
Session Resumption Protocols and Efficient Forward
Security for TLS 1.3 0-RTT

Nimrod Aviram1, Kai Gellert2, and Tibor Jager2

1 Tel Aviv University, nimrodav@mail.tau.ac.il
2 Paderborn University,

{kai.gellert, tibor.jager}@uni-paderborn.de

Abstract. The TLS 1.3 0-RTT mode enables a client reconnecting to a server
to send encrypted application-layer data in “0-RTT” (“zero round-trip time”),
without the need for a prior interactive handshake. This fundamentally requires
the server to reconstruct the previous session’s encryption secrets upon receipt
of the client’s first message. The standard techniques to achieve this are Session
Caches or, alternatively, Session Tickets. The former provides forward security
and resistance against replay attacks, but requires a large amount of server-side
storage. The latter requires negligible storage, but provides no forward security
and is known to be vulnerable to replay attacks.
In this paper, we first formally define session resumption protocols as an abstract
perspective on mechanisms like Session Caches and Session Tickets. We give a
new generic construction that provably provides forward security and replay re-
silience, based on puncturable pseudorandom functions (PPRFs). This construc-
tion can immediately be used in TLS 1.3 0-RTT and deployed unilaterally by
servers, without requiring any changes to clients or the protocol.
We then describe two new constructions of PPRFs, which are particularly suitable
for use for forward-secure and replay-resilient session resumption in TLS 1.3.
The first construction is based on the strong RSA assumption. Compared to stan-
dard Session Caches, for “128-bit security” it reduces the required server storage
by a factor of almost 20, when instantiated in a way such that key derivation
and puncturing together are cheaper on average than one full exponentiation in
an RSA group. Hence, a 1 GB Session Cache can be replaced with only about
51 MBs of storage, which significantly reduces the amount of secure memory
required. For larger security parameters or in exchange for more expensive com-
putations, even larger storage reductions are achieved. The second construction
combines a standard binary tree PPRF with a new “domain extension” technique.
For a reasonable choice of parameters, this reduces the required storage by a fac-
tor of up to 5 compared to a standard Session Cache. It employs only symmetric
cryptography, is suitable for high-traffic scenarios, and can serve thousands of
tickets per second.

Supported by the German Research Foundation (DFG), project JA 2445/2-1, scholarships from
The Israeli Ministry of Science and Technology, The Check Point Institute for Information Se-
curity, and The Yitzhak and Chaya Weinstein Research Institute for Signal Processing. We
thank Nick Sullivan, Sven N. Hebrok and all anonymous reviewers for their valuable com-
ments.

2 Nimrod Aviram, Kai Gellert, and Tibor Jager

1 Introduction

0-RTT Protocols. A major innovation of TLS 1.3 [39] is its 0-RTT (zero round-trip
time) mode, which enables the resumption of sessions with minimal latency and with-
out the need for an interactive handshake. A 0-RTT protocol allows the establishment
of a secure connection in “one-shot”, that is, with a single message sent from a client
to a server, such that cryptographically protected payload data can be sent immedi-
ately (“in 0-RTT”) along with the key establishment message, without the need for
a latency-incurring prior handshake protocol. This significant speedup of connection
establishment yields a smoother Web browsing experience and, more generally, better
performance for applications with low-latency requirements. This is particularly notice-
able in networks with relatively high latency, such as mobile networks.

The huge practical demand for 0-RTT is exemplified by the fact that many large
Internet companies have developed and experimented with such protocols in the recent
past, for example Google’s QUIC [13] and Facebook’s Zero [27] protocols. The content
distribution provider Cloudflare has deployed the 0-RTT mode of TLS 1.3 as early as
March 2017 at large scale, long before the finalization of the standard [44]. Google and
Facebook declared that the cryptography in QUIC and Zero will soon be replaced by
TLS 1.3 0-RTT [4,27].

The TLS 1.3 0-RTT Handshake. A full TLS 1.3 handshake (not 0-RTT) is always used
in the very first connection between a client and a server. If the server supports 0-RTT,
then both the client and server can derive a Resumption Secret from their shared key
and session parameters. The client will simply store this secret. Naturally, the server
then needs to retrieve the Resumption Secret during a subsequent handshake. There
are two standard approaches for this, Session Caches and Session Tickets, which have
different advantages and drawbacks. During the first handshake, the server sends to
the client either a lookup key pointing to an entry in the Session Cache of the server,
or a Session Ticket - depending on the configuration of the server. These approaches
essentially work as follows:

Session Caches: The server stores all Resumption Secrets of recent sessions in a local
database and issues each client a unique lookup key. When a client reconnects, it
includes that lookup key in its 0-RTT messages, enabling the server to retrieve and
use the matching Resumption Secret.

Session Tickets: The server uses a long-term symmetric encryption key, called the Ses-
sion Ticket Encryption Key (STEK). Instead of storing the Resumption Secret in a
local database, the server encrypts it with the STEK to create a Session Ticket. The
Session Ticket is stored by the client. When a client reconnects, it includes that
Session Ticket in its 0-RTT messages, which enables the server to decrypt it and
recover the Resumption Secret. Note that the same STEK is used for many sessions
and clients.

On a subsequent 0-RTT handshake, the client will include in its first message either
the lookup key or the encrypted Session Ticket, in addition to a Diffie-Hellman key ex-
change message. The client can also send, in the same message, encrypted application-
layer data, termed 0-RTT data. This data will be encrypted with a key derived from

Session Resumption Protocols and Efficient Forward Security for TLS 1.3 0-RTT 3

the Resumption Secret and a public client random value, without any input from the
server.3

In its reply, the server will typically include a Diffie-Hellman key exchange mes-
sage, and further messages (in either direction) will be encrypted with a key derived
also from the DH secret, not only the Resumption Secret. Hence, the only data pro-
tected by the Resumption Secret alone is the 0-RTT data. We note that the use of DH is
not mandatory, and it is possible to rely only on the Resumption Secret for the security
of the entire session; we expect most traffic will use DH as described above.

We stress that the use of Session Caches or Session Tickets is opaque to clients. That
is, in either case the server sends a New Session Ticket message containing an opaque
sequence of bytes, which may be either a lookup key for the Session Cache, or an
encrypted Session Ticket, without specifying which is the case.4 This property ensures
that our proposed techniques are compatible with the final TLS 1.3 standard [39] and
can be implemented on the server-side without requiring modifications to the protocol
or to clients.

Forward Security and Replay Resilience of 0-RTT Protocols. Forward security essen-
tially means that the protocol provides security of sessions, even if an attacker is able to
corrupt one party after the session has terminated (e.g., by breaking into a Web server
and learning the long-term secret key). Resilience to replay attacks is a fundamental,
classical design goal of cryptographic protocols, which prevents an attacker from re-
playing the same payload data to a server repeatedly.

Both forward security and replay resilience are standard design goals of modern se-
curity protocols. However, achieving these properties is well-known to be difficult for
0-RTT protocols. This is because classical (“non-0-RTT”) protocols include fresh input
from the server (e.g., a Diffie-Hellman message) generated using ephemeral random-
ness, which provides a leverage to achieve forward security. However, there is no such
interactivity in 0-RTT protocols. Furthermore, an attacker is able to replay the 0-RTT
key establishment message along with the 0-RTT payload data over and over again to a
server, which is not detectable without additional server-side countermeasures.

Forward Security and Replay Resilience of TLS 1.3 0-RTT. With Session Caches the
server stores a “unique” Resumption Secret in a local database for each client. In most
cases, it is able to delete the Resumption Secret immediately after retrieving it. This
provides forward security, as an attacker obtaining the server state cannot decrypt past
sessions. It also provides resilience against replay attacks, as the server is not able to
decrypt replayed messages.

3 The above describes typical modes of operation of TLS 1.3. The standard also allows for other
modes, e.g. modes that include client authentication. We expect other modes will be used much
less often, and therefore they are beyond the scope of this paper.

4 Confusingly, the message containing this opaque sequence of bytes is always termed a “New
Session Ticket Message”, for both Session Caches and encrypted self-contained Session Tick-
ets. To our knowledge there is no standard nomenclature, in [39] or elsewhere, for these two
different approaches when used in TLS 1.3; see e.g. [39, §8.1]. TLS 1.2 referred to “Session
ID Resumption” and “Session Ticket Resumption”, but these terms are not used in TLS 1.3.

4 Nimrod Aviram, Kai Gellert, and Tibor Jager

If Session Tickets are used, then an attacker that obtains access to the server can
learn the STEK, and thus decrypt all tickets encrypted with this key to learn the Re-
sumption Keys. Hence, servers using Session Tickets do not provide forward security.
They are also generally vulnerable to replay attacks.5 Since an attacker learning the
STEK has catastrophic implications for security, large server operators usually rotate
the STEK. Such deployments typically generate a new STEK roughly once per hour,
and limit the STEK lifetime to roughly a day [34]. An attacker that learns one STEK
can therefore decrypt approximately one hour’s worth of traffic. However, most cur-
rent TLS implementations do not provide out-of-the-box support for STEK rotation,
and this (welcome) defensive measure is usually limited to large operators who can
afford to modify TLS implementations [32,34]. Long-lived STEKs are unfortunately
prevalent, and even among high-profile websites, some reuse the same STEK for many
weeks, or even for many months [43].

To summarize, Session Caches are generally forward-secure and replay-resistant,
while Session Tickets are not. Naı̈vely, it would therefore appear that Session Caches
are the superior solution. However, Session Caches require the server to store the ses-
sion state for each (recent) connection. This is often infeasible, in particular for high-
traffic server operators. Such server operators often reluctantly use Session Tickets,
knowingly forgoing forward secrecy. Additionally, even if forward security is not prior-
itized by a particular server operator and thus Session Tickets are used, the prevention
of replay attacks may still require additional storage at the server, since the only way to
prevent replay attacks in this case is to log used tickets.6 In this context it is sometimes
claimed that so-called idempotent requests, that is, requests that have the same effect on
the server state whether they are served once or several times, are safe to use with TLS
1.3 0-RTT. However, it is well-known [36] and also discussed in the TLS 1.3 specifi-
cation [39] that even replays of idempotent requests may give rise to attacks that, e.g.,
reveal the target URL of HTTP requests.

All of these issues are well-known to apply to TLS 1.3 0-RTT and have raised sig-
nificant concerns about its secure deployability in practice [36]. Eric Rescorla, the main
author of the TLS 1.3 RFC draft, acknowledges that this poses a “difficult application
integration issue” [38]. However, due to the huge practical demand, 0-RTT is also con-
sidered “too big a win not to do” [38]. Very recently, at EUROCRYPT 2017 [25] and
2018 [15,16], the first 0-RTT protocols that simultaneously achieve forward security
and replay resilience were proposed, but these require relatively heavy cryptographic
machinery, such as hierarchical or broadcast identity-based encryption, and thus are not
yet suitable for large-scale deployment in TLS 1.3.

Our Contributions. We give the first formal definition for secure 0-RTT session re-
sumption protocols, as an abstraction of the constructions currently used in practice in

5 Unless there is additional server-side logging of tickets that have already been used.
6 When using resumption, the client must include in its first message the ticket’s age, i.e. the

time elapsed between receiving the ticket from the server in a previous session. The server
expects this time interval to be precise up to a small window of error allowing for propagation
delay, typically on the order of 10 seconds. An attacker can perform replay attacks within this
time window.

