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Abstract. Algebraic structure lies at the heart of Cryptomania as we
know it. An interesting question is the following: instead of building
(Cryptomania) primitives from concrete assumptions, can we build them
from simple Minicrypt primitives endowed with some additional algebraic
structure? In this work, we affirmatively answer this question by adding
algebraic structure to the following Minicrypt primitives:

• One-Way Function (OWF)

• Weak Unpredictable Function (wUF)

• Weak Pseudorandom Function (wPRF)

The algebraic structure that we consider is group homomorphism over
the input/output spaces of these primitives. We also consider a “bounded”
notion of homomorphism where the primitive only supports an a priori
bounded number of homomorphic operations in order to capture lattice-
based and other “noisy” assumptions. We show that these structured
primitives can be used to construct many cryptographic protocols. In
particular, we prove that:

• (Bounded) Homomorphic OWFs (HOWFs) imply collision-resistant
hash functions, Schnorr-style signatures and chameleon hash func-
tions.

• (Bounded) Input-Homomorphic weak UFs (IHwUFs) imply CPA-
secure PKE, non-interactive key exchange, trapdoor functions, blind
batch encryption (which implies anonymous IBE, KDM-secure and
leakage-resilient PKE), CCA2 deterministic PKE, and hinting PRGs
(which in turn imply transformation of CPA to CCA security for
ABE/1-sided PE).

• (Bounded) Input-Homomorphic weak PRFs (IHwPRFs) imply PIR,
lossy trapdoor functions, OT and MPC (in the plain model).

In addition, we show how to realize any CDH/DDH-based protocol with
certain properties in a generic manner using IHwUFs/IHwPRFs, and
how to instantiate such a protocol from many concrete assumptions.

We also consider primitives with substantially richer structure, namely
Ring IHwPRFs and L-composable IHwPRFs. In particular, we show the
following:

• Ring IHwPRFs with certain properties imply FHE.

• 2-composable IHwPRFs imply (black-box) IBE, and L-composable
IHwPRFs imply non-interactive (L+ 1)-party key exchange.
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Our framework allows us to categorize many cryptographic protocols
based on which structured Minicrypt primitive implies them. In addition,
it potentially makes showing the existence of many cryptosystems from
novel assumptions substantially easier in the future.

1 Introduction

An important question in the theory of cryptography is also one of the simplest to
state: what implies public-key cryptography? Ever since the (public) invention
of public-key encryption [DH76,RSA78], people have debated this important
question.

The history of symmetric-key cryptography goes back millenia–the Caesar
cipher is a classic example of old cryptography–and it has continued to evolve
through the centuries in different ways. There is a long list of ciphers, notably
including the Viginère cipher, the Enigma machine, and even modern ciphers like
AES, that can be thought of as the output of an enormous amount of human
effort to build secure symmetric-key encryption.

On the other hand, public-key cryptography is a very recent development
compared to symmetric-key cryptography. Many people thought that public-
key cryptography was impossible before the seminal work by Diffie and Hell-
man [DH76]. Although we can build symmetric-key ciphers from many different
assumptions, including some very simple ones, the known methods for realizing
public-key cryptography require at least some kind of mathematical structure.
This has led many to conjecture that public-key cryptography does, in fact,
require some mathematical structure.

Barak ruminated on this question in his recent work “The Complexity of
Public Key Cryptography” [Bar17]. As he puts it, “... it seems that you can’t
throw a rock without hitting a one-way function” but public-key cryptography
is somehow “special”. Barak implicitly argues that there is some mathematical
structure inherent in public-key cryptography: “One way to phrase the question
we are asking is to understand what type of structure is needed for public-key
cryptography.”

But many cryptosystems that interest people today are substantially more
complicated than basic public-key encryption (PKE). In recent years, primitives
like identity-based encryption [Sha84], fully homomorphic encryption [Gen09],
and functional encryption [BSW11] have captivated cryptographers. It is natu-
ral to ask: is there any sort of mathematical structure that is inherent to these
primitives as well? While there has been a substantial amount of work relating
relatively similar primitives, to our knowledge no one has attempted to compre-
hensively examine the relationship between a broader collection of these higher-
level primitives.

In a celebrated work, Impagliazzo [Imp95] proposed “five worlds” of relative
complexity, which range from Algorithmica–where “efficient” algorithms for all
(worst-case) problems in NP exist and cryptography is essentially nonexistent–
to Cryptomania, a world in which public-key cryptography exists. Only two of
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these worlds allow for cryptography: Minicrypt, where symmetric cryptographic
primitives exist but public-key cryptography does not, and the aforementioned
Cryptomania.

It turns out that Minicrypt is a fairly simple world. A number of famous
works have shown how to build the most commonly studied and used Minicrypt
primitives from one-way functions in a generic manner. For instance, one-way
functions imply pseudorandom generators [BM82,HILL99], which in turn can be
used to build pseudorandom functions [GGM84]. From these primitives, it has
long been known how to generically build symmetric-key encryption schemes
and digital signature schemes [Rom90].

On the other hand, Cryptomania is a significantly more complicated class. It
contains primitives that are very different, and it seems difficult to relate them in
a generic manner. We cannot expect to, say, build FHE from PKE in a black-box
manner, and there are many black-box separation results for cryptosystems in
Cryptomania (we discuss this more in our related work section). In fact, recently
it has even become popular to separate Cryptomania into two worlds: a world
where indistinguishability obfuscation (iO) [BGI+01,GGH+13b] doesn’t exist,
and a world called Obfustopia [GPSZ17] where it does.

This, of course, raises a fundamental question in the complexity of public-
key cryptography: can we construct classes of primitives within Cryptomania
(i.e. “continents” of Cryptomania) that are tightly tied to each other through
generic constructions? Ideally, we would want these “continents” to have strong
relationships with a particular primitive (similar to the relationship between
one-way functions and Minicrypt) where all of the cryptographic algorithms in
the class could be built from the given primitive in a generic manner, and the
given primitive would be conceptually the simplest function in the class.

The fact that most of the concrete assumptions that imply PKE (and also
many other cryptographic primitives) have some algebraic structure seems to
imply that perhaps we can classify cryptosystems by the algebraic structure
necessary for them to function. This leads us to the following question:

Is it possible to construct Cryptomania primitives from simple Minicrypt
primitives that are additionally equipped with some algebraic structure?

