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Abstract. We consider a scenario where a server holds a huge database
that it wants to make accessible to a large group of clients. After an
initial setup phase, clients should be able to read arbitrary locations
in the database while maintaining privacy (the server does not learn
which locations are being read) and anonymity (the server does not learn
which client is performing each read). This should hold even if the server
colludes with a subset of the clients. Moreover, the run-time of both the
server and the client during each read operation should be low, ideally
only poly-logarithmic in the size of the database and the number of
clients. We call this notion Private Anonymous Data Access (PANDA).

PANDA simultaneously combines aspects of Private Information Re-
trieval (PIR) and Oblivious RAM (ORAM). PIR has no initial setup, and
allows anybody to privately and anonymously access a public database,
but the server’s run-time is linear in the data size. On the other hand,
ORAM achieves poly-logarithmic server run-time, but requires an initial
setup after which only a single client with a secret key can access the
database. The goal of PANDA is to get the best of both worlds: allow
many clients to privately and anonymously access the database as in
PIR, while having an efficient server as in ORAM.

In this work, we construct bounded-collusion PANDA schemes, where the
efficiency scales linearly with a bound on the number of corrupted clients
that can collude with the server, but is otherwise poly-logarithmic in the
data size and the total number of clients. Our solution relies on standard
assumptions, namely the existence of fully homomorphic encryption, and
combines techniques from both PIR and ORAM. We also extend PANDA
to settings where clients can write to the database.

1 Introduction

As individuals and organizations increasingly rely on third party data stored re-
motely, there is often a need to access such data both privately and anonymously.
For example, we can envision a service that has a large database of medical con-
ditions, and allows clients to look up their symptoms; naturally clients do not
want to reveal which symptoms they are searching for, or even the frequency
with which they are performing such searches.



To address this, we consider a setting where a server holds a huge database
that it wants to make accessible to a large group of clients. The clients should
be able to read arbitrary locations in the database while hiding from the server
which locations are being accessed (privacy), and which client is performing each
access (anonymity). We call this Private Anonymous Data Access (PANDA).

In more detail, PANDA allows some initial setup phase, after which the server
holds an encoded database, and each client holds a short key. The setup can be
performed by a trusted third party, or via a multi-party computation protocol.
After the setup phase, any client can execute a read protocol with the server,
to retrieve an arbitrary location within the database. We want this protocol
to be highly efficient, where both the server’s and client’s run-time during the
protocol should be sub-linear (ideally, poly-logarithmic) in the database size and
the total number of clients. For security, we consider an adversarial server that
colludes with some subset of clients. We want to ensure that whenever an honest
client performs a read access, the server learns nothing about the location being
accessed, or the identity of the client performing the access beyond the fact that
she belongs to the group of all honest clients. For example, the server should not
learn whether two accesses correspond to two different clients reading the same
location of the database, or one client reading two different database locations.1

We call the above a read-only PANDA, and also consider extensions that
allow clients to write to the database, which we discuss below in more detail.

Connections to PIR and ORAM. PANDA combines aspects of both Private In-
formation Retrieval (PIR) [CGKS95,KO97] and Oblivious RAM (ORAM) [GO96].
Therefore, we now give a high-level overview of these primitives, their goals, and
main properties.

In a (single-database) PIR scheme [KO97], the server holds a public database
in the clear. The scheme has no initial setup, and anybody can run a protocol
with the server to retrieve an arbitrary location within the database. Notice that
since there are no secret keys that distinguish one client from another, a PIR
scheme also provides perfect anonymity. However, although the communication
complexity of the PIR protocol is sub-linear in the data size, the server’s run-
time is inherently linear in the size of the data. (Indeed, if the server didn’t
read the entire database during the protocol, it would learn something about
the location being queried, since it must be among the ones read.) Therefore,
PIR does not provide a satisfactory answer to the PANDA problem, where we
want sub-linear efficiency for the server.

In an ORAM scheme, there is an initial setup after which the server holds
an encoded database, and a client holds a secret key. The client can execute a
protocol with the server to privately read or write to arbitrary locations within
the database, and the run-time of both the client and the server during each such
protocol is sub-linear in the data size. However, only a single client in possession
of a secret key associated with the ORAM can access the database. Therefore,

1 We assume clients have an anonymous communication channel with the server (e.g.,
using anonymous mix networks [Cha03] such as TOR [DMS04] or [BG12,LPDH17]).
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ORAM is also not directly applicable to the PANDA problem, where we want a
large group of clients to access the database.

1.1 Prior Work Extending PIR and ORAM

Although neither PIR nor ORAM alone solve the PANDA problem, several prior
approaches have considered extensions of PIR and ORAM, aimed to overcome
their aforementioned limitations. We discuss these approached, and explain why
they do not provide a satisfactory solution for PANDA.

ORAM with Multiple Clients. As mentioned above, in an ORAM scheme only
a single client can access the database, whereas in PANDA we want multiple
clients to access it. There are several natural ways that we can hope to extend
ORAM to the setting of multiple clients.

The first idea is to store the data in a single ORAM scheme, and give all the
clients the secret key for this ORAM. Although this solution provides anonymity
(all clients are identical) it does not achieve privacy; if the server colludes with
even a single client, the privacy of all other clients is lost.

A second idea is to store the data in a separate ORAM scheme for each
client, and give the client the corresponding secret key. Each client then accesses
the data using her own ORAM. This achieves privacy even if the server colludes
with a subset of clients, but does not provide anonymity since the server sees
which ORAM is being accessed.2

The third idea is similar to the previous one, where the data is stored in a
separate ORAM scheme for each client, and the client accesses the data using
her own ORAM. However, unlike the second idea, the client also performs a
“dummy” access on the ORAM schemes of all other clients to hide her iden-
tity. This requires a special ORAM scheme where any client without a secret
key can perform a “dummy” access which looks indistinguishable from a real
access to someone that does not have the secret key. It turns out that existing
ORAM schemes can be upgraded relatively easily to have this property (us-
ing re-randomizable encryption). Although this solution achieves privacy and
anonymity, the efficiency of both the server and the client during each access is
linear in the total number of clients.

Lastly, we can also store the data in a single ORAM scheme on the server, and
distribute the ORAM secret key across several additional proxy servers. When a
client wants to access a location of the data, she runs a multiparty computation
protocol with the proxy servers to generate the ORAM access. Although this
solution provides privacy, anonymity and efficiency, it requires having multiple
non-colluding servers, whereas our focus is on the single server setting.

Variants of the above ideas have appeared in several prior works
(e.g., [BMN17,MMRS15,KPK16,BHKP16,ZZQ16]) that explored multi-client

2 Also, the server storage in this solution grows proportionally to the number of clients
times the data size. Reducing the server storage, even without anonymity, is an
interesting relaxation of PANDA which we explore in the full version.
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ORAM. In particular, the work of Backes et al. [BHKP16] introduced the notion
of Anonymous RAM (which is similar to our notion of secret-writes PANDA,
discussed below), and proposed two solutions which can be seen as variants of
the third and fourth ideas discussed above. Specifically, they are able to achieve
security for up to all but one colluding clients in both schemes, one achieving
linear storage in the number of users, the other relying on two non-colluding
servers. Our solution, for the same collusion threshold, is able to achieve linear
storage overhead in the number of users with only a single server, and for lower
collusion thresholds we are more efficient (linear in the collusion threshold). We
note, despite much research activity, no prior solution simultaneously provides
privacy, anonymity and efficiency in the single-server setting.

Doubly Efficient PIR. As noted above, the server run-time in a PIR protocol is
inherently linear in the data size, whereas in PANDA we want the run time of
both the client and the server to be sub-linear. However, it may be possible to
get a doubly efficient PIR (DEPIR) variant in which the server run-time is sub-
linear, by relaxing the PIR problem to allow a pre-processing stage after which
the server stores an encoded version of the database. This concept was first
proposed by Beimel, Ishai and Malkin [BIM00], who showed how to construct
information-theoretic DEPIR schemes in the multi-server setting, with several
non-colluding servers. Two recent works, of Canetti et al. [CHR17] and Boyle et
al. [BIPW17], give the first evidence that this notion may even be achievable in
the single-server setting. Concretely, they consider DEPIR schemes with a pre-
processing stage which generates an encoded database for the server, and a key
that allows clients to query the database at arbitrary locations. They distinguish
between symmetric-key and public-key variants of DEPIR, based on whether the
key used to query the database needs to be kept secret or can be made public.
Both works show how to construct symmetric-key DEPIR under new, previously
unstudied, computational hardness assumptions relating to Reed-Muller codes.
The work of [BIPW17] also shows how to extend this to get public-key DEPIR
by also relying on a heuristic use of obfuscation. Unfortunately, both of the above
assumptions are non-standard, poorly understood, and not commonly accepted.

