
Covert Security with Public Verifiability:
Faster, Leaner, and Simpler

Cheng Hong1, Jonathan Katz2?, Vladimir Kolesnikov3??,
Wen-jie Lu4, and Xiao Wang5

1 Alibaba, Hangzhou, China
vince.hc@alibaba-inc.com

2 University of Maryland, College Park, USA
jkatz@cs.umd.edu

3 Georgia Tech, Atlanta, USA
kolesnikov@gatech.edu

4 University of Tsukuba, Tsukuba, Japen
riku@mdl.cs.tsukuba.ac.jp

5 MIT/BU, Cambridge/Boston, USA
wangxiao@northwestern.edu

Abstract. The notion of covert security for secure two-party computa-
tion serves as a compromise between the traditional semi-honest and ma-
licious security definitions. Roughly, covert security ensures that cheat-
ing behavior is detected by the honest party with reasonable probability
(say, 1/2). It provides more realistic guarantees than semi-honest security
with significantly less overhead than is required by malicious security.

The rationale for covert security is that it dissuades cheating by parties
that care about their reputation and do not want to risk being caught.
But a much stronger disincentive is obtained if the honest party can
generate a publicly verifiable certificate when cheating is detected. While
the corresponding notion of publicly verifiable covert (PVC) security has
been explored, existing PVC protocols are complex and less efficient than
the best covert protocols, and have impractically large certificates.

We propose a novel PVC protocol that significantly improves on prior
work. Our protocol uses only “off-the-shelf” primitives (in particular,
it avoids signed oblivious transfer) and, for deterrence factor 1/2, has
only 20–40% overhead compared to state-of-the-art semi-honest proto-
cols. Our protocol also has, for the first time, constant-size certificates
of cheating (e.g., 354 bytes long at the 128-bit security level).

As our protocol offers strong security guarantees with low overhead, we
suggest that it is the best choice for many practical applications of secure
two-party computation.

? Work supported in part by a grant from Alibaba.
?? Work supported in part by Sandia National Laboratories, a multimission laboratory

managed and operated by National Technology and Engineering Solutions of San-
dia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract
DE-NA-0003525.

1 Introduction

Secure two-party computation allows two mutually distrusting parties PA and
PB to evaluate a function of their inputs without requiring either party to reveal
their input to the other. Traditionally, two security notions have been consid-
ered [7]. Protocols with semi-honest security can be quite efficient, but only
protect against passive attackers who do not deviate from the prescribed pro-
tocol. Malicious security, in contrast, categorically prevents an attacker from
gaining any advantage by deviating from the protocol; unfortunately, despite
many advances over the past few years, protocols achieving malicious security
are still noticeably less efficient than protocols with semi-honest security.

The notion of covert security [3] was proposed as a compromise between
semi-honest and malicious security. Roughly, covert security ensures that while
a cheating attacker may be successful with some small probability, the attempted
cheating will fail and be detected by the other party with the remaining proba-
bility. The rationale for covert security is that it dissuades cheating by parties
that care about their reputation and do not want to risk being caught. Covert
security thus provides stronger guarantees than semi-honest security; it can also
be achieved with better efficiency than malicious security [3, 9, 6, 17].

Nevertheless, the guarantee of covert security is not fully satisfactory. Covert
security only ensures that when cheating is unsuccessful, the honest party detects
the fact that cheating took place—but it provides no mechanism for the honest
party to prove this fact to anyone else (e.g., a judge or the public) and, indeed,
existing covert protocols do not provide any such mechanism. Thus, a cheating
attacker only risks harming its reputation with one other party; even if the honest
party publicly announces that it caught the other party cheating, the cheating
party can simply counter that it is being falsely accused.

Motivated by this limitation of covert security, Asharov and Orlandi [2] pro-
posed the stronger notion of publicly verifiable covert (PVC) security. As in the
covert model, any attempted cheating is detected with some probability; now,
however, when cheating is detected the honest party can generate a publicly ver-
ifiable certificate of that fact. This small change would have a significant impact
in practice, as a cheating attacker now risks having its reputation publicly and
permanently damaged if it is caught. Alternatively (or additionally), the cheat-
ing party can be brought to court and fined for its misbehavior; the parties may
even sign a contract in advance that describes the penalties to be paid if either
party is caught. Going further, the parties could execute a “smart contract” in
advance of the protocol execution that would automatically pay out if a valid
certificate of cheating is posted on a blockchain. All these consequences are in-
feasible in the original covert model and, overall, the PVC model seems to come
closer to the original goal of covert security.

Asharov and Orlandi [2] mainly focus on feasibility; although their protocol is
implementable, it is not competitive with state-of-the-art semi-honest protocols
since, in particular, it requires a stronger variant of oblivious transfer (OT) called
signed OT and thus is not directly compatible with OT extension. Subsequent
work by Kolesnikov and Malozemoff [13] shows various efficiency improvements

2

to the Asharov-Orlandi protocol, with the primary gain resulting from a new,
dedicated protocol for signed-OT extension. (Importantly, signed-OT extension
does not follow generically from standard OT extension, and so cannot take
advantage of the most-efficient recent constructions of the latter.)

Unfortunately, existing PVC protocols [2, 13] seem not to have attracted
much attention; for example, to the best of our knowledge, they have never been
implemented. We suggest this is due to a number of considerations:

– High overhead. State-of-the-art PVC protocols still incur a significant
overhead compared to known semi-honest protocols, and even existing covert
protocols. (See Section 6.)

– Large certificates. Existing PVC protocols have certificates of size at least
κ · |C| bits, where κ is the (computational) security parameter and |C| is the
circuit size.1 Certificates this large are prohibitively expensive to propagate
and are incompatible with some of the applications mentioned above (e.g.,
posting a certificate on a blockchain).

– Complexity. Existing PVC protocols rely on signed OT, a non-standard
primitive that is less efficient than standard OT, is not available in existing
secure-computation libraries, and is somewhat complicated to realize (espe-
cially for signed-OT extension).

1.1 Our Contributions

In this work we put forward a new PVC protocol in the random oracle model
that addresses the issues mentioned above. Specifically:

– Low overhead. We improve on the efficiency of prior work by roughly a
factor of 3× for deterrence factor 1/2, and even more for larger deterrence.
(An exact comparison depends on a number of factors; we refer to Section 6
for a detailed discussion.) Strikingly, our PVC protocol (with deterrence
factor 1/2) incurs only 20–40% overhead compared to state-of-the-art semi-
honest protocols based on garbled circuits.

– Small certificates. We achieve, for the first time, constant-size certificates
(i.e., independent of the circuit size or the lengths of the parties’ inputs).
Concretely, our certificates are small: at the 128-bit security level, they are
only 354 bytes long.

– Simplicity. Our protocol avoids entirely the need for signed OT, and relies
only on standard building blocks such as (standard) OT and circuit garbling.
We also dispense with the XOR-tree technique for preventing selective-failure
attacks; this allows us to avoid increasing the number of effective OT inputs.
This reduction in complexity allowed us to produce a simple and efficient
(and, to our knowledge, the first) implementation of a PVC protocol.

1 We observe that the certificate size in [13] can be improved to O(κ · n) bits (where
n is the parties’ input lengths) by carefully applying ideas from the literature. In
many cases, this is still unacceptably large.

3

Overview of the paper. In Section 2 we provide an overview of prior PVC
protocols and explain the intuition behind the construction of our protocol.
After some background in Section 3, we present the description of our protocol
in Section 4 and prove security in Section 5. Section 6 gives an experimental
evaluation of our protocol and a comparison to prior work.

2 Technical Overview

We begin by providing an overview of the approach taken in prior work designing
PVC protocols. Then we discuss the intuition behind our improved protocol.

2.1 Overview of Prior Work

At a high level, both previous works constructing PVC protocols [2, 13] rely
on the standard cut-and-choose paradigm [18] using a small number of garbled
circuits, with some additional complications to achieve public verifiability. Both
works rely crucially on a primitive called signed OT ; this is a functionality similar
to OT but where the receiver additionally learns the sender’s signatures on all
the values it obtains. Roughly, prior protocols proceed as follows:

1. Let λ be a parameter that determines the deterrence factor (i.e., the proba-
bility of detecting misbehavior). PA picks random seeds {seedj}λj=1 and PB

chooses a random index ̂ ∈ {1, . . . , λ} that will serve as the “evaluation
index” while the j 6= ̂ will be “check indices.” The parties run signed OT
using these inputs, which allows PB to learn {seedj}j 6=̂ along with signatures
of PA on all those values.