1.1 Our Contributions

In this work, we provide a constructive answer to the question of building PKE
(and other primitives in Cryptomania) from Minicrypt primitives with algebraic
structure. Let’s start by considering the following Minicrypt primitives:

1. One-way Functions
2. Weak Unpredictable Functions
3. Weak Pseudorandom Functions

To add algebraic structure to the mentioned primitives, we assume that they are
(Input-)Homomorphic: the input and output spaces of the primitive are groups,
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and the primitive is (bounded) homomorphic with respect to an efficiently com-
putable group homomorphism. We use the following primitives and abbreviations
throughout the paper:

• Homomorphic One-way Functions (HOWFs)4

• Input-Homomorphic Weak Unpredictable Functions (IHwUFs)
• Input-Homomorphic Weak Pseudorandom Functions (IHwPRFs)5

In the body of the paper we also consider “bounded” homomorphisms, where
the number of allowed homomorphisms is bounded by some function γ = γ(λ)
where λ is the security parameter, which lets us work with lattice-based and
other “noisy” cryptographic assumptions.

At this point we can informally state our main contribution: we present a
framework for building cryptographic primitives from HOWFs/IHwUFs/IHwPRFs
(see Figure 1). This framework lets us categorize cryptographic primitives by the
type of structured Minicrypt primitive that implies them. However, we need to
be able to instantiate the above general primitives from concrete assumptions
to have a useful framework. It turns out that we can instantiate our primitives
(in most cases) from a wide variety of assumptions, typically including the as-
sumptions that would be expected for such applications.

Instantiations from Concrete Assumptions. We show that “mainstream”
cryptographic assumptions such as DDH and LWE naturally imply (bounded)
HOWFs/IHwUFs/IHwPRFs. We also show that a (bounded) group-homomorphic
PKE implies a (bounded) IHwPRF. This allows instantiating these primitives
from any concrete assumption that implies a (bounded) homomorphic PKE (e.g.
QR and DCR). Unfortunately, there is a caveat to this: the transformation from
homomorphic PKE to IHwPRF comes with a disadvantage that the input space
may depend on the key.6 The reader may refer to Figure 2 for an overview of
instantiations from concrete assumptions.7

Building Cryptosystems from New Assumptions. One of the benefits of
our work is the implications for new assumptions. Rather than manually building
lots of different cryptosystems from a new assumption, researchers only need to
build one (or more) of our simple structured primitives, and the existence of a
whole host of cryptosystems immediately follows.

4 When the function does not have a key (i.e. a one-way function) we will drop the
“I” and refer to the function as simply homomorphic.

5 In case of IHwUFs/IHwPRFs we do not assume any homomorphism on the key
space.

6 This property is necessary to realize certain cryptographic primitives from IHwUFs
or IHwPRFs.

7 Notice that search to decision reductions are mostly for Gaussian-like distributions,
and there are certain distributions for which search to decision reduction is not
available.
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Minicrypt and Homomorphism

(Bounded) HOWF (Bounded) IHwUF (Bounded) IHwPRF
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[KW18]

99K: Homomorphism over Abelian groups.
U: Unbounded Homomorphism

*: Input space of IHwUF is independent of the the key.

Fig. 1. Cryptographic primitives from Minicrypt and Homomorphism.

To illustrate how this might be useful, let’s look at the history of lattice-based
cryptography: Ajtai and Dwork [AD97] gave a lattice-based PKE (following Aj-
tai’s worst-case to average-case reductions for lattice problems [Ajt96]), but lat-
tice cryptography may have begun in earnest with Regev’s LWE paper [Reg05]
in 2005. This work, in addition to introducing the LWE problem, showed how
to build a basic PKE scheme from LWE as well. However, it took a while for
the cryptographic community to “catch up” to other group-based cryptosys-
tems: for instance, the first private information retrieval scheme from lattices
was presented in [AMG07], and the first identity-based encryption was given
in [GPV08].
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(Bounded) HOWF (Bounded) IHwUF (Bounded) IHwPRF

Discrete Log
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Approximate GCD
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(Bounded) Homomorphic PKE

U

*

*

99K: Homomorphism over Abelian groups.
U: Unbounded Homomorphism
*: Input space depends on the the key.

Fig. 2. Instantiations from Concrete Assumptions

These works used sophisticated techniques on lattices in order to extend
the range of lattice-based cryptosystems. With our work, the existence of all
of these types of cryptosystems based on the LWE assumption follows imme-
diately from the simple observation that LWE implies a (bounded) IHwPRF.
While the necessary tools for many of our constructions were not around in 2008
(particularly [DG17b] and the line of work following it), we do hope that this
paper is useful for public-key cryptography assumptions in the future in terms
of feasibility results. Ideally, it will be easy to show the existence of many types
of cryptosystems for new assumptions using the tools from this paper.

More Primitives from Richer Structures. Although the main focus of this
work is to construct many cryptographic primitives from IHwUFs/IHwPRFs,
one might ask: what if we consider richer structures? For instance, what would
happen if we have a ring homomorphism for an IHwPRF instead of just a group
homomorphism? To partially answer this question, we consider two additional
structures over wPRFs:

• Ring Homomorphism: We consider Ring IHwPRFs (RIHwPRFs) where the
input and output spaces are rings, and the homomorphism is with respect
to ring operations (instead of just group operations).
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• L-composability : We consider L-composable IHwPRFs, where L levels of
IHwPRF operations compose with each other under certain conditions.

We summarize our results for these richly structured primitives in Figure 3.
We remark that “*” means the order of the output ring of RIHwPRF is polyno-
mial in the security parameter.

IBE
(L + 1)-Party
Key Exchange

L-composable
IHwPRF, L ≥ 2

(bounded) RIHwPRF (leveled) FHE

*

Fig. 3. Cryptographic primitives from richer structures.

While the structure of 2-composability appears similar to that of bilinear pairing
groups, we partially explore a possible separation between the two. We argue that
2-composability suffices to achieve three-party non-interactive key exchange and
simple black-box constructions of IBE. Subsequently, we also present a discus-
sion on why this primitive does not naturally yield other cryptographic protocols
implied by bilinear pairings. This leaves open the interesting question of whether
there exists some concrete assumption that implies 2-composability but not bi-
linear pairings. The separation seemingly extends to the general L-composability
setting, in the sense that the structure of L-composability appears to be weaker
than that of a full-fledged multilinear map [GGH13a].

On the Categorization of Primitives. This work enables us to categorize dif-
ferent primitives based upon which structured Minicrypt primitive implies them.
But it is also possible to ask whether a given cryptosystem may be constructed
from some other structured Minicrypt primitive. For instance, is it possible to
construct PKE from a HOWF? A positive answer would imply that one can
base PKE on the discrete log problem, a long-standing (and potentially possi-
ble) goal in cryptography. We can build PKE from IHwUFs, but can we hope to
do better? Our work gives rise to interesting questions like this for future work,
and we discuss this more later in the paper.

