yi = G(xi) case by simply testing the equality of the yi.

In this paper, in order to match notation from Zhandry [22], we will call a
function G satisfying indistinguishability a hardcore function for computationally
unpredictable sources on d inputs.

ELFs are not alone guaranteed to be such hardcore functions, as the outputs
are not guaranteed to be random. Instead we build G by starting from Zhandry’s
hardcore function, which works in the case d = 1; that is, for single computa-
tionally unpredictable sources. Zhandry’s construction is built from ELFs, but
requires more machinery to prove pseudorandomness.

The core idea of Zhandry’s hardcore function G is the following: first extract
many Goldreich-Leving hardcore bits, far too many to be simultaneously hardcore.
These cannot be output in the clear, as they would allow for trivial inversion.
Instead, the bits are scrambled by feeding them through an ELF-based circuit.
Zhandry shows (1) that the GL bits can be replaced with random without
detection, and (2) if the GL bits are replaced with random, then the output of
the circuit is random.

Unfortunately, for correlated sources, the GL bits for different inputs will be
correlated: for example if the two inputs differ in a single bit, then if the parity
function computing the GL bit is 0 in that position, the two GL bits will be
identical. Therefore, the inputs to step (2) in Zhandry’s proof may be highly
correlated, and his circuit does not guarantee security against correlated inputs.

To mitigate this issue, we carefully modify Zhandry’s function G. The idea is,
rather than having fixed GL parities, we generate the GL parities as functions
of the input itself. Different inputs will hopefully map to independent parities,
leading to independent GL bits. We have to be careful, however, in order to
avoid any circularities in the analysis, since we need the GL parities to be
(pseudo)random and independent (in order to apply the GL theorem), but
generating such random independent parities already seems to require extracting
pseudorandom strings for arbitrarily correlated sources, leaving us back where
we started.

Our construction works as follows: we have another ELF instance, which
is applied to the input x, resulting in an value w. Then we apply a d-wise
independent function R to w to generate the actual parities. Zhandry shows
that this composition of an ELF and a d-wise independent function is collision-
resistant for d ≥ 2, meaning the d different xi will indeed map to distinct parities,
and in fact distinct wi. Next, in the lossy mode for the ELF, there are only
a polynomial number of w; since d is constant, there are also a polynomial
number of possible d-tuples of (w1, . . . , wd). Therefore, we can actually guess
the (w1, . . . , wd) vector that will result from applying the ELF to the xi with
inverse-polynomial probability. Next, since R is d-wise independent, we can take
d independent sets of GL parities and program R to output these parities on the
corresponding d values of w. This is not quite enough to show that the GL parities
are themselves pseudorandom for correlated sources (since we only successfully
program with inverse-polynomial probability), but with a careful proof we show
that it is sufficient to prove the pseudorandomness of the overall construction.

Deterministic Public Key Encryption. Next, we turn to constructing deterministic
public key encryption (DPKE). A DPKE protocol consists of 3 algorithms,
(DPKE.Gen,DPKE.Enc,DPKE.Dec). DPKE.Gen creates a secret/public key pair
sk, pk. DPKE.Enc is a deterministic procedure that uses the public key pk to
scramble a message m, arriving at a ciphertext c. DPKE.Dec is also deterministic,
and maps the ciphertext c back to m.

We first consider security in the single-input setting; we note that it was
previously open to construction DPKE for even a single arbitrary computationally
unpredictable source. The canonical way to build DPKE [3] is to use an ordinary
randomized public key encryption scheme with CPA security. The idea is to hash
the message m using a hash function H, and use H(m) as the randomness r:
DPKE.Enc(pk,m) = DPKE.Enc(pk,m;H(r)) where DPKE.Enc is the randomized
PKE encryption algorithm. In the random oracle model for H, Bellare, Boldyreva
and O’Neill [3] show that this scheme obtains the strongest possible notion of
security. One may hope that some ELF-based hash function H might be sufficient.

Unfortunately, Brzuska, Farshim and Mittelbach [10] give strong evidence
that this scheme cannot be proven secure in the standard model, even under
very strong assumptions. In particular, they devise a public key encryption
scheme PKE.Enc such that, for any concrete hash function H, DPKE.Enc will be
insecure. Their construction uses indistinguishability obfuscation [2] (iO), which
is currently one of the more speculative tools used in cryptography. Nonetheless,
in order to give a standard model construction of DPKE, one must either deviate
from the scheme above, or else prove conclusively that iO does not exist.

On the other hand, lossy trapdoor functions have proven useful for building
DPKE in the standard model (e.g. [8,9]). One limitation of these techniques,
however, is that since the image size of a LTDF is always at least sub-exponential,
constructions based on LTDFs tend to require high min-entropy/computational
unpredictability requirements.

Our first construction. We start by abstracting the constructions of Brakerski and
Segev [9]. They construct DPKE for sub-exponentially unpredictable sources by
essentially analyzing specific constructions of Lossy Trapdoor Functions (LTDFs),
and showing that they satisfy the desired security experiment.

Our first construction abstracts their construction to work with arbitrary
LTDFs. Our construction is the following, based on a semantically secure public
key encryption scheme PKE.Enc, a special kind of pseudorandom generator G,
and a LTDF f generated in the injective mode:

DPKE.Enc(pk,m) = PKE.Enc(pk, f(m);G(m))

To prove security, we first switch to f being in the lossy mode. Now, notice
that if m can be predicted with probability p, then it can still be predicted with
probability p/r even given f(m), by simply guessing the value of f(m), which
will be correct with probability 1/r. In particular, if p is sub-exponentially small
and r is sub-exponential, then p/r is also sub-exponential. Any LTDF can be set
to have a sub-exponential-sized lossy mode by adjusting the security parameter
accordingly.

Next, we observe that if G is hardcore for sub-exponentially unpredictable
sources, then G(m) will be pseudorandom given f(m). Such a G can be built by
extracting a sufficiently small polynomial-number of Goldreich-Levin [15] bits,
and then expanding using a standard PRG.

At this point, we can replace G(m) with a random bitstring, and then rely on
the semantic security of PKE.Enc to show security, completing the security proof.

But what about arbitrary computationally unpredictable sources, which may
not be sub-exponentially secure? Intuitively, all we need is that (1) r can be
taken to be an arbitrarily small super-polynomial, and (2) that G is secure for
arbitrary unpredictable sources, instead of just sub-exponential sources. We then
recall that Zhandry’s [22] construction of G already satisfies (2), and that ELF’s
themselves almost satisfy (1). Unfortunately, the resulting scheme is not an
encryption scheme: Zhandry’s ELFs do not have a trapdoor in the injective mode,
meaning there is no way to decrypt.

Therefore, we propose the notion of a trapdoor ELFs, which combines the
functionality of ELFs and LTDFs by allowing for both a polynomial image size
and a trapdoor. Using a trapdoor ELF, the above construction becomes a secure
DPKE scheme for any computationally unpredictable source. For now we will
simply assume such trapdoor ELFs; we discuss constructing such functions below.

CCA Security. Next we turn to achieving CCA security for DPKE. CCA security
has received comparatively less attention in the deterministic setting, though some
standard-model constructions are known [8,19,17]. In particular, we are not aware
of any constructions for computationally unpredictable sources, sub-exponentially
hard or otherwise.

We observe that by combining techniques for building CCA-secure encryption
from LTDFs [18,8] with our abstraction of Brakerski and Segev [9], we can achieve
CCA security for sub-exponentially hard sources. The idea is to use all-but-one

LTDFs, a generalization of LTDFs where the function f has many branches. In
the injective mode, each branch is injective. In the lossy mode, a single branch is
lossy, and the inverse function works for all other modes. The adversary cannot
tell injective from lossy, even if it knowns the branch b∗. Peikert and Waters [18]
show how to generically construct such ABO LTDFs from any LTDF.

First, we modify the definition to require that indistinguishability from
injective and lossy holds even if the adversary can make inversion queries on all
branches other than b∗. The generic construction from standard LTDFs satisfies
this stronger notion.

Then, our CCA-secure construction can be seen as combining our con-
struction above with the construction of [8]. We encrypt using the algorithm
DPKE.Enc(pk,m) = (b = G0(m),PKE.Enc(pk, f(b,m);G1(m))) where G0, G1
are strong pseudorandom generators, and f(b,m) is the ABO LTDF evaluation
on branch b. Here, we require PKE.Enc to be a CCA-secure PKE scheme.

Intuitively, G0 determines the branch, and if it is injective, then each message
has its own branch. Once the branch is fixed, the rest of the scheme basically
becomes our basic scheme from above. The challenge ciphertext will be set to be
the lossy branch, which can be proven to hide the message following the same
proof as our basic scheme. We will need to simulate CCA queries, which can
be handled by using the CCA-security of PKE.Enc and the security of f under
inversion queries.

Using standard LTDFs, we thus get the first CCA-secure scheme for sub-
exponentially hard computationally unpredictable sources

Turning to the setting of arbitrary unpredictable sources, we need to replace
the ABO LTDF with an ABO trapdoor ELF, which works. Unfortunately, as
discussed below, the generic construction of ABO LTDF in [18] does not apply to
trapdoor ELFs, so we need a different approach to construct an ABO trapdoor
ELF. Our approach is outlined below when we discuss our ELF constructions.