In relation to PANDA, symmetric-key DEPIR suffers from the same draw-
backs as ORAM, specifically, only a single client with a secret key can access
the database.3 If we were to give this key to several clients, then all privacy
would be lost even if only a single client colludes with the server. On the other
hand, public-key DEPIR immediately yields a solution to the PANDA problem,
at least for the read-only variant. Moreover, it even has additional perks not
required by PANDA, specifically: the set of clients does not need to be chosen
ahead of time, anybody can use the system given only a public key, and the
server is stateless. Unfortunately, we currently appear to be very far from being
able to instantiate public-key DEPIR under any standard hardness assumptions.

3 The main difference between symmetric-key DEPIR and ORAM is that in the former
the server is stateless and only stores a static encoded database, while in the latter
the server is stateful and its internal storage is continuously updated after each
operation. In PANDA, we allow the server to be stateful.
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1.2 Our Results

Read-Only PANDA. In this work, we construct a bounded-collusion PANDA
scheme, where we assume some upper bound t on the number of clients that
collude with the server. The client and server efficiency scales linearly with t, but
is otherwise poly-logarithmic in the data size and the total number of clients. In
particular, our PANDA scheme allows for up to a poly-logarithmic collusion size
t while maintaining poly-logarithmic efficiency for the server and the client. Our
construction relies on the generic use of (leveled) Fully Homomorphic Encryption
(FHE) [RAD78,Gen09] which is in turn implied by the Learning With Errors
(LWE) assumption [Reg09]. Our basic construction provides security against a
semi-honest adversary, and we also discuss how to extend this to get security in
the fully malicious setting. In summary, we get the following theorem.

Theorem 1 (Informal statement of Theorem 6). Assuming the existence
of FHE, there exists a (read-only) PANDA scheme with n clients, t collusion
bound, database size L and security parameter λ such that, for any constant
ε > 0, we get:

– The client/server run-time per read operation is t · poly(λ, logL).
– The server storage is t · L1+ε · poly(λ, logL).

PANDA with Writes. We also consider extensions of PANDA to a setting that
supports writes to the database. If the database is public and shared by all
clients, then the location and content of write operations is inherently public
as well. However, we still want to maintain privacy and anonymity for read
operations, as well as anonymity for write operations. We call this a public-
writes PANDA and it may, for example, be used to implement a public message
board where clients can anonymously post and read messages, while hiding from
the server which messages are being read. We also consider an alternate scenario
where each client has her own individual private database which only she can
access. In this case we want to maintain privacy and anonymity for both the reads
and writes of each client, so that the server does not learn the content of the
data, which clients are accessing their data, or what parts of their data they are
accessing. We call this a secret-writes PANDA.4 We show the following result.

Theorem 2 (Informal statement of Theorem 7). Assuming the existence
of FHE, there exists a public-writes PANDA with n clients, t collusion bound,
database size L and security parameter λ such that, for any constant ε > 0, we
get:

– The client/server run-time per read operation is t · poly(λ, logL).

4 Note that in the read-only setting, having a scheme for a shared public database is
strictly more flexible than a scheme for individual private databases. We can always
use the former to handle the latter by having clients encrypt their individual data
and store it in a shared public database. However, once we introduce writes, these
settings become incomparable.
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– The client run-time per write is O(logL), and the server run-time is t · Lε ·
poly(λ, logL).

– The server storage is t · L1+ε · poly(λ, logL).

The same results as above hold for secret-writes PANDA, except that the
client run-time per write increases to t·poly(λ, logL), and L now denotes the sum
of the initial database size and the total number of writes performed throughout
the lifetime of the system.

Extensions. We also consider the PANDA problem in stronger security models
in which the adversary can adaptively choose the access pattern, and maliciously
corrupt parties. Our constructions are also secure in the adaptive setting. The
read-only PANDA scheme is secure against maliciously-corrupted clients, and a
variant of it (which employs Merkle hash trees and succinct interactive arguments
of knowledge) is secure if the server is also maliciously corrupted. Finally, we
discuss modifications of our PANDA with writes schemes that remain secure in
the presence of malicious corruptions. See the full version [HOWW18] for further
details.

1.3 Our Techniques

We now give a high-level overview of our PANDA constructions. We start with
the read-only setting, and then discuss how to enable writes.

Read-Only PANDA. Our construction relies on Locally Decodable Codes
(LDCs) [KT00], which have previously been used to construct multi-server
PIR [CGKS95,WY05]. We first give an overview of what these are, and then
proceed to use them to build our scheme in several steps.

Locally Decodable Codes (LDCs). An LDC consists of a procedure that encodes
a message into a codeword, and a procedure that locally decodes any individual
location in the message by reading only few locations in the codeword. We denote
the locality by k. An LDC has s-smoothness if any s out of k of the codeword
locations accessed by the local decoder are uniformly random and independent
of the message location being decoded. Such LDCs (with good parameters) im-
mediately give information-theoretic multi-server doubly-efficient PIR without
any keys [BIM00]: each of the k servers holds a copy of the encoded database,
and the client runs the local decoding procedure by reading each of the k queried
codeword locations from a different server. Even if s out of k servers collude, they
don’t learn anything about the database location that the client is retrieving.5

LDCs with sufficiently good parameters for our work can be constructed using
Reed-Muller codes [Ree54,Mul54].

5 In standard PIR schemes, the servers hold the original database, and each query is
answered by computing the requested codeword symbol on the fly. However, if the
codeword size is polynomial, then the servers can compute the codeword first in a
preprocessing phase, and then use the pre-computed codeword to answer each query
in sub-linear time.
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Initial Idea: LDCs + ORAM. Although LDCs naturally only give a multi-server
PIR, our initial idea is to think of these as “virtual servers” which will all be
emulated by a single real server by placing each virtual server under a separate
ORAM instance. Each client is assigned a random committee consisting of a
small subset of these virtual servers, for which she gets the corresponding ORAM
keys. When the adversary corrupts a subset of the clients, it gets all of their
ORAM keys, and can therefore be seen as corrupting all the virtual servers that
are on the committees of these clients. Nevertheless, we can ensure that the
committee of any honest client has sufficiently few corrupted virtual servers for
LDC smoothness to hide the client’s queries.

In more detail, we think of having k′ virtual servers, for some k′ which is
sufficiently larger than the locality k of the LDC. For each virtual server, we
choose a fresh ORAM key, and store an LDC encoding of the database under this
ORAM. Each client is assigned to a random committee consisting of k out of k′ of
the virtual servers, for which she gets the related ORAM keys. To read a database
location, the client runs the LDC local decoding algorithm, which requests to
see k codeword locations. The client then reads each of the k codeword locations
from a different virtual server on her committee, by using the corresponding
ORAM scheme. Notice that an adversary that corrupts some subset of t clients,
thus obtaining all of their ORAM keys, can be seen as corrupting all the virtual
servers on their committees. We can choose the parameters to ensure that the
probability of the adversary corrupting more than s out of k of the virtual servers
on the committee of any honest client is negligible (specifically, setting k′ = tk2

and s to be the security parameter). As long as this holds, our scheme guarantees
privacy, since the server only learns at most s out of the k codeword locations
being queried (by the security of ORAM), and these locations reveal nothing
about the database location being read (by the LDC smoothness).

Although the above solution already gives a non-trivial multi-client ORAM
with privacy and low server storage (see the full version [HOWW18]), it does
not provide any anonymity. The problem is that each client only accesses the
k out of k′ ORAM schemes belonging to her committee, and doesn’t have the
keys needed to access the remaining ORAM schemes. Therefore, the server can
distinguish between different clients based on which of the ORAMs they access.

One potential idea to fix this issue would be for the client to make some
“dummy” accesses to the k′ − k remaining ORAM schemes (which are not on
her committee) without knowing the corresponding keys. Most ORAM schemes
can be easily modified to enable such “dummy” accesses without a key, that
look indistinguishable from real accesses to a distinguisher that doesn’t have the
key. Unfortunately, in our case the adversarial colluding server does have the
keys for many of these ORAM schemes. Therefore, to make this idea work in
our setting, we would need an ORAM where clients can make a “smart dummy”
access without a key that looks indistinguishable from a real access to a ran-
dom location even to a “smart” distinguisher that has the key. The square-root
ORAM scheme [Gol87,GO96] can be modified to have this property, but the
overall client/server efficiency in the final solutions would be at least square-
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root of the data size. Unfortunately, more efficient ORAM schemes with poly-
logarithmic overhead (such as hierarchical ORAM [Ost90,GO96] or tree-based
ORAM [SvDS+13]) do not have this property, and it does not appear that they
could be naturally modified to add it. Instead, we take a different approach and
get rid of ORAM altogether.