2. PA generates λ garbled circuits, and then sends signed commitments to those
garbled circuits (along with the input-wire labels corresponding to PA’s input
wires). Importantly, seedj is used to derive the (pseudo)randomness for the
jth garbling as well as the jth commitment.
The parties also use signed OT so that PB can obtain the input-wire labels
for its inputs across all the circuits.

3. For all j 6= ̂, party PB checks that the commitment to the jth garbled
circuit is computed correctly based on seedj and that the input-wire labels
it received are correct; if this is not the case, then PB can generate a certificate
of cheating that consists of the inconsistent values plus their signatures.

4. Assuming no cheating was detected, PB reveals ̂ to PA, who then sends the
̂th garbled circuit and the input-wire labels corresponding to its own inputs
for that circuit. PB can then evaluate the garbled circuit as usual.

Informally, we refer to the jth garbled circuit and commitment as the jth instance
of the protocol. If PA cheats in the jth instance of the protocol, then it is caught
with probability at least 1 − 1

λ (i.e., if j is a check index). Moreover, if PA is
caught, then PB has a signed seed (which defines what PA was supposed to do in
the jth instance) and also a signed commitment to an incorrect garbled circuit or

4

incorrect input-wire labels. These values allow PB to generate a publicly verifiable
certificate that PA cheated.

As described, the protocol still allows PA to carry out a selective-failure
attack when transferring garbled labels for PB’s input wires. Specifically, it may
happen that a malicious PA corrupts a single input-wire label (used as input to
the OT protocol) for the ̂th garbled circuit—say, the label corresponding to a
‘1’ input on some wire. If PB aborts, then PA learns that PB’s input on that wire
was equal to 1. Such selective-failure attacks can be prevented using the XOR-
tree approach [18].2 This approach introduces significant overhead because it
increases the number of effective inputs, which in turn requires additional signed
OTs. The analysis in prior work [3, 2, 13] shows that to achieve deterrence factor
(i.e., probability of being caught cheating) 1/2, a replication factor of λ = 3 with
ν = 3 is needed. More generally, the deterrence factor as a function of λ and the
XOR-tree expansion factor ν is (1− 1

λ) · (1− 2−ν+1).

Practical performance. Several aspects of the above protocol are relatively
inefficient. First, the dependence of the deterrence factor on the replication fac-
tor λ is not optimal due to the XOR tree, e.g., to achieve deterrence factor 1/2
at least λ = 3 garbled circuits are needed (unless ν is impractically large); the
issue becomes even more significant when a larger deterrence factor is desired.
In addition, the XOR-tree approach used in prior work increases the effective
input length by at least a factor of 3, which necessitates 3× more signed OTs;
recall these are relatively expensive since signed-OT extension is. Finally, prior
protocols have large certificates. This seems inherent in the more efficient pro-
tocol of [13] due to the way they do signed-OT extension. (Avoiding signed-OT
extension would result in a much less efficient protocol overall.)

2.2 Our Solution

The reliance of prior protocols on signed OT and their approach to preventing
selective-failure attacks affect both their efficiency as well as the size of their
certificates. We address both these issues in the protocol we design.

As in prior work, we use the cut-and-choose approach and have PB evaluate
one garbled circuit while checking the rest, and we realize this by having PA

choose seeds for each of λ executions and then allowing PB to obliviously learn
all-but-one of those seeds. One key difference in our protocol is that we utilize the
seeds chosen by PA not only to “derandomize” the garbled-circuit generation and
commitments, but also to derandomize the entire remainder of PA’s execution,
and in particular its execution of the OT protocol used to transfer PB’s input-
wire labels to PB. This means that after PB obliviously learns all-but-one of the
seeds of PA, the rest of PA’s execution is entirely deterministic; thus, PB can verify
correct execution of PA during the entire rest of the protocol for all-but-one of
the seeds. Not only does this eliminate the need for signed OT for the input-wire

2 For reasonable values of the parameters, the XOR-tree approach will be more efficient
than a coding-theoretic approach [18].

5

labels, but it also defends against the selective-failure attack described earlier
without the need to increase the effective input length at all.

As described, the above allows PB to detect cheating by PA but does not
yet achieve public verifiability. For this, we additionally require PA to sign its
protocol messages; if PA cheats, PB can generate a certificate of cheating from
the seed and the corresponding signed inconsistent transcript.

Thus far we have focused on the case where PA is malicious. We must also
consider the case of a malicious PB attempting to frame an honest PA. We
address this by also having PB commit in advance to its randomness3 for each
of the λ protocol instances. The resulting commitments will be included in PA’s
signature, and will ensure that a certificate will be rejected if it corresponds to
an instance in which PB deviated from the protocol.

Having PB commit to its randomness also allows us to avoid the need for
signed OT in the first step, when PB learns all-but-one of PA’s seeds. This is
because those seeds can be reconstructed from PB’s view of the protocol, i.e.,
from the transcript of the (standard) OT protocol used to transfer those seeds
plus PB’s randomness. Having PA sign the transcripts of those OT executions
serves as publicly verifiable evidence of the seeds used by PA.

We refer to Section 4 for further intuition behind our protocol, as well as its
formal specification.

3 Covert Security with Public Verifiability

Before defining the notion of PVC security, we review the (plain) covert model [3]
it extends. We focus on the strongest formulation of covert security, namely the
strong explicit cheat formulation. This notion is formalized via an ideal function-
ality that explicitly allows an adversary to specify an attempt at cheating; in
that case, the ideal functionality allows the attacker to successfully cheat with
probability 1−ε, but the attacker is caught by the other party with probability ε;
see Figure 1. (As in [2], we also allow an attacker to “blatantly cheat,” which
guarantees that it will be caught.) For simplicity, we adapt the functionality such
that only PA has this option (since this is what is achieved by our protocol). For
conciseness, we refer to a protocol realizing this functionality (against malicious
adversaries) as having covert security with deterrence ε.

The PVC model extends the above to consider a setting wherein, before
execution of the protocol, PA has generated keys (pk, sk) for a digital-signature
scheme, with the public key pk known to PB. We do not require that (pk, sk) is
honestly generated, or that PA gives any proof of knowledge of the secret key
sk corresponding to the public key pk. In addition, the protocol is augmented
with two additional algorithms, Blame and Judge. The Blame algorithm is run
by PB when it outputs corrupted. This algorithm takes as input PB’s view of
the protocol execution thus far, and outputs a certificate cert which is then sent

3 As an optimization, we have PB commit to seeds, just like PA, and then use those
seeds to generate the (pseudo)randomness to use in each instance. (This optimization
is critical for realizing constant-size certificates.)

6

Functionality F

PA sends x ∈ {0, 1}n1 ∪ {⊥, blatantCheat, cheat} and PB sends y ∈ {0, 1}n2 .

1. If x ∈ {0, 1}n1 then compute f(x, y) and send it to PB.
2. If x =⊥ then send ⊥ to both parties.
3. If x = blatantCheat, then send corrupted to both parties.
4. If x = cheat then:

– With probability ε, send corrupted to both parties.
– With probability 1 − ε, send (undetected, y) to PA. Then wait to receive
z ∈ {0, 1}n3 from PA, and send z to PB.

Fig. 1. Functionality F for covert security with deterrence ε for two-party computation
of a function f .

to PA. The Judge algorithm takes as input PA’s public key pk, (a description of)
the circuit C being evaluated, and a certificate cert, and outputs 0 or 1.

A protocol Π along with algorithms Blame, Judge is said to be publicly veri-
fiable covert with deterrence ε for computing a circuit C if the following hold:

Covert security: The protocol Π has covert security with deterrence ε. (Since
the protocol includes the step of possibly sending cert to PA if PB outputs
corrupted, this ensures that cert itself does not violate privacy of PB.)

Public verifiability: If the honest PB outputs cert in an execution of the proto-
col, then we know Judge(pk, C, cert) = 1, except with negligible probability.