Correlated Inputs. Next, we turn to constructing DPKE for correlated inputs.
Here, we require essentially the same security notion as for hardcore functions;
the only difference is in functionality, since there is a trapdoor for inversion.

In the case of CPA security, security trivially follows if we replace G with our
hardcore function for correlated inputs. We therefore easily get the first DPKE
scheme secure for a constant number of correlated sources. We also note that
if the source is sub-exponentially unpredictable, our scheme can be based on
standard LDTFs.

We can similarly extend this idea to get CCA security. Except here, we
will need a trapdoor ELF with several lossy branches, one for each challenge
ciphertext.

Constructing Trapdoor ELFs. Finally, we turn to actually constructing trapdoor
ELFs. Our trapdoor ELFs will be based on Zhandry’s ELFs, which are in turn
based on constructions of LTDFs [13]. But unfortunately, Zhandry’s ELFs lose
the trapdoor from the LTDFs. Here, we show how to resurrect the trapdoor.

Zhandry’s construction basically iterates Freeman et al.’s [13] LTDF at many
security levels. Freeman et al.’s construction expands the inputs by a modest
factor. Thus, Zhandry needs to compress the outputs of each iteration in order
for the size to not grow exponentially. Unfortunately, this compression results in
the trapdoor being lost, since it is un-invertible.

Instead, we opt to avoid compression by more carefully choosing the security
parameters being iterated. Zhandry chooses powers of 2 from 2 up to the global
security parameter. Instead, we choose double exponentials 22i . We still cannot
go all the way to the global security parameter, but we show that we can go high
enough in order to capture any polynomial. Thus, we obtain ELFs that admit a
trapdoor.

For our application to CCA-security, we need to introduce branches into
our trapdoor ELFs. Unfortunately, the approach of Peikert and Waters [18] is
insufficient for our purposes. In particular, they introduce branching by applying
many different LTDFs in parallel to the same input, outputting all images. The
overall image size is then roughly the product of the image sizes of each underlying
LTDF. The branch specifies which subsets of LTDFs are applied; the LTDFs
corresponding to the lossy branch are all set to be lossy. In this way, the lossy
branch will indeed be lossy. On the other hand, any other branch will have
at least one LTDF which is injective, meaning the overall function is injective.
Unfortunately for us, this approach results in an exponential blowup in the
size of the image space for the lossy branch, even if the original image size was
polynomial. Hence, applying this transformation to an ELF would not result in
an ABO ELF.

Instead, we opt for a direct construction though still based on Freeman et
al.’s scheme. Recall Freeman et al.’s scheme: the function f−1 is specified by an
n× n matrix A over Zq, and the function f is specified by A, but encoded in
the exponent of a cryptographic group over order q: gA. The function f takes
an input x ∈ {0, 1}n, and maps it to gA·x by carrying out appropriate group
operations on gA. The inverse function f−1 uses A−1 to recover gx from gA·x,
and then solves for x, which is efficient since x is 0/1.

In the lossy mode, A is set to be a matrix of rank 1. By DDH, this is
indistinguishable from full rank when just given gA. On the other hand, now the
image size of f is only q. By setting 2n � q, this function will now be lossy.

We now give a direct construction of an ABO trapdoor ELF. Our idea is to
make the matrices tall, say 2n rows and n columns. Note that any left inverse of
A will work for inverting the function, and there are many.

Our actual construction is the following. For branches in {0, 1}a, f−1 will be
specified by 2a+1 matrices B,Ai,t for i ∈ [a], t ∈ {0, 1}. The description of f will
simply be the corresponding encoded values of B,Ai,t. The branch b ∈ {0, 1}a
corresponds to the matrix Ab = B +

∑
i Ai,bi

.
For a lossy mode with branch b, we set Ab to be rank 1. Then we choose Ai,t

at random and set B = Ab −
∑
i Ai,bi .

We would now like to prove security. For a given branch b∗, suppose an
adversary can distinguish the injective mode from the mode where b∗ is lossy. We

now show how to use such an adversary to distinguish gC for a full-rank n× n
C from a random rank-1 C.

First, we will set Ab∗ to be the matrix C, except with n more rows appended,
all of which are zero. We can easily construct gAb∗ from gC without knowing C.
Then we choose random Ai,t. Finally, we set B = Ab∗ −

∑
i Ai,bi

. We can easily
construct gB given gC, again without knowing C.

Now notice that for each branch b, we know the bottom n rows of Ab, and
moreover for b 6= b∗ they are full rank. Therefore, we can invert on any branch
other than b∗, allowing us to simulate the adversary’s queries.

Unfortunately, the distribution simulated is not indistinguishable from the
correct distribution. After all, Ab∗ is all zeros on the bottom n rows, which is
easily detectable by the adversary. In order to simulate the correct distribution,
we actually left-multiply all the matrices B,Ai,t by a random matrix R ∈ Z2n×2n

q .
This can easily be done in the exponent. Moreover, now in the case where C is
random, the matrices B,Ai,t are actually random. On the other hand if C is
rank 1, we correctly simulate the case where b∗ is lossy.

Our construction above can easily be extended to multiple lossy branches
by iterating the construction several times, one for each branch that needs to
be lossy. Then, we notice that we actually achieve a polynomial image size by
setting q to be a polynomial, and then relying on the exponential hardness of
DDH to prove indisitnguishability. Thus, we achieve trapdoor ELFs with multiple
lossy branches, as needed for our construction.

1.2 Discussion

Of course, one way to achieve a hash function with security for correlated inputs
— or more generally any security property — is to simply make the “tautological”
assumption that a given hash function such as SHA has the property. Assuming
the hash function is well designed, such an assumption may seem plausible. In
fact, for practical reasons this is may be the preferred approach.

However, in light of the impossibility of instantiating random oracles in
general [11], it is a priori unclear which hash function properties are achievable in
the standard model. It could be, for example, that certain correlations amongst
inputs will always be trivially insecure, even for the best-designed hash functions.
The only way to gain confidence that a particular hash function property is
plausible at all is to give a construction provably satisfying the property under
well-studied and widely accepted computational assumptions. Our correlated-
input secure PRG G does exactly this.

On Exponential Hardness. Our constructions rely on the exponential hardness
of DDH, which is plausible in elliptic curve groups based on the current state
of knowledge. Elliptic curves have been studied for some time, and to date no
attack has been found that violates the exponential hardness in general elliptic
curves.

In fact, exponential hardness is exactly what makes elliptic curves desirable for
practical cryptographic applications today. DDH over finite fields is solveable in

subexponential time, meaning parameters must be set much larger to block attacks.
This leads to much less efficient schemes. Some of the most efficient protocols
in use today rely on elliptic curves, precisely because we can set parameters
aggressively and still remain secure. Thus, the exponential hardness of DDH in
elliptic curve groups is widely assumed for real-world schemes.

We also remark that, as explained by Zhandry [22], polynomial-time and even
sub-exponential-time hardness are insufficient for one-way functions secure for
arbitrary min-entropy sources, which in particular are implied by our correlated-
input secure constructions. Therefore, some sort of extremely strong hardness is
inherent in our applications.

Concretely, security for arbitrary min-entropy sources implies the following:
for any super-logarithmic function t(n), there is a problem in NP that (1) only
requires t(n) bits of non-determinism, but (2) is still not contained in P . Put
another way, the problem can be brute-forced in very slightly super-polynomial
time, but is not solvable by any algorithm in polynomial time, showing that
brute-force is essentially optimal. This can be seen as a scaled-down version of
the exponential time hypothesis. Thus, while exponential hardness may not be
required for the applications, a scaled-down version of exponential hardness is
required.

Common Random String. Our constructions are based on Zhandry’s ELFs, which
require a common random string (crs); this crs is just the description of the
injective-mode function. Thus our hardcore functions require a crs, and moreover,
we only obtain security if the crs is sampled independently of the inputs. A natural
question is whether this is required. Indeed, the following simple argument shows
that pseudorandomness for even a single information-theoretically unpredictable
source is impossible without a crs. After all, for a fixed function G, let S sample
a random input x conditioned on the first bit of G(x) being 0. Then the first bit
of G(x) will always be zero, whereas the first bit of a random string will only
be zero half the time. This argument also easily extends to the setting of a crs,
but where the sampler depends on a crs. It also extends for security for DPKE
schemes where the messages depend on the public key, as noted in [19].

Even if we restrict to inputs that are statistically close to uniform, but allow
two inputs to be slightly correlated, a crs is still required for pseudorandomness.
Indeed, for a function G that outputs n-bit strings, consider the following sampler:
choose two inputs x0, x1 at random, conditioned on the first bit of G(x0)⊕G(x1)
being 0.

In the case of one-wayness, the above does not quite apply (since G(x) may
still hide x), but we can show that one-wayness without a crs is impossible for any
super-constant number of correlated inputs. Basically, for d inputs, the sampler
S will choose a random (d− 1) log λ-bit string x1, which has super-logarithmic
min-entropy since d is super-constant. Then it will divide x into d − 1 blocks
of log λ bits z2, . . . , zd. It will then sample random x2, . . . , xd such that the first
log λ bits of G(xi) are equal to zi (which requires O(λ) evaluations of G). Finally,
it outputs x1, . . . , xd. Given the outputs y1, . . . , yd, it is easy to reconstruct x1.