Session Resumption Protocols and Efficient Forward Security for TLS 1.3 0-RTT 5

TLS 1.3. We propose new techniques to achieve forward security and replay resilience
that are ready-to-use with TLS 1.3 as it is standardized, without any changes to the pro-
tocol. Our proposal is based on Session Tickets, and thus requires minimal storage at
the server side, but we extend this approach with efficient puncturable pseudorandom
functions (PPRFs) that enable us to achieve forward security and replay resilience for
Session Tickets. We provide new constructions of PPRFs with short keys and formal
security proofs based on standard hardness assumptions. We propose two variants:

1. The first variant is based on the strong RSA assumption. It reduces the server stor-
age by a factor of at least 11 compared to a Session Cache, increases ticket size by
a negligible length, and requires the server to perform two exponentiations (one per
issuance and one per resumption).

2. The second variant reduces server storage by a factor of up to 5 compared to a
Session Cache, while using tickets that are roughly 400 bytes longer than standard
tickets. It extends a standard GGM-style [22] binary tree-based PPRF, as described
in [10,11,30], with a new domain extension idea. It employs only symmetric cryp-
tography, is suitable for very-high-traffic scenarios, and can serve thousands of tick-
ets per second, at the cost of hundreds of megabytes in server storage.

Our Approach. At the base of our approach is the concept of puncturing a pseudoran-
dom function (PRF) to obtain a puncturable symmetric-key encryption scheme. Punc-
turable PRFs are a special case of constrained PRFs [10,11,30], which make it possible
to derive constrained keys that allow computation of PRF output only for certain inputs.

In our approach, a server initially maintains a STEK k that allows decryption of any
Session Ticket; when receiving ticket t, the server uses k to decrypt t in order to recover
the Resumption Secret. Using the puncturing feature of the PPRF, it then derives from
k a new key, k′, that can decrypt any ticket except for t. The server then discards k
and stores only k′. It repeats this process for every ticket received. This yields forward
secrecy and replay-resistance: an attacker that compromises the server learns a key
that is not capable of decrypting past tickets. Similarly, an attacker cannot successfully
replay a message, since the server is only able to decrypt each ticket once.

The naı̈ve way to employ this approach in TLS 1.3 0-RTT would be to use public-
key puncturable encryption, as in [15,16,25]. However, this approach results in im-
practically long puncturing times or very long secret keys. Moreover, the most practical
constructions require relatively expensive pairing-based cryptography by both the client
and the server, thereby obviating a significant benefit of TLS 1.3 0-RTT. Rather than
using public-key puncturable encryption, we observe that in TLS 1.3 0-RTT, the server
itself generates the tickets it would later need to decrypt. It therefore suffices to use
symmetric cryptography, and to maintain a key that allows decryption of only a limited
set of ciphertexts, generated by the server itself. To achieve this, we use PPRFs to derive
keys for standard TLS 1.3 tickets. Concretely, we describe two new PPRF constructions
that are particularly suitable for our application:

– The first builds a new PPRF from the Strong RSA Assumption. The PPRF has
a polynomially-bounded input size, but this is sufficient for our application (and
probably for certain other PPRF applications as well). Its main distinguishing fea-
ture is that its secret key size is independent of the number of puncturings. It con-

6 Nimrod Aviram, Kai Gellert, and Tibor Jager

sists of an RSA modulus N , a number g ∈ ZN , and a bitfield, indicating posi-
tions where the PPRF was punctured. Due to the short secret key, our construction
may find other applications in applied and theoretical cryptography. Since our pri-
mary objective is to provide an as-efficient-as-possible solution for practical pro-
tocols such as TLS 1.3 0-RTT, we describe a construction with security proof in
the random oracle model [5]. It seems likely that our construction can be lifted to
the standard model in a straightforward way, via standard techniques like hardcore
predicates [6,8,23], but this would yield less efficient constructions and is therefore
outside the scope of this paper.

– The second construction is based on a standard tree-based PPRF [10,11,30], instan-
tiated with a cryptographic hash function, such as SHA-3.
The size of punctured keys depends linearly on the depth of the tree, which in
turn depends on the size of the domain of the PPRF. We describe a new domain
extension technique that reduces the size of punctured keys by trading secret key
size for ticket size, while preserving the puncturing functionality. Domain extension
makes it possible to use a PPRF with a smaller domain (and thus smaller punctured
keys). To save a factor of up to n in server-side storage, the ticket size rises roughly
as (n − 1)!. Thus, this is only useful for small values of n, but choosing e.g. n =
5 can yield significant savings with a modest increase in ticket size on the wire.
Concretely, for n = 5 and “128-bit security”, ticket size is increased by 384 bytes.
As discussed in Section 5.5, experiments done by Google estimate that this will
impose only a small impact on latency [33].

Large-Scale Server Clusters and Load Balancing. Large TLS server deployments typ-
ically consist of many servers that share the same public key. This complicates any
logic that relies on the server storing some state, since these servers will typically not
share a globally-consistent state. Such discussion is beyond the scope of this paper, and
we will assume a single server with consistent storage throughout. When many servers
share a Session Cache, the cache is likely to be distributed, and any logic relying on
an atomic retrieve-and-delete operation becomes more complex. Therefore, distributed
Session Caches are not necessarily replay-resistant nor forward-secure, as this requires
synchronous deletion of Resumption Secrets at all servers, and thus synchronized state.7

However, in such large-scale settings it is highly desirable to minimize the amount of
memory that must be consistently synchronized across different servers. Our techniques
are therefore useful to that end as well.

Further Applications to Devices with Restricted Resources. Our techniques may also be
useful for devices with very restricted resources, such as battery-powered IoT devices
with a wireless network connection. For such devices, it is usually extremely expensive
to send data, because each transmitted bit costs energy, which limits the battery lifetime
and thus the range of possible applications. In order to maximize the battery lifetime, it
is useful to avoid expensive interactive handshakes and use a 0-RTT protocol whenever
data is sent to such devices. Note that here the main gain from using 0-RTT is not

7 When using Session Tickets, the same holds for mechanisms that store used tickets, which are
likely to be distributed as well. See [39, §2.3, §8, §E.5], [36,37] for more in-depth discussion.

Session Resumption Protocols and Efficient Forward Security for TLS 1.3 0-RTT 7

minimal latency, but rather that no key exchange messages must be sent by the receiver.
Ideally, transmitted data should be forward-secure, but such devices have low storage
capacity and we cannot use large amounts of storage to achieve forward security.

For such devices, it is reasonable to relax the requirement for very efficient com-
putation, since adding unnecessary transmissions to even a fraction of connections is
likely more costly than using moderately more expensive computations. By instantiat-
ing our session resumption protocol in a way that puncturing is more expensive (say,
five full RSA exponentiations, which may still be reasonable for most IoT devices), we
achieve reductions in storage by factors close to 100. Thus, our techniques make it pos-
sible to use forward-secure 0-RTT protocols even on such devices. Instead of requiring,
say, 1 GB of memory for a session cache, we need only about 10 MBs of memory.

Related Work. Puncturable encryption [24] was used to construct forward-secure in-
stant messaging [24] and 0-RTT protocols [15,16,25], for instance. Green and Miers [24]
first proposed puncturable encryption as a practical building block for the case of asyn-
chronous messaging. They used pairing-based puncturable encryption, and as a result
observed impractically long processing times for their construction. Günther et al. [25]
proposed using puncturable encryption for 0-RTT protocols, again proposing concrete
constructions based on pairings that are also impractical for high-traffic scenarios. Der-
ler et al. [15,16] proposed trading off space in exchange for processing time, with the
use of their proposed Bloom Filter Encryption. Their construction essentially precom-
putes many already-punctured keys, and these keys are used only once, so puncturing
becomes simply key deletion. Bloom Filter Encryption may be considered practical for
low-traffic scenarios, but supporting a large number of puncturings per key requires
precomputation and storage of keys on the order of many gigabytes.

Over the past years there have been several papers formally analyzing the security
of TLS 1.2 [7,28,31] and TLS 1.3 [17,21]. Especially noteworthy are the analyses of the
0-RTT mode of TLS 1.3 [21] and QUIC [20] by Fischlin and Günther, who analyze both
protocols in a multi-stage key exchange model [20]. Lychev et al. [35] further formally
analyzed QUIC in a security model that additionally captures the secure composition
of authenticated encryption and key exchange. A security definition and construction
for QUIC-like 0-RTT protocols were given in [26]. However, all these publications do
not consider forward secrecy for the very first message in their security models. Hence,
we believe that our techniques may also influence the design of protocols providing a
0-RTT key exchange, such as TLS 1.3 and QUIC, in order to achieve forward secrecy
for all messages.

Outline. The rest of this paper is organized as follows. In Section 2 we provide formal
definitions for secure 0-RTT Session Resumption Protocols. In Section 3 we describe a
generic construction, based on abstract PPRFs, and formally prove forward security and
replay resilience. Section 4 describes the Strong-RSA-based PPRF and an analysis of
the efficiency when used in the protocol construction in Section 3. Section 5 describes
the tree-based PPRF and a novel “domain extension” technique for standard binary tree
PPRFs, along with an efficiency analysis.

8 Nimrod Aviram, Kai Gellert, and Tibor Jager

Notation. We denote the security parameter as λ. For any n ∈ N let 1n be the unary
representation of n and let [n] = {1, . . . , n} be the set of numbers between 1 and n.
Moreover, |x| denotes the length of a bitstring x, while |S| denotes the size of a set S.
We write x $← S to indicate that we choose element x uniformly at random from set S.
For a probabilistic polynomial-time algorithm A we define y $← A(a1, . . . , an) as the
execution of A (with fresh random coins) on input a1, . . . , an and assigning the output
to y.

2 0-RTT Session Resumption Protocols and Their Security

In this section we provide formal definitions for secure 0-RTT session resumption proto-
cols. These definitions capture well both our new techniques and the existing solutions
already standardized in TLS 1.3. We also expect that the techniques used to formally
analyze and verify TLS 1.3 0-RTT [14,18] can be extended to use our abstraction of a
session resumption protocol within TLS 1.3.8 This leads us to believe that our defini-
tions capture a reasonable abstraction of the cryptographic core of the TLS 1.3 0-RTT
mode (and likely also of similar protocols that may be devised in the future).

For simplicity, in the following we will refer to pre-shared values as session keys,
as they are either previously established session keys, or a Resumption Secret derived
from a session key, as e.g. in TLS 1.3. The details of how to establish a shared secret
and potentially derive a session key from it are left to the individual protocol and are
outside the scope of our abstraction. Session keys are elements of a keyspace S.

Definition 1. A 0-RTT session resumption protocol consists of three probabilistic poly-
nomial-time algorithms Resumption = (Setup,TicketGen,ServerRes) with the follow-
ing properties.

– Setup(1λ) takes as input the security parameter λ and outputs the server’s long-
term key k.

– TicketGen(k, s) takes as input a long-term key k and a session key s, and outputs
a ticket t and a potentially modified long-term key k′.

– ServerRes(k, t) takes as input the server’s long-term key k and the ticket t, and
outputs a session key s and a potentially modified key k′, or a failure symbol ⊥.

Using a Session Resumption Protocol. A 0-RTT session resumption scheme is used by
a set of clients C and a set of servers S. If a client and a server share a session key s,
the session resumption is executed as follows (cf. Figure 1).

1. The server uses its long-term key k and the session key s to generate a ticket t by
running (t, k′)

$← TicketGen(k, s). The ticket is sent to the client. Additionally, the
server replaces its long-term key k by k′ and deletes the session key s and ticket t,
i.e. it is not required to keep any session state.

8 Obtaining a formal security proof for this would be an interesting direction for future research,
but is beyond the scope of this work.