It is easy to see that none of the three primitives HOWF/IHwUF/IHwPRF
can be built from PKE in a black-box manner [HHRS07], as all of them imply
collision-resistant hash functions. In addition to input homomorphisms, one may
consider other structures on Minicrypt primitives.

One of the simplest structures is what we term dual-computable. This notion
is certainly folklore, and some earlier works on PKE and key exchange implicitly
constructed this primitive. A dual-computable primitive is a tuple of keyed func-
tions (F1, G1, F2, G2) such that G1 (k1, F2 (k2, x)) = G2 (k2, F1 (k1, x)) where x
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Dual-computable Functions

IHwUF

IHwPRF

L-composable

Fig. 4. Implication Landscape

represents the input and ki represent keys. The reader may notice that this
primitive is almost an abstraction of key exchange if the functions are unpre-
dictable. It is not clear what kind of (minimal) structure over OWFs would imply
dual-computable functions.

1.2 Related Works

Realizing public-key cryptography via some form of structure and hardness has
been studied seemingly since its invention. However, several recent works have
discussed this relationship in more detail. For instance, [BDV17] examined the
relationship of structure and hardness through obfuscation lens, while a re-
cent work by Berman et al. showed that laconic zero-knowledge protocols imply
PKE [BDRV18]. Pietrzak and Sjdin [PS08] showed that a certain input property
of weak PRFs implies PKE. A recent survey [BR17] briefly discusses structure
and PKE through the lens of (strengthened) PRFs.

A number of works have shown how to build certain cryptosystems from
cryptographic primitives with algebraic structure. These include commitment
schemes, CRHF, IND-CCA secure PKE, PIR, and key-dependent message (KDM)
secure PKE [IKO05,HO12,KO97,HKS16]. Of particular relevance to us is the
work of Hajiabadi et al. [HKS16] on using homomorphic weak PRFs to build
KDM secure PKE.8

There are other related black-box constructions (or implications in a non-
black-box way) between cryptographic primitives, some of which we utilize in
our work. For instance, Ishai et al. showed how to construct secure computation
protocols from enhanced trapdoor functions (or homomorphic PKE) [IKLP06].
Rothblum [Rot11] showed a transformation of a secret-key encryption (SKE)
scheme with some special form of weak homomorphism into a PKE that has
similar properties. Black-box constructions have been shown for resettable zero-
knowledge arguments [OSV15] and cryptographic accumulators [DHS15]. Many
cryptographic primitives have been realized in a black-box manner from lossy
trapdoor functions [PW08,BHY09,GPR16]. Very recently, Friolo et al. [FMV18]
showed how to build secure multi-party computation from what they call strongly
uniform key agreement and Fischlin and Harasser [FH18] showed the equivalence
of invisible sanitizable signatures and PKE.

8 As mentioned earlier, we refer to this primitive as Input-Homomorphic weak
PRF (IHwPRF) to emphasize that the homomorphism is on the input space and
not on the key space.
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Understanding the complexity of various public-key primitives also requires
knowledge of black-box separations, which have been extensively studied in the
literature. This (non-exhaustively) includes studies separating IBE from CRHFs
(and thus FHE) [MM16], separating indistinguishability obfuscation (iO) from
certain primitives (for instance, CRHFs) [AS15,MMN+16], separating succinct
non-interactive arguments from falsifiable assumptions [GW11], and showing
that garbling of circuits having one-way function gates are not sufficient to realize
PKE [GHMM18]. These separations (and related works) allow us to clearly see
that some primitives are not equivalent, at least modulo certain assumptions. We
refer the reader to [RTV04,Fis12,BBF13] for a survey on black-box reductions
and separations.

2 Technical Overview

In this section, we aim to explain some of the intuition behind our results.
We will start by focusing on one particular primitive–the input homomorphic
weak PRF–and some of its applications. The results for other primitives are not
exactly the same, but the general structure of how we build cryptosystems from
these other primitives is relatively similar. We will discuss these other primitives
later in this section.

2.1 PKE from IHwUFs/IHwPRFs

Let’s start by considering the notion of a general input-homomorphic weak PRF,
or, as we have been abbreviating, an IHwPRF, which we will define as a function
F : K×X → Y. Recall that, informally speaking, a weak PRF is a function that
is indistinguishable from a random function with respect to uniformly sampled
inputs. This “weakness” as compared to a regular PRF will be critical.

We will also endow our weak PRF F with a homomorphism over the input.
Suppose our input space X and our output space Y are groups with group
operations ⊕ and ⊗, respectively. Roughly speaking, an IHwPRF is just a regular
weak PRF with the following property:

F (k, x1 ⊕ x2) = F (k, x1)⊗ F (k, x2) .

We also consider what we call γ-bounded IHwPRFs. These IHwPRFs have a
homomorphism that can only be computed a maximum of γ times, where γ is a
pre-determined parameter. This concept lets us consider noisy assumptions like
LWE, which are only approximately homomorphic. The notion is very similar
to definitions of the almost key-homomorphic PRFs of [BLMR13]. γ-bounded
IHwPRFs work for almost all of the applications that we consider in almost the
same way that unbounded IHwPRFs do. For the rest of this technical overview,
though, we will assume we have an unbounded IHwPRF. Also, we occasionally
refer to an Input-Homomorphic weak Unpredictable Function (IHwUF), which
has the same properties as IHwPRF except for the fact that its output on a
uniformly random input is just unpredictable and not necessarily pseudorandom.
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DDH-based Instantiation of IHwPRF. In general, it is simple to build
IHwPRFs from assumptions that are widely used in cryptography. Here we show
how to build an IHwPRF from the DDH assumption. Let G be a group of prime
order q where the DDH problem is hard. For a uniformly sampled key k ← Zq

and an input x ∈ G, consider the following function:

F (k, x) = xk.

If we are only allowed to see the evaluation of F on random inputs xi (as the
weak PRF definition requires), then it is easy to see that F is a weak PRF
based on the DDH assumption. Moreover, the homomorphism property is also
satisfied:

xk1 · xk2 = (x1 · x2)
k
.

Thus F is an IHwPRF. Building a bounded IHwPRF from LWE is similarly
straightforward, but we defer this to later in the paper.