Bounded-Access PANDA: LDCs + Permute. Our second idea is inspired by the
recent works of Canetti et al. [CHR17] and Boyle et al. [BIPW17] on DEPIR,
as well as earlier works of Hemenway et al. [HO08,HOSW11]. Instead of im-
plementing the virtual servers by storing the LDC codeword under an ORAM
scheme, we do something much simpler and use a Pseudo-Random Permutation
(PRP) to permute the codeword locations. In particular, for each of the k′ virtual
servers we choose a different PRP key, and use it to derive a different permuted
codeword. Each client still gets assigned a random committee consisting of k
out of k′ of the virtual servers, for which she gets the corresponding PRP keys.
To retrieve a value from the database, the client runs the LDC local decoding
algorithm, which requests to see k codeword locations, and reads these locations
using the virtual servers on her committee by applying the corresponding PRPs.
She also reads uniformly random locations from the k′ − k virtual servers that
are not on her committee.

In relation to the first idea, we can think of the PRP as providing much
weaker security than ORAM. Namely, it reveals when the same location is read
multiple times, but hides everything else about the locations being read (whereas
an ORAM scheme even hides the former). On the other hand, it is now extremely
easy to perform a “smart dummy” access (as informally defined above) by read-
ing a truly random location in the permuted codeword, which is something we
don’t know how to do with poly-logarithmic ORAM schemes.

It turns out that this scheme is already secure if we fix some a-priori bound
B on the total number of read operations that honest clients will perform. We
call this notion a bounded-access PANDA. Intuitively, even though permuting
the codewords provides much weaker security than putting them in an ORAM,
and leaks partial information about the access pattern to the codeword, the fact
that this access pattern is sampled via a smooth LDC ensures that this leakage is
harmless when the number of accesses is sufficiently small. More specifically, our
proof follows the high-level approach of Canetti et al. [CHR17], who constructed
a bounded-access (symmetric-key) DEPIR which is essentially equivalent to the
above scheme in the setting with a single honest client and exactly k virtual
servers, where the adversary doesn’t get any of the PRP keys. In our case, we
need to extend this proof to deal with the fact that the adversary colludes with
some of the clients, and therefore learns some subset of the PRP keys.

Upgrading to Unbounded-Access PANDA. Our bounded-access PANDA scheme
is only secure when the number of accesses is a-priori bounded by some bound
B, and can actually be shown to be insecure for sufficiently many accesses be-
yond that bound (following the analysis of [CHR17]). In the work of Canetti
et al. [CHR17] and Boyle et al. [BIPW17], going from bounded-access DEPIR
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to unbounded-access DEPIR required new non-standard computational hardness
assumptions. In our case, we will convert bounded-access PANDA to unbounded-
access PANDA using standard assumptions, namely leveled FHE (instantiatable
under the LWE assumption). The main reason that we can use our approach for
PANDA, but not DEPIR, is that it makes the server stateful. This is something
we allow in PANDA, whereas the main goal of DEPIR was to avoid it.

Our idea is essentially to “refresh” the bounded-access PANDA after every
B accesses. More specifically, we think of the execution as proceeding in epochs,
each consisting of B accesses. We associate a different Pseudo-Random Function
(PRF) key with each virtual server and, for epoch i, we derive an epoch-specific
PRP key for each server by applying the corresponding PRF on i. We then use
this PRP key to freshly permute the codeword in each epoch. The clients get
the PRF keys for the virtual servers in their committee. This lets clients derive
the corresponding epoch-specific PRP keys for any epoch, and they can then
proceed as they would using the bounded-access PANDA. The only difficulty
is making sure that the server can correctly permute the codeword belonging
to each virtual server in each epoch without knowing the associated PRF/PRP
keys. We do this by storing FHE encryptions of each of the PRF keys on the
server and, at the beginning of each epoch, the server performs a homomorphic
computation to derive an encryption of the correctly permuted codeword for
each virtual server. The clients also get the FHE decryption keys for the virtual
servers in their committee, and thus can decrypt the codeword symbols that they
read from the virtual servers. Note that the server has to do a large amount of
work, linear in the codeword size, at the beginning of each epoch. However, we
can use amortized accounting to spread this cost over the duration of the epoch
and get low amortized complexity. Alternately, the server can spread out the
actual computation across the epoch by performing a few steps of it at a time
during each access to get low worst-case complexity. (This is possible because
the database is read-only, and so its contents at the onset of the next epoch are
known in advance at the beginning of the current epoch.) The security of this
scheme follows from that of the bounded-access PANDA since in each epoch,
the read operations are essentially performed using a fresh copy of the bounded-
access PANDA (with fresh PRP keys).

PANDA with Public Encoding. Our construction of (unbounded-access) PANDA
scheme described above has some nice features beyond what is required by the
definition. Specifically, although the server is stateful and its internal state is
updated in each epoch, the state can be computed using public information (the
FHE encryptions of the PRF keys), the database, and the epoch number.6 We
find it useful to abstract this property further as a PANDA with public encoding.
Specifically, we think of the PANDA scheme as having a key generation algorithm

6 For example, the state does not depend on the history of protocol executions with
the clients, and is unaffected by client actions. This may be of independent interest
even if we downgrade the scheme to the single client setting, and gives the first
ORAM scheme we are aware of with this property.

9



which doesn’t depend on the database, and generates a public-key for the server
and secret-keys for each of the clients. The server can then use the public-key
to create a fresh encoding of the database with respect to an arbitrary epoch
identifier (which can be a number, or an arbitrary bit string). The clients are
given the epoch identifier, and can perform read operations which consist of
reading some subset of locations from the server. Security holds as long as the
number of read operations performed by honest clients with respect to any epoch
identifier is bounded by B. Such a scheme can immediately be used to get an
unbounded-access PANDA by having the server re-encode the database at the
beginning of each epoch with an incremented epoch counter.

Note that our basic security definition considers a semi-honest adversary
who corrupts the server and some subset of the clients, but otherwise follows
the protocol specification. However, with the above structure, it’s also clear that
fully malicious clients (who might not follow the protocol) have no affect on the
server state, and therefore cannot violate security. A fully malicious server, on the
other hand, can lie about the epoch number and cause honest clients to perform
too many read operations in one epoch, which would break security. However, if
we assume that the epoch number is independently known to honest clients (for
example, epochs occur at regular intervals, and clients know the rate at which
accesses occur and have synchronized clocks) then this attack is prevented. The
only other potential attack for a fully malicious server is to give incorrect values
for the locations accessed in the encoded database. We can also prevent this
attack by using succinct (interactive) arguments to prove that the values were
computed correctly.

PANDA with Writes. We also consider PANDA schemes where clients can
write to the database, and discuss two PANDA variants in this setting which we
call public-writes and secret-writes.

Public-writes PANDA. In a public-writes PANDA, we consider a setting where
the server holds a shared public database which should be accessible to all clients.
Clients can write to arbitrary locations in the database but, since the database is
public, the locations and the values being written are necessarily public as well.
However, we still want to maintain anonymity for the write operations (i.e., the
server does not learn which client is performing each write), and both privacy
and anonymity for the read operations (namely, the server does not learn which
client is performing each read, or the locations being read). Our write operation
is extremely simple: the client just sends the location and value being written
to the server. However, even if we use PANDA with public encoding, the server
cannot simply update the value in the encoded database since this would require
(at least) linear time to re-encode the entire database.

Instead, we use an idea loosely inspired by hierarchical ORAM [Ost90,GO96].
We will store the database on the server in a sequence of logL levels, where L
is the database size. Each level i consists of a separate instance of a read-only
PANDA with public encoding, and will contain at most Li = 2i database values.
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We think of the levels as growing from the top down, namely level-0 (the smallest)
is the top-most level, and level-logL (the largest) is the bottom-most. Initially,
all the data is stored in the bottom level i = logL, and all the remaining levels
are empty. When a client wants to read some location j of the database, she
uses the read-only PANDA for each of the logL levels to search for location j,
and takes the value found in the top-most level that contains it. When a client
writes to some location j, the server will place that database value in the top
level i = 0. The server knows (in the clear) which database values are stored at
each level. After every 2i write operations, the server takes all the values in levels
0, . . . , i and moves them to level i + 1 by using the public encoding procedure
of PANDA and incrementing the epoch counter; level i + 1 will contain all the
values that were previously in levels ≤ i+ 1, and levels 0, . . . , i will be emptied.7

Although the cost of moving all the data to level i+ 1 scales with the data size
Li+1, the amortized cost is low since this only happens once every 2i writes.8

One subtlety that we need to deal with is that our read-only PANDA was
designed as an array data structure which holds L items with addresses 1, . . . , L.
However, the way we use it in this construction requires a map data structure
where the intermediate levels store Li � L items with addresses corresponding
to some subset of the values 1, . . . , L. We can resolve this using the standard
data-structures trick of storing a map in an array by hashing the n addresses into
n buckets where each bucket contains some small number of values (to handle
collisions). Our final public-writes PANDA scheme can also be thought of as
implementing a map data structure, where database entries can be associated
with arbitrary bit-strings as addresses, and clients can read/write to the value
at any address. We can also allow the total database size to grow dynamically
by adding additional levels as needed.