Session Resumption Protocols and Efficient Forward Security for TLS 1.3 0-RTT 9

2. For session resumption at a later point in time, the client sends the ticket t to the
server.

3. Upon receiving the ticket t, the server runs (s, k′) := ServerRes(k, t) to retrieve
the session key s. Additionally, k is deleted and replaced by the updated key k′.

Client Server
// Generate long-term key

k
$← Setup(1λ)

// Issue ticket(s)
t (t, k)

$← TicketGen(k, s)

store s, t delete s, t

// Encrypt data with s // Resume sessions

c
$← Enc(s,m) t, c (s, k)

$← ServerRes(k, t)

m := Dec(s, c)

Fig. 1. Execution of a generic 0-RTT session resumption protocol with early datam, where client
and server initially are in possession of a shared secret s. Note that procedures TicketGen and
ServerRes both potentially modify the server’s key k.

Compatibility with TLS 1.3. As explained in Section 1, using either Session Tickets or
Session Caches in TLS 1.3 is transparent to clients, i.e. clients are generally unaware of
which is used. In either case, the client stores a sequence of bytes which is opaque from
the client’s point of view. Since all algorithms of a session resumption protocol are exe-
cuted on the server, while a client just has to store the ticket t (encoded as a sequence of
bytes), this generic approach of TLS 1.3 is immediately compatible with our notion of
session resumption protocols. Thus, a session resumption protocol can be used imme-
diately in TLS 1.3, without requiring changes to clients or to the protocol. Furthermore,
Session Tickets and Session Caches are specific examples of such protocols.

2.1 Security in the Single-Server Setting

We define the security of a 0-RTT session resumption protocol Resumption by a se-
curity game G0-RTT-SR

A,Resumption(λ) between a challenger C and an adversary A. For sim-
plicity, we will start with a single-server setting and argue below that security in the
single-server setting implies security in a multi-server setting. The security game is
parametrized by the number of session keys µ (equal to the number of clients in the
single-server setting).

1. C runs k $← Setup(1λ), samples a random bit b $← {0, 1} and generates session
keys si

$← S for all clients i ∈ [µ]. Furthermore, it generates tickets ti and updates
key k by running (ti, k)

$← TicketGen(k, si) for all clients i ∈ [µ]. The sequence
of tickets (ti)i∈[µ] is sent to A.

10 Nimrod Aviram, Kai Gellert, and Tibor Jager

2. The adversary gets access to oracles it may query.
(a) Dec(t) takes as input a ticket t. It computes (si, k

′) := ServerRes(k, ti), re-
turns the session key si and replaces k := k′. Note that ticket t can either be a
ticket of the initial sequence of tickets (ti)i∈[µ] or an arbitrary ticket chosen by
the adversary.

(b) Test(t) takes as input a ticket t. It computes (si, k
′) := ServerRes(k, t) and

outputs ⊥ if the output of ServerRes was ⊥. Otherwise, it updates k := k′.
If b = 1, then it returns the session key si. Otherwise, a random ri

$← S
is returned. Note that ticket t can either be a ticket of the initial sequence of
tickets (ti)i∈[µ] or an arbitrary ticket chosen by the adversary.
The adversary is allowed to query Test only once.

(c) Corr returns the current long-term key k of the server. The adversary must not
query Test after Corr, as this would lead to a trivial attack.

3. Eventually, adversary A outputs a guess b∗. Challenger C outputs 1 if b = b∗ and 0
otherwise.

Note that this security model reflects both forward secrecy and replay protection.
Forward secrecy is ensured, as an adversary may corrupt the challenger after issuing
the Test-query. If the protocol would not ensure forward secrecy, an attacker could
corrupt its long-term key and trivially decrypt the challenge ticket. Replay protection
is ensured, as an adversary is allowed to issue Dec(ti) after already testing Test(ti) (as
both queries invoke the ServerRes algorithm). If the protocol would not ensure replay
protection, an attacker could use the decryption oracle to distinguish a real or random
session key of the Test-query.

Definition 2. We define the advantage of an adversary A in the above security game
G0-RTT-SR
A,Resumption(λ) as

Adv0-RTT-SR
A,Resumption(λ) =

∣∣∣∣Pr [G0-RTT-SR
A,Resumption(λ) = 1

]
− 1

2

∣∣∣∣ .
We say a 0-RTT session resumption protocol is secure in a single-server environment
if the advantage Adv0-RTT-SR

A,Resumption(λ) is a negligible function in λ for all probabilistic
polynomial-time adversaries A.

3 Constructing Secure Session Resumption Protocols

In this section we will show how session resumption protocols providing full forward
security and replay resilience can be constructed. We will start with a generic construc-
tion, based on authenticated encryption with associated data and any puncturable pseu-
dorandom function that is invariant to puncturing. Later we describe new constructions
of PPRFs, which are particularly suitable for use in session resumption protocols.

3.1 Building Blocks

We briefly recall the basic definition of puncturable pseudorandom functions and au-
thenticated encryption with associated data.

Session Resumption Protocols and Efficient Forward Security for TLS 1.3 0-RTT 11

Puncturable PRFs. A puncturable pseudorandom function is a special case of a pseu-
dorandom function (PRF), where it is possible to compute punctured keys which do
not allow evaluation on inputs that have been punctured. We recall the definition of
puncturable pseudorandom functions and its security from [41].

Definition 3. A puncturable pseudorandom function (PPRF) with keyspace K, domain
X and range Y consists of three probabilistic polynomial-time algorithms PPRF =
(Setup,Eval,Punct), which are described as follows.

– Setup(1λ): This algorithm takes as input the security parameter λ and outputs a
description of a key k ∈ K.

– Eval(k, x): This algorithm takes as input a key k ∈ K and a value x ∈ X , and
outputs a value y ∈ Y .

– Punct(k, x): This algorithm takes as input a key k ∈ K and a value x ∈ X , and
returns a punctured key k′ ∈ K.

Definition 4. A PPRF is correct if for every subset {x1, . . . , xn} = S ⊆ X and all
x ∈ X \ S, we have that

Pr

[
Eval(k0, x) = Eval(kn, x) :

k0
$← Setup(1λ);

ki = Punct(ki−1, xi) for i ∈ [n];

]
= 1.

A new property of PPRFs that we will need is that puncturing is “commutative”,
i.e. the order of puncturing operations does not affect the resulting secret key. That is,
for any x0, x1 ∈ X , x0 6= x1, if we first puncture on input x0 and then on x1, the
resulting key is identical to the key obtained from first puncturing on x1 and then on
x0. Formally:

Definition 5. A PPRF is invariant to puncturing if for all keys k ∈ K and all elements
x0, x1 ∈ X , x0 6= x1 it holds that

Punct(Punct(k, x0), x1) = Punct(Punct(k, x1), x0).

We define two notions of PPRF security. The first notion represents the typical pseu-
dorandomness security experiment with adaptive evaluation queries by an adversary.
The second notion is a weaker, non-adaptive security experiment. We show that it suf-
fices to prove security in the non-adaptive experiment if the PPRF is invariant to punc-
turing and has a polynomial-size domain.

Definition 6. We define the advantage of an adversary A in the rand (resp. na-rand)
security experiment Grand

A,PPRF(λ) (resp. Gna-rand
A,PPRF(λ)) defined in Figure 2 as

AdvrandA,PPRF(λ) :=

∣∣∣∣Pr [Grand
A,PPRF(λ) = 1

]
− 1

2

∣∣∣∣ ,
Advna-rand

A,PPRF(λ) :=

∣∣∣∣Pr [Gna-rand
A,PPRF(λ) = 1

]
− 1

2

∣∣∣∣ .
We say a puncturable pseudorandom function PPRF is rand-secure (resp. na-rand-

secure), if the advantage AdvrandA,PPRF(λ) (resp. Advna-rand
A,PPRF(λ)) is a negligible function

in λ for all probabilistic polynomial-time adversaries A.

12 Nimrod Aviram, Kai Gellert, and Tibor Jager

Grand
A,PPRF(λ)

k
$← Setup(1λ), b $← {0, 1}, Q := ∅

x∗
$← AEval(k,·)(1λ)

where Eval(k, x) behaves like Eval, but sets

Q := Q∪ {x}, and runs k := Punct(k, x)

y0
$← Y, y1 := Eval(k, x∗), k := Punct(k, x∗)

b∗
$← A(k, yb)

return 1 if b = b∗ ∧ x∗ /∈ Q
return 0

Gna-rand
A,PPRF(λ)

k0
$← Setup(1λ), b $← {0, 1}

(x1, . . . , x`)
$← A(1λ)

ki := Punct(ki−1, xi) for all i ∈ [`]

yi,0
$← Y, yi,1 := Eval(k0, xi) for all i ∈ [`]

b∗
$← A(k`, (yi,b)i∈[`])

return 1 if b = b∗

return 0

Fig. 2. Security experiments for PPRFs. The na-rand security experiment for PPRF is left and
the rand security experiment is right.

It is relatively easy to prove that na-rand-security and rand-security are equivalent,
up to a linear security loss in the size of the domain of the PPRF. In particular, if the
PPRF has a polynomially-bounded domain size and is invariant to puncturing, then both
are polynomially equivalent.

Theorem 1. Let PPRF be a na-rand-secure PPRF with domainX . If PPRF is invariant
to puncturing, then it is also rand-secure with advantage

AdvrandA,PPRF(λ) ≤
Advna-rand

A,PPRF(λ)

|X |
.

Proof. The proof is based on a straightforward reduction. We give a sketch. LetA be an
adversary against the rand security of PPRF. We guess A’s challenge value in advance
by sampling ν

$← X uniformly at random. We initialize the na-rand challenger by
sending it ν. In return we receive a challenge y (either computed via Eval or random)
and a punctured key k that cannot be evaluated on input ν.

The punctured key k allows us to correctly answer all of A’s Eval queries, except
for ν. When the adversary outputs its challenge x∗ we will abort if x∗ 6= ν. Otherwise,
we forward y and a punctured key k′ that has been punctured on all values of the Eval
queries. Note that the key has a correct distribution, as we require that the PPRF is
invariant to puncturing.

Eventually, A outputs a bit b∗ which we forward to the na-rand challenger.
The simulation is perfect unless we abort it, which happens with polynomially-

bounded probability 1/|X |, due to the fact that |X | is polynomially bounded. �

Authenticated Encryption with Associated Data. We will furthermore need authenti-
cated encryption with associated data (AEAD) [40], along with the standard notions of
confidentiality and integrity.

Definition 7. An authenticated encryption scheme with associated data is a tuple AEAD =
(KGen,Enc,Dec) of three probabilistic polynomial-time algorithms:

Session Resumption Protocols and Efficient Forward Security for TLS 1.3 0-RTT 13

– KGen(1λ) takes as input a security parameter λ and outputs a secret key k.
– Enc(k,m, ad) takes as input a key k, a messagem, associated data ad and outputs

a ciphertext c.
– Dec(k, c, ad) takes as input a key k, a ciphertext c, associated data ad and outputs

a message m or an failure symbol ⊥.

An AEAD scheme is called correct if for any key k $← KGen(1λ), any messagem ∈
{0, 1}∗, any associated data ad ∈ {0, 1}∗ it holds that Dec(k,Enc(k,m, ad), ad) = m.