Defamation freeness: If PA is honest, then the probability that a malicious
PB generates a certificate cert for which Judge(pk, C, cert) = 1 is negligible.4

As in prior work on the PVC model, we assume the Judge algorithm learns
the circuit C through some “out-of-band” mechanism; in particular, we do not
include C as part of the certificate. In some applications (such as the smart-
contract example), it may indeed be the case that the party running the Judge
algorithm is aware of the circuit being computed in advance. When this is not the
case, a description of C must be included as part of the certificate. However, we
stress that the description of a circuit may be much shorter than the full circuit;
for example, specifying a circuit for computing the Hamming distance between
two 106-bit vectors requires only a few lines of high-level code in modern secure-
computation platforms even though the circuit itself may have millions of gates.
Alternately, there may be a small set of commonly used “reference circuits” that
can be identified by ID number rather than by their complete wiring diagram.

4 Note that defamation freeness implies that the protocol is also non-halting detection
accurate [3].

7

4 Our PVC Protocol

4.1 Preliminaries

We let [n] = {1, . . . , n}. We use κ for the (computational) security parameter,
but for compactness in the protocol description we let κ be an implicit input to
our algorithms. For a boolean string y, we let y[i] denote the ith bit of y.

We let Com denote a commitment scheme. We assume for simplicity that it is
non-interactive, but this restriction can easily be removed. The decommitment
decom is simply the random coins used during commitment. H is a hash function
with 2κ-bit output length.

We say a party “uses randomness derived from seed” to mean that the party
uses a pseudorandom function (with seed as the key) in CTR mode to obtain
sufficiently many pseudorandom values that it then uses as its random coins. If
m1,m2, . . . is a transcript of an execution of a two-party protocol (where the
parties alternate sending the messages), the transcript hash of the execution is
defined to be H = (H(m1), H(m2), . . .).

We let ΠOT be an OT protocol realizing a parallel version of the OT func-
tionality, as in Figure 2.

Functionality FOT

Private inputs: PA has input {(Bi,0, Bi,1)}n2
i=1 and PB has input y ∈ {0, 1}n2 .

1. Upon receiving {(Bi,0, Bi,1)}n2
i=1 from PA and y from PB, send {Bi,y[i]}n2

i=1

to PB.

Fig. 2. Functionality FOT for parallel oblivious transfer.

Garbling. Our protocol relies on a (circuit) garbling scheme. For our purposes, a
garbling scheme is defined by algorithms (Gb,Eval) having the following syntax:

– Gb takes as input the security parameter 1κ and a circuit C with n = n1 +n2
input wires and n3 output wires. It outputs input-wire labels {Xi,0, Xi,1}ni=1,
a garbled circuit GC, and output-wire labels {Zi,0, Zi,1}n3

i=1.
– Eval is a deterministic algorithm that takes as input a set of input-wire

labels {Xi}ni=1 and a garbled circuit GC. It outputs a set of output-wire
labels {Zi}n3

i=1.

Correctness is defined as follows: For any circuit C as above and any input
w ∈ {0, 1}n, consider the experiment in which we first run ({Xi,0, Xi,1}ni=1,GC,
{Zi,0, Zi,1}n3

i=1) ← Gb(1κ, C) followed by {Zi} := Eval({Xi,w[i]},GC). Then, ex-
cept with negligible probability, it holds that Zi = Zi,y[i] and Zi 6= Zi,1−y[i] for
all i, where y = C(w).

8

A garbling scheme can be used by (honest) parties PA and PB to compute C
in the following way: first, PA computes ({Xi,0, Xi,1}ni=1,GC, {Zi,0, Zi,1}n3

i=1) ←
Gb(1κ, C) and sends GC, {Zi,0, Zi,1}n3

i=1 to PB. Next, PB learns the input-wire
labels {Xi,w[i]} corresponding to some input w. (In a secure-computation proto-
col, PA would send PB the input-wire labels corresponding to its own portion of
the input, while the parties would use OT to enable PB to learn the input-
wire labels corresponding to PB’s portion of the input.) Then PB computes
{Zi} := Eval({Xi,w[i]},GC). Finally, PB sets y[i], for all i, to be the (unique)
bit for which Zi = Zi,y[i]; the output is y.

We assume the garbling scheme satisfies the standard security definition [10,
15]. That is, we assume there is a simulator SGb such that for all C, w, the

distribution
{
SGb(1κ, C, C(w))

}
is computationally indistinguishable from{

({Xi,0, Xi,1}ni=1,GC, {Zi,0, Zi,1}n3
i=1)← Gb(1κ, C) : ({Xi,w[i]},GC, {Zi,0, Zi,1}n3

i=1)
}
.

As this is the “minimal” security notion for garbling, it is satisfied by garbling
schemes including all state-of-the-art optimizations [14, 4, 20].

4.2 Our Scheme

We give a high-level description of our protocol below; a formal definition of the
protocol is provided in Figure 3. The Blame algorithm is included as part of the
protocol description (cf. Step 6) for simplicity. The Judge algorithm is specified
in Figure 5.

We use a signature scheme (Gen,Sign,Vrfy). Before executing the protocol,
PA runs Gen to obtain public key pk and private key sk; we assume that PB

knows pk before running the protocol. As noted earlier, if PA is malicious then
it may choose pk arbitrarily.

The main idea of the protocol is to run λ parallel instances of a “basic”
garbled-circuit protocol that is secure against a semi-honest PA and a mali-
cious PB. Of these instances, λ− 1 will be checked by PB, while a random one
(the ̂th) will be evaluated by PB to learn its output. To give PB the ability to
verify honest behavior in the check instances, we make all the executions deter-
ministic by having PA use (pseudo)randomness derived from corresponding seeds
{seedAj }j∈[λ]. That is, PA will uniformly sample each seed seedAj and use it to
generate (pseudo)randomness for its jth instance. Then PA and PB run an OT
protocol ΠOT (with malicious security) that allows PB to learn λ− 1 of those
seeds. Since PA’s behavior in those λ− 1 instances is completely determined by
PB’s messages and those seeds, it is possible for PB to check PA’s behavior in
those instances.

The above idea allows PB to catch a cheating PA, but not to generate a
publicly verifiable certificate that PA has cheated. To add this feature, we have
PA sign the transcripts of each instance, including the transcript of the execution
of the OT protocol by which PB learned the corresponding seed. If PA cheats
in, say, the jth instance (j 6= ̂) and is caught, then PB can output a certificate

9

Protocol Πpvc

Private inputs: PA has input x ∈ {0, 1}n1 and keys (pk, sk) for a signature
scheme. PB has input y ∈ {0, 1}n2 and knows pk.
Public inputs: Both parties also agree on a circuit C and parameters κ, λ.

Protocol:

1. PB chooses uniform κ-bit strings {seedBj }j∈[λ], sets hj ← Com(seedBj) for all j,
and sends {hj}j∈[λ] to PA.

2. PA chooses uniform κ-bit strings {seedAj ,witnessj}j∈[λ], while PB chooses uni-
form ̂ ∈ [λ] and sets b̂ := 1 and bj := 0 for j 6= ̂.
PA and PB run λ executions of ΠOT, where in the jth execution PA uses
(seedAj ,witnessj) as input, and PB uses bj as input and randomness derived
from seedBj . Upon completion, PB obtains {seedAj }j 6=̂ and witnesŝ. Let transj
be the transcript of the jth execution of ΠOT.

3. For each j ∈ [λ], PA garbles C using randomness derived from seedAj .
Denote the jth garbled circuit by GCj , the input-wire labels of PA by
{Aj,i,b}i∈[n1],b∈{0,1} , the input-wire labels of PB by {Bj,i,b}i∈[n2],b∈{0,1} , and
the output-wire labels by {Zj,i,b}i∈[n3],b∈{0,1} .
PA and PB then run λ executions of ΠOT, where in the jth execution PA uses
{(Bj,i,0, Bj,i,1)}n2

i=1 as input, and PB uses y as input if j = ̂ and 0n2 otherwise.
The parties use seedAj and seedBj , respectively, to derive all their randomness
in the jth execution. In this way, PB obtains {B̂,i,y[i]}i∈[n2]. We let Hj denote
the transcript hash for the jth execution of ΠOT.