Secret-writes PANDA. In this setting, instead of having a shared public
database, we think of each client as having an individual private database which
only she can access. We want the clients to be able to read and write to loca-
tions in their own database, while maintaining privacy and anonymity so that
the server doesn’t learn the identity of the client performing each access, the
location being accessed, or the content of the data.

Our starting point is the public-writes PANDA scheme, which already guar-
antees privacy and anonymity of read operations, and anonymity of write op-
erations. The clients can also individually encrypt all their content to ensure
that it remains private. Therefore, we only need to modify write operations to
provide privacy for the underlying location being written. To achieve this, we
rely on the fact that our public-writes PANDA scheme already supports a map
data structure, where data can be associated with an arbitrary bit-string as an
address. As a first idea, when a client wants to write to some location j in her

7 Note that the epoch counters are also incremented, and the encodings are refreshed,
when sufficiently many reads occur at that level, just like in the read-only case.

8 The server complexity can actually be de-amortized using the pipelining trick of
Ostrovsky and Shoup [OS97].
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database, she can use a client-unique PRF, associating the data with the address
PRF (j), and then write it using the public-writes scheme. While this partially
hides the location j, the server still learns when the same location is written
repeatedly. To solve this problem, we also add a counter c, and set the address
to be PRF (j, c). Whenever a client wants to read some location j, she uses the
read operation of the public-writes PANDA to perform a binary search, and find
the largest count c such that there is a value at the address PRF (j, c) in the
database. Whenever a client wants to write to location j, she first finds the cor-
rect count c (as she would in a read access), and then writes the value to address
PRF (j, c+1). This ensures that the address being written reveal no information
about the underlying database location. The only downside to this approach is
that the server storage grows with the total number of writes, rather than the
total data size. Indeed, since the server cannot correlate different “versions” of
the same database location, it cannot delete old copies. Although we view this as
a negative, we note that many existing database systems only support “append
only” operations, and keep (as a backup) all old versions of the data. Therefore,
in such a setting the growth in server storage caused by our scheme does not in
fact add any additional overhead.

2 Preliminaries

Throughout the paper λ denotes a security parameter. We use standard
cryptographic definitions of Pseudo-Random Permutations (PRPs), Pseudo-
Random Functions (PRFs), and Fully Homomorphic Encryption (FHE) (see,
e.g., [Gol01,Gol04]). For a vector a = (a1, . . . , an), and a subset S =
{i1, . . . , is} ⊆ [n], we denote aS = (ai1 , . . . , ais).

Parameter Names. For all variants of the PANDA problem, we will let n denote
the number of clients, L denote the database size, and t denote a bound on the
number of corrupted clients colluding with the server.

2.1 Locally Decodable Codes (LDCs).

Locally decodable codes were first formally introduced by [KT00]. We rely on
the following definition of smooth LDCs.

Definition 1 (Smooth LDC). An s-smooth, k-query locally decodable code
with message length L, and codeword size M over alphabet Σ, denoted by
(s, k, L,M)Σ-smooth LDC, is a triplet (Enc,Query,Dec) of PPT algorithms with
the following properties.

Syntax. Enc is given a message msg ∈ ΣL and outputs a codeword c ∈ ΣM ,
Query is given an index ` ∈ [L] and outputs a vector r = (r1, . . . , rk) ∈ [M ]

k
,

and Dec is given cr = (cr1 , . . . , crk) ∈ Σk and outputs a symbol in Σ.
Local decodability. For every message msg ∈ ΣL, and every index ` ∈ [L],

Pr [r← Query (`) : Dec (Enc (msg)r) = msg`] = 1.
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Smoothness. For every index ` ∈ [L], the distribution of (r1, . . . , rk) ←
Query (`) is s-wise uniform. In particular, for any subset S ⊆ [k] of size
|S| = s, the random variables ri : i ∈ S are uniformly random over [M ] and
independent of each other.

We will use the Reed-Muller (RM) family of LDCs [Ree54,Mul54] over a
finite field F which, roughly, are defined by m-variate polynomials over F. More
specifically, to encode messages in FL, one chooses a subset H ⊆ F such that
|H|m ≥ L. Encoding a message msg ∈ FL is performed by interpreting the
message as a function msg : Hm → F, and letting m̃sg : Fm → F be the low
degree extension of msg; i.e., the m-variate polynomial of individual degree < |H|
whose restriction to Hm equals msg. The codeword c consists of the evaluations
of m̃sg at all points if Fm. We can locally decode any coordinate ` ∈ [L] of
the message by thinking of ` as a value in Hm. This is done by choosing a
random degree-s curve ϕ : F → Fm such that ϕ (0) = `, and querying the
codeword on k ≥ ms (|H| − 1) non-0 points on the curve. The decoder then
uses the answers a1, · · · , ak to interpolate the (unique) univariate degree-(k − 1)
polynomial ϕ̃ such that ϕ̃ (i) = ai for every 1 ≤ i ≤ k. It outputs ϕ̃ (0) as
the `’th message symbol. To guarantee that the field contains sufficiently many
evaluation points, the field is chosen such that |F| ≥ k+ 1. The codeword length
is M = |F|m. We will need the following theorem, whose proof appears in the
full version [HOWW18].

Theorem 3. For any constant ε > 0, there exist (s, k, L,M)Σ-smooth LDCs
with |Σ| = poly(s, logL), k = poly(s, logL) and M = L1+ε · poly(s, logL). Fur-

thermore, the encoding time is Õ(M) and the decoding time is Õ(k).

3 Read-Only PANDA

In this section we describe our read-only PANDA scheme. We first formally
define this notion. At a high level, a PANDA scheme is run between a server S
and n clients C1, · · · , Cn, and allows clients to securely access a database DB,
even in the presence of a (semi-honestly) corrupted coalition consisting of the
server S and a subset of at most t of the clients. In this section, we focus on
the setting of a read-only, public database, in which the security guarantee is
that read operations of honest clients remain entirely private and anonymous,
meaning the corrupted coalition learns nothing about the identity of the client
performed the operation, or which location was accessed.

Definition 2 (RO-PANDA). A Read-Only Private Anonymous Data Access
(RO-PANDA) scheme consists of procedures (Setup,Read) with the following
syntax:

– Setup(1λ, 1n, 1t,DB) is a function that takes as input a security parameter
λ, the number of clients n, a collusion bound t, and a database DB ∈ {0, 1}L,
and outputs the initial server state stS, and client keys ck1, · · · , ckn. We re-
quire that the size of the client keys |ckj | is bounded by some fixed polynomial
in the security parameter λ, independent of n, t, |DB|.

13



– Read is a protocol between the server S and a client Cj. The client holds as
input an address addr ∈ [L] and the client key ckj, and the server holds its
current states stS. The output of the protocol is a value val to the client, and
an updated server state st′S.

We require the following correctness and security properties.

– Correctness: In any execution of the Setup algorithm followed by a sequence
of Read protocols between various clients and the server, each client always
outputs the correct database value val = DBaddr at the end of each protocol.

– Security: Any PPT adversary A has only negl (λ) advantage in the following
security game with a challenger C:

• A sends to C:

∗ The values n, t and the database DB ∈ {0, 1}L.
∗ A subset T ⊂ [n] of corrupted clients with |T | ≤ t.
∗ A pair of read sequences R0 =

(
j0l , addr

0
l

)
1≤l≤q , R

1 =(
j1l , addr

1
l

)
1≤l≤q (for some q ∈ N) , where

(
jbl , addr

b
l

)
denotes that

client jbl ∈ [n] reads address addrbl ∈ [L].

We require that
(
j0l , addr

0
l

)
=
(
j1l , addr

1
l

)
for every l ∈ [q] such that

j0l ∈ T ∨ j1l ∈ T .
• C performs the following:

∗ Picks a random bit b← {0, 1}.
∗ Initializes the scheme by computing Setup

(
1λ, 1n, 1t,DB

)
.

∗ Sequentially executes the sequence Rb of Read protocol executions
between the honest server and clients. It sends to A the views of
the server S and the corrupted clients {Cj}j∈T during these protocol
executions, where the view of each party consists of its internal state,
randomness, and all protocol messages received.

• A outputs a bit b′.

The advantage AdvA (λ) of A in the security game is defined as: AdvA (λ) =
|Pr [b′ = b]− 1

2 |.