Definition 8. We define the advantage of an adversary A in the IND-CPA experiment
GIND-CPA
A,AEAD(λ) defined in Figure 3 as

AdvIND-CPA
A,AEAD(λ) :=

∣∣∣∣Pr [GIND-CPA
A,AEAD(λ) = 1

]
− 1

2

∣∣∣∣ .
We say an AEAD scheme AEAD is indistinguishable under chosen-plaintext attacks
(IND-CPA-secure), if the advantage AdvIND-CPA

A,AEAD(λ) is a negligible function in λ for all
probabilistic polynomial-time adversaries A.

Definition 9. We define the advantage of an adversaryA in the INT-CTXT experiment
GINT-CTXT
A,AEAD (λ) defined in Figure 3 as

AdvINT-CTXT
A,AEAD (λ) :=

∣∣Pr [GINT-CTXT
A,AEAD (λ) = 1

]∣∣ .
We say an AEAD scheme AEAD provides integrity of ciphertexts (INT-CTXT-secure),
if the advantage AdvINT-CTXT

A,AEAD (λ) is a negligible function in λ for all probabilistic
polynomial-time adversaries A.

Additionally, we will need the notion of ε-spreadness for AEAD. ε-spreadness cap-
tures the intuition that a ciphertext encrypted under a key k should not be valid under a
random key k′ 6= k.

Definition 10. An AEAD scheme is ε-spread if for all messages m and all associated
data ad it holds that

Pr
k,k′

$←KGen(1λ)
k 6=k′

[AEAD.Dec(k′,AEAD.Enc(k,m, ad), ad) 6= ⊥] ≤ ε.

We note that one can easily prove that INT-CTXT-security implies ε-spreadness with
negligible ε. However, the “statistical” formulation of Definition 10 will simplify parts
of our proof significantly, and therefore we believe it reasonable to make it explicit.

3.2 Generic Construction

Now we are ready to describe our generic construction of a 0-RTT session resumption
protocol, based on a PPRF and an AEAD scheme, and to prove its security.

14 Nimrod Aviram, Kai Gellert, and Tibor Jager

GIND-CPA
A,AEAD(λ)

k
$← KGen(1λ), b $← {0, 1}

b∗
$← ALoR(·,·,·)(1λ)

where LoR(m0,m1, ad).

returns Enc(k,mb, ad).

return 1 if b = b∗

return 0

GINT-CTXT
A,AEAD (λ)

k
$← KGen(1λ),Q := ∅, win := 0

AEnc(·,·),Dec(·,·)(1λ)

where Enc(m, ad) returns Enc(k,m, ad)

and setsQ := Q∪ {(c, ad)},
and where Dec(c, ad) sets win := 1

if Dec(k, c, ad) 6= ⊥ and (c, ad) /∈ Q .

return win

Fig. 3. The IND-CPA and INT-CTXT security experiment for AEAD [40].

Construction 1. Let AEAD = (KGen,Enc,Dec) be an authenticated encryption scheme
with associated data and let PPRF = (Setup,Eval,Punct) be a PPRF with range Y .
Then we can construct a 0-RTT session resumption protocol Resumption = (Setup,
TicketGen,ServerRes) in the following way.

– Setup(1λ) runs kPPRF = PPRF.Setup(1λ), and outputs k := (kPPRF, 0), where
“0” is a counter initialized to zero.

– TicketGen(k, s) takes a key k = (kPPRF, n). It computes κ = PPRF.Eval(kPPRF, n).
Then it encrypts the ticket as t′ $← AEAD.Enc(κ, s, n). Finally, it defines t = (t′, n)
and k := (kPPRF, n+ 1), and outputs (t, k).

– ServerRes(k, t) takes k = (kPPRF, n) and t = (t′, n′). It computes a key κ :=
PPRF.Eval(kPPRF, n

′). If κ = ⊥, then it returns⊥. Otherwise it computes a session
key s := AEAD.Dec(κ, t′, n′). If s = ⊥, it returns ⊥. Else it punctures kPPRF :=
PPRF.Punct(kPPRF, n

′), and returns (s, (kPPRF, n)).

Note that the associated data n is sent in plaintext, posing a potential privacy leak.
This can be circumvented by additionally encrypting n under a dedicated symmetric
key. Compromise of this key would only allow an attacker to link sessions by the same
returning client, not to decrypt past traffic, therefore this symmetric key needs not be
punctured to achieve forward security.9

Theorem 2. If AEAD is ε-spread and PPRF is invariant to puncturing, then from each
probabilistic polynomial-time adversary A against the security of Resumption in a
single-server environment with advantage Adv0-RTT-SR

A,Resumption(λ), we can construct four
adversaries BPPRF1, BPPRF2, BAEAD1, and BAEAD2 such that

Adv0-RTT-SR
A,Resumption(λ) ≤ AdvrandBPPRF1,PPRF(λ) + ε+ µ ·

(
Advna-rand

BPPRF2,PPRF(λ)

+ AdvINT-CTXT
BAEAD1,AEAD(λ) + AdvIND-CPA

BAEAD2,AEAD(λ)
)
,

9 The natural solution would be to encrypt n using public-key puncturable encryption, but this
would be costly, and obviate most of the efficiency benefits described in this work. We are
unfortunately unaware of a good solution that achieves session unlinkability in the event of
server compromise. We further note that TLS 1.3 0-RTT includes a mechanism named “ob-
fuscated ticket age” that solves a similar session linkability concern; that mechanism as well
is not applicable here.

Session Resumption Protocols and Efficient Forward Security for TLS 1.3 0-RTT 15

where µ is the number of clients.

Proof. We will conduct this proof in a sequence of games between a challenger C and an
adversary A. We start with an adversary playing the 0-RTT-SR security game. Over a
sequence of hybrid arguments, we will stepwise transform the security game to a game
where the Test-query is independent of the challenge bit b. The claim then follows
from bounding the probability of distinguishing any two consecutive games. By Advi
we denote A’s advantage in the i-th game.

Game 0. We define Game 0 to be the original 0-RTT-SR security game. By definition
we have

Adv0 = Adv0-RTT-SR
A,Resumption(λ).

Game 1. This game is identical to Game 0, except that we raise an event abortPPRF,
abort the game, and output a random bit b∗ $← {0, 1}, if the adversary A ever queries
Test(t) for a ticket t = (t′, n′) such that n′ /∈ [µ] and AEAD.Dec(κ, t′, n′) 6= ⊥, where
κ := PPRF.Eval(kPPRF, n

′). Since both games proceed identical until abort, we have

|Adv1 − Adv0| ≤ Pr[abortPPRF]

and we claim that we can construct an adversary BPPRF1 on the rand-security of the
PPRF with advantage at least Pr[abortPPRF].

Construction of BPPRF1. BPPRF1 behaves like the challenger in Game 1, expect that
it uses the Eval-oracle to generate the keys to encrypt the initial sequence of µ tickets
and to answer all Dec-queries by A. Eventually, A will query Test(t) for a ticket t =
(t′, n′). BPPRF1 outputs n′ to its PPRF-challenger, which will respond with a punctured
key k := PPRF.Punct(k, n′) and a value γ, where either γ := ρ

$← Y or γ :=
PPRF.Eval(k, n′).
BPPRF1 now tries to decrypt the challenge ticket by invoking AEAD.Dec(γ, t′, n′).

If γ = PPRF.Eval(k, n′), the decryption will succeed by definition. If γ = ρ, the
decryption will fail with probability 1 − ε, since the ε-spreadness of AEAD ensures
that AEAD.Dec(ρ, t′, n′) 6= ⊥ for random ρ happens only with probability ε. Hence,
BPPRF1 returns 1 if decryption succeeds and 0 otherwise. Thus, we have

Pr[abortPPRF] ≤ AdvrandBPPRF1,PPRF(λ) + ε.

Game 2. This game is identical to Game 1, except for the following changes. At the
beginning of the experiment the challenger picks an index ν $← [µ]. It aborts the security
experiment and outputs a random bit b∗ $← {0, 1}, if the adversary queries Test(t) with
t = (t′, i) such that i 6= ν. Since the choice of ν $← [µ] is oblivious to A until an abort
occurs, we have

Adv2 ≥
1

µ
· Adv1.

16 Nimrod Aviram, Kai Gellert, and Tibor Jager

Game 3. This game is identical to Game 2, except that at the beginning of the game we
compute κν = PPRF.Eval(k, ν) and then k := PPRF.Punct(k, ν). Furthermore, we
replace algorithm PPRF.Eval with the following algorithm F3:

F3(k, i) :=

{
PPRF.Eval(k, i) if i 6= ν

κν if i = ν

Everything else works exactly as before. Note that we have simply implemented algo-
rithm PPRF.Eval in a slightly different way. Since PPRF is invariant to puncturing, the
fact that κν was computed early, immediately followed by k := PPRF.Punct(k, ν), is
invisible toA. Hence, Game 3 is perfectly indistinguishable from Game 2, and we have

Adv3 = Adv2.

Game 4. This game is identical to Game 3, except that the challenger now additionally
picks a random key ρ

$← Y from the range of the PPRF. Furthermore, we replace
algorithm F3 with the following algorithm F4:

F4(k, i) :=

{
PPRF.Eval(k, i) if i 6= ν

ρ if i = ν

Everything else works exactly as before. We will now show that any adversary that
is able to distinguish Game 3 from Game 4 can be used to construct an adversaryBPPRF2
against the na-rand-security of the PPRF. Concretely, we have

|Adv4 − Adv3| ≤ Advna-rand
BPPRF2,PPRF(λ).

Construction of BPPRF2. BPPRF2 initially picks ν $← [µ] and outputs ν to its PPRF-
challenger, which will respond with a punctured key k := PPRF.Punct(k, ν) and a
value γ, where either γ = PPRF.Eval(k, ν) or γ $← Y . Now BPPRF2 simulates Game 4,
except that it uses the following function F in place of F4.

F (k, i) :=

{
PPRF.Eval(k, i) if i 6= ν

γ if i = ν

Eventually, A will output a guess b∗. BPPRF2 forwards this bit to the PPRF-challenger.
Note that if γ = Eval(k, ν), then function F is identical to F3, while if γ = ρ then it is
identical to F4. This proves the claim.
Game 5. This game is identical to Game 4, except that we raise an event abortAEAD,
abort the game, and output a random bit b∗ $← {0, 1}, if the adversary A ever queries
Test(t) for a ticket t = (t′, ν) 6= tν , but AEAD.Dec(ρ, t′, ν) 6= ⊥, where ρ = F4(k, ν).
We have

|Adv5 − Adv4| ≤ Pr[abortAEAD]

and we claim that we can construct an adversary BAEAD1 on the INT-CTXT-security of
the AEAD with advantage at least Pr[abortAEAD].

Session Resumption Protocols and Efficient Forward Security for TLS 1.3 0-RTT 17

Construction of BAEAD1. BAEAD1 proceeds exactly like the challenger in Game 5, ex-
cept that it uses its challenger from the AEAD security experiment to create ticket tν .
To this end, it outputs the tuple (sν , ν) for some sν

$← S . The AEAD challenger re-
sponds with t′ν := AEAD.Enc(ρ, sν , ν), computed with an independent AEAD key ρ.
Finally, BAEAD1 defines the ticket as tν = (t′ν , ν). Apart from this, BAEAD1 proceeds
exactly like the challenger in Game 5.

Whenever the adversary A makes a query Test(t) with a ticket t = (t′, i) with
i 6= ν, then we abort, due to the changes introduced in Game 2. If it queries Test(t) with
t = (t′, ν) such that t 6= tν , thenBAEAD1 responds with⊥ and outputs the tuple (t′, ν) to
its AEAD challenger. With probability Pr[abortAEAD] this ticket is valid, which yields

AdvINT-CTXT
BAEAD1,AEAD(λ) ≥ Pr[abortAEAD].