4. PA computes commitments hAj,i,b ← Com(Aj,i,b) for
all j, i, b, and then computes the commitments cj ←
Com

(
GCj , {hAj,i,b}i∈[n1],b∈{0,1} , {Zj,i,b}i∈[n3],b∈{0,1}

)
for all j, where each

pair (hAj,i,0, h
A
j,i,1) is randomly permuted. All randomness in the jth instance

is derived from seedAj . Finally, PA sends {cj}j∈[λ] to PB.
5. For each j ∈ [λ], PA computes σj ← Signsk(C, j, hj , transj ,Hj , cj) and sends σj

to PB. Then PB checks that σj is a valid signature for all j, and aborts with
output ⊥ if not.

6. For each j 6= ̂, PB uses seedAj and the messages it sent to simulate PA’s compu-

tation in steps 3 and 4, and in particular computes Ĥj , ĉj . It then checks that
(Ĥj , ĉj) = (Hj , cj). If the check fails for some j 6= ̂, then PB chooses a uniform
such j, outputs corrupted, sends cert := (j, transj ,Hj , cj , σj , seedBj , decomB

j) to
PA, and halts.

Fig. 3. Full description of our PVC protocol (part I).

that includes PB’s view (including its randomness) in the execution of the jth
OT protocol (from which seedAj can be recomputed) and the transcript of the
jth instance, along with PA’s signature on the transcripts. Note that, given the
randomness of both PA and PB, the entire transcript of the instance can be
recomputed and anyone can then check whether it is consistent with seedAj . We
remark that nothing about PB’s inputs is revealed by a certificate since PB uses
a dummy input in all the check instances.

10

Protocol Πpvc

7. PB sends (̂, {seedAj }j 6=̂,witnesŝ) to PA, who checks that {seedAj }j 6=̂,witnesŝ
are all correct and aborts if not.

8. PA sends GĈ, {Â,i,x[i]}i∈[n1], {h
A
̂,i,b}i∈[n1],b∈{0,1} (in the same permuted or-

der as before), and {Ẑ,i,b}i∈[n3],b∈{0,1} to PB, along with decommitments
decom̂ and {decomA

̂,i,x[i]}. If Com(GĈ, {hÂ,i,b}, {Ẑ,i,b}; decom̂) 6= ĉ or

Com(Â,i,x[i]; decom
A
̂,i,x[i]) 6∈ {hÂ,i,b}b∈{0,1} for some i, then PB aborts with

output ⊥.
Otherwise, PB evaluates GĈ using {Â,i,x[i]}i∈[n1] and {B̂,i,y[i]}i∈[n2] to ob-
tain output-wire labels {Zi}i∈[n3]. For each i ∈ [n3], if Zi = Ẑ,i,0, set z[i] := 0;
if Zi = Ẑ,i,1, set z[i] := 1. (If Zi 6∈ {Ẑ,i,0, Ẑ,i,1} for some i, then abort with
output ⊥.) Output z.

Fig. 4. Full description of our PVC protocol (part II).

There still remains the potential issue of defamation. Indeed, an honest PA’s
messages might be deemed inconsistent if PB includes in the certificate fake
messages different from those sent by PB in the real execution. We prevent
this by having PB commit to its randomness for each instance at the beginning
of the protocol, and having PA sign those commitments. Consistency of PB’s
randomness and the given transcript can then be checked as part of verification
of the certificate.

As described, the above would result in a certificate that is linear in the
length of PB’s inputs, since there are that many OT executions (in each instance)
for which PB must generate randomness. We compress this to a constant-size
certificate by having PB also generate its (pseudo)randomness from a short seed.

The above description conveys the main ideas of the protocol, though various
other modifications are needed for the proof of security. We refer the reader to
Figures 3 and 5 for the details.

4.3 Optimizations

Our main protocol is already quite efficient, but we briefly discuss some addi-
tional optimizations that can be applied.

Commitments in the random-oracle model. When standard garbling schemes
are used, all the values committed during the course of the protocol have high
entropy; thus, commitment to a string r can be done by simply computing H(r)
(if H is modeled as a random oracle) and decommitment requires only sending r.

Using correlated oblivious transfer. One optimization introduced by Asharov et
al. [1] is using correlated OT for transferring PB’s input-wire labels when gar-
bling is done using the free-XOR approach [14]. This optimization is compatible
with our protocol in a straightforward manner.

11

Algorithm Judge

Inputs: A public key pk, a circuit C, and a certificate cert.

1. Parse cert as (j, transj ,Hj , cj , σj , seedBj , decomB
j). Compute hj :=

Com(seedBj ; decomB
j).

2. If Vrfypk((C, j, hj , transj ,Hj , cj), σj) = 0, output 0.
3. Simulate an execution of ΠOT by PB, where PB’s input is 0, its randomness is

derived from seedBj , and PA’s messages are those included in transj . Check that
all of PB’s messages generated in this simulation are consistent with transj ;
terminate with output 0 if not. Otherwise, let seedAj denote the output of PB

from the simulated execution of ΠOT.
4. Use seedAj and seedBj to simulate an honest execution of steps 3 and 4 of the

protocol, and in particular compute Ĥj , ĉj .
5. Do:

(a) If (Ĥj , ĉj) = (Hj , cj) then output 0.
(b) If ĉj 6= cj then output 1.
(c) Find the first message for which Ĥj 6= Hj . If this corresponds to a message

sent by PA, output 1; otherwise, output 0.

Fig. 5. The Judge algorithm.

Avoiding committing to the input-wire labels. In our protocol, we have PA

commit to its input-wire labels (along with the rest of the garbled circuit). This
is done to prevent PA from sending incorrect input-wire labels in the final step.
We observe that this is unnecessary if the garbling scheme has the additional
property that it is infeasible to generate a garbled circuit along with incorrect
input-wire labels that result in a valid output when evaluated. (We omit a formal
definition.) Many standard garbling schemes have this property.

5 Proof of Security

The remainder of this section is devoted to a proof of the following result:

Theorem 1. Assume Com is computationally hiding/binding, H is collision-
resistant, the garbling scheme is secure, ΠOT realizes FOT, and the signature
scheme is existentially unforgeable under a chosen-message attack. Then protocol
Πpvc along with Blame as in step 6 and Judge as in Figure 5 is publicly verifiable
covert with deterrence ε = 1− 1

λ .

Proof. We separately prove covert security with ε-deterrence (handling the cases
where either PA or PB is corrupted), public verifiability, and defamation freeness.

12

Covert Security—Malicious PA

Let A be an adversary corrupting PA. We construct the following simulator S
that holds pk and runs A as a subroutine, while playing the role of PA in the
ideal world interacting with F:

1. Choose uniform κ-bit strings {seedBj }j∈[λ], set hj ← Com(seedBj) for all j,
and send {hj}j∈[λ] to A.

2. For all j ∈ [λ], run ΠOT with A, using input 0 and randomness derived from
seedBj . In this way, S obtains {seedAj }j∈[λ]. Let transj denote the transcript
of the jth execution.

3. For j ∈ [λ], run an execution of ΠOT with A, using input 0n2 and randomness
derived from seedBj . Let Hj denote the transcript hash of the jth execution.

4. Receive {cj}j∈[λ] from A.
5. Receive {σj} from A. If any of the signatures are invalid, send ⊥ to F and

halt.
6. For all j ∈ [λ], use seedAj and the messages sent previously to simulate the

computation of an honest PA in steps 3 and 4, and in particular compute
Ĥj , ĉj . Let J be the set of indices for which (Ĥj , ĉj) 6= (Hj , cj).
There are now three cases:
– If |J | ≥ 2 then send blatantCheat to F, send cert := (j, transj ,Hj , cj , σj ,

seedBj , decom
B
j) to A (for uniform j ∈ J), and halt.

– If |J | = 1 then send cheat to F. If F returns corrupted then set caught :=
true; if F returns (undetected, y), set caught := false. In either case,
continue below.

– If |J | = 0 then set caught :=⊥ and continue below.
0′. Rewind A and run steps 1′–6′ below until5 |J ′| = |J | and caught′ = caught.