Efficiency Goals. Since a secure PANDA scheme can be trivially obtained by
having the client store the entire database locally, or having the server send
the entire database to the client in every read request, the efficiency of the
scheme is our main concern. We focus on minimizing the client storage and the
client/server run-time during each Read protocol. At the very least, we require
these to be t · o (|DB|).

Bounded-Access PANDA. We will also consider a weaker notion of a bounded-
access RO-PANDA scheme, for which security is only guaranteed to hold as long
as the total number of read operations q is a-priori bounded. Such schemes will
be useful building blocks for designing RO-PANDA schemes with full-fledged
security.
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Definition 3 (B-access RO-PANDA). Let B be an access bound. We say
that (Setup,Read) is a B-access RO-PANDA scheme if the security property of
Definition 2 is only guaranteed to hold for PPT adversaries that are restricted
to choose read sequences R0, R1 of length q ≤ B.

Remark on Adaptive Security. Note that, for simplicity, our definition is selective,
where the adversary chooses the entire read sequences R0, R1 ahead of time. We
could also consider a stronger adaptive security definition where the adversary
chooses the sequence of reads adaptively as the protocol progresses. Although our
constructions are also secure in the stronger setting (with minimal modifications
to the proofs), we chose to present our results in the selective setting to keep
them as simple as possible.

3.1 A Bounded-Access Read-Only PANDA Scheme

As a first step, we now show how to construct a bounded-access RO-PANDA
scheme, yielding the following theorem.

Theorem 4 (B-access RO-PANDA). Assuming one-way functions exist, for
any constant ε > 0 there is a B-bounded access RO-PANDA where, for n clients
with t collusion bound and database size L:

– The client and server complexity during each Read protocol is t·poly(λ, logL).
– The client storage is t · poly(λ, logL).
– The server storage is α ≤ t · L1+ε · poly(λ, logL).
– The access bound is B = α/(t · poly(λ, logL)).

Note that in the above theorem we can increase the access-bound B arbi-
trarily by artificially inflating the database size L to increase α. However, we
will mainly be interested in having a small ratio α/B while keeping α as small
as possible.

Construction Outline. As outlined in the introduction, our idea is inspired by
the recent works of Canetti et al. [CHR17] and Boyle et al. [BIPW17] on DE-
PIR. We rely on an s-smooth, k-query LDC where s = λ is set to be the security
parameter. We think of the server S as consisting of k′ = k2t different “virtual
servers”, where t is the collusion bound. Each virtual server contains a permuted
copy of the LDC codeword under a fresh PRP. Each client is assigned a random
committee consisting of k out of k′ of the virtual servers and gets the corre-
sponding PRP keys. To retrieve an entry from the database, the client runs the
LDC local decoding algorithm, which requests to see k codeword locations, and
reads these locations using the virtual servers on its committee by applying the
corresponding PRPs. It also reads uniformly random locations from the k′ − k
virtual servers that are not on its committee.

Construction 1 (B-Access RO-PANDA). The scheme uses the following build-
ing blocks:
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– An (s, k, L,M)Σ-smooth LDC (EncLDC,QueryLDC,DecLDC) (see Definition 1,
Theorem 3).

– A CPA-secure symmetric encryption scheme
(
KeyGensym,Encsym,Decsym

)
.

– A pseudorandom permutation (PRP) family P : {0, 1}λ×[M ]→ [M ] where
for every K ∈ {0, 1}λ the function P (K, ·) is a permutation.

The scheme consists of the following procedures:

– Setup(1λ, 1n, 1t,DB): Recall that n denotes the number of clients, t is the
collusion bound, and DB ∈ {0, 1}L. Instantiate the LDC with message size
L and smoothness s = λ, and let k be the corresponding number of queries,
M be the corresponding codeword size and Σ be the alphabet. Set k′ = k2t
to be the number of virtual servers. Proceed as follows.
• Database encoding. Generate the codeword D̃B = EncLDC (DB) with

D̃B ∈ ΣM .
• Virtual server generation. For every 1 ≤ i ≤ k′:
∗ Generate a PRP key Ki

PRP ← {0, 1}λ, and an encryption key Ki
sym ←

KeyGensym

(
1λ
)
.

∗ Let D̂B
i
∈ ΣM be a permuted database which satisfies D̂B

i

P (Ki
PRP,j)

=

D̃Bj for all j ∈ [M ].

∗ Let D̃B
i

be the encrypted-permuted database with D̃B
i

j =

Encsym
(
Ki

sym, D̂B
i

j

)
.

• Committee generation. For every j ∈ [n], pick a random size-k subset
Sj ⊆ [k′].

• Output. For each client Cj , set the client key ckj =

(Sj ,
{
Ki

PRP,K
i
sym : i ∈ Sj

}
) to consist of the description of the

committee and the PRP and encryption keys of the virtual servers on

the committee. Set the server state stS = {D̃B
i

: i ∈ [k′]} to consist of
the encrypted-permuted databases of every virtual server.

– The Read protocol. To read database entry at location addr ∈ [L] from the
server S, a client Cj with key ckj = (Sj ,

{
Ki

PRP,K
i
sym : i ∈ Sj

}
) operates

as follows.
• (Query.) Denote Sj = {v1, . . . , vk} ⊆ [k′]. Sample (rv1 , · · · , rvk) ←

QueryLDC (addr), and for each v ∈ Sj set r̂v = P (Kv
PRP, rv) to be the

query to virtual server v. For every v ∈ [k′] \ Sj , pick r̂v ∈R [M ] uni-
formly.

• (Recover). Send (r̂1, · · · , r̂k′) to the server S and obtain the an-

swers

(
D̃B

1

r̂1 , · · · , D̃B
k′

r̂k′

)
. For every v = vh ∈ Sj , decrypt ah =

Decsym
(
Kv

sym, D̃B
v

r̂v

)
, and output DecLDC (a1, · · · , ak).

Remark. Note that in the above construction the server is completely static and
stateless. Indeed the Read protocol simply consists of the client retrieving some
subset of the locations from the server.
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Proof of Security. We prove the following claim about the above construction.

Claim 1. Assuming the security of all of the building blocks, Construction 1 is
B-bounded-access RO-PANDA for B = M/(2k2).

Claim implies Theorem. It’s easy to see that Claim 1 immediately implies The-
orem 4 by plugging in the LDC parameters from Theorem 3. In particular, for
n clients, t collusion bound and database size L:

– The client/server run-time is k′ log |Σ| = tk2 log |Σ| = t · poly(λ, logL).
– The client storage is k′ · (poly(λ) + logL) = t · poly(λ, logL).
– The server storage is α = k′ · M · log |Σ| = tk2M · log |Σ| = t · L1+ε ·

poly(λ, logL).
– The bound B is B = M/(2k2) = α/(t · poly(λ, logL)).

Background Lemmas. To show that the construction is secure, we rely on two
lemmas. The first lemma comes from the work of Canetti et al. [CHR17].

Lemma 1 (Lemma 1 in [CHR17]). Let X = (X1, · · · , Xm) , Y =
(Y1, · · · , Ym) be l-wise independent random variables such that for every 1 ≤ i ≤
m, Xi, Yi are identically distributed. Assume also that there is a value ? such that

Pr [Xi = ?] ≥ 1 − δ. Then SD (X,Y ) ≤ (mδ)
l/2

+ ml−1δl/2−1 ≤ 2ml−1δl/2−1 ≤
2m(m2δ)l/2−1.

The second lemma (whose proof appears in the full version [HOWW18]) deals
with the intersection size of random sets.

Lemma 2. Let T ⊆ [n] be an arbitrary set of size |T | ≤ t. Let S1, · · · , Sn be
chosen as random subsets Sj ⊆ [k′] of size |Sj | = k, where k′ = k2t. Then, for
all ρ > 2e, the probability that there exists some j ∈ [n]\T such that | (∪i∈TSi)∩
Sj | ≥ ρ is at most n · 2−ρ.

Proof of Claim. We are now ready to prove Claim 1.

Proof of Claim 1. The correctness of the scheme follows directly from the cor-
rectness of the LDC and the symmetric encryption scheme. We now argue secu-
rity.

Let A be a PPT adversary corrupting the server and a subset T of at most t
clients. Let R0, R1 be the two sequences of read operations of length q ≤ B which
A chooses in the security game. Without loss of generality, we can assume that
R0, R1 do not contain read operations by corrupted clients since A can generate
the corresponding accesses itself (and it does not affect the server state in any
way). Let S1, . . . , Sn be the random committees chosen during Setup and let
E =

⋃
i∈T Si. We proceed via a sequence of hybrids.