Game 6. This game is identical to Game 5, except that when the adversary queries
Test(tν), then we will always answer with a random value, independent of the bit b.
More precisely, recall that we abort if the adversary queries Test(t), t = (t′, ν) such
that t 6= tν , due to the changes introduced in Game 5. If the adversary queries Test(tν),
then the challenger in Game 5 uses the bit b $← {0, 1} sampled at the beginning of the
experiment as follows. If b = 1, then it returns the session key sν . Otherwise, a random
rν

$← S is returned.
In Game 6, the challenger samples another random value s′ν

$← S at the beginning
of the game. When the adversary queries Test(tν), then if b = 1 the challenger returns
s′ν . Otherwise, it returns a random rν

$← S. Note that in either case the response of the
Test(tν)-query is a random value, independent of b. Therefore the view ofA in Game 6
is independent of b. Obviously, we have

Adv6 = 0.

We will now show that any adversary who is able to distinguish Game 5 from Game 6
can be used to construct an adversary BAEAD2 against the IND-CPA-security of AEAD.

Construction of BAEAD2. Recall that the key used to generate ticket tν is ρ = F4(k, ν).
By definition of F4, ρ is an independent random string chosen at the beginning of the
security experiment. This enables a straightforward reduction to the IND-CPA-security
of the AEAD.
BAEAD2 proceeds exactly like the challenger in Game 6, except for the way the

ticket tν is created. BAEAD2 computes ρν = F4(k, ν). Then it outputs (sν , s′ν , ν) to its
challenger, which returns

tν :=

{
AEAD.Enc(ρ, sν , ν) if b′ = 0

AEAD.Enc(ρ, s′ν , ν) if b′ = 1

where ρ is distributed identically to ρν and b′ is the hidden bit used by the challenger
of the AEAD. Apart from this, BAEAD2 proceeds exactly like the challenger in Game 6.
Eventually, A will output a guess b∗. BAEAD2 forwards this bit to its challenger.

18 Nimrod Aviram, Kai Gellert, and Tibor Jager

Note that if b′ = 0, then the view of A is perfectly indistinguishable from Game 5,
while if b′ = 1 then it is identical to Game 6. Thus, we have

|Adv6 − Adv5| ≤ AdvIND-CPA
BAEAD2,AEAD(λ).

By summing up probabilities from Game 0 to Game 6, we obtain

Adv0-RTT-SR
A,Resumption(λ) ≤ AdvrandBPPRF1,PPRF(λ) + ε+ µ ·

(
Advna-rand

BPPRF2,PPRF(λ)

+ AdvINT-CTXT
BAEAD1,AEAD(λ) + AdvIND-CPA

BAEAD2,AEAD(λ)
)
.

�

4 A PPRF with Short Secret Keys from Strong RSA

In order to instantiate our generic construction of forward-secure and replay-resilient
session resumption protocol with minimal storage requirements, which is the main ob-
jective of this paper, it remains to construct suitable PPRFs with minimal storage re-
quirements and good computational efficiency. Note that a computationally expensive
PPRF may void all efficiency gains obtained from the 0-RTT protocol.

In this section we describe a PPRF based on the Strong RSA (sRSA) assumption
with secret keys that only consist of three elements, even after an arbitrary number of
puncturings. More precisely, a secret key consists of an RSA modulus N , an element
g ∈ ZN and a bitfield r, indicating positions where the PPRF was punctured. The secret
key size is linear in the size of the PPRF’s domain, since the bitfield needs to be of the
same size as the domain (which is determined at initialization, and does not change over
time). Hence, the PPRF’s secret key size is independent of the number of puncturings.
Moreover, for any reasonable choice of parameters, the bitfield is only several hundred
bits long, yielding a short key in practice. Servers can use many instances in parallel
with the instances sharing a single modulus, so it is only necessary to generate (and
store) the modulus once, at initialization.

Since our primary objective is to provide an efficient practical solution for proto-
cols such as TLS 1.3 0-RTT, the PPRF construction described below is analyzed in
the random oracle model [5]. However, we note that we use the random oracle only to
turn a “search problem” (sRSA) into a “decisional problem” (as required for a pseu-
dorandom function). Therefore we believe that our construction can be lifted to the
standard-model via standard techniques, such as hardcore predicates [6,8,23]. All of
these approaches would yield less efficient constructions, and therefore are outside the
scope of our work. Alternatively, one could formulate an appropriate “hashed sRSA”
assumption, which would essentially boil down to assuming that our scheme is secure.
Therefore we consider a random oracle analysis based on the standard sRSA problem
as the cleanest and most insightful approach to describe our ideas.

Idea Behind the Construction. The construction is inspired by the RSA accumulator
of Camenisch and Lysyanskaya [12]. The main idea is the following. Given a modulus
N = pq, a value g ∈ ZN , and a prime number P , it is easy to compute g 7→ gP

Session Resumption Protocols and Efficient Forward Security for TLS 1.3 0-RTT 19

mod N , but hard to compute gP 7→ g mod N without knowing the factorization of
N .

In the following let pi be the i-th odd prime. That is, we have (p1, p2, p3, p4, . . .) =
(3, 5, 7, 11, . . .). Let n be the size of the domain of the PPRF. Our PPRF on input `
produces an output of the form H(gp1·...·pn/p`), where H is a hash function that will be
modeled as a random oracle in the security proof. Note that g is raised to a sequence of
prime numbers except for the `-th prime number. As long as we have access to g, this
is easy to compute. However, if we only have access to gp` instead of g, we are unable
to compute the PPRF output without knowledge of the factorization of N . This implies
that by raising the generator to certain powers, we prevent the computation of specific
outputs. We will use this property to puncture values of the PPRF’s domain.

4.1 Formal Description of the Construction

Definition 11. Let p, q be two random safe primes of bitlength λ/2 and letN = pq. Let
y

$← Z∗N . We define the advantage of algorithm B against the Strong RSA Assumption
[2] as

AdvsRSAB (λ) := Pr [(x, e)← A(N, y) : xe = y mod N] .

The following lemma, which is due to Shamir [42], is useful for the security proof
of our construction.

Lemma 1. There exists an efficient algorithm that, on input y, z ∈ ZN and integers
e, f ∈ Z such that gcd(e, f) = 1 and Ze ≡ Y f mod N , computesX ∈ ZN satisfying
Xe = Y mod N .

Construction 2. Let H : ZN → {0, 1}λ be a hash function and let pi be the i-th
odd prime number. Then we construct a PPRF PPRF = (Setup,Eval,Punct) with
polynomial-size X = [n] in the following way.

– Setup(1λ) computes an RSA modulus N = pq, where p, q are safe primes. Next, it
samples a value g $← ZN and defines r := 0n and k = (N, g, r). The primes p, q
are discarded.

– Eval(k, x) parses k = (N, g, (r1, . . . , rn)). If rx = 1, then it outputs ⊥. Otherwise
it computes and returns

y := H
(
gPx mod N

)
.

where pi is the i-th odd prime and

Px :=
∏

i∈[n],i6=x,ri 6=1

pi

is the product of the first n odd primes, except for px.
– Punct(k, x) parses k = (N, g, (r1, . . . , rn)). If rx = 1, then it returns k. If rx = 0,

it computes g′ := gpx and r′ = (r1, . . . , rx−1, 1, rx+1, . . . , rn) and returns k′ =
(N, g′, r′).

It is straightforward to verify the correctness of Construction 2 and that it is invariant
to puncturing in the sense of Definition 5.

20 Nimrod Aviram, Kai Gellert, and Tibor Jager

4.2 Security Analysis

We prove the following security theorem in the full version of this paper [1].

Theorem 3. Let PPRF = (Setup,Eval,Punct) be as above with polynomial-size input
space X = [n]. From each probabilistic polynomial-time adversary A with advantage
Advna-rand

A,PPRF(λ) against the na-rand-security (cf. Definition 6) we can construct an ef-
ficient adversary B with advantage AdvsRSAB (λ) against the Strong RSA problem, such
that

AdvsRSAB (λ) ≥ Advna-rand
A,PPRF(λ).

4.3 Efficiency Analysis

Note that a server is able to create multiple instances of our construction to serve more
tickets than one instance is able to. Using multiple instances allows using smaller expo-
nents, but in return, the storage cost grows linearly in the number of instances.

Serving a ticket requires two exponentiations, one for computing the key and one for
puncturing. Computing the key requires raising the state g to the power of

∏
p∈S p for

some subset of primes S. Puncturing requires exponentiating by a single prime. There-
fore, all exponentiations feature exponents smaller than

∏n
i=1 pi. We start by comparing

to 2048-bit RSA, which according to the NIST key size recommendations [3] corre-
sponds to “112-bit security”, before comparing to larger RSA key sizes.

Worst-case Analysis. We compare to standard exponentiation in the group, i.e. raising
to the power of d ∈ N, where log d ≈ 2048. For puncturing to be comparable in the
worst-case, we require log (

∏n
i=1 pi) ≤ 2048. Choosing pi to be the i-th odd prime

yields n ≤ 232. An economic server may store only one 2048-bit group element for
the current state, and a bitfield indicating which of the 232 primes have been punctured,
requiring 2280 bits in total. This allows serving 232 tickets, resulting in a storage cost of
1.22 bytes per ticket. Alternatively, a standard Session Cache would require 112 ·232 =
25984 bits to serve those 232 tickets, assuming symmetric keys of 112 bits. Therefore,
our construction decreases storage size compared to a Session Cache by a factor of
25984/2280 = 11.4.

Averaged Analysis. Note that in the above worst-case analysis we consider an upper
bound on the exponentiation cost. That is, we guarantee that a puncturing and key
derivation operation is never more expensive than a full exponentiation. Indeed, the
first key computation raises to the power of p1 · . . . · pn/p`, i.e. to the product of n− 1
primes. However, subsequent key calculations raise to smaller powers, i.e. to the prod-
uct of n − 2 primes, then n − 3, and so on. Therefore serving tickets arriving later is
much cheaper than serving the first. In particular in settings where a server uses many
PPRF instances in parallel, in order to deal with potentially thousands of simultane-
ously issued tickets, an alternative and more reasonable efficiency analysis considers
the average cost of serving a ticket be comparable to exponentiation in the group. In the
worst-case, primes are punctured in order, so pn is included in the exponent in all key
derivations, pn−1 in all derivations except the last, etc. Each prime is also used once for

Session Resumption Protocols and Efficient Forward Security for TLS 1.3 0-RTT 21

puncturing. Requiring
∑n
i=1 i · log(pi) ≤ n · 2048 yields a maximum n = 387, and a

savings factor of 112 ·387/(2048+387) = 17.8. The required storage is therefore 0.79
bytes per ticket.

Considering Other Security Parameters and Efficiency Requirements. Generalizing the
above calculations, Table 1 gives concrete parameters for various security levels, fol-
lowing the NIST recommendations for key sizes [3]. Larger key sizes result in larger
reductions in storage, especially when requiring average cost similar to exponentiation
in the RSA group. We also show the improvement factor in storage when relaxing the
above heuristic choice that serving a ticket must not cost more than one full RSA-
exponentiation, by considering the case where serving a ticket is cheaper on average
than 5 group exponentiations. This demonstrates that the proposed PPRF can yield very
significant storage savings in general cryptographic settings, while keeping computa-
tion costs on the same order of magnitude as common public key operations. In the
context of TLS, however, we expect most server operators would prefer parameters that
keep processing time comparable to a single exponentiation. We emphasize that the
improvement factor in storage is determined at initialization time, and is determinis-
tic rather than probabilistic. The largest prime used in exponentiations determines how
many tickets are served using a single group element. The worst-case and average-case
refer to the processing time, not to the savings in storage.