1′. Choose uniform ̂ ∈ [λ]. For j 6= ̂, choose uniform κ-bit strings {seedBj }
and set hj ← Com(seedBj). Set ĥ ← Com(0κ). Send {hj}j∈[λ] to A.

2′. For all j 6= ̂, run ΠOT with A, using input 0 and randomness derived
from seedBj . In this way, S obtains {seedAj }j 6=̂. For the ̂th execution,

use the simulator SOT for protocol ΠOT, thus extracting both seedÂ and
witnesŝ. Let transj denote the transcript of the jth execution.

3′. For all j 6= ̂, run ΠOT with A, using input 0n2 and randomness derived
from seedBj . For j = ̂, use the simulator SOT for protocol ΠOT, thus
extracting {B̂,i,b}i∈[n2],b∈{0,1} . Let Hj denote the transcript hash of the
jth execution.

4′. Receive {cj}j∈[λ] from A.
5′. Receive {σj} from A. If any of the signatures are invalid, then return to

step 1′.
6′. For all j ∈ [λ], use seedAj and the messages sent previously to simulate

the computation of an honest PA in steps 3′ and 4′, and in particular
compute Ĥj , ĉj . Let J ′ be the set of indices for which (Ĥj , ĉj) 6= (Hj , cj).
If |J ′| = 1 and ̂ 6∈ J ′ then set caught′ := true. If |J ′| = 1 and ̂ ∈ J ′ then
set caught′ := false. If |J ′| = 0 then set caught′ :=⊥.

5 We use standard techniques [8, 16] to ensure that S runs in expected polynomial
time; details are omitted for the sake of the exposition.

13

7. If |J ′| = 1 and caught′ = true, then send cert := (j, transj ,Hj , cj , σj , seedBj)
to A (where j is the unique index in J ′) and halt.
Otherwise, send (̂, {seedAj }j 6=̂,witnesŝ) to A.

8. Receive GC, {Ai}i∈[n1], {hAi,b}i∈[n1],b∈{0,1} , {Zi,b}i∈[n3],b∈{0,1} , and the corre-
sponding decommitments fromA. If any of the decommitments are incorrect,
send ⊥ to F and halt.
Otherwise, there are two possibilities:
– If |J ′| = 1 and caught′ = false, then use {B̂,i,b}i∈[n2],b∈{0,1} and the

value y received from F to compute an output z exactly as an honest PB

would. Send z to F and halt.
– If |J ′| = 0, then compute an effective input x ∈ {0, 1}n1 using seedÂ and

the input-wire labels {Ai}i∈[n1]. Send x to F and halt.

We now show that the joint distribution of the view ofA and the output of PB

in the ideal world is computationally indistinguishable from the joint distribution
of the view of A and the output of PB in a real protocol execution. We prove this
by considering a sequence of experiments, where the output of each is defined to
be the view of A and the output of PB, and showing that the output of each is
computationally indistinguishable from the output of the next one.

Expt0. This is the ideal-world execution between S (as described above) and
the honest PB holding some input y, both interacting with functionality F.

By inlining the actions of S,F, and PB, we may rewrite the experiment as
follows:

1. Choose uniform κ-bit strings {seedBj }j∈[λ], set hj ← Com(seedBj) for all j,
and send {hj}j∈[λ] to A.

2. For all j ∈ [λ], run ΠOT with A, using input 0 and randomness derived from
seedBj . Obtain {seedAj }j∈[λ] as the outputs. Let transj denote the transcript
of the jth execution.

3. For j ∈ [λ], run an execution of ΠOT with A, using input 0n2 and randomness
derived from seedBj . Let Hj denote the transcript hash of the jth execution.

4. Receive {cj}j∈[λ] from A.
5. Receive {σj} from A. If any of the signatures are invalid, then PB outputs
⊥ and the experiment halts.

6. For all j ∈ [λ], use seedAj and the messages sent previously to A to simulate
the computation of an honest PA in steps 3 and 4, and in particular compute
Ĥj , ĉj . Let J be the set of indices for which (Ĥj , ĉj) 6= (Hj , cj).
There are now three cases:
– If |J | ≥ 2, send cert := (j, transj ,Hj , cj , σj , seedBj) to A (for uniform
j ∈ J). Then PB outputs corrupted and the experiment halts.

– If |J | = 1 then with probability ε set caught := true and with the re-
maining probability set caught := false. If caught = true then PB outputs
corrupted (but the experiment continues below in either case).

– If |J | = 0 then set caught :=⊥ and continue below.
0′. Rewind A and run steps 1′–6′ below until |J ′| = |J | and caught′ = caught

(using standard techniques [8, 16] to ensure the experiment runs in expected
polynomial time).

14

1′. Choose uniform ̂ ∈ [λ]. For j 6= ̂, choose uniform κ-bit strings {seedBj }
and set hj ← Com(seedBj). Set ĥ ← Com(0κ). Send {hj}j∈[λ] to A.

2′. For all j 6= ̂, run ΠOT with A, using input 0 and randomness derived
from seedBj . Obtain {seedAj }j 6=̂ as the outputs of these executions. For
the ̂th execution, use the simulator SOT for protocol ΠOT, thus extract-
ing both seedÂ and witnesŝ. Let transj denote the transcript of the jth
execution.

3′. For j 6= ̂, run an execution of ΠOT with A using input 0n2 and random-
ness derived from seedBj . For j = ̂, use the simulator SOT for protocol
ΠOT, thus extracting {B̂,i,b}i∈[n2],b∈{0,1} . Let Hj denote the transcript
hash of the jth execution.

4′. Receive {cj}j∈[λ] from A.
5′. Receive {σj} from A. If any of the signatures are invalid, then return to

step 1′.
6′. For all j ∈ [λ], use seedAj and the messages sent previously to simulate

the computation of an honest PA in steps 3′ and 4′, and in particular
compute Ĥj , ĉj . Let J ′ be the set of indices for which (Ĥj , ĉj) 6= (Hj , cj).
If |J ′| = 1 and ̂ 6∈ J ′ then set caught′ := true. If |J ′| = 1 and ̂ ∈ J ′ then
set caught′ := false. If |J ′| = 0 then set caught′ :=⊥.

7. If |J ′| = 1 and caught′ = true, then send cert := (j, transj ,Hj , cj , σj , seedBj)
to A (where j is the unique index in J ′) and halt.
Otherwise, send (̂, {seedAj }j 6=̂,witnesŝ) to A.

8. Receive GC, {Ai}i∈[n1], {hAi,b}i∈[n1],b∈{0,1} , {Zi,b}i∈[n3],b∈{0,1} , and the corre-
sponding decommitments fromA. If any of the decommitments are incorrect,
then PB outputs ⊥ and the experiment halts.
Otherwise, there are two possibilities:
– If |J ′| = 1 and caught′ = false then use {B̂,i,b}i∈[n2],b∈{0,1} and y to

compute z exactly as in the protocol. PB outputs z and the experiment
halts.

– If |J ′| = |J | = 0, compute an effective input x ∈ {0, 1}n1 using seedÂ
and the input-wire labels {Ai}i∈[n1]. Then PB outputs f(x, y) and the
experiment halts.

Expt1. Here we modify the previous experiment in the following way: Choose a
uniform ̂ ∈ [λ] at the outset of the experiment. Then in step 6:

– If |J | ≥ 2 then send cert := (j, transj ,Hj , cj , σj , seedBj) to A for uniform
j ∈ J \ {̂}. Then PB outputs corrupted and the experiment halts.

– if |J | = 1 set caught := true if ̂ 6∈ J and set caught := false if ̂ ∈ J .

Since ̂ 6∈ J with probability ε when |J | = 1, the outputs of Expt1 and Expt0
are identically distributed.

Expt2. The previous experiment is modified as follows: In step 1, do not choose
seedB̂ . Instead, in step 1 set ĥ ← Com(0κ), and in steps 2 and 4 use true
randomness in the ̂th execution of ΠOT.

It is immediate that the distribution of the output of Expt2 is computation-
ally indistinguishable from the distribution of the output of Expt1.

15

Expt3. We change the previous experiment in the following way: In steps 2
and 4, use SOT to run the ̂th instances of ΠOT. In doing so, extract all of A’s
inputs in those executions.