Of course, we only achieve security for a constant number of correlated inputs
with a crs, so this leaves open the interesting problem of constructing a one-way
function for a constant number of correlated inputs without using a crs.

Barriers to Correlated-Input Security. Even with a crs, correlated-input security
has been difficult to achieve. The following informal argument from Wichs [21]
gives some indication why this is the case. Let P1, P2 be two functions. Consider
correlated x1, x2 sampled as x1 = P1(r), x2 = P2(r), for the same choice of
random r. Now, a reduction showing correlated-input security would need to
transform an attacker A for the correlated inputs into an algorithm B for some
presumably hard problem. But it seems that B needs to some how feed into A a
valid input G(x1), G(x2), and then use A’s attack in order to solve it’s problem.
But the only obvious way to generate a valid input for general P1, P2 is to choose
a random r and set x1 = P1(r), x2 = P2(r). But then B already knows what A
would do, making A’s attack useless.

The standard way (e.g. [1]) to get around this argument is to use G that are
lossy, and this is the approach we use, exploiting the two modes of the ELF. Our
results show that it is possible to attain security for a constant number of inputs.

What about larger numbers of correlated inputs? Wichs [21] shows that proofs
relative to polynomial-time falsifiable assumptions that make black-box use of the
adversary are impossible for any super-logarithmic number of correlated messages.
Note that the impossibility does not apply to our results for three reasons:

– Our reduction requires knowing the adversary’s success probability and
running time, and is therefore very slightly non-black box. In the language
of [12], our reduction is “non-uniform”

– We require exponential hardness, not polynomial-time hardness
– We only achieve a constant number of correlated messages.

Nonetheless, Wichs impossibility represents a barrier to significantly improving
our results.

Deterministic Public Key Encryption. Deterministic public key encryption can
be thought of as an injective hash function that also has a trapdoor. As a result,
the definitions of security for DPKE are related to strong security notions for
hash functions such as correlated-input security. We note that [6] construct
correlated-input secure DPKE for an arbitrary number of correlated min-entropy
sources. Their underlying building blocks are LTDFs and universal computational
extractors (UCE’s). Note that UCE’s are a strong “uber” type assumption on hash
functions that includes many different security properties, including correlated-
input security. Therefore, the main difficulty in their work is showing how to take
a hash function that already attains the security notion they want (and then
some) and then building from it a function that also has a trapdoor.

Our correlated-input secure hash function is likely not a UCE. In particular,
in light of Wich’s impossibility results discussed above, we don’t expect to be able
to prove that our construction is correlated-input secure for a large number of
inputs. More we do not expect to be able to prove all UCE security properties for

our assumption. Therefore, we cannot simply plug our hash function construction
into [6] to get a DPKE scheme.

2 Preliminaries

Definition 1. Consider a distribution D on pairs (x, aux), indexed by the secu-
rity parameter λ. We say that D is computationally unpredictable if, for any
probabilistic polynomial time adversary A, there is a negligible function ε such
that

Pr[A(aux) = x : (x, aux)← D(λ)] < ε(λ)

In other words, A cannot efficient guess x given aux

Lemma 1. Let D be a source of tuples (x, aux, z) such that (x, aux) is computa-
tionally unpredictable. Let F be a distribution over functions f with the following
property. f(aux, x, z) is function such that, for any aux, f(aux, ·, z) has polynomial
image size, and that it is possible to efficiently compute the polynomial-sized im-
age. Then D′ which samples (x, aux′ = (aux, f, f(aux, x, z))) is computationally
unpredictable.

Proof. If there is an A adversary for D′, we can simply make a random guess for
the value of f(aux, x, z), which will be right with inverse polynomial probability.
In this case, we correctly simulate the view of A, meaning A outputs x with
non-negligible probability. Overall, we break the computational unpredictability
of x with inverse polynomial probability ut

We will also consider a notion of computationally unpredictable sources on
multiple correlated inputs:

Definition 2. Consider a distribution D on tuples (x1 . . . , xd, aux), indexed by
the security parameter λ. We say that D is computationally unpredictable if the
following hold:

– For any i 6= j, Pr[xi = xj] is negligible.
– For any probabilistic polynomial time adversary A, there is a negligible func-
tion ε such that

Pr[A(aux) ∈ {x1, . . . , xd} : (x1, . . . , xd, aux)← D(λ)] < ε(λ)

In other words, each distribution (xi, aux) is computationally unpredictable.

Notice we do not require xi to be unpredictable given xj , j 6= i. As such,
distributions such as x, x+ 1, x+ 2, aux = ∅ are considered unpredictable.

We now consider hardcore functions:

Definition 3. Let G be a sampling procedure for deterministic functions G on
n = n(λ) bits with m = m(λ) bit outputs. We say that G is hardcore for any
computationally unpredictable source if for any computationally unpredictable

source D for x ∈ {0, 1}n, and any adversary A, there is a negligible function ε
such that:

|Pr[A(G,G(x), aux) = 1]− Pr[A(G,R, aux)]| < ε(λ)

where G ← G, (x, aux) ← D(λ) and R is random in {0, 1}m. In other words,
G(x) is pseudorandom even given aux.

Definition 4. Let G be a sampling procedure for deterministic functions G on
n = n(λ) bits with m = m(λ) bit outputs. We say that G is hardcore for any
computationally unpredictable source over d-inputs if for any computationally
unpredictable source D for d inputs x1 . . . , xd ∈ {0, 1}n, and any adversary A,
there is a negligible function ε such that:

|Pr[A(G,G(x1), . . . , G(xd), aux) = 1]− Pr[A(G,R1, . . . , Rd, aux)]| < ε(λ)

where G ← G, (x1, . . . , xd, aux) ← D(λ) and R1 . . . , Rd are random in {0, 1}m.
In other words, G(x) is pseudorandom even given aux and the correlated inputs.

2.1 Deterministic Public Key Encryption

A deterministic public key encryption scheme is a tuple of efficient algorithms
(DPKE.Gen,DPKE.Enc,DPKE.Dec), where DPKE.Enc,DPKE.Dec are determin-
istic maps between messages and ciphertexts, and DPKE.Gen is randomized
procedure for producing secret and public key pairs.

For security, we consider several possible notions. Security for arbitrary
computational sources means that (pk, c∗ = DPKE.Enc(pk,m), aux) is computa-
tionally indistinguishable from (pk, c∗ = DPKE.Enc(pk, R), aux), where (m, aux)
is sampled from an arbitrary computationally unpredictable source and R is
uniformly random, and (sk, pk) ← DPKE.Gen(λ). CCA security means the
same holds even if the adversary can later ask for decryption queries on ci-
phertexts other that c∗. Security for arbitrary correlated sources means that
(pk,DPKE.Enc(pk,m1), . . . ,DPKE.Enc(pk,m1), aux) is indistinguishable from
(pk,DPKE.Enc(pk, R1), . . . ,DPKE.Enc(pk, Rd), aux) for arbitrary computationally
unpredictable sources on d inputs.

2.2 ELFs

We recall the basic definition of Extremely Lossy Functions (ELFs) from Zhandry.
We slightly change notation, but the definition is equivalent.

A Lossy Trapdoor Function, or LTDF [18], is a function family with two
modes: an injective mode where the function is injective and there is a trapdoor
for inversion, and a lossy mode where the image size of the function is much
smaller than the domain. The security requirement is that no polynomial-time
adversary can distinguish the two modes. An Extremely Lossy Function, or
ELF [22], is a related notion without a trapdoor in the injective mode, but with
a more powerful lossy mode. In particular, in the lossy mode the image size can

be taken to be a polynomial r. One fixed polynomial r is insufficient (since then
the lossy mode could easily be distinguished from injective), but instead, the
polynomial r is tuned based on the adversary in question to be just large enough
to fool the adversary.

Definition 5 (Zhandry [22]). An ELF consists of two algorithms ELF.GenInj
and ELF.GenLossy, as well as a function N = N(M) such that logN is polynomial
in logM . ELF.GenInj takes as input an integer M , and outputs the description
of a function f : [M]→ [N] such that:

– f is computable in time polynomial in the bit-length of their input, namely
logM .

– With overwhelming probability (in logM), f is injective

ELF.GenLossy on the other hand takes as input integers M and r ∈ [M]. It
outputs the description of a function f : [M]→ [N] such that:

– For all r ∈ [M], |f([M])| ≤ r with overwhelming probability. That is, the
function f has image size at most r.

– For any polynomial p and inverse polynomial function δ (in logM), there
is a polynomial q such that: for any adversary A running in time at most p,
and any r ∈ [q(logM),M], we have that

|Pr[A(f) = 1 : f ← ELF.GenInj(M)]
− Pr[A(f) = 1 : f ← ELF.GenLossy(M, r)| < δ

In other words, no polynomial-time adversary A can distinguish an injective
f from an f with polynomial image size.

3 Correlated-Input Hardcore Functions

In this section, we build our correlated-input hardcore function. First, we recall
Zhandry’s [22] construction of hardcore functions for arbitrarily uncorrelated
sources. The following description is taken essentially verbatim from Zhandry.