Additional Storage for the Primes. The server will also need to store the first n primes,
but this requires negligible additional storage. Storing the primes requires on the order
of magnitude of ten kilobytes, where we expect typical caches to use many megabytes.
For the minimal storage requirement, we consider 2048-bit RSA while requiring that the
worst case puncturing time is cheaper than group exponentiation. In this case n = 232
and pn = 1471, therefore all primes fit in 32-bit integers. Storing all the primes would
require at most 4 · 232 = 928 bytes.

The largest value of n for the parameter choices presented in this work is n = 9704,
for the “average cheaper than 5 exponentiations” case with 15360-bit RSA. p9704 =
101341. The required additional storage is therefore 4 · 9704 = 38,816 bytes. To reiter-
ate, we expect typical caches to use many megabytes.

Concrete Benchmarks. We now give concrete performance estimates for this construc-
tion, using OpenSSL [45]. OpenSSL is a well-known production-grade library that im-
plements the TLS and SSL protocols, as well as low-level cryptographic primitives.
For each key size, we measure the computation time of exponentiating by all primes∏n
i=1 pi, by calling the OpenSSL “BigNum” exponentiating function. This is analo-

gous to the computation required to serve the first ticket and then puncture the key:
Serving requires exponentiating to the power of all primes except one, pi, and punc-
turing requires exponentiating to the power of pi. This is the worst-case, since serving
later tickets is cheaper.

We measure the performance of this calculation for two of the above cases, which
determine the value of n: 1) Worst-case is cheaper than exponentiation, and 2) The av-
erage case is cheaper than exponentiation. We note the latter case is slightly unintuitive:

22 Nimrod Aviram, Kai Gellert, and Tibor Jager

Storage Savings Factor
Symmetric Modulus W.C. cheaper than Average cheaper Average cheaper than
Key Size Size exponentiation than exponentiation 5 exponentiations

112 2048 11.40 17.80 48.92
128 3072 12.28 19.47 54.49
192 7680 16.37 26.52 77.36
256 15360 20.10 33.05 99.12

Table 1. Savings factors for various key sizes. Symmetric and asymmetric key sizes are matched
according to the NIST recommendations [3]. Both savings factors denote the reduction in server-
side storage required when using Construction 3. Column 3 denotes the reduction in storage
achieved under the requirement that serving a single ticket is always cheaper than an exponentia-
tion in the RSA group of respective key size. Column 4 denotes the reduction in storage achieved
under the requirement that the average cost for serving a ticket is cheaper than a single exponenti-
ation. Column 5 denotes the reduction in storage achieved under the requirement that the average
cost for serving a ticket is cheaper than 5 group exponentiations.

we measure the worst-case performance, under the requirement that the average case
is comparable to one exponentiation in the group.

Table 2 gives our results. We observe that performance is comparable to, but slower
than, RSA decryption. In typical cases, it requires only a few additional milliseconds
compared to RSA decryption. We argue the additional latency and computation re-
quirement are small enough to allow the construction to be deployed as-is, in current
large scale TLS deployments. It is unsurprising that RSA decryption is faster than our
construction, since OpenSSL performs RSA decryption using the Chinese Remainder
Theorem.

Our construction: Decryption + Puncturing
Modulus W.C. cheaper than Average cheaper RSA

Size exponentiation than exponentiation Decryption
2048 2.6 4.7 0.5
3072 8.3 15.2 2.5
4096 19.4 35.8 5.6

Table 2. Worst-case running time for serving a single ticket using our construction, compared
to RSA decryption. All times are measured in milliseconds. Measurements were performed on a
standard workstation, with a 3.60GHz Intel i7 CPU. All measurements used code from OpenSSL
1.0.2q, released in November 2018. To benchmark our construction we used a short piece of
custom code, based on [9], to repeatedly call the OpenSSL exponentiating function. For each
parameter choice, we generated 100 random moduli, and performed 100 exponentiations of ran-
dom group elements to the power of

∏n
i=1 pi. To benchmark RSA decryption, we used a built-in

OpenSSL benchmarking command, “openssl speed” (after applying a small patch that adds sup-
port for 3072-bit RSA to the command [29]).

Session Resumption Protocols and Efficient Forward Security for TLS 1.3 0-RTT 23

5 Tree-based PPRFs

This section will consider a different approach to instantiating Construction 1 based on
PPRFs using trees. At first we will recap the idea behind tree-based PPRFs and explain
how we utilize tree-based PPRFs as an instantiation of our session resumption proto-
col and highlight implications. Finally, we will describe our new “domain extension”
technique for PPRFs and analyze its efficiency.

5.1 Tree-based PPRFs

We will briefly recap the main idea behind tree-based PPRFs. It is well known that
the GGM tree-based construction of pseudorandom functions (PRFs) from one-way
functions [22] can be modified to construct a puncturable PRF, as noted in [10,11,30].
It works as follows.

Let G : {0, 1}λ → {0, 1}2λ be a pseudorandom generator (PRG) and let G0(k),
G1(k) be the first and second half of string G(k), where k is a random seed. The GGM
construction defines a binary tree on the PRF’s domain, where each leaf represents an
evaluation of the PRF. We label each edge with 0 if it connects to a left child, and 1
if it connects to a right child. We label each node with the binary string determined
by the path from the root to the node. The PRF value of x = x1 . . . xn ∈ {0, 1}n is
(Gxn ◦ . . . ◦Gx1

)(k) ∈ {0, 1}λ, i.e. we compose G according to the path from root to
leaf x.

We will briefly describe how this construction can be transformed into a PPRF. In
order to puncture the PPRF at input x = x1 . . . xn we compute a tuple of n intermediate
node evaluations for prefixes x1, x1x2, . . . , x1x2 . . . xn and discard the initial seed k.
The intermediate evaluations enable us to still compute evaluations on all inputs but x.
Successive puncturing is possible if we apply the above computations to an intermedi-
ate evaluation. Note that we have to compute at most n ·m intermediate values if we
puncture at random, where m is the number of puncturing operations performed.

The PPRF is secure if an adversary is not able to distinguish between a punctured
point and a truly random value, even when given the values of all computed “neighbor
nodes”. This holds as long as the underlying PRG is indistinguishable from random
[10,11,30].

5.2 Combining Tree-based PPRFs with Tickets

In our session resumption scenario the tree-based PPRF will act as a puncturable STEK.
That is, evaluating the PPRF returns a ticket encryption key. Upon resumption with a
ticket we will retrieve the ticket encryption key from the PPRF by evaluating it and
puncture the PPRF at that very value to ensure the ticket encryption key cannot be
computed twice. Note that each ticket encryption key essentially corresponds to a leaf
of the tree. Thus we will subsequently use the terms leaf and ticket (encryption key)
interchangeably depending on the context.

For simplicity, we consider tickets which consist of a ticket number i and a ticket
lifetime t. Following Construction 1 we will issue the tickets one after another while
incrementing the ticket number for each. Note that the ticket number i corresponds to

24 Nimrod Aviram, Kai Gellert, and Tibor Jager

the i-th leftmost leaf of the tree. The ticket lifetime t determines how long an issued
ticket is valid for resumption. That is, if t′ > t time has passed, the server will reject
the ticket.

We assume that the rate at which tickets are issued is roughly the same as the rate
tickets are used for session resumption. This holds as for each session resumption we
will issue a new ticket to again resume the session at a later point in time. Similarly,
we argue that tickets are roughly used in the same order for resumption as we issued
them. Again, if we consider multiple users, repeatedly requesting tickets and resuming
sessions, we are able to average the time a user takes until a session is resumed.10 This
yields an implicit window of tickets in usage. The window is bounded left by the ticket
lifetime and bounded right by the last ticket the server issued. Within the lifetime of the
tree-based PPRF this implicit window will shift from left to right over the tree’s leaves.
It immediately follows that tickets are also roughly used in that order.

5.3 Efficiency Analysis of the Tree-based PPRF

We will now discuss how the performance of tree-based PPRFs depends on the ticket
lifetime. We consider a scenario where the ticket lifetime t equals the number of leaves
`. It is also possible to consider a scenario where the ticket lifetime is smaller than the
number of leaves. If both number of leaves ` and ticket lifetime t are powers of 2, we
can divide the leaves in `/t windows, which span a subtree each.11 The subtrees are all
linked with the “upper part” of the tree. A different approach would be to instantiate a
new tree when a tree runs out of tickets. We stress that this does not affect our analysis.
As soon as one subtree runs out of tickets, the next subtree is used. If the rate at which
we issue tickets stays the same, we are able to delete parts of the former tree when
issuing tickets of the next one. Hence, for analysis, it is sufficient to consider a single
tree.

If we were to puncture leaves strictly from left to right, we would need to store
at most log(`) leaves (one leaf per layer). Note that if we puncture leaves at random,
we would need to store at most p · log(`) nodes, where p is the number of punctures
performed. We can also bound the number of nodes we need to store by p·log(`) ≤ `/2.
This is due to the tree being binary. Essentially each node (except for the lowest layer)
represents at least two leaves. To be more precise, in a tree with L layers, storing a
node on layer i allows evaluating its 2L−i children. Thus it is preferable to store those
nodes instead of storing leaves in order to save memory. In the worst-case only every
second leaf is punctured. This results in precomputation of all other leaves without
being able to save memory by only storing an intermediary node. Note that this would
actually resemble a Session Cache, where all issued tickets are stored. However, note

10 Cloudflare have suggested that these assumptions seem reasonable. Unfortunately, they cannot
provide data on returning clients’ behavior yet.

11 When implementing tree-based PPRFs in session resumption scenarios, such windows should
not be implemented as they only add management overhead to the algorithm instead of pro-
viding notable advantages. It is sufficient to use a tree-based PPRF as is and puncture leaves
for which the ticket’s lifetime has expired. This way we achieve an implicit implementation of
a sliding window scenario that ensures all established bounds still hold.

Session Resumption Protocols and Efficient Forward Security for TLS 1.3 0-RTT 25

that a session cache needs to store each ticket when it has been issued, whereas our
construction only needs to increase its storage if a ticket is used for resumption. Thus,
our tree-based construction performs (memory-wise) at least as well as a Session Cache.
In practice, where user behavior is much more random, our approach is always better
than Session Caches.

The tree-based PPRF performs more computations compared to a Session Cache.
When issuing tickets we need to compute all nodes from the closest computed node to a
leaf. For puncturing we need to compute the same, plus computation of some additional
sibling nodes. However, when instantiating the construction with a cryptographic hash
function, such as SHA-3, evaluation and puncturing of the PPRF consists only of several
hash function evaluations. This makes our construction especially suitable for high-
traffic scenarios.

Table 3 gives worst-case secret key sizes based on the above analysis. However, we
expect the secret key size to be much smaller in practice. Unfortunately, we are not
able to estimate the average key size as this would depend on the exact distribution of
returning clients’ arrival times.

Tickets per Second r Ticket Lifetime t Worst-case Secret Key Size |k|
16 1 hour 461 kB
16 1 day 11.06 MB
128 1 hour 3.69 MB
128 1 day 88.47 MB

1024 1 hour 29.49 MB
1024 1 day 707.79 MB

Table 3. Worst-case size of secret key depending on the rate of tickets per second and the
ticket lifetime assuming 128 bit ticket size. The worst-case secret key size is computed as
|k| = 128rt/2.