On the Input Space. It is useful to note that the “discrete logarithm problem”
on the input space of an IHwPRF must be hard by its weak pseudorandomness
property. Concretely, given two evaluations (x1, F (k, x1)) and (x2, F (k, x2)), an
adversary can compute some value c such that xc1 = x2, then they can check if

F (k, x1)
c

= F (k, x2)

and use this to break the (weak) pseudorandomness of F . In the context of
(bounded) IHwPRFs over arbitrary groups, we note that there must exist an
equivalent “discrete log” problem that allows us to capture the aforementioned
property.9 This property is crucial to the security of nearly all constructions
presented in this paper.

PKE Construction. We now illustrate how to construct a CPA-secure PKE
given an IHwPRF. To provide more intuition, we will present an instantiation of
the encryption scheme using the DDH assumption in parallel. The construction
from IHwPRF is highlighted for clarity.

Setup:
• IHwPRF Construction: Select an IHwPRF F : K × X → Y over

groups (X ,⊕) and (Y,⊗) with key space K, input space X , and output
space Y and some integer n > 3 log (|X |). Select a set X of 2n uniform
“base elements” from X as

X = {xj,b ← X}j∈[n],b∈{0,1} .

Select a random key k ← K. Create a tuple Y of 2n elements from Y as

Y = {yj,b}j∈[n],b∈{0,1}
9 For our LWE-based bounded IHwPRF, the “discrete log” problem equivalent is the

ISIS problem.
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such that yj,b = F (k, xj,b). Output the secret key and public key as:10

sk = k, pk = (X,Y) .

• DDH Instantiation: Let F : Zq × G → G be the function defined as
F (k ∈ Zq, g ∈ G) = gk. Select a set G of 2n randomly sampled elements
from G as

G = {gj,b ← G}j∈[n],b∈{0,1} .
Select a random key k ← Zq. Create a tuple H of 2n elements from G as

H = {hj,b}j∈[n],b∈{0,1}

such that hj,b = gkj,b. Output the secret key and the public key as

sk = k, pk = (G,H) .

Encrypt:
• IHwPRF Construction: On input a message m ∈ Y, sample a vector

s = (s1, . . . , sn)← {0, 1}n. Set

x∗ =
⊕
j∈[n]

xj,sj , y∗ =
⊗
j∈[n]

yj,sj .

Output the ciphertext ct = (x∗, y∗ ⊗m).

• DDH Instantiation: On input a message m ∈ G, sample a vector
s = (s1, . . . , sn)← {0, 1}n. Set

g∗ =

n∏
j=1

gj,sj , h∗ =

n∏
j=1

hj,sj .

Output the ciphertext ct = (g∗, h∗ ·m).

By the leftover hash lemma, our “subset sum” process gives us outputs that
are statistically close to uniform for arbitrary groups. This may be viewed
as a generalization of the “exponentiation” operation to arbitrary groups.

Decrypt:
• IHwPRF Construction: On input a ciphertext ct = (ct1, ct2) ∈ X×Y,

output
m′ = [F (k, ct1)]

−1 ⊗ ct2.

If (ct1, ct2) = (x∗, y∗ ⊗m), we have

m′ = [F (k, ct1)]
−1 ⊗ ct2 = (y∗)−1 ⊗ (y∗ ⊗m) = m.

10 We implicitly assume that the description of IHwPRF is publicly available. This is
similar to the assumption that in a DDH-based encryption scheme like ElGamal, the
description of the cyclic group G is public.
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• DDH Instantiation: On input a ciphertext ct = (ct1, ct2) ∈ G × G,
output

m′ =
(
ctk1
)−1 · ct2.

If (ct1, ct2) = (g∗, h∗ ·m), we have

m′ =
(
ctk1
)−1 · ct2 = (h∗)−1 · (h∗ ·m) = m.

Note that the decryption in the IHwPRF construction works even when X and
Y are non-abelian groups.

We summarize the main steps in the construction of PKE from IHwPRF
in Figure 5, and compare it with the DDH-instantiation over cyclic groups of
prime order. Observe that the DDH-based PKE described above is very similar
to ElGamal encryption [ElG84]. In fact, it can be viewed as a form of ElGamal
encryption where we use a less efficient method to create the group elements
(g, h) and (g∗, h∗): namely, in order to get a random element, we take a subset
product of many public elements rather than just raising a single element to a
random power.

This leads us to the following question: how far can we go if we take tra-
ditional DDH-based schemes and write them as IHwPRFs? For schemes that
require two exponentiations, we could write the first exponentiation as a “subset
sum”, and then the second as a IHwPRF evaluation. This is essentially how
our DDH-based instantiation of PKE from IHwPRF works. In what follows, we
illustrate this comparison via a non-interactive key exchange protocol.

We show a non-interactive key exchange protocol from IHwPRFs in Figure 6.
For illustration, we compare it with the Diffie-Hellman key exchange protocol. In
the IHwPRF setting, the (randomly sampled) “base elements” {xj,b}j∈[n],b∈{0,1}
are publicly available to both parties at the beginning of the protocol. Given
the “base elements”, there are two ways to arrive at the final secret y∗. The
first way is to apply the IHwPRF on the “base elements”, followed by applying
a “subset product” in the output space of the IHwPRF. The second way is to
first do a “subset sum” on the base elements, and then apply the IHwPRF. The
two parties involved in the protocol each use one of these strategies. Security of
the protocol follows from the weak pseudorandomness of F and one-wayness of
“subset sums” in its input space, where the latter is also implied by the weak
pseudorandomness of F .

Finally, the reader may observe that the protocol is secure even if the function
F is an IHwUF instead of an IHwPRF, provided that both parties extract a
“hardcore bit” from the secret y∗ and use it as the key.11 Similarly, one can
construct a CPA-secure PKE from IHwUF by using the hardcore bit of the
secret y∗ to mask the message bit.