It follows from security of ΠOT that the distribution of the output of Expt3 is
computationally indistinguishable from the distribution of the output of Expt2.

Expt3a. Because steps 1′–4′ in Expt3 are identical to steps 1–4, we can “col-
lapse” the rewinding and thus obtain the following experiment Expt3a that is
statistically indistinguishable from Expt3 (with the only difference occurring in
case of an aborted rewinding in the latter):

1. Choose uniform ̂ ∈ [λ]. For j 6= ̂, choose uniform κ-bit strings {seedBj } and

set hj ← Com(seedBj). Set ĥ ← Com(0κ). Send {hj}j∈[λ] to A.
2. For all j 6= ̂, run ΠOT with A, using input 0 and randomness derived from

seedBj . Obtain {seedAj }j 6=̂ as the outputs of these executions. For the ̂th
execution, use the simulator SOT for protocol ΠOT, thus extracting both
seedÂ and witnesŝ. Let transj denote the transcript of the jth execution.

3. For all j 6= ̂, run ΠOT with A using input 0n2 and randomness derived from
seedBj . For j = ̂, use the simulator SOT for protocol ΠOT, thus extracting
{B̂,i,b}i∈[n2],b∈{0,1} . Let Hj denote the transcript hash of the jth execution.

4. Receive {cj}j∈[λ] from A.
5. Receive {σj} from A. If any of the signatures are invalid, then PB outputs
⊥ and the experiment halts.

6. For all j ∈ [λ], use seedAj and the messages sent previously to A to simulate
the computation of an honest PA in steps 3 and 4, and in particular compute
Ĥj , ĉj . Let J be the set of indices for which (Ĥj , ĉj) 6= (Hj , cj).
There are now two cases:
– If |J | ≥ 2, or if |J | = 1 and ̂ 6∈ J , then choose uniform j ∈ J \ {̂} and

send cert := (j, transj ,Hj , cj , σj , seedBj) to A. Then PB outputs corrupted
and the experiment halts.

– If |J | = 1 and ̂ ∈ J , or if |J | = 0, then continue below.
7. Send (̂, {seedAj }j 6=̂,witnesŝ) to A.

8. Receive GC, {Ai}i∈[n1], {hAi,b}i∈[n1],b∈{0,1} , {Zi,b}i∈[n3],b∈{0,1} , and the corre-
sponding decommitments fromA. If any of the decommitments are incorrect,
then PB outputs ⊥ and the experiment halts.
Otherwise, there are two possibilities:
– If |J | = 1 then PB uses {B̂,i,b}i∈[n2],b∈{0,1} and y to compute z exactly

as in the protocol. PB outputs z and the experiment halts.
– If |J | = 0, then compute an effective input x ∈ {0, 1}n1 using seedÂ

and the input-wire labels {Ai}i∈[n1]. Then PB outputs f(x, y) and the
experiment halts.

Expt4. We modify the previous experiment as follows: In step 8, if |J | = 0 (and
PB has not already output ⊥ in that step), use y to compute z exactly as in the
protocol. Then PB outputs z and the experiment halts.

Since |J | = 0, we know that ĉ is a commitment to a correctly computed gar-
bled circuit along with commitments to (correctly permuted) input-wire labels

16

{Â,i,b} and output-wire labels. Thus—unless A has managed to violate the com-
mitment property of Com—if PB does not output ⊥ in this step it must be the
case that the values GC, {Ai}i∈[n1], {hAi,b}i∈[n1],b∈{0,1} , and {Zi,b}i∈[n3],b∈{0,1}
sent by A in step 8 are correct. Moreover, since |J | = 0 the execution of ΠOT in
step 4 was run honestly by A using correct input-wire labels {B̂,i,b}. Thus, eval-
uating GC using {Ai}i∈[n1] and {B̂,i,y[i]} yields a result that is equal to f(x, y)
as computed in Expt3.

Since Com is computationally binding, this means that the distribution of
the output of Expt4 is computationally indistinguishable from the distribution
of the output of Expt3a.

Expt5. Here we change the previous experiment in the following way: The com-
putation in step 6 is done only for j ∈ [λ] \ {̂}; let Ĵ ⊆ [λ] \ {̂} be the set of
indices for which (Ĥj , ĉj) 6= (Hj , cj). Then:

– If Ĵ 6= ∅ choose uniform j ∈ Ĵ and send cert := (j, transj ,Hj , cj , σj , seedBj)
to A. Then PB outputs corrupted and the experiment halts.

– If Ĵ = ∅ then run steps 7 and 8 as in Expt4.

Letting J be defined as in Expt4, note that

|J | ≥ 2 or |J | = 1; ̂ 6∈ J ⇐⇒ Ĵ 6= ∅

and
|J | = 1, ̂ ∈ J or |J | = 0⇐⇒ Ĵ = ∅.

Thus, the outputs of Expt4 and Expt5 are identically distributed.

Expt6. We now modify the previous experiment by running the ̂th instances of
ΠOT honestly in steps 2 and 4, using input 1 in step 2 and input y in step 4.

It follows from security of ΠOT that the distribution of the output of Expt6 is
computationally indistinguishable from the distribution of the output of Expt5.

Expt7. Finally, we modify the previous experiment so the ̂th instance of ΠOT

in steps 2 and 4 uses pseudorandomness derived from a uniform seed seedB̂ , and

we compute ĥ ← Com(seedB̂).
It is immediate that the distribution of the output of Expt7 is computation-

ally indistinguishable from the distribution of the output of Expt6.
Since Expt7 corresponds to a real-world execution of the protocol between

A and PB holding input y, this completes the proof.

Covert Security—Malicious PB

Let A be an adversary corrupting PB. We construct the following simulator S
that runs A as a subroutine while playing the role of PB in the ideal world
interacting with F:

0. Run Gen to generate keys (pk, sk), and send pk to A.
1. Receive {hj}j∈[λ] from A.

17

2. Use the simulator SOT for protocol ΠOT to interact with A. In this way, S
extracts A’s inputs {bj}j∈[λ]; let J := {j : bj = 1}. As part of the simulation,

return uniform κ-bit strings {seedAj }j /∈J and {witnessj}j∈J as output to A.
3. For each j /∈ J , run this step exactly as an honest PA would. For each j ∈ J

do:
– If |J | = 1 then let ̂ be the unique index in J . Use SOT to interact with
A in the ̂th execution of ΠOT. In this way, S extracts A’s input y for
that execution. Send y to F, and receive in return a value z. Compute

({Â,i}, {B̂,i},GĈ, {Ẑ,i,b})← SGb(1κ, C, z),

where we let {Â,i} correspond to input wires of PA and {B̂,i} corre-
spond to input wires of PB. Return {B̂,i} as output to A from this
execution of ΠOT.

– If |J | > 1 then act as an honest PA would but using true randomness.
4. For each j /∈ J , compute cj exactly as an honest PA would. For each j ∈ J

do:
– If |J | = 1 then compute hÂ,i,0 ← Com(Â,i) and let hÂ,i,1 be a commit-

ment to the 0-string. Compute ĉ ← Com(GĈ, {hÂ,i,b}, {Ẑ,i,b}), where

each pair (hÂ,i,0, h
A
̂,i,1} is in random permuted order.

– If |J | > 1 then compute cj exactly as an honest PA would but using true
randomness.

Send {cj}j∈[λ] to A.
5–6. Compute signatures {σj} as an honest PA would, and send them to A.

7. If |J | 6= 1 then abort. Otherwise, receive (̂, {seedj}j 6=̂,witnesŝ) from A and
verify these as an honest PA would. (If verification fails, then abort.)

8. Send GĈ, {Â,i}, {hÂ,i,b} (in the same permuted order as before), and {Ẑ,i,b}
to A, along with the corresponding decommitments. Then halt.

We show that the distribution of the view of A in the ideal world is com-
putationally indistinguishable from its view in a real protocol execution. (Note
that PA has no output.) Let Expt0 be the ideal-world execution between S (as
described above) and the honest PA holding some input x, both interacting with
functionality F.