5.4 Generic Domain Extension for PPRFs

Most forward-secure and replay-resilient 0-RTT schemes come with large secret keys
(possibly several hundred megabytes) when instantiated in a real-world environment
[15,16,25]. This is especially problematic if the secret key needs to be synchronized
across multiple server instances. Therefore it is often desirable to minimize the secret
key size.

In this section we will describe a generic domain extension. In the context of our
work, the domain extension reduces the size of punctured keys by trading secret key
size for ticket size, while preserving the puncturing functionality.

Idea Behind the Construction. Our session resumption protocol uses the output of the
PPRF as a ticket encryption key. Normally, a PPRF only allows one output per input
as it is designed to be a function. Our protocol, however, does not rely on this prop-
erty. Instead of only using one ticket encryption key we could generate multiple ticket
encryption keys. Ticket issuing would work as follows. First, we generate an interme-

26 Nimrod Aviram, Kai Gellert, and Tibor Jager

diary symmetric key to encrypt the Resumption Secret12. The intermediary symmetric
key is then encrypted under each of the ticket encryption keys. The ticket will consist
of one encryption of the Resumption Secret and several (redundant) encryptions of the
intermediary symmetric key.

As long as the PPRF is able to recompute at least one of those ticket encryption
keys, the server will still be able to resume the session. This allows us to construct a
wrapper around the PPRF that extends the PPRF’s domain by relaxing the requirement
that every input has only a single output.

Before formally describing our construction, we will provide an example to illus-
trate the idea. Let X be the PPRF’s domain. We will extend the domain to X × [n] with
a domain extension factor of n. That is, we will allow (x, i), i ∈ [n] for any x ∈ X
as input. Let G : {0, 1}λ → {0, 1}nλ be a pseudorandom generator and let Gj(x) be
the j-th bitstring of size λ of G on input x. We define the evaluation of (x, i) as all
possible compositions of Gj which end with Gi. That is, for any input (x, i) there will
be (n− 1)! different outputs, as there are (n− 1)! ways to compose Gj with j 6= i. The
possible compositions of PRGs can be illustrated as a tree as shown in Figure 4.

y

y1

y12

y123

G3

G2

y13

y132

G2

G3

G1

y2

y21

y213

G3

G1

y23

y231

G1

G3

G2

y3

y31

y312

G2

G1

y32

y321

G1

G2

G3

Fig. 4. Possible composition of PRGs for n = 3 illustrated as a tree. Each path from parent to
child illustrates an evaluation of the PRG shown next to the path. Upon puncturing (x, 3), the
value y3 is computed and stored and y is discarded. Thus, only the white nodes are computable,
whereas the gray nodes cannot be computed without inverting G3.

After puncturing the PPRF’s key for a value (x, i), it must not be possible to evaluate
the value anymore. This requires a mechanism to ensure that composing the PRGs
which end with Gi is no longer possible. We achieve this by forcing an evaluation of
yi := Gi(y), where y is the evaluation of the underlying PPRF on input x. In order to
render recomputation of y impossible, we additionally need to puncture the PPRF’s key
on value x and delete the computed y. Formally, the construction is defined as follows.
12 Typically, a ticket contains not only the Resumption Secret but also the chosen cipher suite and

other additional session parameters, and is thus larger than just the Resumption Secret. There-
fore it is reasonable to encrypt this data only once, while encrypting the shorter intermediary
symmetric key multiple times. This makes the ticket as short as possible.

Session Resumption Protocols and Efficient Forward Security for TLS 1.3 0-RTT 27

Construction 3. Let G : {0, 1}λ → {0, 1}nλ be a PRG and let Gi(k) be the i-th
bitstring of size λ of G. Let PPRF′ = (Setup′,Eval′,Punct′) be a PPRF with domain
X . We construct a domain extended PPRF DE = (Setup,Eval,Punct) with domain
X × [n] for n ∈ N as follows.

– Setup(1λ) computes kPPRF := Setup′(1λ). Next, it defines an empty list L = ∅.
Output is k = (kPPRF,L)

– Eval(k, x) parses x = (xPPRF, xext) ∈ X × [n] and k = (kPPRF,L). It computes
y := Eval(kPPRF, xPPRF).
If y = ⊥, it checks whether ∃xPPRF with (xPPRF, y

′, (r1, . . . , rn)) ∈ L. If it exists,
assign y := y′. Otherwise it outputs ⊥.
Furthermore, it defines a set R = {i ∈ [n] | ri = 1}. If ri are undefined, set R is
empty. Next, it computes

Y = {(Gin−|R|−1
◦ . . . ◦Gi1)(y)},

where (i1, . . . , in−|R|−1) are all (n− |R| − 1)! possible permutations of elements
in [n] \ (R∪ {xext}). Output is Y .

– Punct(k, x) parses k = (kPPRF,L) and x = (xPPRF, xext) ∈ X × [n]. It computes
y := Eval(kPPRF, xPPRF). If y 6= ⊥, it appends L′ = L ∪ {xPPRF, y, (r1, . . . , rn)},
where ri = 0, but rxext = 1. Additionally, it punctures k′PPRF := Punct′(kPPRF, xPPRF).
If y = ⊥ and @xext with (xext, y

′, r) ∈ L, it outputs k.
Otherwise it retrieves ` = (xext, y

′, (r1, . . . , rn)) ∈ L. If ri = 1 for all i ∈ [n] \
{xext}, remove ` from L. Else it updates ` ∈ L by computing L′ = (L\{`})∪{`′}.
Output is k = (k′PPRF,L′).

5.5 Efficiency Analysis of the Generic Domain Extension

Increased Ticket Size. Note that a ticket is longer than a standard ticket by (n − 1)!
encrypted blocks. Assuming 128-bit AES, and choosing n = 5, this translates to
4! · 16 = 384 additional bytes. This is likely to be insignificant on the modern In-
ternet. For example, Google has pushed for increasing the maximum initial flight from
4 TCP packets to 10 [19], as most server responses span several packets already (a
typical full packet is about 1500 bytes). A basic experiment performed by Google and
Cloudflare in 2018 measured a similar scenario: It added 400 bytes for both the client’s
and server’s first flights [33]. They observed relatively small additional latencies: 2–
4 milliseconds in the median, and less than 20 milliseconds for the 95th percentile.13

However, choosing n = 6 or larger is likely to be not cost-effective. This would trans-
late to 5! · 16 = 1920 additional bytes, larger than a standard TCP packet.

Storage Requirements. Comparing the storage requirements of the tree-based construc-
tion to standard Session Caches depends on the specific distribution of returning clients.
In the best case, tickets arrive in large contiguous blocks. In this case, a tree-based con-
struction uses negligible storage (logarithmic in the number of tickets), making the sav-
ings factor in storage huge. However, this is unrealistic in practice. In the worst-case,
13 The relevant experiment is denoted as “Phase Two”; “Phase One” only added bytes to the

client’s first flight.

28 Nimrod Aviram, Kai Gellert, and Tibor Jager

tickets arrive in blocks of n− 1 tickets of the form (xPPRF, i) for i ∈ [n− 1], adversar-
ially rendering the domain extension technique useless as each subtree is reduced to a
single node. As before, this is unrealistic in practice.

We have therefore resorted to simulations in order to assess the improvement in
storage requirements. Our simulation constructs two trees: a standard binary tree with `
layers, and a domain-extended tree with n = 4. For the domain-extended tree, the first
`− 2 layers are constructed as a standard binary tree, and the last log(4) = 2 layers are
represented by the domain extension.

We simulated the storage requirements for trees of 10,000 tickets.14 We focused
on the relationship between ticket puncturing rate and savings in storage. The ticket
puncturing rate denotes the percentage of tickets that are punctured, out of the 10,000
outstanding tickets. This can also be thought of as the percentage of returning clients.
After fixing the puncturing rate to r, we simulate the arrival of r% of clients accord-
ing to two distributions: Gaussian and uniform. With the uniform distribution, the next
ticket to be punctured is sampled uniformly out of the outstanding tickets. With the
Gaussian distribution, the next ticket to be punctured is sampled using a discrete Gaus-
sian distribution with mean µ = 5000 and standard deviation σ (for varying values of
σ). We then simulate the state of both trees after puncturing the sampled ticket. We re-
peatedly sample tickets and puncture them, until we reach the desired puncturing rate.
We then report the ratio between the storage for the standard binary tree and the storage
for the domain-extended tree, in their final states.

Intuitively, the Gaussian distribution aims to simulate the assumption where tickets
arrive in some periodic manner. For example, assume the tickets most likely to arrive
are the tickets issued roughly one hour ago. Then the distribution of arriving tickets
will exhibit a noticeable mode (“peak”), where tickets close to the mode are much more
likely to arrive than tickets far from it. The Gaussian distribution is a natural fit for this
description. On the other hand, the uniform distribution makes no assumptions on which
ticket is likely to arrive next. In personal communication, Cloudflare have advised us
that it is reasonable to assume tickets are redeemed roughly in order of issuance (they do
not have readily-available data on returning clients’ behavior). This motivated our use
of Gaussian distributions. We hope to see additional research in this area. In particular, it
would be helpful if large server operators could release anonymized datasets that allow
simulating the behavior of returning clients in practice.

Using our domain extension technique with n = 4 results in a typical factor of 1.4
(or more) reduction in storage compared to a tree-based PPRF. Figure 5 plots the results
when using the uniform distribution and a Gaussian distribution with σ = 2000. We
encountered similar results when using other values for σ. We estimate ticket redeeming
rates in large-scale deployments are roughly 50%. We therefore focus on cases where
the puncturing rate is at least 40% and at most 60%. We note that in the worst-case, the
domain extension performs as well as the binary tree.

14 We note that results for trees of 10,000 tickets should closely follow results for larger tree
sizes. Trees are quickly split into smaller sub-trees when puncturing, regardless of the initial
tree size. In the first puncturing operation we delete the root and store smaller sub-trees with
at most half the nodes in each, and so forth.

Session Resumption Protocols and Efficient Forward Security for TLS 1.3 0-RTT 29

Fig. 5. Average storage improvement factor of the domain-extended binary tree (with n = 4)
compared to a standard binary tree, depending on the ticket puncturing rate. All simulations
used trees of 10,000 tickets. The dashed blue line (resp. continuous red line) shows the storage
improvement when modeling client’s arrivals with a uniform distribution (resp. discrete Gaussian
distribution with mean µ = 5000 and standard deviation σ = 2000).

6 Comparison of Solutions and Conclusion

Comparison of Solutions. To summarize this work, Table 4 compares our two construc-
tions with the standard solutions of Session Tickets and Session Caches.

Forward Replay Storage See
Solution Security Protection per Ticket Dominant Cost Section

Session Tickets After ≈ 1 day No Negligible Symmetric encryption 1
Session Caches Yes Yes ≈ 20–30 bytes Database access 1

sRSA-based PPRF Yes Yes ≈ 0.8–1.2 bytes Group exponentiation 4.3
Tree-based PPRF Yes Yes ≤ 20–30 bytes Database access 5.3

Table 4. Comparison of security guarantees and dominant cost for Session Tickets, Session
Caches, and our two constructions. For Session Tickets, we assume a deployment that rotates
STEKs, as in [34]. For Session Caches, we assume each key is 128 bits (16 bytes) long. The
unique ticket identifier, and other storage overhead, will typically require a few more bytes. We
therefore estimate total storage per key as 20–30 bytes. For the Tree-based PPRF, actual storage
per ticket highly depends on returning clients behavior. However, this solution always requires at
most as much storage as a Session Cache.