11 Note that the protocol assumes that the input space of the IHwUF/IHwPRF is
independent of the choice of key.
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Setup:

F : K × X → Y ! (G, q)
X = {xj,b ← X}j∈[n],b∈{0,1} ! G = {gj,b ← G}j∈[n],b∈{0,1}
k ← K ! k ← Zq
Y = {yj,b = F (k, xj,b)}j∈[n],b∈{0,1} ! H =

{
hj,b = gkj,b

}
j∈[n],b∈{0,1}

sk = k, pk = (X,Y) ! sk = k, pk = (G,H)

Encrypt:

m ∈ Y ! m ∈ G
s← {0, 1}n ! s← {0, 1}n
x∗ =

⊕
j∈[n] xj,sj ! g∗ =

∏n
j=1 gj,sj

y∗ =
⊗

j∈[n] yj,sj ! h∗ =
∏n
j=1 hj,sj

ct = (x∗, y∗ ⊗m) ! ct = (g∗, h∗ ·m)

Decrypt:

ct = (ct1, ct2) ! ct = (ct1, ct2)

m′ = [F (k, ct1)]−1 ⊗ ct2 ! m′ =
(
ctk1

)−1

· ct2

Fig. 5. PKE from IHwPRF and DDH Instantiation

{xj,b} {yj,b}

x∗ y∗

⊕
−→s

F (k, ·)

⊗
−→s

F (k, ·)

g gα

gβ gαβ

α

β

α

β

Fig. 6. Visualization of Non-Interactive Key Exchange from IHwPRF

2.2 Extending the Scheme with a General Protocol

It turns out that we can do substantially more than just PKE, as an examination
of the above protocol might suggest. It turns out we can take any one-round12

12 Informally, in our context this means a protocol that can be “played” by two parties
with a simple out-and-back communication flow, along with any PPT computation
the parties choose to do before, during, or after the communication.
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CDH/DDH-based protocol and convert it into a (less efficient) protocol using a
general IHwUF/IHwPRF. The basic idea is the following: visualize one-round
CDH/DDH schemes as protocols played by two parties with the following four
phases. Below is a rough description of this protocol:

• Initialization: Setting up the group and any random elements needed for
the protocol.

• Pre-Evaluation: The first party exponentiates some (or all) of the random
elements from the initialization stage and sends some (or all) of these to the
second player.

• Evaluation: The second party exponentiates some of the elements from the
first player and potentially some of the elements from initialization as well.
The second player potentially publishes some of these elements as well.

• Post-Evaluation: Either party can multiply/invert/process the elements,
and may publish some outputs of these.

It turns out that the vast majority of CDH/DDH-based cryptosystems fall
into this archetype, and thus we can build them using an IHwUF/IHwPRF.
Among other implications, this approach encompasses recent constructions such
as (anonymous) IBE from CDH/DDH and a number of other works in the same
vein [DG17b,DG17a,BLSV18,DGHM18,GH18,KW18,GGH18]. Although these
works use many novel techniques, we show that the CDH/DDH-related portion
of the constructions can be boiled down to something that fits within the above
framework. The few protocols that cannot be handled involve at least three
exponentiations (and cannot be rewritten as less efficient protocols with two or
less exponentiations).

We can use our general protocol and the ideas around it to build many
cryptosystems. In the following subsection, we outline some of the constructions
that we consider interesting.

2.3 Batch Encryption from IHwUFs

In a recent work, Brakerski et al. [BLSV18] introduced and formalized a powerful
cryptographic primitive called batch encryption. Roughly speaking, the basic idea
of batch encryption is the following: a user encrypts a 2×N matrix of bits, and
decryption selectively reveals only N of these bits–one in each column. For a
given column, which bit is revealed depends on the value of the secret key used
for decryption.

Brakerski et al. showed that batch encryption can be used in conjunction
with garbled circuits to construct identity-based encryption (IBE).13 In fact,
when equipped with a stronger property called “blinding”, batch encryption
was shown to imply anonymous IBE, KDM-CPA secure PKE, and leakage re-
silient PKE [BLSV18]. The authors of [BLSV18] showed how to construct batch

13 An equivalent cryptosystem, named as hash encryption, was introduced by Döttling
et al.in [DGHM18].
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encryption from concrete assumptions, so it is natural to ask the following ques-
tion: is there a generic primitive that implies batch encryption?

In this subsection, we answer this question in the affirmative by showing
that IHwUFs are sufficient to construct blind batch encryption. This in turn
implies that IHwUFs are sufficient to construct anonymous IBE, KDM-secure
PKE and leakage-resilient PKE as well.14 We begin by defining blind batch
encryption informally, and then illustrate how to construct the same from any
IHwUF family. 15

Batch Encryption. A batch encryption scheme is a public-key encryption
scheme in which the key generation algorithm Gen “projects” a secret string
s ∈ {0, 1}n onto a corresponding hash value h ∈ {0, 1}`, such that ` < n.
Corresponding to this “projection” function, there should exist encryption and
decryption algorithms such that:

• The encryption algorithm Enc(pp, h, i, (m0,m1)) takes as input the public

parameter pp associated with the projection function, a hash h ∈ {0, 1}`,
a position index i ∈ [n] and a pair of message-bits (m0,m1) ∈ {0, 1}2, and
outputs a ciphertext ct.
• The decryption algorithm Dec (pp, s, i, ct) takes as input a ciphertext ct and

a secret string s, and then recovers msi where si is the value of the ith-bit
of s, provided that ct was generated using h = Gen(pp, s).

In other words, a decryptor can use the knowledge of the preimage s of a hash
output string h ∈ {0, 1}` to decrypt exactly one of the two encrypted messages,
depending on the ith-bit of s. The security requirement is roughly that the
distributions

{pp, s,Enc(pp, h = Gen(pp, s), i, (msi ,m1−si))}s∈{0,1}n and

{pp, s,Enc(pp, h = Gen(pp, s), i, (msi ,m
∗))}s∈{0,1}n,m∗←{0,1}

are computationally indistinguishable. In fact, as Brakerski et al. pointed out
in [BLSV18], a weaker selective notion of security suffices, where the adversary
commits to a string s ∈ {0, 1}n and an index i ∈ [n] before the public parameter
pp is published.

Note that the adaptive security guarantee implicitly requires the projection
function to be collision-resistant; otherwise, a PPT adversary could distinguish
an encryption of m1−si from random with non-negligible probability simply by
generating a different preimage s′ of h such that s′i 6= si.

An additional security requirement, called “blindness” was formalized with
respect to batch encryption in [BLSV18]. Roughly, a batch encryption scheme is

14 The construction of anonymous IBE requires an additional primitive - “blind garbled
circuits” besides blind batch encryption. However, blind garbled circuits are implied
by any one-way function, and are hence also implied by IHwUFs.

15 We can analogously construct blind batch encryption from γ-bounded IHwUFs. For
simplicity, we show the construction from an “unbounded” IHwUF here.
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said to be blind if the ciphertext ct can be decomposed into parts (ct1, ct2) such
that the marginal distribution of ct1 is independent of both the image string h
and the message pair (m0,m1), while the marginal distribution of ct2 is uniform

whenever the message pair (m0,m1) is uniform in {0, 1}2.