Expt1. Here we modify the previous experiment when |J | = 1 as follows. In
step 3, compute

({Â,i,b}, {B̂,i,b},GĈ, {Ẑ,i,b})← Gb(1κ, C),

and return the values {B̂,i,y[i]} as output to A from the simulated execution
of ΠOT in that step. In steps 4 and 8, the values Â,i,x[i] are used in place of Â,i.

It follows from security of the garbling scheme that the view of A in Expt1
is computationally indistinguishable from its view in Expt0.

Expt2. Now we change the previous experiment when |J | = 1 as follows: In
step 3, compute hÂ,i,b ← Com(Â,i,b) for all i, b. It follows from the hiding prop-
erty of the commitment scheme that the view of A in Expt2 is computationally
indistinguishable from its view in Expt1.

18

Expt3. This time, the previous experiment is modified by executing protocol
ΠOT with A when |J | = 1 in step 3. Security of ΠOT implies that the view of A
in Expt3 is computationally indistinguishable from its view in Expt2.

Expt4. The previous experiment is now modified in the following way. In step 2,
also choose uniform {seedAj }j∈J and {witnessAj }j 6∈J , and use pseudorandomness

derived from {seedAj }j∈J in steps 3 and 4 in place of true randomness. Also, in
step 7 continue to run the protocol as an honest PA would even in the case that
|J | 6= 1.

It is not hard to show that when |J | 6= 1 then PA aborts in Expt4 with
all but negligible probability. Computational indistinguishability of A’s view in
Expt4 and Expt3 follows.

Expt5. Finally, we change the last experiment by executing protocol ΠOT in
step 2. It follows from the security of ΠOT that the view of A in Expt5 is
computationally indistinguishable from its view in Expt4.

Since Expt5 corresponds to a real-world execution of the protocol, this com-
pletes the proof.

Public Verifiability and Defamation Freeness

It is easy to check (by inspecting the protocol) that whenever an honest PB

outputs corrupted then it also outputs a valid certificate. Thus our protocol
satisfies public verifiability. It is similarly easy to verify defamation freeness
under the assumptions of the theorem.

6 Implementation and Evaluation

We implemented our PVC protocol using the optimizations from Section 4.3 and
state-of-the-art techniques for garbling [4, 20], oblivious transfer [5], and OT ex-
tension [12]. Our implementation uses SHA-256 for the hash function (modeled as
a random oracle) and the standard ECDSA implementation provided by openssl
as the signature scheme. We target κ = 128 in our implementation.

We evaluate our protocol in both LAN and WAN settings. In the LAN setting,
the network bandwidth is 1 Gbps and the latency is less than 1 ms; in the WAN
setting, the bandwidth is 200 Mbps and the latency is 75 ms. In either setting,
the machines running the protocol have 32 cores, each running at 3.0GHz. Due to
pipelining, we never observe any issues with memory usage. All reported timing
results are computed as the average of 10 executions.

6.1 Certificate Size

The size of the certificate in our protocol is independent of the circuit size or the
lengths of the parties’ inputs. The following figure gives a graphical decomposi-
tion of the certificate. (Note that since we instantiate Com by a random oracle
as discussed in Section 4.3, we do not need to include an extra decommitment
in the certificate.) In total, a certificate requires 354 bytes.

19

σjcj seedBjtransj Hj

72 B32 B32*4 B 16 B105 B1 B

j

Hj contains 4 hash values, corresponding to a 4-round OT protocol obtained
by piggybacking a 2-round OT-extension protocol with a 3-round base-OT pro-
tocol. The signature size varies from 70–72 bytes; we allocate 72 bytes for the
signature so the total length of a certificate is fixed.

6.2 Comparison to Prior PVC Protocols

Because it enables signed-OT extension, the PVC protocol by Kolesnikov and
Malozemoff [13] (the KM15 protocol) would be strictly more efficient than the
original PVC protocol by Asharov and Orlandi [2]. We therefore focus our atten-
tion on the KM15 protocol. We compare our protocol to theirs in three respects.

Parameters. We briefly discuss the overhead needed to achieve deterrence fac-
tors larger than 1

2 for each protocol. Recall that in the KM15 protocol the overall
deterrence factor ε depends on both the garbled-circuit replication factor λ and
the XOR-tree expansion factor ν as ε = (1 − 1

λ) · (1 − 2−ν+1). For deterrence
ε ≈ 1− 1

2k
, setting λ = 2k+1, ν = k+ 2 gives the best efficiency. In contrast, our

protocol achieves this deterrence with λ = 2k, ν = 1, which means garbling half
as many circuits and avoiding the XOR-tree approach altogether. For example,
to achieve deterrence ε = 7/8, our protocol garbles 8 circuits, whereas prior work
would need to garble 16 circuits. Additionally, prior work would need to execute
5× as many OTs. (Plus, in prior work each OT is actually a signed OT, which
is more expensive than standard OT; see next.)

Signed OT vs. standard OT. Signed OT induces higher costs than standard
OT in terms of both communication and computation. As an illustration, fix
the deterrence factor to 1/2. In that case our protocol runs OT extension twice,
where each is used for n2 OTs on κ-bit strings. Compared to this, the KM15
protocol needs to run 3n2 OTs on 2κ-bit strings. The total communication com-
plexity of the OT step (for the input-wire labels) is 4κn2 bits in our protocol,
while in the KM15 protocol it is 3 ∗ 2 ∗ 3κn2 + 3 ∗ 2.6κn2 = 25.8κn2 bits, more
than 6× higher.

Moreover, signed OT also has a very high computational overhead:

– Signed-OT extension needs to use a wider matrix (by a factor of roughly
2.6×) compared to standard OT extension. Besides the direct penalty this
incurs, a wider matrix means that the correlation-robust hash H cannot be
based on fixed-key AES but must instead be based on a hash function like
SHA-256. This impacts performance significantly.

– As part of signed-OT extension, PB needs to reveal κ random columns in
the matrix. Even with AVX operations, this incurs significant computational
overhead.

20

Circuit n1 n2 n3 |C|

AES-128 128 128 128 6800
SHA-128 256 256 160 37300
SHA-256 256 256 256 90825

Sorting 131072 131072 131072 10223K
Integer mult. 2048 2048 2048 4192K

Hamming dist. 1048K 1048K 22 2097K

Table 1. Circuits used in our evaluation. The parties’ input lengths are n1 and n2,
and the output length is n3. The number of AND gates in the circuit is denoted by |C|.

Signed-OT extension [13] is complex, and we did not implement it in its entirety.
However, we modified an existing (standard) OT-extension protocol to match
the matrix width required by signed-OT extension; this can be used to give a
conservative lower bound on the performance of signed-OT extension. Our results
indicate that signed-OT extension requires roughly 5× more computation than
state-of-the-art OT extension.

Certificate size. In the KM15 protocol, the certificate size is at least 2κ·n2 bits.
Even for AES (with only 128-bit input length), this gives a certificate roughly
10× larger than ours.

6.3 Comparing to Semi-Honest and Malicious Protocols

We believe our PVC protocol provides an excellent performance/security tradeoff
that makes it the best choice for many applications of secure computation.

Performance. Our protocol is not much less efficient that the best known semi-
honest protocols, and is significantly faster than the best known malicious
protocols.

Security. The PVC model provides much more meaningful guarantees than
the notion of semi-honest security, and may be appropriate for many (even
if not all) applications of secure computation where full malicious security
is overkill.

To support the first point, we compare the performance of our PVC proto-
col against state-of-the-art two-party computation protocols. The semi-honest
protocol we compare against is a garbled-circuit protocol including all existing
optimizations; for the malicious protocol we use the recent implementation of
Wang et al. [19]. Our comparison uses the circuits listed in Table 1.

Running time. In Table 2 we compare the running time of our protocol to that
of a semi-honest protocol. From the table, we see that over a LAN our protocol
adds at most 36% overhead except in two cases: AES and Hamming-distance
computation. For AES, the reason is that the circuit is small and so the overall
time is dominated by the base OTs. For Hamming distance, the total input

21

Circuit
LAN setting WAN setting

Our PVC Semi-honest Slowdown Our PVC Semi-honest Slowdown

AES-128 25 ms 15 ms 1.60× 960 ms 821 ms 1.17×
SHA-128 34 ms 25 ms 1.36× 1146 ms 977 ms 1.17×
SHA-256 48 ms 38 ms 1.27× 1252 ms 1080 ms 1.16×

Sort. 3468 ms 2715 ms 1.28× 13130 ms 12270 ms 1.07×
Mult. 1285 ms 1110 ms 1.16× 5707 ms 5462 ms 1.04×

Hamming 2585 ms 1550 ms 1.67× 11850 ms 6317 ms 1.69×

Table 2. Comparing the running times of our protocol and a semi-honest protocol in
the LAN and WAN settings.

size is equal to the number of AND gates in the circuit; therefore, the cost of
processing the inputs becomes more significant.