H1 Hybrid H1 is the security game as in Definition 2.
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H2 In hybrid H2, for all i 6∈ E, we replace the encrypted database D̃B
i

by a
dummy encryption (e.g.,) of the all 0 string.
Hybrids H1 and H2 are computationally indistinguishable by CPA security
of the encryption scheme.

H3 In hybrid H3, for all i 6∈ E we replace all calls to the PRP P (Ki
PRP, ·) during

the various executions of the Read protocol with a truly random permutation
πi : [M ]→ [M ].
Hybrids H2 and H3 are computationally indistinguishable by PRP security.

Here we rely on the fact that in both hybrids the encrypted database D̃B
i

for
i 6∈ E is independent of the permutation.

H4 In hybrid H4, if during the committee selection in the Setup algorithm it
occurs that there exists some j ∈ [n] \ T such that |E ∩ Sj | ≥ s/2, then the
game immediately halts.
Hybrids H3 and H4 are statistically indistinguishable by Lemma 2, where we
set ρ = s/2. Recall that s = λ and therefore n · 2−ρ = negl(λ).

H5 In hybrid H5, we replace the queries (r̂1, · · · , r̂k′) created during the execu-
tion of each Read protocol with truly random values (u1, · · · , uk′)← [M ]k

′
.

The main technical difficulty is showing that hybrids H4 and H5 are (statis-
tically) indistinguishable, which we do below. Once we do that, note that hybrid
H5 is independent of the challenge bit b and therefore in hybrid H5 we have
Pr[b = b′] = 1

2 . Since hybrids H1 and H5 are indistinguishable, it means that in
hybrid H1 we must have |Pr[b = b′]− 1

2 | = negl(λ) which proves the claim.
We are left to show that hybrids H4 and H5 are statistically indistinguishable.

We do this by showing that for every Read protocol execution, even if we fix the
entire view of the adversary prior to this protocol, the queries sent during the
protocol in hybrid H4 are statistically close to uniform. The protocol is executed
by some honest client j with committee Sj = {v1, . . . , vk} and we know that
|Sj ∩ E| ≤ s/2. Let (r̂1, . . . , r̂k′) be the distribution on the client queries in the
protocol.

(i) For all v 6∈ Sj the values r̂v are chosen uniformly at random and indepen-
dently by the client.

(ii) For v ∈ Sj ∩ E, the values r̂v = P (Kv
PRP, rv) are uniformly random by the

s-wise independence of {rv}v∈Sj
and the fact that |Sj ∩ E| ≤ s/2.

(iii) For v ∈ Sj \ E, we want to show that the values r̂v = πv(rv) are sta-
tistically close to uniform, even if we condition on (i),(ii). Note that the
values {rv}v∈Sj\E are s/2-wise independent even conditioned on the above,
and therefore so are the values {r̂v}v∈Sj\E . For each v, let Zv ⊆ [M ] be
the set of values πv(r) that were queried in some prior protocol execution
by some client. Then |Zv| ≤ B. Note that if r̂v = πv(rv) 6∈ Zv then r̂v
is simply uniform over [M ] \ Zv by the randomness of the permutation
πv. We can define random variables Xv where Xv = r̂v when r̂v ∈ Zv
and Xv = ? otherwise. We can then think of sampling {r̂v}v∈Sj\E by
sampling {Xv}v∈Sj\E and defining r̂v = Xv when Xv 6= ? and sampling
r̂v uniformly at random over [M ] \ Zv otherwise. Note that {Xv}v∈Sj\E
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is a set of |Sj \ E| ≤ k variables which are s/2-wise independent and
Pr[Xv = ?] ≥ 1 − δ where δ ≤ |Zv|/M ≤ B/M . Therefore, by applying
Lemma 1, the variables {Xv}v∈Sj\E are statistically close to truly inde-
pendent variables {Yv}v∈Sj\E such that each Yv has the same marginal

distribution as Xv, where the statistical distance is 2k(k2B/M)s/4−1 ≤
2k(1/2)s/4−1 = negl(λ). Replacing the variables {Xv} by {Yv} is equiva-
lent to replacing the values {r̂v}v∈Sj\E by truly uniform and independent
values.

3.2 Public-Encoding PANDA

In this section we describe a public-encoding variant of bounded-access RO-
PANDA schemes, which will be used to construct an unbounded-access RO-
PANDA as well as PANDA schemes that support writes. At a high level, a public-
encoding bounded-access PANDA scheme contains a key-generation algorithm
KeyGen that generates a public key pk and a set {ckj} of client secret keys.
Any database owner can locally encode the database using only the public key.
The scheme guarantees privacy and anonymity, even if the adversary obtains a
subset of the secret keys, as long as the honest clients make at most B accesses
to the database. Furthermore, we allow the server to create many encodings of
the same, or different, databases with respect to some labels lab, and the clients
can generate accesses using the corresponding label lab. As long as the clients
make at most B accesses with respect to any one label, security is maintained.

Definition 4 (Public-Encoding PANDA). A public-encoding PANDA (PE-
PANDA) consists of a tuple of algorithms (KeyGen,Encode,Query,Recover) with
the following syntax.

– KeyGen(1λ, 1n, 1t, 1L) is a PPT algorithm that takes as input a security pa-
rameter λ, the number of clients n, and the collusion bound t, and a database
size L. It outputs a public key pk, and a set of client secret keys {ckj}j∈[n].

– Encode(pk,DB, lab) is a deterministic algorithm that takes as input a public-
key pk, a database DB, and a label lab, and outputs an encoded database

D̃B.

– Query(ckj , addr, lab) is a PPT algorithm that takes as input a secret-key
ckj, an address addr in a database, and a label lab, and generates a list
(q1, · · · , qk′) of coordinates in the encoded database.

– Recover
(
ckj , lab,

(
D̃Bq1 , · · · , D̃Bqk′

))
is a deterministic algorithm that takes

as input a secret-key ck, a label lab, and a list
(
D̃Bq1 , · · · , D̃Bqk′

)
of entries

in an encoded database, and outputs a database value val.

We require that it satisfies the following correctness and security properties.
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– Correctness: For every λ, n, t, L ∈ N, every DB ∈ {0, 1}L, every label lab ∈
{0, 1}∗, every address addr ∈ [L], and every client j ∈ [n]:

Pr


(
pk, {ckj}j∈[n]

)
← KeyGen

(
1λ, 1n, 1t, 1L

)
D̃B = Encode (pk,DB, lab)

(q1, · · · , qk′)← Query (ckj , addr, lab)

val = Recover
(
ckj , lab,

(
D̃Bq1 , · · · , D̃Bqk′

)) : val = DBaddr

 = 1.

– B-Bounded-Access Security: Every PPT adversary A has only negl (λ)
advantage in the following security game with a challenger C:
• A sends to C values n, t, L, and a subset T ⊂ [n] of size |T | ≤ t.
• C executes

(
pk, {ckj}j∈[n]

)
← KeyGen

(
1λ, 1n, 1t, 1L

)
and sends pk and

{ckj}j∈T to A. Additionally, C picks a random bit b.

• A is given access to the oracle Queryb{ckj} that on in-
put (j0, j1, addr0, addr1, lab) such that j0, j1 /∈ T , outputs
Query (ckjb , addrb, lab).
We restrict A to make at most B queries to the oracle with any given
label lab, but allow it to make an unlimited number of queries in total.

• A outputs a bit b′.
The advantage AdvA (λ) of A in the security game is defined as: AdvA (λ) =
|Pr [b′ = b]− 1

2 |.

Next, we construct a public-encoding PANDA scheme, based on our bounded-
access PANDA scheme (Construction 1 in Section 3.1). The high-level idea is
to use fresh PRP keys for every label, by creating them via a PRF applied to
the label. The public key of the server contains FHE encryptions of the PRF
keys. This enables the server to create the encoded-permuted databases for each
virtual server, as in Construction 1, by operating on the PRF keys under FHE.

Construction 2 (Public-Encoding PANDA). The scheme uses the same build-
ing blocks as Construction 1. In addition we rely on:

– A pseudo-random function F : {0, 1}λ × {0, 1}∗ → {0, 1}λ.
– The symmetric-key encryption scheme in Construction 1 will be replaced by

a symmetric-key leveled FHE scheme (KeyGenFHE,EncFHE,DecFHE,EvalFHE).

The scheme consists of the following algorithms:

– KeyGen
(
1λ, 1n, 1t, 1L

)
operates as follows:

• Let the parameters s, k,M, k′ be chosen the same way as in Construc-
tion 1.

• For every virtual server i ∈ [k′]:
∗ Generates a random FHE key Ki

FHE ← KeyGenFHE

(
1λ
)
. We use a

leveled FHE that can evaluate circuits up to some fixed polynomial
depth d = poly(λ, logM) specified later.
∗ Generates a random PRF key Ki

PRF ← {0, 1}λ.
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∗ Encrypts the PRF key: K̃i
PRF ← EncFHE

(
Ki

FHE,K
i
PRF

)
.