Construction 1 Let q be the input length and m be the output length. Let λ be
a security parameter. We will consider inputs x as q-dimensional vectors x ∈ Fq2.
Let ELF be an ELF. Let M = 2m+λ+1, and let n be the bit-length of the ELF
on input m+ 1. Set N = 2n. Let ` be some polynomial in m,λ to be determined
later. First, we will construct a function H ′ as follows.

Choose random f1, . . . , f` ← ELF.GenInj(M) where fi : [M] → [N], and let
h1, . . . , h`−1 : [N] → [M/2] = [2m+λ] and h` : [N] → [2m] be sampled from
pairwise independent and uniform function families. Define f = {f1, . . . , f`} and
h = {h1, . . . , h`}. Define H ′i : {0, 1}i → [M/2] (and H ′` : {0, 1}` → [2m]) as
follows:

– H ′0() = 1 ∈ [2m+λ]

– H ′i(b[1,i−1], bi) : compute yi = H ′i−1(b[1,i−1]), zi ← fi(yi||bi), and output
yi+1 ← hi(zi)

Then we set H ′ = H ′`. Then to define H, choose a random matrix R ∈ F`×q2 .
The description of H consists of f ,h,R. Then set H(x) = H ′(R · x). A diagram
of H is given in Figure 1.

1 f1 h1 f2 h2

z1 z2
f3 h3

z3y2 y3
y4

y1

x

(R1 ·) (R2 ·) (R3 ·)

H

H 0
b1 b2 b3

Fig. 1: An example taken from Zhandry [22] for ` = 3. Notice that each iteration
is identical, except for the final iteration, where h` has a smaller output.

Our Construction. We will modify Zhandry’s construction as follows. Sample
f ,h as in Construction 1. Then define the function HR(x) to be the function H
using Goldreich-Levin parities R.

Our modification will be to generate R as a function of x, and then apply
HR(x). In particular, we will set R = u(v(x)) where v ← ELF.GenInj(M) and u
is a d-wise independent function. Actually, we need a stronger property of u: that
each row of R is specified by an independent d-wise independent function ui.

Theorem 2. If ELF is a secure ELF, then Hu(v(x))(x) = H ′(u(v(x)) · x) is a
hardcore function for computationally unpredictable sources on d inputs, for any
constant d.

Proof. First, we recall some basic facts proved by Zhandry:

Claim. If ` ≥ m+ λ, and if b is drawn uniformly at random, then (H ′, H ′(b)) is
statistically close to (H ′, R) where R is uniformly random in [2m].

Therefore, given a source D which samples messages m1, . . . ,md and auxiliary
information aux, it is sufficient to prove the following are indistinguishable:
(f ,h, u, v, aux, {H ′(u(v(xi))·xi)}i) and (f ,h, u, v, aux, {H ′(bi)}i) for uniformly
random bi.

Our proof will follow the same high-level idea as in Zhandry, but make
adjustments along the way in order to prove security for correlated sources. Let

A be an adversary with non-negligible advantage ε in distinguishing the two
cases. We will assume it always checks that the images v(xi) are all distinct and
rejects if they are; by the property of the source D and the injectivity of v, this
check will never trigger if sampled as above. Nonetheless, if the check triggers,
we assume A outputs a random bit and aborts.

Let Ri = u(v(xi)). Define b(j)
i so that the first j bits of b(j)

i are equal to the
first j bits of Ri ·xi, and the last `− i bits are uniformly random and independent
of x1, . . . ,xd.

We now define a sequence of hybrids. In Hybrid j, A is given the distribution
(f ,h, u, v, aux, {H ′(b(j)

i)}i). Then A distinguishes Hybrid 0 from Hybrid `
with probability ε. Now we choose an j at random from [`]. The adversary
distinguishes Hybrid j − 1 from Hybird j with expected advantage at least
ε/`. Next, observe that since bits j + 1 through t are random in either case,
they can be simulated independently of the challenge. Moreover, H ′(b) can be
computed given H ′j−1(b[j−1]), the bit bj (be it random or equal to R · x), and
the random bj+1, . . . , b`. Also, the d-wise independent functions uj+1, . . . , u` are
never evaluated on the xi, so they can be simulated as well. Let u[j](x) denote
the output (u1(x), . . . , uj(x)).

Thus, we can construct an adversary A′ that distinguishes the following
distributions:

(j, f ,h, u1, . . . , uj , v, aux, {H ′j−1(u[j−1](v(xi)) · xi), uj(v(xi)) · xi}i) and
(j, f ,h, u1, . . . , uj , v, aux, {H ′j−1(u[j−1](v(xi)) · xi), bi}i)

with advantage ε/`, where j is chosen randomly in [`], where bi are random bits.
Next, notice that ε/5` is non-negligible, meaning there is an inverse polynomial

δ such that ε/5` ≥ δ infinitely often. Then, there is a polynomial r such A′ cannot
distinguish fi generated as ELF.GenLossy(M, r) from the honest fi generated
from ELF.GenInj(M), except with probability at most δ. Similarly we’ll generate
v by ELF.GenLossy(M, r).

This means, if we generate fi, v ← ELF.GenLossy(M, r), we have that A′ still
distinguishes the distributions

(j, f ,h, u1, . . . , uj , v, aux, {H ′j−1(u[j−1](v(xi)) · xi), uj(v(xi)) · xi}i) and
(j, f ,h, u1, . . . , uj , v, aux, {H ′j−1(u[j−1](v(xi)) · xi), bi}i)

with advantage ε′ = ε/`− 4δ.
Next, we define new hybrids J0, . . . , Jd, where Jk is the distribution:

(j, f ,h, u1, . . . , uj , v, aux, {H ′i−1(u[j−1](v(xi)) · xi), qi}i)

where qi = uj(v(xi))·xi for i ≤ k and qi is uniformly random for i > k. Notice that
J0 and Jd ar the two distributions distinguished with probability ε′. Therefore,
for a random k ∈ [d], the expected distinguishing advantage between Ji−1 and Ji
is ε′/d. Thus, A′ can be used to construct an adversary A′′ that distinguishes
the two distributions:

(
j, k, f ,h, {ui}i, v, aux,
{H ′j−1(u[j−1](v(xi)) · xi)}i∈[d], {uj(v(xi)) · xi}i<k, uj(v(xk)) · xk

)
and(

j, k, f ,h, {ui}i, v, aux,
{H ′j−1(u[j−1](v(xi)) · xi)}i∈[d], {uj(v(xi)) · xi}i<k, bk

)
with advantage ε′/4. Next, we devise an adversary A′′′ which distinguishes(

j, k, f ,h, {ui}i, v, aux,
{v(xi), H ′i−1(u[j−1](v(xi)) · xi)}i, {ri · xi}i<k, rk · xk

)
and(

j, k, f ,h, {ui}i, v, aux,
{v(xi), H ′i−1(u[j−1](v(xi)) · xi)}i, {ri · xi}i<k, bk

)
We recall that our adversary aborts if v(xi) are not distinct. In the case where
they are distinct, given one of the samples in the preceding equations, A′′′ samples
uj such that uj(v(xi)) = ri and that uj is sampled uniformly according to the
d-wise independent sampling procedure. Then A′′′ simulates the samples expected
by A′′. The result is A′′′ distinguishes the two cases with probability ε′/d.

Now fix f ,h, u1, . . . , uj−1, v, which fixes H ′i−1. Let y
(j)
i = H ′j−1(u[j−1](v(xi)) ·

xi). Notice that since f ,h, u1, . . . , uj−1, v are fixed and H ′j−1 has image size at
most r, there are at most rd possible values for the vector (y(j)

1 , . . . , y
(j)
d), and

recall that r is a polynomial. If d is constant, then rd is still polynomial. Moreover,
there are at most rd values for the vector (v(x1), . . . , v(xd)).

Now, we use Lemma 1. Since xk, aux is computationally unpredictable and
since there are only a polynomial number of images of v and H ′j−1, we have

(xk, (j, k, f ,h, u1, . . . , uj−1, v, aux, {v(xi), H ′j−1(u[j−1](v(xi)) · xi)}i))
is computationally unpredictable as well. Even more, it must be that

(xk, auxk =
(
j, k, f ,h, {ui}i, v, aux,
{v(xi), H ′j−1(u[j−1](v(xi)) · xi)}i, {ri, ri · xi}i<k

)
)

is computationally unpredictable, since there are only 2d possible values to guess
for ri · xi.

Therefore, by Goldreich-Levin, we have that (auxk, rk, rk · xk) is computa-
tionally indistinguishable from (auxk, rk, bk) for random bk. Putting this together
in a simple hybrid argument, we have that the following are indistinguishable:(

j, k, f ,h, u1, . . . , uj−1, v, aux,
{v(xi), H ′i−1(u[j−1](v(xi)) · xi)}i, {ri · xi}i<k, rk · xk

)
and(

j, k, f ,h, u1, . . . , uj−1, v, aux,
{v(xi), H ′i−1(u[j−1](v(xi)) · xi)}i, {ri · xi}i<k, bk

)
But these are exactly the distributions distinguished by A′′′. Therefore, we

must have ε′/d, and hence ε′, is negligible. But since ε′ = ε/`− 4δ and δ ≤ ε/5`,
we have have that ε′ is lower bounded by δ/5/` infinitely often, a contradiction.
This completes the proof. ut

4 Trapdoor ELFs

Here, we define and construct ELFs with a trapdoor, combining the features of
LDTFs and ELFs.