Projection Function from IHwUF. The first step in instantiating a batch
encryption scheme is to realize the projection function. Given an IHwUF F :
K ×X → Y, we define GenIHwUF(pp, s) to output

h =
⊕
j∈[n]

xj,sj ,

where {xj,b}j∈[n],b∈{0,1} is a set of uniformly random elements in the input group

of the IHwUF, published as part of the public parameter pp. We claim that this
function is both one-way and collision resistant, provided that n > 3 log |X |.16

One-wayness. To see that this function is one-way, consider a PPT adversary
A that, given uniformly random group elements {xj,b}j∈[n],b∈{0,1} and a “target”

element x∗, outputs a vector s ∈ {0, 1}n such that

x∗ =
⊕
j∈[n]

xj,sj .

One can then construct a PPT algorithm B that on input {xj,b, F (k, xj,b)}j∈[n],b∈{0,1}
(where each xj,b is uniformly random) and a uniformly random target element

x∗, invokes A as a subroutine on the tuple
{
x∗, {xj,b}j∈[n],b∈{0,1}

}
to obtain

s ∈ {0, 1}n and outputs

F (k, x∗) =
⊗
j∈[n]

F
(
k, xj,sj

)
,

which violates the weak unpredictability of the function F . We note that the
reduction is valid because for n > 3 log |X |, the distribution of

⊕
j∈[n] xj,sj is

statistically indistinguishable from uniform by the leftover hash lemma [IZ89].

Collision-Resistance. To see that this function is collision-resistant, consider a
PPT adversaryA that, given uniformly random group elements {xj,b}j∈[n],b∈{0,1},
outputs (s, s′) ∈ {0, 1}n × {0, 1}n such that s 6= s′ and⊕

j∈[n]

xj,sj =
⊕
j∈[n]

xj,s′j .

16 We note that it is possible to use a smaller constant, but we use 3 through the whole
paper for the sake of simplicity.
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One can then construct a PPT algorithm B that on input {xj,b, F (k, xj,b)}j∈[n],b∈{0,1}
(where each xj,b is uniformly random) and a random target element x∗, uniformly
guesses i← [n], resets xi,0 := x∗ and invokes A as a subroutine on the modified
set {xj,b}j∈[n],b∈{0,1} to obtain a collision (s, s′). If si = s′i, it aborts. Otherwise,

it exploits the homomorphism of the function F to output F (k, x∗). Since the
probability that s and s′ differ in the ith bit is at least 1/n, B breaks the weak
unpredictability of F .

Encryption and Decryption. Corresponding to the projection function as
described above, we realize our encryption procedure EncIHwUF(pp, h, i, (m0,m1))
as follows: sample k0, k1 ← K and set the following

y
(0)
j,0 = F (k0, xj,b) , y

(1)
j,1 = F (k1, xj,b) for j ∈ [n] \ {i}, b ∈ {0, 1}

y
(0)
i,0 = F (k0, xi,0) , y

(1)
i,0 = ⊥,

y
(0)
i,1 = ⊥ , y

(1)
i,1 = F (k1, xi,1) .

Next, mask the messages (m0,m1) ∈ {0, 1} × {0, 1} as follows:17

e0 = XOR (HardCore (F (k0, h)) ,m0)

e1 = XOR (HardCore (F (k1, h)) ,m1) .

Output the ciphertext as

ct =

(
ct1 =

{
y
(0)
j,b , y

(1)
j,b

}
j∈[n],b∈{0,1}

, ct2 = (e0, e1)

)
.

Given a preimage string s, our decryption algorithm DecIHwUF (pp, s, i, ct) now
recovers msi as

msi = XOR

(
HardCore

( ⊗
j∈[n]

y
(si)
j,sj

)
, esi

)
.

Correctness follows from the homomorphic property of the function F . Observe
that irrespective of the value of the bit si, msi can always be recovered as the

decryptor has access to y
(b)
i,b for each b ∈ {0, 1}. However, it cannot recover m1−si

since it does not have access to y
(b)
i,1−b for either b = 0 or b = 1. In addition, we

note that, unlike existing constructions, our construction does not require the
groups (X ,⊕) and (Y,⊗) to be abelian for correctness to hold.

17 We assume that each group element y ∈ Y has a deterministic hardcore bit, denoted
as HardCore(y). If a deterministic hardcore bit is not known then we can use the
Goldreich-Levin [GL89] construction.
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Security. We now sketch our security proof. Suppose we are given an adversary
A that breaks the security of this scheme. We construct a PPT algorithm B that
breaks the weak unpredictability of the function F . We assume that B has oracle
access to an IHwUF F with key k.

In our security game, B receives a uniformly random challenge element x∗

and a bit e∗ ∈ {0, 1} such that e∗ = HardCore (F (k, x∗)) (the “real” case) or e∗

is a uniform bit (the “random” case). The goal of B is to output a bit b, such
that

b =

{
0 if e∗ = HardCore (F (k, x∗))

1 if e∗ ← {0, 1}

In other words, B must distinguish the hardcore bit associated with the output
of F (k, x∗) from random (which is equivalent to constructing the entire output
F (k, x∗))18 using the adversary A.

We note here that the exact value of n is typically chosen by the adversary
A at the beginning of the game, subject to the restriction that n > 3 log |X |. For
simplicity, we describe the interaction between B and A after the value of n has
been chosen.

• The adversary A chooses an arbitrary preimage string s ∈ {0, 1}n and an
index i ∈ [n], and provides (s, i) to B.

• B queries the IHwUF F a total of 2n times, getting a tuple of the form

{xj,b, F (k, xj,b)}j∈[n],b∈{0,1} .

• B now resets

xi,si :=

( ⊕
j∈[i−1]

xj,sj

)−1
⊕ x∗ ⊕

( ⊕
j∈[i+1,n]

xj,sj

)−1
,

and provides pp = {xj,b}j∈[n],b∈{0,1} to A. In other words, B fixes x∗ to be

the image of s under the projection function parameterized by pp.

• The adversary A generates m(0) =
(
m

(0)
0 ,m

(0)
1

)
and m(1) =

(
m

(1)
0 ,m

(1)
1

)
such that m

(0)
si = m

(1)
si , and sends them to B.

• In response, B samples k′ ← K, and implicitly fixes ksi := k′ and k1−si := k.
It then sets the following

y
(si)
j,sj

= F
(
k′, xj,sj

)
, y

(1−si)
j,sj

= F
(
k, xj,sj

)
for j ∈ [n] \ {i}, b ∈ {0, 1},

y
(si)
i,si

= F (k′, xi,si) , y
(1−si)
i,si

= ⊥,

y
(si)
i,1−si = ⊥ , y

(1−si)
i,1−si = F (k, xi,1−si) .