• Generates the random size-k committee Sj ⊆ [k′] for every 1 ≤ j ≤ n.

• Outputs the public key pk =

(
L,
{
K̃i

PRF

}
i∈[k′]

)
, and the secret keys{

ckj =
(
Sj , L,

{
Ki

PRF,K
i
FHE : i ∈ Sj

})}
j∈[n].

– Encode

(
pk =

(
L,
{
K̃i

PRF

}
i∈[k′]

)
,DB, lab

)
operates as follows:

• Let D̃B = EncLDC (DB) using and LDC with parameters s, k, L,M as in
the Setup algorithm of Construction 1.

• For every i ∈ [k′]:

∗ Generates an encrypted key K̃i
PRP = EvalFHE

(
CF,lab (·) , K̃i

PRF

)
,

where CF,x (·) is the circuit that on input K computes F (K,x).

∗ Generate an encrypted-permuted database D̃B
i

=

EvalFHE
(
C
P,D̃B

(·) , K̃i
PRP

)
, where C

P,D̃B
(·) is the circuit that

on input K computes the permuted database D̂B which satisfies

D̂B
i

P (K,j) = D̃Bj for all j ∈ [M ].

• Outputs

(
D̃B

1
, · · · , D̃B

k′
)

.

– Query,Recover. These algorithms work the same way as the two stages of the
Read protocol in Construction 1 where the client sets Ki

PRP := F
(
Ki

PRF, lab
)

and Ki
sym := Ki

FHE for i ∈ Sj .

Leveled FHE Remark. In the above construction we set parameter d represent-
ing the maximum circuit depth for the leveled FHE to be the combined depth
of the circuits CF,x (·) and C

P,D̃B
(·) defined above. Since we can use a per-

mutation network which permutes data of size M in depth logM , so we have
d = poly(λ, logM). We assume that the leveled FHE scheme allows us to com-
pute circuits C of depth d in time |C| · poly(λ, d).

In the full version [HOWW18] we prove the following theorem:

Theorem 5 (Public-Encoding PANDA). Suppose leveled FHE exists. Then
for any constant ε > 0 there is a PE-PANDA scheme with B-bounded access
security, for n clients, t collusion bound and database size L where:

– The complexity of Query and Recover procedures is t · poly(λ, logL).

– The server public key and the client secret keys are each of size t ·
poly(λ, logL).

– The complexity of the encoding procedure and the size of the encoded database
is α ≤ t · L1+ε · poly(λ, logL).

– The access bound is B = α/(t · poly(λ, logL)).
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3.3 Read-Only PANDA with Unbounded Accesses

In this section we use the public-encoding PANDA scheme of Section 3.2, which
has B-bounded-access security, to obtain a read-only PANDA scheme that is
secure against any unbounded number of accesses.

The high-level idea of our construction is conceptually simple: after every B
operations, the server re-encodes the database with a fresh label. We think of
these sequences of B consecutive accesses as “epochs”, and the label is simply a
counter indicating the current epoch. The clients get the current epoch number
by reading it from the server before performing an access.

Construction 3 (Read-only PANDA). The scheme uses a PE-PANDA scheme
(KeyGen,Encode,Query,Recover) with B-bounded-access security as a building
block. We define the following procedures.

– Setup(1λ, 1n, 1t,DB). Takes as input a security parameter λ, the number
of clients n, a collusion bound t, and a database DB ∈ {0, 1}L. It does the
following.
• Counter initialization. Initializes an epoch counter counte, and a step

counter counts, to 0.

• Generating keys. Runs
(

pk, {ckj}j∈[n]
)
← KeyGen

(
1λ, 1n, 1t, 1L

)
.

• Encoding the database. Runs D̃B = Encode (pk,DB, counte).
• Output. For each client Cj , 1 ≤ j ≤ n set the client key to ckj := ckj .

For the server S set stS := (pk, D̃B, counte, counts).
– The Read Protocol. To read the data block at address addr from the server,

a client Cj and the server S run the following protocol.
• The client reads the epoch counter counte from S.
• The client runs (q1, · · · , qk′) ← Query (ckj , addr, counte), and sends

(q1, · · · , qk′) to S.

• The server computes ai = D̃Bqi and sends back the values (a1, · · · , ak′)
to the client.

• The client recovers DBaddr = Recover (ckj , counte, (a1, · · · , ak′)).
• The server S updates its state as follows: if counts < B − 1, S up-

dates counts := counts + 1. Otherwise, S updates counts := 0, counte :=

counte+1, and replaces D̃B := Encode (pk,DB, counte). If the complexity
of the computation Encode (pk,DB, counte) is cEncode, the server performs
cEncode/B steps of this computation during each protocol execution so
that it is completed by the end of the epoch.

In the full version [HOWW18] we prove the following theorem:

Theorem 6 (Read-Only PANDA). Suppose leveled FHE exists. Then for
any constant ε > 0 there is a read-only PANDA, for n clients, t collusion bound
and database size L where:

– The client/server complexity during each Read protocol is t · poly(λ, logL).
– The client keys are of size t · poly(λ, logL).
– The server state is of size t · L1+ε · poly(λ, logL).
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4 PANDA With Public-Writes

In this section we extend the read-only scheme of Section 3 to support writes in
the public database setting. In the full version [HOWW18] we design a PANDA
scheme that supports writes in the private database setting.

Our PANDA scheme for public databases supports write operations, but only
guarantee privacy of read operations. We call this primitive a Public-Writes
PANDA (PW-PANDA). Notice that this is the “best possible” security guar-
antee when there is (even) a (single) corrupted client. (Indeed, as the database
is public, a corrupted coalition can always learn what values were written to
which locations by simply reading the entire database after every operation.) We
note that it suffices to consider this weaker security guarantee when all clients
are honest, since any public-writes PANDA scheme can be generically trans-
formed into a PANDA scheme which guarantees the privacy of write operations
when all clients are honest. Indeed, one can implement a (standard) single-client
ORAM scheme on top of the public-writes PANDA scheme, for which all clients
know the private client key. (We note that the transformation might require
FHE-encrypting the PANDA, to allow the server to perform operations on the
PANDA which are caused by client operations on the ORAM.)

We now formally define the notion of a public-writes PANDA scheme.

Definition 5 (Public-Writes PANDA (PW-PANDA)). A public-writes
PANDA (PW-PANDA) scheme consists of procedures (Setup,Read,Write), where
Setup,Read have the syntax of Definition 2, and Write has the following syntax.
It is a protocol between the server S and a client Cj. The client holds as input
an address addr ∈ [L], a value v, and the client key ckj, and the server holds its
current states stS. The output of the protocol is an updated server state st′S.

We require the following correctness and security properties.

– Correctness: In any execution of the Setup algorithm followed by a sequence
of Read and Write protocols between various clients and the server, where the
Write protocols were executed with a sequence Q of values, the output of each
client in a read operation is the value it would have read from the database
if (the prefix of) Q (performed before the corresponding Read protocol) was
performed directly on the database.

– Security: Any PPT adversary A has only negl (λ) advantage in the following
security game with a challenger C:
• A sends to C:
∗ The values n, t, and the database DB ∈ {0, 1}L.
∗ A subset T ⊂ [n] of corrupted clients with |T | ≤ t.
∗ A pair of access sequences Q0 =

(
opl, val0l , j

0
l , addr

0
l

)
1≤l≤q , Q

1 =(
opl, val1l , j

1
l , addr

1
l

)
1≤l≤q, where

(
opl, valbl , j

b
l , addr

b
l

)
denotes that

client jbl performs operation opl at address addrbl with value valbl
(which, if opl = read, is ⊥).

We require that
(
opl, val0l , j

0
l , addr

0
l

)
=
(
opl, val1l , j

1
l , addr

1
l

)
for every l ∈

[q] such that j0l ∈ T ∨ j1l ∈ T ; and
(
val0l , addr

0
l

)
=
(
val1l , addr

1
l

)
for every
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l ∈ [q] such that opl = write (in particular, write operations differ only
in the identity of the client performing the operation).

• C performs the following:
∗ Picks a random bit b← {0, 1}.
∗ Initializes the scheme by computing Setup

(
1λ, 1n, 1t,DB

)
.

∗ Sequentially executes the sequence Qb of Read and Write protocol exe-
cutions between the honest server and clients. It sends to A the views
of the server S and the corrupted clients {Cj}j∈T during these pro-
tocol executions, where the view of each party consists of its internal
state, randomness, and all protocol messages received.

• A outputs a bit b′.
The advantage AdvA (λ) of A in the security game is defined as: AdvA (λ) =
|Pr [b′ = b]− 1

2 |.