Definition 6. An Trapdoor ELF consists of two algorithms TELF.GenInj and
TELF.GenLossy, as well as a function N = N(M) such that logN is polynomial
in logM . TELF.GenInj takes as input an integer M , and outputs the description
of two functions f : [M]→ [N] and f−1 : [N]→ [M] ∪ {⊥} such that:

– f, f−1 are computable in time polynomial in the bit-length of their input,
namely logM .

– With overwhelming probability (in logM), f−1(f(x)) = x for all x ∈ [M]. In
particular f is injective

TELF.GenLossy on the other hand takes as input integers M and r ∈ [M]. It
outputs the description of a function f : [M]→ [N] such that:

– For all r ∈ [M], |f([M])| ≤ r with overwhelming probability. That is, the
function f has image size at most r.

– For any polynomial p and inverse polynomial function δ (in logM), there
is a polynomial q such that: for any adversary A running in time at most p,
and any r ∈ [q(logM),M], we have that

|Pr[A(f) = 1 : (f, f−1)← TELF.GenInj(M)]
− Pr[A(f) = 1 : f ← TELF.GenLossy(M, r)| < δ

In other words, no polynomial-time adversary A can distinguish an injective
f from an f with polynomial image size, in the case that A does not get the
trapdoor for f .

We also consider all-but-some Trapdoor ELFs, which contain many branches,
some of which are lossy:

Definition 7. An All-but-one Trapdoor ELF consists of algorithms TELF.GenInj
and TELF.GenLossy, as well as a function B = B(M), N = N(M) such that
logB, logN are polynomial in logM . TELF.GenInj takes as input an integer
M , and outputs the description of two functions f : [B] × [M] → [N] and
f−1 : [B]× [N]→ [M] ∪ {⊥} such that:

– f, f−1 are computable in time polynomial in the bit-length of their input,
namely logM .

– With overwhelming probability (in logM), for all branches b ∈ [B], we have
that f−1(b, f(b, x)) = x for all x ∈ [M]. In particular f(b, ·) is injective

TELF.GenLossy on the other hand takes as input integers M and r ∈ [M],
and a branch b∗ ∈ [B]. It outputs the description of functions f : [B]× [M]→ [N]
and f−1 : [B]× [N]→ [M] ∪ {⊥} such that:

– For all r ∈ [M], |f(b, [M])| ≤ r with overwhelming probability. That is, the
function f(b∗, ·) has image size at most r.

– With overwhelming probability (in logM), for all branches b ∈ [B] \ {b∗},
f−1(b, f(b, x)) = x for all x ∈ [M].

– For any polynomial p and inverse polynomial function δ (in logM), there
is a polynomial q such that: for any adversary A running in time at most p
and playing the following game, it’s advantage is at most δ:
• First, A chooses a branch b∗, which is sends to the challenger.
• The challenger then either runs (f, f−1) ← TELF.GenInj(M) or runs

(f, f−1 ← TELF.GenLossy(M, b∗, r), and sends f to A
• A can make queries to f−1 on all branches other than b∗.
• A outputs a guess b for which f it was given

A’s advantage is defined to be the difference

|Pr[A(f) = 1 : (f, f−1)← TELF.GenInj(M)]
− Pr[A(f) = 1 : (f, f−1)← TELF.GenLossy(M, b∗, r)|

In other words, no polynomial-time adversary A can distinguish an injective
f from an f where branch b∗ has polynomial image size, in the case that A
does not get the trapdoor for f .

An all-but-some Trapdoor ELF generalizes the above to allow the lossy mode
to contain multiple lossy branches. We omit the details of the definition.

4.1 Constructing Trapdoor ELFs

Here, we construct Trapdoor ELFs from exponentially-hard DDH, which is
plausible on certain elliptic curve groups. Our construction will follow mostly
Zhandry’s [22] construction of ELFs, with some modifications to obtain a trapdoor.

Zhandry’s scheme works as follows: first, he considers a bounded adversary
ELF, which is secure against only adversaries of an a priori bounded running time.
This scheme more or less follows from lossy trapdoor functions in the literature,
just pushed into extreme parameter regimes. Then, he iterates the scheme many
times, for many different bounds on the adversaries running time. ELF security
follows by invoking security for the bounded adversary ELF that is just large
enough to fool the given adversary.

We will adopt the same approach. In particular, we will construct a bounded
adversary Trapdoor ELF following the LTDFs from the literature. We will trivially
inherit the trapdoors from these schemes. Then, we will iterate the construction.
Zhandry’s construction, in order to remain efficient, must compress the image
every after every iteration. This unfortunately means Zhandry’s construction does
not have a functioning trapdoor. We therefore devise a way to avoid compressing
the input, allowing the trapdoor to remain intact.

Bounded Adversary Trapdoor ELFs Here, we define a bounded adversary
Trapdoor ELF, which is a Trapdoor ELF where security is guaranteed only against
a prior bounded adversaries. The definition follows almost immediately from
adapting Zhandry’s bounded adversary ELF definition by adding a trapdoor.

Informally, in an ordinary Trapdoor ELF, r can be chosen based on the
adversary to be just high enough to fool it. In contrast, in a bounded adversary
Orf, r must be chosen independent of the adversary, and then security only
applies to adversaries with running time sufficiently smaller than r. Moreover,
the adversary gets to learn r.

Definition 8. An bounded adversary Trapdoor ELF consists of two algorithms
TELF.GenInj′ and TELF.GenLossy′, and a function N = N(M, r). TELF.GenInj′
takes as input an integer M and integer r ∈ [M] and outputs the description of
two functions f : [M]→ [N] and f−1 : [N]→ [M] ∪ {⊥} such that:

– f, f−1 are computable in time polynomial in the bit-length of their input,
namely logM .

– With overwhelming probability (in logM), f−1(f(x)) = x for all x ∈ [M]. In
particular f is injective

TELF.GenLossy′ also takes as input integers M and r ∈ [M]. It outputs the
description of a function f : [M]→ [N] such that:

– For all r ∈ [M], |f([M])| ≤ r with overwhelming probability. That is, the
function f has image size at most r.

– For any polynomial p and inverse polynomial function δ (in logM), there
is a polynomial q such that: for any adversary A running in time at most p,
and any r ∈ [q(logM),M], we have that

|Pr[A(r, f) = 1 : (f, f−1)← TELF.GenInj′(M)]
− Pr[A(r, f) = 1 : f ← TELF.GenLossy′(M, r)| < δ

In other words, no polynomial-time adversary A can distinguish an injective
f from an f with polynomial image size, in the case that A does not get
the trapdoor for f . Unlike an ordinary Trapdoor ELF, this holds even if the
adversary knows r.

Constructing Bounded Adversary Trapdoor ELFs Our construction of
bounded adversary Trapdoor ELFs, like Zhandry’s ELFs, is based on the DDH-
based lossy trapdoor functions of Peikert and Waters [18] and Freeman et al. [13].
In fact, since Zhandry did not need the trapdoor of prior constructions, the
construction for ELFs was very slightly simplified. In contrast, our construction
almost verbatim matches the construction Freeman et al., except that the group
size is set to be much smaller, in particular polynomial. In order to maintain
security in this regime, we must rely on the exponential hardness of the group.

Cryptographic Groups. The following definitions and notation are almost verbatim
from Zhandry [22].

Definition 9. A cryptographic group consists of an algorithm Group.Gen which
takes in a security parameter λ, and produces a (description of a) cyclic group G
of prime order p ∈ [2λ, 2× 2λ), and a generator g for G such that:

– The group operation × : G2 → G is polynomial-time computable in λ.
– Exponentiation by elements in Zp is polynomial-time computable in λ.
– The representation of a group element h has size polynomial in λ.

For some notation: given a matrix A ∈ Zm×np , we write gA ∈ Gm×n to be the
m×n matrix of group elements gAi,j . Analogously define gw for a vector w ∈ Znp .
Given a matrix Â ∈ Gm×n of group elements and a vector v ∈ Znp , write Â · v
to mean ŵ ∈ Gm where ŵi =

∏n
j=1 Â

vj

i,j . Using this notation, (gA) · v = gA·v.
Therefore, the map gA,v 7→ gA·v is efficiently computable.

Definition 10. The exponential decisional k-linear assumption (k-eLin) on a
cryptographic group specified by Group.Gen holds if there is a polynomial q(··)
such that the following is true. For any time bound t and probability ε, let
λ = log q(t, 1/ε). Then for any adversary A running in time at most t, the
following two distributions are indistinguishable, except with advantage at most ε:

(G, g, ga1 , . . . , gak , gc, ga1b1 , · · · gakbk) : (G, g, p)← Group.Gen(λ)
ai, bi, c← Zp

, and

(G, g, ga1 , . . . , gak , g
∑k

i=1
bi , ga1b1 , · · · gakbk) : (G, g, p)← Group.Gen(λ)

ai, bi ← Zp

k = 1 corresponds to the eDDH assumption above.
As a special case, k = 1 corresponds to the exponential DDH assumption. A

plausible candidate for a cryptographic group supporting the eDDH assumption
or k-linear assumption are groups based on elliptic curves. Despite over a decade
or research, the best attacks on many elliptic curves are generic attacks which
require exponential time. Therefore, the eDDH assumption on these groups
appears to be a very reasonable assumption.