18 By the Goldreich-Levin Theorem [GL89], this can be used to build an algorithm
that constructs F (k, x∗) with only polynomial loss in advantage.
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To mask the messages, B sets the following

e(0)si = XOR
(

HardCore (F (k′, x∗)) ,m(0)
si

)
, e

(0)
1−si = XOR

(
e∗,m

(0)
1−si

)
,

e(1)si = XOR
(

HardCore (F (k′, x∗)) ,m(1)
si

)
, e

(1)
1−si = XOR

(
e∗,m

(1)
1−si

)
.

Finally, B samples b∗ ← {0, 1} and sends ct to A where

ct =

(
ct1 =

{
y
(0)
j,b , y

(1)
j,b

}
j∈[n],b∈{0,1}

, ct2 =
(
e
(b∗)
0 , e

(b∗)
1

))
.

• A outputs a bit b′. If b∗ = b′, B outputs 1. Otherwise it outputs 0.

Note that when e∗ = HardCore (F (k, x∗)), the challenge ciphertext is generated
perfectly. On the other hand, when e∗ is a uniform bit, the adversary A has no

advantage since m
(0)
si = m

(1)
si by definition. Hence, the advantage of B is negligibly

different from the advantage of A.

Blindness. The aforementioned batch encryption scheme is additionally “blind”.
This follows from the fact that the ciphertext component ct1 is independent of
both the image string h and the message-pair (m0,m1). Additionally, if (m0,m1)

is uniform in {0, 1}2, then the distribution of ct2 is also uniform.

2.4 More Primitives

Recyclable OWFE. In a recent work, Garg and Hajiabadi [GH18] intro-
duced a cryptographic primitive called recyclable one-way function with en-
cryption (OWFE), and showed that recyclable OWFEs imply trapdoor func-
tions (TDFs) with negligibly small inversion error. They also showed how to
construct recyclable OWFE from the CDH assumption, which in turn gave the
first TDF construction from the CDH assumption. In a more recent follow-up,
Garg et al. [GGH18] introduced a strengthened version of recyclable OWFE
called smooth recyclable OWFE, and showed how to realize the same from CDH
assumption. They showed that this strengthened primitive implies TDFs with
almost-perfect correctness and CCA2-secure deterministic encryption, where the
CCA2-security holds with respect to plaintexts sampled from distributions with
super-logarithmic min-entropy.

We show that IHwUFs imply smooth recyclable OWFE, thereby answering
the question of whether this cryptosystem can be constructed from a generic
primitive. This shows that IHwUFs also imply TDFs with almost-perfect cor-
rectness and CCA2-secure deterministic encryption for plaintexts sampled from
distributions with super-logarithmic min-entropy. The techniques for this con-
struction are similar to those presented for batch encryption.
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Hinting PRG. A “hinting PRG” is a stronger variant of traditional PRGs
introduced by Koppula and Waters in [KW18], who show that hinting PRGs
can be used to generically transform any CPA-secure attribute-based encryption
scheme or one-sided predicate encryption scheme into a CCA-secure counterpart.
Informally, a hinting PRG takes n bits as input and outputs n · ` output bits
with the restriction that no PPT adversary can distinguish between 2n uniformly
random strings and 2n strings such that half the strings are output by the PRG,
and the remaining half are uniformly random, where the strings are arranged
as a 2 × n matrix as follows: in the ith column of this matrix, the top entry is
pseudorandom and the bottom entry is random if the ith bit of the seed is 0;
otherwise the bottom entry is pseudorandom and top entry is random.

Koppula and Waters [KW18] showed explicit constructions of hinting PRG
families from the CDH and LWE assumptions. We show that any IHwUF fam-
ily can be used to construct a hinting PRG, thereby answering the question of
whether hinting PRGs can be constructed from a generic primitive. The tech-
niques for our construction are also similar to those presented for batch encryp-
tion.

CRHF and More from HOWF. Informally, a HOWF is just a one-way
function f : X → Y with the following additional properties: the input space X
and the output space Y are groups with group operations ⊕ and ⊗, respectively,
and

f (x1 ⊕ x2) = f (x1)⊗ f (x2) .

In this paper, we show that any HOWF can used to construct a collision-resistant
hash function (CRHF) family that maps bit strings to elements in the output
space of the HOWF. In addition, we show constructions of Schnorr signatures
and chameleon hash functions from HOWFs. 19

Richer Structures. As mentioned earlier, we can also consider richer structures
than just a group homomorphism over a Minicrypt primitive. In this section, we
provide more details for two of these more structured primitives, namely Ring
IHwPRFs and L-composable IHwPRFs.

Ring IHwPRFs. We first informally define a Ring Input-Homomorphic weak

PRF (RIHwPRF). Let (R,+,×) and ( R ,�,�) be two efficiently samplable
rings such that the ring operations are efficiently computable. An RIHwPRF is
a weak PRF

F : K × R → R

19 Here we use “unbounded” HOWF for simplicity. We also consider “bounded”
HOWFs for which only a bounded number of homomorphic operations is allowed.
The notion of bounded HOWFs works for all of the applications that we consider in
almost the same way that unbounded HOWFs do.
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(with input space R and output space R) such that for every key k ∈ K the

mapping F (k, ·) : R → R is a ring homomorphism from R to R.20

We outline a simple construction of symmetric-key FHE from an RIHwPRF
F provided that the size of output space of F is polynomial in the security
parameter, i.e., |R| ≤ poly(λ). Using the generic transformation in [Rot11], one
can obtain a public-key FHE from a symmetric-key FHE. The construction is
as follows:

• Given an RIHwPRF F : K × R → R, publish its description as the public
parameters. To generate a secret key sample a key k ← K.

• To encrypt a bit m ∈ {0, 1} under key k, sample a preimage ct ← R
such that F (k, ct) = mR and publish ct as the ciphertext.21 (Notice that
0R and 1R are the multiplicative and the additive identity elements of R,
respectively.)

• To decrypt a ciphertext ct ∈ R under key k, output m′ where

m′ =


0 if F (k, r ) = 0R

1 if F (k, r ) = 1R

⊥ otherwise.

• To evaluate a (homomorphic) NAND(ct, ct′) operation, output 1 � ct� ct′

where 1 is the identity element of R with respect to addition, and � is

the subtraction in the ring R .