30 Nimrod Aviram, Kai Gellert, and Tibor Jager

Conclusion. In most facets, TLS 1.3 offers significant improvements in security com-
pared to earlier TLS versions. However, when 0-RTT mode is used, it surprisingly
weakens standard security guarantees, namely forward security and replay resilience.
This was noted as the protocol was standardized, but the latency reduction from 0-RTT
was considered “too big a win not to do” [38].

This paper presented formal definitions for secure 0-RTT Session Resumption Pro-
tocols, and two new constructions that allow achieving the aforementioned security
guarantees at a practical cost. We expect continued research in the coming years in this
area, of achieving secure 0-RTT traffic as cheaply as possible. Currently, many large
server operators serve 0-RTT traffic using STEK-encrypted Session Tickets. As more
Internet traffic becomes 0-RTT traffic, this solution rolls back the security guarantees
offered to everyday secure sessions.

References

1. Aviram, N., Gellert, K., Jager, T.: Session resumption protocols and efficient forward security
for TLS 1.3 0-RTT. Cryptology ePrint Archive (2019), https://eprint.iacr.org

2. Bari, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes with-
out trees. In: Fumy, W. (ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 480–494. Springer,
Heidelberg, Germany, Konstanz, Germany (May 11–15, 1997)

3. Barker, E.: Recommendation for key management part 1: General (revision 4). NIST special
publication (2016)

4. Behr, M., Swett, I.: Introducing QUIC support for HTTPS load balanc-
ing (2018), https://cloudplatform.googleblog.com/2018/06/
Introducing-QUIC-support-for-HTTPS-load-balancing.html

5. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient
protocols. In: Ashby, V. (ed.) ACM CCS 93. pp. 62–73. ACM Press, Fairfax, Virginia, USA
(Nov 3–5, 1993)

6. Bellare, M., Stepanovs, I., Tessaro, S.: Poly-many hardcore bits for any one-way func-
tion and a framework for differing-inputs obfuscation. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014, Part II. LNCS, vol. 8874, pp. 102–121. Springer, Heidelberg, Germany,
Kaoshiung, Taiwan, R.O.C. (Dec 7–11, 2014)

7. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.Y., Zanella Béguelin,
S.: Proving the TLS handshake secure (as it is). In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 235–255. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 17–21, 2014)

8. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number generator.
SIAM J. Comput. 15(2), 364–383 (1986), https://doi.org/10.1137/0215025

9. Böck, H.: Fuzz-compare the OpenSSL function BN mod exp() and the libgcrypt func-
tion gcry mpi powm(), https://github.com/hannob/bignum-fuzz/blob/
master/openssl-vs-gcrypt-modexp.c

10. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 280–300. Springer,
Heidelberg, Germany, Bengalore, India (Dec 1–5, 2013)

11. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In:
Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg, Ger-
many, Buenos Aires, Argentina (Mar 26–28, 2014)

https://eprint.iacr.org
https://cloudplatform.googleblog.com/2018/06/Introducing-QUIC-support-for-HTTPS-load-balancing.html
https://cloudplatform.googleblog.com/2018/06/Introducing-QUIC-support-for-HTTPS-load-balancing.html
https://doi.org/10.1137/0215025
https://github.com/hannob/bignum-fuzz/blob/master/openssl-vs-gcrypt-modexp.c
https://github.com/hannob/bignum-fuzz/blob/master/openssl-vs-gcrypt-modexp.c

Session Resumption Protocols and Efficient Forward Security for TLS 1.3 0-RTT 31

12. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revo-
cation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp.
61–76. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22, 2002)

13. Chang, W.T., Langley, A.: QUIC crypto (2014), https://docs.google.com/
document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g

14. Cremers, C., Horvat, M., Scott, S., van der Merwe, T.: Automated analysis and verifica-
tion of TLS 1.3: 0-RTT, resumption and delayed authentication. In: 2016 IEEE Symposium
on Security and Privacy. pp. 470–485. IEEE Computer Society Press, San Jose, CA, USA
(May 22–26, 2016)

15. Derler, D., Gellert, K., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption and ap-
plications to efficient forward-secret 0-RTT key exchange. Cryptology ePrint Archive, Re-
port 2018/199 (2018), https://eprint.iacr.org/2018/199

16. Derler, D., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption and applications
to efficient forward-secret 0-RTT key exchange. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part III. LNCS, vol. 10822, pp. 425–455. Springer, Heidelberg, Germany, Tel
Aviv, Israel (Apr 29 – May 3, 2018)

17. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the TLS 1.3
handshake protocol candidates. In: Ray, I., Li, N., Kruegel:, C. (eds.) ACM CCS 15. pp.
1197–1210. ACM Press, Denver, CO, USA (Oct 12–16, 2015)

18. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the TLS
1.3 draft-10 full and pre-shared key handshake protocol. Cryptology ePrint Archive, Report
2016/081 (2016), http://eprint.iacr.org/2016/081

19. Dukkipati, N., Refice, T., Cheng, Y., Chu, J., Herbert, T., Agarwal, A., Jain, A., Sutin, N.:
An argument for increasing TCP’s initial congestion window. Computer Communication
Review 40(3), 26–33 (2010)

20. Fischlin, M., Günther, F.: Multi-stage key exchange and the case of Google’s QUIC protocol.
In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 14. pp. 1193–1204. ACM Press, Scottsdale,
AZ, USA (Nov 3–7, 2014)

21. Fischlin, M., Günther, F.: Replay attacks on zero round-trip time: The case of the TLS 1.3
handshake candidates. In: 2017 IEEE European Symposium on Security and Privacy, Eu-
roS&P 2017, Paris, France, April 26-28, 2017. pp. 60–75. IEEE (2017), https://doi.
org/10.1109/EuroSP.2017.18

22. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4),
792–807 (Aug 1986), http://doi.acm.org/10.1145/6490.6503

23. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: 21st ACM
STOC. pp. 25–32. ACM Press, Seattle, WA, USA (May 15–17, 1989)

24. Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable encryp-
tion. In: 2015 IEEE Symposium on Security and Privacy. pp. 305–320. IEEE Computer
Society Press, San Jose, CA, USA (May 17–21, 2015)

25. Günther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full forward secrecy. In:
Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III. LNCS, vol. 10212, pp. 519–548.
Springer, Heidelberg, Germany, Paris, France (Apr 30 – May 4, 2017)

26. Hale, B., Jager, T., Lauer, S., Schwenk, J.: Simple security definitions for and constructions
of 0-RTT key exchange. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 17. LNCS,
vol. 10355, pp. 20–38. Springer, Heidelberg, Germany, Kanazawa, Japan (Jul 10–12, 2017)

27. Iyengar, S., Nekritz, K.: Building zero protocol for fast, secure
mobile connections (2017), https://code.fb.com/android/
building-zero-protocol-for-fast-secure-mobile-connections/

28. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the standard
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 273–
293. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 2012)

https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g
https://eprint.iacr.org/2018/199
http://eprint.iacr.org/2016/081
https://doi.org/10.1109/EuroSP.2017.18
https://doi.org/10.1109/EuroSP.2017.18
http://doi.acm.org/10.1145/6490.6503
https://code.fb.com/android/building-zero-protocol-for-fast-secure-mobile-connections/
https://code.fb.com/android/building-zero-protocol-for-fast-secure-mobile-connections/

32 Nimrod Aviram, Kai Gellert, and Tibor Jager

29. Kario, H.: Add 3072, 7680 and 15360 bit RSA tests to openssl speed, https://groups.
google.com/forum/#!topic/mailing.openssl.dev/bv8t7QcXrqg

30. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom
functions and applications. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 13.
pp. 669–684. ACM Press, Berlin, Germany (Nov 4–8, 2013)

31. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: A systematic
analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp.
429–448. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22, 2013)

32. Langley, A.: How to botch TLS forward secrecy (2013), https://www.
imperialviolet.org/2013/06/27/botchingpfs.html

33. Langley, A.: Post-quantum confidentiality for TLS (2018), https://www.
imperialviolet.org/2018/04/11/pqconftls.html

34. Lin, Z.: TLS Session Resumption: Full-speed and Secure (2015), https://blog.
cloudflare.com/tls-session-resumption-full-speed-and-secure/

35. Lychev, R., Jero, S., Boldyreva, A., Nita-Rotaru, C.: How secure and quick is QUIC? Prov-
able security and performance analyses. In: 2015 IEEE Symposium on Security and Privacy.
pp. 214–231. IEEE Computer Society Press, San Jose, CA, USA (May 17–21, 2015)

36. MacCarthaigh, C.: Security Review of TLS 1.3 0-RTT. https://github.com/
tlswg/tls13-spec/issues/1001, accessed: 2018-07-29

37. Rescorla, E.: TLS 0-RTT and Anti-Replay (2015), https://www.ietf.org/
mail-archive/web/tls/current/msg15594.html

38. Rescorla, E.: TLS 1.3 (2015), http://web.stanford.edu/class/ee380/
Abstracts/151118-slides.pdf

39. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446 (2018),
https://rfc-editor.org/rfc/rfc8446.txt

40. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.) ACM CCS
02. pp. 98–107. ACM Press, Washington D.C., USA (Nov 18–22, 2002)

41. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and
more. In: Shmoys, D.B. (ed.) 46th ACM STOC. pp. 475–484. ACM Press, New York, NY,
USA (May 31 – Jun 3, 2014)

42. Shamir, A.: On the generation of cryptographically strong pseudorandom sequences. ACM
Trans. Comput. Syst. 1(1), 38–44 (Feb 1983), http://doi.acm.org/10.1145/
357353.357357

43. Springall, D., Durumeric, Z., Halderman, J.A.: Measuring the security harm of TLS crypto
shortcuts. In: Proceedings of the 2016 Internet Measurement Conference. pp. 33–47. ACM
(2016)

44. Sullivan, N.: Introducing Zero Round Trip Time Resumption (2017), https://blog.
cloudflare.com/introducing-0-rtt/

45. The OpenSSL Project: OpenSSL: The open source toolkit for SSL/TLS, www.openssl.
org

https://groups.google.com/forum/#!topic/mailing.openssl.dev/bv8t7QcXrqg
https://groups.google.com/forum/#!topic/mailing.openssl.dev/bv8t7QcXrqg
https://www.imperialviolet.org/2013/06/27/botchingpfs.html
https://www.imperialviolet.org/2013/06/27/botchingpfs.html
https://www.imperialviolet.org/2018/04/11/pqconftls.html
https://www.imperialviolet.org/2018/04/11/pqconftls.html
https://blog.cloudflare.com/tls-session-resumption-full-speed-and-secure/
https://blog.cloudflare.com/tls-session-resumption-full-speed-and-secure/
https://github.com/tlswg/tls13-spec/issues/1001
https://github.com/tlswg/tls13-spec/issues/1001
https://www.ietf.org/mail-archive/web/tls/current/msg15594.html
https://www.ietf.org/mail-archive/web/tls/current/msg15594.html
http://web.stanford.edu/class/ee380/Abstracts/151118-slides.pdf
http://web.stanford.edu/class/ee380/Abstracts/151118-slides.pdf
https://rfc-editor.org/rfc/rfc8446.txt
http://doi.acm.org/10.1145/357353.357357
http://doi.acm.org/10.1145/357353.357357
https://blog.cloudflare.com/introducing-0-rtt/
https://blog.cloudflare.com/introducing-0-rtt/
www.openssl.org
www.openssl.org

	Session Resumption Protocols and Efficient Forward Security for TLS 1.3 0-RTT