Construction. Our construction is as follows, and will be parameterized by k.
TELF.GenInj′k(M, r) does the following.

– Let λ be the largest integer such that (2 × 2λ)k < r. Run (G, g, p) ←
Group.Gen(λ).

– Let m be the smallest integer such that 2m ≥ M . Let R be an efficiently
invertible function from [M] into {0, 1}m.

– Let n ≥ m (e.g. m = 2n) be chosen such that a random matrix sampled from
Zn×mp has rank m with overwhelming probability. Note that a random square
matrix will be singular with probability 1/p, and in our case, p is polynomial.
Hence we require m somewhat larger than n.

– Choose a random matrix n×m matrix A of elements in Zn×mp . Set Â = gA.
– Output functions f, f−1. f is defined as f(x) = Â · (R(x)). The description

of f will consist of (G, p, Â, R,m, n).
f−1 is defined as follows. Let B ∈ Zm×np such that B ·A is the identity. Given
a vector v ∈ Gn, compute w = B · v. Then, try to compute the discrete
log of each component by testing if the component is g0 or g1. If any of the
discrete log computations fail, then output ⊥. Otherwise, let y be the vector
of exponents obtained. Invert R on y to obtain x. If inversion fails, output ⊥.
Otherwise, output x. The description of f−1 will consist of (G, p,B, R,m, n).
TELF.GenLossy′k(M, r) is identical to TELF.GenInj′k(M, r), except the matrix
A is chosen to be random of rank k, rather than full rank. In this case, there
is no B and hence no function f−1.

Theorem 3. If Group.Gen is a group where the k-eLin assumption holds for
some constant k, then (TELF.GenInj′k,TELF.GenLossy′k) is a bounded adversary
Trapdoor ELF.

Proof. For correctness, notice that w computed by f−1 is equal to B · v =
B · Â ·R(x) = gB·A·R(x) = gR(x). Therefore, when f−1 is given a valid output of
f , it will recover gR(x), and the discrete log computations will yield R(x) and
the final inversion of R will yield x, as desired.

Security follows from an almost identical argument to the security of bounded
adversary ELFs in Zhandry [22], and we only sketch the details here. All that
needs to be shown is that gA for a random matrix is indistinguishable from gA

for a random rank-k matrix. This follows by standard hybrid arguments (e.g. [20])
and the assumed k-linear assumption. ut

Constructing Ordinary Trapdoor ELFs We now turn to using bounded
adversary Trapdoor ELFs to construct ordinary Trapdoor ELFs. Here, we depart
slightly from Zhandry [22]. Zhandry’s idea is to iterate many bounded adversary
functions as r ranges over the powers of 2. The injective mode just sets all the
bounded adversary functions to be injective. For the lossy mode, a single function
is set to be lossy, namely the function that is big enough to fool the adversary in
question.

One issue that immediately becomes apparent in the above approach is that
the bounded adversary functions are expanding. As such, the overall domain
will grow exponentially with the number of iterations, leading to an inefficient
scheme. Zhandry gets around this by applying a pairwise independent function
between each bounded adversary function to compress the output and keep it
polynomial in size. Unfortunately, this compression destroys any trapdoor in the
bounded adversary function.

Instead, our approach is to not compress the outputs, but be very careful
about which r we choose for our bounded adversary Trapdoor ELFs. In particular,
notice that our bounded adversary Trapdoor ELFs expand the input by a factor of
Ck × log r, for some constant C that depends on k. Therefore, if our construction

uses a sequence r1, . . . , rt of r’s, the overall expansion is Ctk
∏

log ri. We need
this expansion factor to be polynomial in size.

Notice that the powers of 2, namely ri = 2i, used by Zhandry do not work, as
the overall expansion will be Ctkt!. We need rt = 2t to be larger than any polyno-
mial in our security parameter logM (so that we can set r based on any adversary),
meaning the overall expansion factor will be at least C log logM

k (log logM)!. Notice
that (log logM)! is super-polynomial in logM , leading to an inefficient scheme.

Instead, we choose ri = 22i , and let i go from 1 to t =
√

log logM . We see
that the overall expansion factor is:

Ctk

t∏
i=1

log ri = C

√
log logM

k

t∏
i=1

2i

≤ C log logM
k

t∏
i=1

2i = (logM)logCk

t∏
i=1

2i

= (logM)logCk 2
∑t

i=1
i ≤= (logM)logCk 2t

2
= (logM)1+logCk

We also note that rt = 22
√

log log M is larger than any polynomial in logM .
This means that for any polynomial p, we can always choose i so that ri will be
at most approximately p2. This is exactly what we need to argue security.

In more detail, our construction does the following. Assume for the bounded
adversary Trapdoor ELF that N = N(M, r) satisfies logN ≤ C(logM)(log r)
for some universal constant C, as in our bounded adversary construction. Then
TELF.GenInj(M) does the following:

– Let t be the smallest integer such that 22t2

≥M .
– Let M1 = M .
– For i = 1, . . . , t, Run (fi, f−1

i) ← TELF.GenInj′(Mi, ri) for ri = 22i . Let Ni
be the output space of fi, and set Mi+1 = Ni.

– Let f : [M] → [Nt] be ft ◦ ft−1 ◦ · · · ◦ f1. Let f−1 attempt to compute
f−1

1 ◦ . . . f−1
t , and output ⊥ if any of the inversions fail.

– Output (f, f−1).

TELF.GenLossy(M, r) is the same as TELF.GenInj, except that it lets i∗ be
the largest integer such that ri∗ ≤ r and i∗ ≤ t. It then computes fi∗ ←
TELF.GenLossy′(Mi∗ , ri∗) instead of using TELF.GenInj′. It lets f be defined as
above, and outputs f (but no f∗).

Theorem 4. If (TELF.GenInj′,TELF.GenLossy′) is a bounded-adversary Trap-
door ELF satisfying logN ≤ C(logM)(log r) for some constant C, then we have
that (TELF.GenInj,TELF.GenLossy) is an ordinary Trapdoor ELF.

Proof. The image size in the lossy mode is guaranteed by how we chose i∗.
Namely, the image size on input r is at most ri∗ which is at most r.

It remains to prove security. Let p be a polynomial and σ be an inverse
polynomial in logM . Let p′ be p plus the running time of TELF.GenInj. Let q be
the polynomial guaranteed by (TELF.GenInj′,TELF.GenLossy′) for p′ and σ.

Notice that q will be a polynomial in the logMi, the domain for the functions
(TELF.GenInj′,TELF.GenLossy′), and not in logM . Nonetheless, we can redefine
q to be a polynomial in logM since logMi is polynomial in logM .

Consider any adversary A for (TELF.GenInj,TELF.GenLossy) running in time
at most p. Let r = r(M) be a computable function of M such that r ∈
(q(logM),M]. Our goal is to show that A distinguishes f from TELF.GenInj(M)
from TELF.GenLossy(M, r) with advantage less than δ.

Toward that goal, let i∗ be the largest integer such that ri∗ = 22i∗

≤ r and
i∗ ≤ t. We construct an adversary A′ for (TELF.GenInj′,TELF.GenLossy′) with
r = ri∗ . Let fi∗ be the f that A′ receives, where fi∗ is either TELF.GenInj′(M, ri∗)
or TELF.GenLossy′(M, ri∗). Then A′ simulates the rest of f for itself, setting
(fi, f−1

i) ← TELF.GenInj′(Mi, ri) for i 6= i∗. A′ then runs A on the simulated
f . Notice that A′ runs in time at most p′. Thus by the bounded-adversary
security of (TELF.GenInj′,TELF.GenLossy′), A′ cannot distinguish injective or
lossy mode, except with advantage σ. Moreover, if fi∗ ← TELF.GenInj′(M, ri∗),
then this corresponds to TELF.GenInj, and if fi∗ ← TELF.GenLossy′(M, ri∗),
then this corresponds to TELF.GenLossy(M, r). Thus, A′ and A have the same
distinguishing advantage, and therefore A cannot distinguish the two cases except
with probability less than σ. ut

4.2 Constructing All-but-some Trapdoor ELFs

We now turn to constructing All-but-some Trapdoor ELFs. It is sufficient to
construct a bounded adversary version of All-but-some Trapdoor ELFs, which
can then be converted into full All-but-some Trapdoor ELFs using the conversion
in the preceding section. Here, we describe how to do this. We focus on the
all-but-one case, the all-but-some being a simple generalization.

Construction. Our construction is as follows, and will be parameterized by
k. The branch set B will be interpreted as {0, 1}a for some polynomial a.
TELF.GenInj′k(M, b, r) does the following.

– Let λ be the largest integer such that (2 × 2λ)k < r. Run (G, g, p) ←
Group.Gen(λ).

– Let m be the smallest integer such that 2m ≥ M . Let R be an efficiently
invertible function from [M] into {0, 1}m.

– Let n ≥ m be chosen such that a random matrix sampled from Zn×mp has
rankm with overwhelming probability. Note that a random square matrix will
be singular with probability 1/p, and in our case, p is polynomial. Therefore,
we need to choose an n somewhat larger than m. It suffices to set n = 2m.