In the WAN setting, our PVC protocol incurs only 17% overhead except for
the Hamming-distance example (for a similar reason as above).

The comparison between our PVC protocol and the malicious protocol is
shown in Table 3. As expected, our PVC protocol achieves much better perfor-
mance, by a factor of 4–18×.

Circuit
LAN setting WAN setting

Our PVC Malicious [19] Speedup Our PVC Malicious [19] Speedup

AES-128 25 ms 157 ms 6.41× 960 ms 11170 ms 11.6×
SHA-128 34 ms 319 ms 9.47× 1146 ms 13860 ms 12.1×
SHA-256 48 ms 612 ms 12.6× 1252 ms 17300 ms 13.8×

Sort. 3468 ms 45130 ms 13.0× 13130 ms 197900 ms 15.1×
Mult. 1285 ms 17860 ms 13.9× 5707 ms 99930 ms 17.5×

Hamming 2586ms 11380 ms 4.40× 11850 ms 76280 ms 6.44×

Table 3. Comparing the running times of our protocol and a malicious protocol in the
LAN and WAN settings.

AES-128 SHA-128 SHA-256 Sort. Mult. Hamming

Semi-honest 0.2218 1.165 2.800 313.1 128.0 96.01
Malicious [11] 3.545 17.69 42.95 2953 1228 662.7

Our PVC 0.2427 1.205 2.844 325.1 128.2 144.2

Table 4. Communication complexity in MB of our protocol with λ = 2 and other
protocols.

Communication complexity. We also compare the communication complex-
ity of our protocol to other protocols in a similar way; see Table 4. In this
comparison we use the same semi-honest protocol as above, but use the more
communication-efficient protocol by Katz et al. [11] as the malicious protocol.
We see that, with the exception of the Hamming-distance example, the commu-
nication of our protocol is very close to the semi-honest case.

22

6.4 Higher Deterrence Factors

Another important aspect of our protocol is how the performance is affected
by the deterrence factor. Recall that the deterrence factor ε is the probability
that a cheating party is caught, and in our protocol ε = 1 − 1

λ where λ is the
garbled-circuit replication factor. The performance of our protocol as a function
of ε is shown in Table 5. We see that when doubling the value of λ, the running
time of the protocol increases by only ≈ 20% unless the circuit is very small
(in which case the cost of the base OTs dominates the total running time). The
running time when ε = 3/4 (i.e., λ = 4) is still less than twice the running time
of a semi-honest protocol.

AES-128 SHA-128 SHA-256 Sort. Mult. Hamming

LAN
λ = 2 25 34 49 3468 1285 2586
λ = 4 36 46 59 3554 1308 3156
λ = 8 47 57 71 3954 1396 4856
λ = 16 101 127 152 6238 2355 7143
λ = 32 175 228 229 7649 2995 12984

WAN
λ = 2 960 1146 1252 13130 5707 11850
λ = 4 1112 1375 1700 14400 5952 12899
λ = 8 1424 1912 2436 16130 6167 19840
λ = 16 1920 2094 2191 19087 7801 36270
λ = 32 3228 3434 3535 25197 9229 64468

Table 5. Running time in milliseconds of our protocol for different λ. ε = 1− 1
λ
.

6.5 Scalability

Our protocol scales linearly in all parameters, and so can easily handle large
circuits. To demonstrate this, we benchmarked our protocol with different input
lengths, output lengths, and circuit sizes. Initially, the input and output lengths
are all 128 bits, and the circuit size is 1024 AND gates. We then gradually
increase one of the input/output lengths or circuit size (while holding everything
else constant) and record the running time. Since the dependence is linear in all
cases, we report only the marginal cost (i.e., the slope), summarized in Table 6.

n1 (µs/bit) n2 (µs/bit) n3 (µs/bit) |C| (µs/gate)

LAN 0.20 0.88 0.23 0.29
WAN 0.61 3.13 0.62 1.10

Table 6. Scalability of our protocol.

23

References

1. Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More
efficient oblivious transfer and extensions for faster secure computation. In 20th
ACM Conf. on Computer and Communications Security (CCS), pages 535–548.
ACM Press, 2013.

2. Gilad Asharov and Claudio Orlandi. Calling out cheaters: Covert security with
public verifiability. In Advances in Cryptology—Asiacrypt 2012, volume 7658 of
LNCS, pages 681–698. Springer, 2012.

3. Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient
protocols for realistic adversaries. Journal of Cryptology, 23(2):281–343, 2010.

4. Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient
garbling from a fixed-key blockcipher. In 2013 IEEE Symposium on Security &
Privacy, pages 478–492. IEEE, 2013.

5. Tung Chou and Claudio Orlandi. The simplest protocol for oblivious transfer.
In Progress in Cryptology—Latincrypt 2015, volume 9230 of LNCS, pages 40–58.
Springer, 2015.

6. Ivan Damg̊ard, Martin Geisler, and Jesper Buus Nielsen. From passive to covert se-
curity at low cost. In 7th Theory of Cryptography Conference—TCC 2010, volume
5978 of LNCS, pages 128–145. Springer, 2010.

7. O. Goldreich. Foundations of Cryptography, vol. 2: Basic Applications. Cambridge
University Press, Cambridge, UK, 2004.

8. Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge
proof systems for NP. Journal of Cryptology, 9(3):167–190, 1996.

9. Vipul Goyal, Payman Mohassel, and Adam Smith. Efficient two party and
multi party computation against covert adversaries. In Advances in Cryptology—
Eurocrypt 2008, volume 4965 of LNCS, pages 289–306. Springer, 2008.

10. Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party compu-
tation. In Advances in Cryptology—Crypto 2004, volume 3152 of LNCS, pages
335–354. Springer, 2004.

11. Jonathan Katz, Samuel Ranellucci, Mike Rosulek, and Xiao Wang. Optimiz-
ing authenticated garbling for faster secure two-party computation. In Advances
in Cryptology—Crypto 2018, Part III, volume 10993 of LNCS, pages 365–391.
Springer, 2018.

12. Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension
with optimal overhead. In Advances in Cryptology—Crypto 2015, Part I, volume
9215 of LNCS, pages 724–741. Springer, 2015.

13. Vladimir Kolesnikov and Alex J. Malozemoff. Public verifiability in the covert
model (almost) for free. In Advances in Cryptology—Asiacrypt 2015, Part II,
volume 9453 of LNCS, pages 210–235. Springer, 2015.

14. Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR
gates and applications. In 35th Intl. Colloquium on Automata, Languages, and
Programming (ICALP), Part II, volume 5126 of LNCS, pages 486–498. Springer,
2008.

15. Y. Lindell and B. Pinkas. A proof of security of Yao’s protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, 2009.

16. Yehuda Lindell. A note on constant-round zero-knowledge proofs of knowledge.
Journal of Cryptology, 26(4):638–654, 2013.

17. Yehuda Lindell. Fast cut-and-choose-based protocols for malicious and covert ad-
versaries. Journal of Cryptology, 29(2):456–490, 2016.

24

18. Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party com-
putation in the presence of malicious adversaries. In Advances in Cryptology—
Eurocrypt 2007, volume 4515 of LNCS, pages 52–78. Springer, 2007.

19. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and
efficient maliciously secure two-party computation. In 24th ACM Conf. on Com-
puter and Communications Security (CCS), pages 21–37. ACM Press, 2017.

20. Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing
data transfer in garbled circuits using half gates. In Advances in Cryptology—
Eurocrypt 2015, Part II, volume 9057 of LNCS, pages 220–250. Springer, 2015.

25

	Covert Security with Public Verifiability: Faster, Leaner, and Simpler