Construction Outline. As outlined in the introduction, the public-writes PANDA
scheme consists of logL levels of increasing size (growing from top to bottom),
each containing size-λ “buckets” that hold several data blocks, and implemented
with a B-bounded-access PE-PANDA scheme. To initialize our PANDA scheme,
we generate PE-PANDA public- and secret-keys for every level. Initially, all levels
are empty, except for the lowest level, which consists of a PE-PANDA for the
database DB. read operations will look for the data block in all levels (returning
the top-most copy),9 whereas write operations will write to the top-most level,
causing a reshuffle at predefined intervals to prevent levels from overflowing.
We note that adding a new copy of the data block (instead of updating the
existing data block wherever it is located) allows us to change only the content
of the top level. This is crucial to obtaining a non-trivial scheme, since levels
are implemented using a read-only PANDA, and so can only be updated by
generating a new scheme for the entire content of the level, which might be
expensive (and so must not be performed too often for lower levels).

Notice that since the levels are implemented using a PE-PANDA scheme
(which, in particular, is only secure against a bounded number of accesses), se-
curity is guaranteed only as long as each level is accessed at most an a-priori
bounded number of times. To guarantee security against any (polynomial) num-
ber of accesses, we “regenerate” each level when the number of times it has
been accessed reaches the bound. This regeneration is performed by running the
Encode algorithm of the PE-PANDA scheme with a new label, consisting of the
epoch number of the current level and the number of regeneration operations
performed during the current epoch (this guarantees that every label is used at
most once in each level). In summary, each level can be updated in one of two
forms: (1) through a reshuffle operation that merges an upper level into it; or (2)
through a regenerate operation, in which the PE-PANDA of the level is updated

9 We note that in standard hierarchical ORAM, once the data block was found, the
client should make “dummy” random accesses to lower levels. However, since in our
construction each level is implemented as a PE-PANDA scheme which anyway hides
the identity of the read operation, we can simply continue looking for the data block
in the “right” locations at all levels.
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(but the actual data blocks stored in it do not change). We note that (unlike
standard hierarchical ORAM) the reshuffling and regeneration need not be done
obliviously, since the server knows the contents of all levels.

As in the introduction, we associate a public hash function with each level,
which is used to map data blocks into buckets, thus overcoming the issue that
the PE-PANDA scheme is designed for an array structure (in particular, read-
ing a certain data block requires knowing its index in the array), whereas the
hierarchical structure causes the structure implemented in each level to be a
map, since levels contain a subset of (not necessarily consecutive) data blocks.
(In particular, since this subset depends on previous write operations performed
on the PANDA, a client does not know the map structure of the levels, and
consequently will not know in which location to look for the desired data block.)

We now formally describe the construction. We assume for simplicity of the
exposition that B is a multiple of λ.

Construction 4 (Public-writes PANDA). The scheme uses the following build-
ing blocks:

– A PE-PANDA scheme (KeyGen,Encode,Query,Recover).
– A hash function family h (used to map data blocks to buckets).

We define the following protocols.

– Setup(1λ, 1n, 1t,DB): Recall that n denotes the number of clients, t is the
collusion bound, and DB ∈ {0, 1}L. It does the following.
• Counter initialization. Initialize a counter countW to 0. (countW counts

the total number of writes performed so far.)
• Generating level counters and keys. For every 1 ≤ i ≤ `, where ` = logL

is the number of levels:
∗ Run

(
pki,

{
ckij
}
j∈[n]

)
← KeyGen

(
1λ, 1n, 1t, 12

i·λ
)

.

∗ Pick a random hash function hi for level i.
∗ Initialize a write-epoch counter countiW , a read-epoch counter countiR,

and a step counter countis, to 0.10

• Initializing level `. Generate an encoded database using the InitLevel pro-
cedure of Figure 1:

D̃B
`
← InitLevel

(
`, pk`, h`, count`W , count`R,DB′

)
where DB′ = ((1, b1) , . . . , (L, bL)),11 and set level ` to be L` =(

DB′, D̃B
`
)

.

10 countiW represents the number of times the level was reshuffled into a lower level, i.e.,
the number of level-i epochs; countiR represents the number of times the underlying
PE-PANDA scheme was refreshed, i.e., re-initialized, in the current level-i epoch;
and countis represents the number of read operations performed in level i since its
underlying PE-PANDA was last refreshed. We note that though countiW can be
computed from countW , it is included for simplicity.

11 This guarantees that each data block contains also the logical address of the block,
which will be needed when blocks are mapped to buckets.
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• Output. For each client Cj , set the client key ckj =({
ckij
}
i∈[`] ,

{
hi
}
i∈[`]

)
to consist of its secret keys, and the hash

functions, for all levels. Set the server state

stS =
(

countW ,
{

countiW , countiR, countis
}
i∈[`] ,

{
pki
}
i∈[`] ,

{
hi
}
i∈[`] , L

`
)

to consist of all counters, its public keys and the hash functions of all
levels, and the contents of level `.

– The Read protocol. To read the database value at location addr ∈ [L] from

the server S, a client Cj with key
({

ckij
}
i∈[`] ,

{
hi
}
i∈[`]

)
and the server S

run the following protocol.
• The client Cj initializes an output value val to ⊥.
• Cj performs the following for every non-empty level i from ` to 1:
∗ Obtaining database label. Read countiW , countiR from S.

∗ Computing bucket index. Computes l = hi (addr). (If addr appears
in level i, it will be in bucket Bucl.)

∗ Looking for data block addr in level i. Reads Bucl from level i,
namely for every (l − 1) · λ+ 1 ≤ m ≤ l · λ:
· Runs (q1, . . . , qz) ← Query

(
ckij ,m,

(
countiW , countiR

))
, sends

(q1, . . . , qz) to S, and obtains answers (a1, . . . , az).
· Runs

(
addr′, val′

)
= Recover

(
ckij ,

(
countiW , countiR

)
, (a1, . . . , az)

)
.

· If addr′ = addr then set val := val′.
• The server S updates its state as follows: if countis < Bi − λ, S updates

countis ← countis + λ.12 Otherwise, S updates countis = 0, countiR ←
countiR + 1, and sets D̃B

i
:= Encode

(
pki,DBi,

(
countiW , countiR

))
(where

Li =
(

DBi, D̃B
i)

).

– The Write protocol. To write value val at location addr ∈ [L] on the server

S, a client Cj with key
({

ckij
}
i∈[`] ,

{
hi
}
i∈[`]

)
and the server S run the

following protocol.
• The client Cj generates a “dummy” level 0 which contains a single data

block (addr, val), and sends it to the server.
• The server S updates its state as follows:
∗ countW := countW + 1.
∗ For i = 0, 1, . . . , ` such that 2i divides countW , S reshuffles level i

into level i + 1 using the ReShuffle procedure of Figure 1, namely
executes

ReShuffle(i, countiW , countiR, countis, counti+1
W , counti+1

R , counti+1
s ,

pki+1, hi+1, Li, Li+1)

where Li, Li+1 are the contents of levels i and i+ 1 (respectively).

12 This is where we use the assumption that λ divides B, otherwise a regeneration of
level i mights be needed while Bucl is being read.
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If before executing ReShuffle for level i, Li+1 is empty (following a
previous reshuffle, or because it has not yet been initialized), then S

first sets Li+1 :=
(

DB∅, D̃B
i+1)

where DB∅ is the empty database,

and D̃B is generated using the InitLevel procedure of Figure 1:

D̃B
i+1

:= InitLevel
(
i+ 1, pki+1, hi+1, counti+1

W , counti+1
R ,DB∅

)
.

In the full version [HOWW18] we prove the following theorem:

Theorem 7 (Public-writes PANDA). Suppose leveled FHE exists. Then for
any constant ε > 0 there is a PW-PANDA, for n clients, t collusion bound and
database size L, where:

– The client/server complexity during each Read protocol is t · poly(λ, logL).
– The client complexity during each Write protocol is O(logL), and the amor-

tized server complexity is t · Lε · poly(λ, logL).
– The client keys are of size t · poly(λ, logL).
– The server state is t · L1+ε · poly(λ, logL).

Remark on De-amortization. We note that using a technique of Ostrovsky and
Shoup [OS97], the server complexity in Theorem 7 can be de-amortized, by
slightly modifying Construction 4 to allow the server to spread-out the reshuf-
fling process. More specifically, we only need to modify the order in which reshuf-
fles are performed in the Write algorithm, such that the operations needed for
reshuffle can be executed over multiple accesses to the PANDA. (We note that
the server complexity caused by Encode operations in the Read algorithm can
be de-amortized as in Construction 3.) See the full version [HOWW18] for ad-
ditional details.
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