– Choose 2a + 1 random 2n ×m matrices B,Ai,t in Z2n×m
q , and let Âi,t =

gAi,t , B̂ = gB.
Define Ab = B +

∑
i Ai,bi

.

– Output functions f, f−1. f is defined as f(b, x) = Âb · (R(x)). Note that
Âb can be computed from Âi,t, B̂. The description of f will consist of
(G, p, B̂, {Âi,t}, R,m, n).
f−1(b, v) is defined as follows. Let A−1

b ∈ Zm×2n
p such that A−1

b ·Ab is the
identity. Given a vector v ∈ Gn, compute w = A−1

b ·v. Then, try to compute
the discrete log of each component by testing if the component is g0 or g1. If
any of the discrete log computations fail, then output ⊥. Otherwise, let y
be the vector of exponents obtained. Invert R on y to obtain x. If inversion
fails, output ⊥. Otherwise, output x. The description of f−1 will consist of
(G, p,B, {Ai,t}, R,m, n).
TELF.GenLossy′k(M, b, r) is identical to TELF.GenInj′k(M, b, r), except the
matrix Ab is chosen to be random of rank k, rather than full rank. Then B
is set to Ab −

∑
i Ai,bi

.

Theorem 5. If Group.Gen is a group where the k-eLin assumption holds for
some constant k, then (TELF.GenInj′k,TELF.GenLossy′k) is a bounded adversary
all-but-one Trapdoor ELF.

Proof. We just need to show, given a branch b∗, how to embed a challenge gC

into the description of f so that:
– If C is full rank, B,Ai,t is distributed as in the injective mode, namely

uniformly random.
– If C has rank k, then B,Ai,t is distributed as in the lossy mode for branch
b∗, namely Ab∗ is random of rank k.

– We can simulate inversion queries on all other branches.

To do so, we exploit the fact that we have some extra rows to work with.
We will assume the challenge gC is n×m. We will choose a uniformly random
matrix S ∈ Z2n×2n

p . We will set A′b∗ to be the block matrix with C on top, and
02n×m on bottom. Then we will set Ab∗ = S ·A′b∗ .

We will choose A′i,t as random 2n×m matrices, and then set Ai,t = S ·A′i,t.
Finally, we will set B = Ab∗ −

∑
i Ai,b∗

i
= S ·

(
A′b∗ −

∑
i A′i,b∗

i

)
.

We can now compute gAi,t using our knowledge of Ai,t, and gB using our
knowledge of Ai,t, S, and gC.

It is straightforward to show that if C is a uniformly random matrix, then so
are all the matrices B,Ai,t. Moreover, if C is random of rank k, is is straightfor-
ward that the matrices are random, subject to Ab∗ being rank k, as desired.

It remains to prove that we can answer inversion queries. Here, we simply
use the fact that we know the bottom n×m matrices in the clear, meaning we
can perform the inversion operation as in standard Trapdoor ELFs. As the last
step, we just verify our inversion by evaluating the Trapdoor ELF on the derived
pre-image, ensuring that it matches the provided image point. ut

We can easily use the above techniques to extend to ` lossy branches in several
ways. One way is to simply evaluate ` different Trapdoor ELFs in sequence; to
set the ` different branches, simply assign one branch to each of the Trapdoor
ELFs.

5 DPKE for Computationally Unpredictable Sources

In this section, we show our basic DPKE construction, a deterministic public
key encryption scheme (DPKE) for arbitrary computational sources.

The Construction. The message space for our scheme is [M]. We will use a hard-
core function G with domain [M], a PKE scheme (PKE.Gen,PKE.Enc,PKE.Dec),
and a trapdoor ELF (TELF.GenInj,TELF.GenLossy).

– DPKE.Gen runs (sk′, pk′) ← PKE.Gen(λ), (f, f−1) ← TELF.GenInj(M), and
G← G. It outputs sk = (sk′, f−1) and pk = (pk′, f,G).

– DPKE.Enc(pk,m) runs PKE.Enc(pk′, f(m);G(m)). That is, it encrypts f(m)
under the semantically secure encryption scheme, using random coins G(m)

– DPKE.Dec(sk, c): run y ← PKE.Dec(sk′, c). If y = ⊥ output ⊥. Otherwise
run m← f−1(y) and output m.

Correctness of the scheme is immediate. For security, we have the following
theorem:

Theorem 6. For any constant d, if G is hardcore for arbitrary computation-
ally unpredictable sources on d inputs, (PKE.Gen,PKE.Enc,PKE.Dec) is semanti-
cally secure, and (TELF.GenInj,TELF.GenLossy) is a secure Trapdoor ELF, then
(DPKE.Gen,DPKE.Enc,DPKE.Dec) is a secure deterministic public key encryption
scheme for arbitrary single computationally unpredictable sources on d inputs.
If (PKE.Gen,PKE.Enc,PKE.Dec) has pseudorandom ciphertexts, then so does
(DPKE.Gen,DPKE.Enc,DPKE.Dec).

Proof. Consider an arbitrary computationally unpredictable source D, sam-
pling messages m1, . . . ,md and auxiliary information aux. We will prove the
pseudorandom ciphertext case, the other case being analogous. We need to
prove that (pk,DPKE.Enc(pk,m1), . . . ,DPKE.Enc(pk,md), aux) is computation-
ally indistinguishable from (pk, C1, . . . , Cd, aux), where (sk, pk)← DPKE.Gen(λ),
(m1, . . . ,md, aux)← D, and Ci are chosen uniformly random from the ciphertext
space.

Suppose toward contradiction that we have an adversary A which distinguishes
the two distributions with advantage ε. Let p be a polynomial such that 1/p ≥ ε
infinitely often. We prove security through a sequence of hybrids:

– H0. In this hybrid, the adversary is given (pk, c1, . . . , cd, aux) where pk =
(pk′, f,G), (sk′, pk′) ← PKE.Gen(λ), (f, f−1) ← TELF.GenInj(M), G ← G,
and ci = DPKE.Enc(pk,mi) = PKE.Enc(pk′, f(mi);G(mi))

– H1. In this hybrid, we change f to be lossy. That is we choose r so that A
cannot distinguish f ← TELF.GenLossy(M, r) from f , except with probability
1/3p. We then replace f with f ← TELF.GenLossy(M, r).

– H2. In this hybrid, we change ci = PKE.Enc(pk′, f(mi);G(mi)) to ci =
PKE.Enc(pk′, f(mi);Ri). That is, we replace G(mi) with Ri. We now claim
that A distinguishes H1 from H2 with negligible probability.

To prove this, notice that by Lemma 1 and the fact that d is constant, we
have that (m1, . . . ,md, (aux, f, f(m1), . . . , f(md))) is also computationally
unpredictable. Then by the hardcore-ness of G, we have that

(G(m1), . . . , G(md), (aux, G, f, f(m1), . . . , f(md)))

is indistinguishable from

(R1, . . . , Rd, (aux, G, f, f(m1), . . . , f(md)))

Finally by post-processing with PKE.Enc, we have that

({PKE.Enc(pk, f(mi);G(mi))}, aux, G, f, {f(mi)}, pk)

is indistinguishable from

({PKE.Enc(pk, f(mi);Ri)}, aux, G, f, {f(mi)}, pk)

The first case is H1, and the second is H2, proving their indistinguishability.
– H3. Now we just change each ci to be a uniformly random ciphertext Ci. The

indistinguishability from H2 follows from the pseudorandomness of PKE.Enc.
– H4. Finally, we change f back to the injective mode, generating (f, f−1)←

TELF.GenInj(M) By analagous arguments, A distinguishes H4 from H3 with
advantage 1/3p. The result is that the adversary now sees (pk, C, aux)

Putting it all together, A distinguishes H0 from H4 with advantage at most
2/3p− negl ≤ 1/p ≤ ε, a contradiction. ut

6 Achieving CCA security

In this section, we turn to building CCA-secure DPKE for computationally
unpredictable sources.

We will loosely follow Peikert and Waters [18], who build CCA-secure public
key encryption from lossy trapdoor functions (LTDFs). The main difficulty is that
we want to switch to lossy mode in order to prove the security of the challenge
ciphertext, but need to maintain the ability to decrypt all other ciphertexts.
Their core idea is to devise a LTDF with many “branches”, each ciphertext using
a different branch. The challenge ciphertext is set to be encrypted using a lossy,
and all others are injective.

We will use this idea, but the technical implementation will be somewhat
different, and of course we will use a Trapdoor ELF with branches instead of an
LTDF. The details are below.

6.1 Our Construction

Our building blocks will be a pseudorandom generator G, a CCA-secure public key
encryption scheme (PKE.Gen,PKE.Enc,PKE.Dec), and an all-but-one Trapdoor
ELF (TELF.GenInj′,TELF.GenLossy′).

– DPKE.Gen runs (sk′, pk′)← PKE.Gen(λ), (f, f−1)← TELF.GenInj′(M), and
G0, G1 ← G. It outputs sk = (sk′, f−1) and pk = (pk′, f,G0, G1).