The security of the scheme follows from a standard hybrid argument. Observe
that by ring-homomorphism of F , if ct and ct′ are valid ciphertexts encrypting
m and m′ respectively, decrypting 1 � ct� ct′ gives NAND(m,m′).

L-Composable IHwPRFs. We first describe 2-Composable IHwPRFs before
generalizing to L ≥ 2. Informally, a two-composable IHwPRF is a collection of
two functions and two “composers”

F1 : K ×X1 → Y1 , F2 : K ×X2 → Y2,
C1 : Y1 ×X2 → Z , C2 : Y2 ×X1 → Z.

such that the functions are IHwPRFs and the composers are weak PRFs. Addi-
tionally, the following composition property holds: for every k ∈ K and for every
x1, x2 ∈ X , we have:

C1 (F1 (k, x1) , x2) = C2 (F2 (k, x2) , x1) , both denoted FT (k, (x1, x2)).

20 It is also possible to define (bounded) RIHwPRFs similar to IHwPRFs, but we only
consider unbounded homomorphism here for the sake of simplicity.

21 Such a preimage can be efficiently sampled by weak pseudorandomness of F and the
fact that the order of the ring is polynomial.
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This primitive gives us 3-party non-interactive key exchange (NIKE) in the
following way: the public key includes vectors x(1) and x(2). Two of the parties
generate secret subsets s1 and s2, and publish the group elements⊕

j∈[n]

x
(1)
j,s1,j

,
⊕
j∈[n]

x
(2)
j,s2,j

,

respectively. The 3rd party generates a secret key k and publishes F1(k,x(1))
and F2(k,x(2)). Each party computes the shared key:

FT

(
k,

( ⊕
j∈[n]

x
(1)
j,s1,j

,
⊕
j∈[n]

x
(2)
j,s2,j

))
,

which can be computed from any party’s secret and the other parties’ outputs,
using the composition property and input homomorphism of F1 and F2. Security
follows by the weak PRF properties and LHL.

We argue that 2-composable IHwPRFs are seemingly much weaker than bi-
linear pairing groups. Specifically, we argue that the general abstraction of dual
system groups (DSG [CGW15]) is hard to capture in the 2-Composable IHwPRF
setting due to the following limitations:

1. DSG seems to require properties that translate to the requirement of key
homomorphism in the 2-composable IHwPRF setting.

2. DSG also requires algebraic interaction on both of the coordinates. Realizing
this in the IHwPRF setting forces both the coordinate domains X1 and X2 to
be ring homomorphic on a single ring, where all the algebra can take place.

The currently known constructions of rich ABEs like fuzzy IBEs [SW05],
spatial encryption [BH08] and monotone span program ABEs [GPSW06] from
bilinear groups all require at least one of the properties just described. Since the
only instantiation of 2-composable IHwPRFs we know of are bilinear groups,
it seems difficult to achieve these rich ABEs without restricting 2-composable
IHwPRFs to almost traditional bilinear groups.

Thus we see a seeming separation in the amount of structure that we need
for 3-party NIKE and simple IBE (in RO) from that seemingly necessary for
NIZKs (without RO) and rich ABEs. This poses a tantalizing question: Can
we construct a 3-party NIKE protocol from a weaker primitive than bilinear
pairing groups? In other words, can we achieve the structure of 2-composability
from concrete assumptions, e.g., lattice-based assumptions, that do not naturally
imply bilinear pairings?

Generalizing to L ≥ 2. In the general setting, we consider L inner IHwPRFs
Fi and L different composers which satisfy an analogous composition property as
the 2-composable setting. By a straightforward generalization, we get an (L+1)-
party non-interactive key exchange from an L-Composable IHwPRF, which is
not known from any (< L)-Composable IHwPRFs. We also do not know how
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to construct such a protocol from any hard (< L)-multilinear group. We still
observe an analogous seeming separation in the amount of structure that we
need for multi-party non-interactive key exchange from that seemingly necessary
for circuit ABEs and iOs. The corresponding open question is whether we can
build the former from weaker primitives that may lack the structure needed for
the latter.

2.5 Conclusion and Future Work

In this paper, we presented a framework to build many cryptosystems from
Minicrypt primitives with structure. Our framework allows us to categorize many
cryptosystems based on which structured Minicrypt primitive implies them, and
potentially makes showing the existence of many cryptosystems from novel as-
sumptions substantially easier in the future. In addition, some of our construc-
tions are novel in their own right. Although our framework yields new construc-
tions from less studied assumptions, the main focus of this work is to investigate
what kind of structure, when added to simple and natural Minicrypt primitives,
implies advanced cryptosystems like IBE. Hence, we are not explicitly examin-
ing new constructions from a mainstream assumption. We believe that our work
opens up a substantial number of questions, some of which we mention here.

Primitives from Weaker Assumptions. A pertinent open question is: can
we build some of the Cryptomania primitives discussed in this paper from
weaker Minicrypt primitives with structure. For instance, can we build PKE from
HOWFs (which would imply PKE from discrete log)? Can we build PIR/lossy
TDFs from IHwUFs (which would imply the first PIR/lossy TDFs from CDH)?
Is it possible to build round-optimal OT and MPC in the plain model from
IHwUFs/IHwPRFs?

More Primitives. While we constructed many popularly used Cryptomania
primitives from our framework, we could not encompass many others. These
(non-exhaustively) include primitives implied by bilinear pairings such as NIZK,
unique signatures, VRFs, ABE and PE, and primitives known from specific
assumptions such as worst-case smooth hash proof systems, KDM-CCA secure
PKE and dual-mode cryptosystems. It is open to construct one or more of these
primitives from simple Minicrypt primitives with structure.

New Assumptions. One of the nicest aspects of our work is the implications
for new assumptions. If a new assumption implies one of the Minicrypt primitives
with structure discussed in this paper, then it immediately implies a whole host of
cryptographic primitives. We leave it open to build HOWFs/IHwUFs/IHwPRFs
from new concrete assumptions, which in conjunction with our framework would
allow building a large number of Cryptomania primitives from such assumptions.
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“Continents” of Cryptomania. We leave it open to explore if there are even
weaker forms of structure that, when endowed upon Minicrypt primitives, lead
to interesting implications in Cryptomania. It is also interesting to explore non-
trivial separations between these structured primitives, e.g., between HOWFs
and IHwUFs. Such separations would potentially allow us to divide the world
of Cryptomania into many “continents” of primitives, where each “continent” is
entirely implied by some simple Minicrypt primitive with structure.
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