– DPKE.Enc(pk,m) runs b ← G0(m) to select a branch. Then it applied
our scheme from Section 5, using the branch b. Namely, it computes d ←
PKE.Enc(pk′, f(b,m);G1(m)). The output is the ciphertext c = (b, d)

– DPKE.Dec(sk, c): run y ← PKE.Dec(sk′, c′). If y = ⊥ output ⊥. Other-
wise, it runs m ← f−1(b, y). Finally, it checks that the ciphertext is well-
formed by re-encrypting m. Namely, it verifies that b = G0(m) and d =
PKE.Enc(pk, f(b,m);G1(m)). If the checks fail, it outputs ⊥. Otherwise, it
outputs m.

The completeness of the scheme is immediate. Next, we prove security

Theorem 7. For any constant d, if G is an injective hardcore function for any
computationally unpredictable sources on d inputs, (PKE.Gen,PKE.Enc,PKE.Dec)
is CCA-secure, (TELF.GenInj,TELF.GenLossy) is a secure all-but-d Trapdoor ELF,
then (DPKE.Gen,DPKE.Enc,DPKE.Dec) is a CCA-secure deterministic public
key encryption scheme for arbitrary computationally unpredictable sources on d
inputs. If (PKE.Gen,PKE.Enc,PKE.Dec) has pseudorandom ciphertexts, then so
does (DPKE.Gen,DPKE.Enc,DPKE.Dec).

Proof. For simplicity, we prove the case d = 1, the more general case being a
straightforward adaptation. Consider an arbitrary computationally unpredictable
source D, sampling messages m and auxiliary information aux. We will prove
the pseudorandom ciphertext case, the other case being analogous. We need to
prove that (pk,DPKE.Enc(pk,m), aux) is computationally indistinguishable from
(pk, C, aux), where (sk, pk) ← DPKE.Gen(λ), (m, aux) ← D, and C is chosen
uniformly random from the ciphertext space. This must hold even if an adversary
can make decryption queries on any ciphertext except the challenge.

Suppose toward contradiction that we have an adversary A which distinguishes
the two distributions with advantage ε. Let p be a polynomial such that 1/p ≥ ε
infinitely often. We prove security through a sequence of hybrids:

– H0. Here, we give the adversary (pk, c∗, aux) where pk = (pk′, f,G0, G1),
(sk′, pk′)← PKE.Gen(λ), and (f, f−1)← TELF.GenInj(M), and G0, G1 ← G.
Also, we set c∗ = DPKE.Enc(pk,m) = (b∗, d∗) where b∗ = G0(m) and d∗ =
PKE.Enc(pk′, f(b∗,m);G1(m)).

– H1. In this hybrid, we change f to be lossy on the branch b∗. That is,
(f, f−1)← TELF.GenInj(M, b∗, r), where r is chosen so that A cannot distin-
guish this change except with advantage 1/3p.
We need to make sure that we can still answer CCA queries. For this, we just
need that G0 is injective, so that any other valid ciphertext will correspond
to a different branch.

– H2. In this hybrid, we replace G1(m) with random. We now claim that this
change is indistinguishable to the adversary.
Toward that end, first observe that since G0 is hardcore, we have that
(G0, G0(m), aux) is indistinguishable from (G0, S, aux) for a uniformly random

S. This means that (m, (aux, G0, G0(m))) is computationally unpredictable.
But then by Lemma 1, we also have that (m, (aux, G0, b

∗, f, f−1, f(b∗,m)))
is computationally unpredictable, where (f, f−1)← TELF.GenLossy(M, b∗, r)
for b∗ = G0(m). Finally, by the hardcore property of G1, we have that
the distribution (G1, G1(m), aux, G0, b

∗, f, f−1, f(b∗,m)) is indistinguishable
from (G1, R, aux, G0, b

∗, f, f−1, f(b∗,m)) for a random R.
Now notice that an adversary given (G1, R, aux, G0, b

∗, f, f−1, f(b∗,m)) for
R = G1(m) (resp. random) can easily simulate the view of A in H1 (resp. H2)
by using f−1 to answer decryption queries. Therefore, if A distinguishes the
two hybrids, we can easily create a distinguisher for these two distribution,
arriving at a contradiction.

– H3. Now we just change c to be a uniformly random ciphertext C. The
indistinguishability from H2 follows from the CCA-secure pseudorandomness
of PKE.Enc.
Now notice that the d∗ portion of the adversary’s view is completely inde-
pendent of m.

– H4. Now we invoke the hardcore-ness of G0 one more time to replace G0(m)
with a random b∗.

– H5. Finally, we change f back to the injective mode, generating (f, f−1)←
TELF.GenInj(M) By analagous arguments, A distinguishes H5 from H4 with
advantage 1/3p. The result is that the adversary now sees (pk, C, aux)

Putting it all together, A distinguishes H0 from H5 with advantage at most
2/3p− negl ≤ 1/p ≤ ε, a contradiction. ut

References

1. J. Alwen, Y. Dodis, and D. Wichs. Survey: Leakage resilience and the bounded
retrieval model. In K. Kurosawa, editor, ICITS 09, volume 5973 of LNCS, pages
1–18. Springer, Heidelberg, Dec. 2010.

2. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. In J. Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Heidelberg, Aug. 2001.

3. M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable
encryption. In A. Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages
535–552. Springer, Heidelberg, Aug. 2007.

4. M. Bellare, D. Cash, and R. Miller. Cryptography secure against related-key attacks
and tampering. In D. H. Lee and X. Wang, editors, ASIACRYPT 2011, volume
7073 of LNCS, pages 486–503. Springer, Heidelberg, Dec. 2011.

5. M. Bellare, M. Fischlin, A. O’Neill, and T. Ristenpart. Deterministic encryption:
Definitional equivalences and constructions without random oracles. In D. Wagner,
editor, CRYPTO 2008, volume 5157 of LNCS, pages 360–378. Springer, Heidelberg,
Aug. 2008.

6. M. Bellare and V. T. Hoang. Resisting randomness subversion: Fast deterministic
and hedged public-key encryption in the standard model. In E. Oswald and
M. Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages
627–656. Springer, Heidelberg, Apr. 2015.

7. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press,
Nov. 1993.

8. A. Boldyreva, S. Fehr, and A. O’Neill. On notions of security for deterministic
encryption, and efficient constructions without random oracles. In D. Wagner,
editor, CRYPTO 2008, volume 5157 of LNCS, pages 335–359. Springer, Heidelberg,
Aug. 2008.

9. Z. Brakerski and G. Segev. Better security for deterministic public-key encryption:
The auxiliary-input setting. In P. Rogaway, editor, CRYPTO 2011, volume 6841 of
LNCS, pages 543–560. Springer, Heidelberg, Aug. 2011.

10. C. Brzuska, P. Farshim, and A. Mittelbach. Indistinguishability obfuscation and
UCEs: The case of computationally unpredictable sources. In J. A. Garay and
R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 188–205.
Springer, Heidelberg, Aug. 2014.

11. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited
(preliminary version). In 30th ACM STOC, pages 209–218. ACM Press, May 1998.

12. K.-M. Chung, H. Lin, M. Mahmoody, and R. Pass. On the power of nonuniformity
in proofs of security. In R. D. Kleinberg, editor, ITCS 2013, pages 389–400. ACM,
Jan. 2013.

13. D. M. Freeman, O. Goldreich, E. Kiltz, A. Rosen, and G. Segev. More construc-
tions of lossy and correlation-secure trapdoor functions. In P. Q. Nguyen and
D. Pointcheval, editors, PKC 2010, volume 6056 of LNCS, pages 279–295. Springer,
Heidelberg, May 2010.

14. B. Fuller, A. O’Neill, and L. Reyzin. A unified approach to deterministic encryption:
New constructions and a connection to computational entropy. In R. Cramer, editor,
TCC 2012, volume 7194 of LNCS, pages 582–599. Springer, Heidelberg, Mar. 2012.

15. O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In
21st ACM STOC, pages 25–32. ACM Press, May 1989.

16. V. Goyal, A. O’Neill, and V. Rao. Correlated-input secure hash functions. In Y. Ishai,
editor, TCC 2011, volume 6597 of LNCS, pages 182–200. Springer, Heidelberg, Mar.
2011.

17. T. Matsuda and G. Hanaoka. Chosen ciphertext security via UCE. In H. Krawczyk,
editor, PKC 2014, volume 8383 of LNCS, pages 56–76. Springer, Heidelberg, Mar.
2014.

18. C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In R. E.
Ladner and C. Dwork, editors, 40th ACM STOC, pages 187–196. ACM Press, May
2008.

19. A. Raghunathan, G. Segev, and S. P. Vadhan. Deterministic public-key encryption
for adaptively chosen plaintext distributions. In T. Johansson and P. Q. Nguyen,
editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 93–110. Springer, Hei-
delberg, May 2013.

20. J. L. Villar. Optimal reductions of some decisional problems to the rank problem.
In X. Wang and K. Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages
80–97. Springer, Heidelberg, Dec. 2012.

21. D. Wichs. Barriers in cryptography with weak, correlated and leaky sources. In
R. D. Kleinberg, editor, ITCS 2013, pages 111–126. ACM, Jan. 2013.

22. M. Zhandry. The magic of ELFs. In M. Robshaw and J. Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 479–508. Springer, Heidelberg,
Aug. 2016.

	On ELFs, Deterministic Encryption, and Correlated-Input Security

