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Abstract. We present a worst case decoding problem whose hardness
reduces to that of solving the Learning Parity with Noise (LPN) problem,
in some parameter regime. Prior to this work, no worst case hardness re-
sult was known for LPN (as opposed to syntactically similar problems
such as Learning with Errors). The caveat is that this worst case prob-
lem is only mildly hard and in particular admits a quasi-polynomial time
algorithm, whereas the LPN variant used in the reduction requires ex-
tremely high noise rate of 1/2− 1/poly(n). Thus we can only show that
“very hard” LPN is harder than some “very mildly hard” worst case
problem. We note that LPN with noise 1/2− 1/poly(n) already implies
symmetric cryptography.

Specifically, we consider the (n,m,w)-nearest codeword problem ((n,m,w)-
NCP) which takes as input a generating matrix for a binary linear code
in m dimensions and rank n, and a target vector which is very close to the
code (Hamming distance at most w), and asks to find the codeword near-
est to the target vector. We show that for balanced (unbiased) codes and
for relative error w/m ≈ log2 n/n, (n,m,w)-NCP can be solved given
oracle access to an LPN distinguisher with noise ratio 1/2− 1/poly(n).

Our proof relies on a smoothing lemma for codes which we show to
have further implications: We show that (n,m,w)-NCP with the afore-
mentioned parameters lies in the complexity class Search-BPPSZK (i.e.
reducible to a problem that has a statistical zero knowledge protocol)
implying that it is unlikely to be NP-hard. We then show that the hard-
ness of LPN with very low noise rate log2(n)/n implies the existence of
collision resistant hash functions (our aforementioned result implies that
in this parameter regime LPN is also in BPPSZK).
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1 Introduction

The hardness of noisy learning problems such as learning parity with noise
(LPN) [BFKL93,BKW03] and learning with errors (LWE) [Reg05] have proved
to be a goldmine in modern cryptography. The hardness of LWE has been in-
strumental in solving long-standing problems such as fully homomorphic en-
cryption [Gen09, BV11]. Both LPN and LWE have given us efficient and plau-
sibly quantum-proof cryptographic constructions [KPC+11,BCD+16,ADPS16].
However, while we know several structural results about LWE, relatively little
is known about the 25-year old LPN problem.

Before we proceed, let us define the LPN and LWE problems. In the (search
version of the) LPN problem, the algorithm is given access to an oracle that
produces samples (ai, s

Tai+ei) where s ∈ Zn2 is the “secret” vector, ai ∈ Zn2 are
uniformly distributed and ei ∈ Z2 come from the Bernoulli distribution (that
is, it is 1 with probability ε and 0 otherwise). The goal is to recover s. The
(search version of the) LWE problem is the same but for two key changes: first,
the vectors ai ∈ Znq are uniformly random with entries from some large enough
finite field Zq and second, each error term ei is chosen from the discrete Gaussian
distribution over the integers. The exact choice of the error distribution does
not matter much: what is important is that in LWE, each sample has an error
with bounded absolute value (at least with high probability). These seemingly
minor differences seem to matter a great deal: we know worst-case to average-
case reductions for LWE [Reg05, Pei09, BLP+13] while no such result is known
for LPN;5 we know that (a decisional version of) LWE is in the complexity class
SZK [MV03] (statistical zero-knowledge) while no such result is known for LPN;
and we can build a dizzying array of cryptographic primitives assuming the
hardness of LWE (e.g. attribute based encryption and homomorphic encryption
to name the more exotic examples) while the repertoire of LPN is essentially
limited to one-way functions and public-key encryption (and primitives that
can be constructed generically from it). In particular, we do not know how to
construct even simple, seemingly “unstructured”, primitives such as a collision-
resistant hash function from the hardness of LPN, even with extreme parameter
choices. Can we bridge this puzzling gap between LWE and LPN?

In a nutshell, the goal of this paper is to solve all three of these problems. Our
main tool is a smoothing lemma for binary linear codes. We proceed to describe
our results and techniques in more detail.

1.1 Overview of Our Results and Techniques

Worst-case to Average-case Reduction. We consider the promise nearest
codeword problem (NCP), a worst-case analog of the learning parity with noise
problem. Roughly speaking, in the search version of the (n,m,w)-promise nearest
codeword problem, one is given the generator matrix C ∈ Zn×m2 of a linear code,

5 Feldman et al. [FGKP09] showed a worst-case to average-case reduction with respect
to the noise distribution, but not with respect to the samples themselves.
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along with a vector t ∈ Zm2 such that t = sTC + xT for some s ∈ Zn2 and
x ∈ Zm2 with the promise that wt(x) = w. The problem is to find s. The non-
promise version of this problem (which is commonly called the nearest codeword
problem) is known to be NP-hard, even to approximately solve [ABSS93] and
the promise problem is similarly NP-hard in the large-error regime (that is,
when the Hamming weight of x exceeds (1/2 + ε)d where d is the minimum
distance of the code and ε > 0 is an arbitrarily small constant) [DMS99].

In terms of algorithms, Berman and Karpinski [BK02] show how to find
an O(n/ log n)-approximate nearest codeword in polynomial time. In particular,
this means that if the Hamming weight of x in the promise version is at most
O(d · log n/n), their algorithm finds the unique nearest codeword’s s efficiently.
To the best of our knowledge, this result is the current limit of polynomial-
time solvability of the promise nearest codeword problem. Alon, Panigrahy and
Yekhanin [APY09] show a deterministic nearly-polynomial time algorithm with
the same parameters. In this work, we consider the promise NCP for balanced
codes, where all nonzero codewords have Hamming weight between (1/2− β)m
and (1/2+β)m for some balance parameter β > 0. We are not aware of improved
NCP algorithms that apply to balanced codes.

Our first result (in Section 4) shows a reduction from the worst-case promise

NCP for balanced codes where w/m ≈ log2 n
n to the average-case hardness of

LPNnε with very high error-rate ε = 1/2 − 1/O(n4). We note that a random
linear code is β-balanced with overwhelming probability when β ≥ 3

√
n/m so

for a sufficiently large m the restriction on β is satisfied by most codes. Thus,
qualitatively speaking, our result shows that solving LPN with very high error
on the average implies solving NCP with very low error for most codes. While
the parameters we achieve are extreme, we emphasize that no worst-case to
average-case reduction for LPN was known prior to our work.

The worst-case to average-case reduction is a simple consequence of a smooth-
ing lemma for codes that we define and prove in Section 3. In a nutshell, our
smoothing lemma shows a simple randomized procedure that maps a worst-case
linear code C and a vector t to a random linear code C′ and a vector t′ such
that if t is super-close to C, then t′ is somewhat close to C′. Our worst-case to
average-case reduction then follows simply by applying the smoothing lemma to
the worst-case code and vector. We show a simple Fourier-analytic proof of the
smoothing lemma, in a way that is conceptually similar to analogous statements
in the context of lattices [MR04] (see more details in the end of Section 3). Similar
statements have been shown before in the list-decoding high-error regime [KS10],
whereas our setting for NCP is in the unique decoding (low error) regime.

Statistical Zero-Knowledge. Another consequence of our smoothing lemma
is a statistical zero-knowlege proof for the NCP problem for balanced codes

with low noise, namely where w/m ≈ log2 n
n . In particular, we show that the

search problem is in BPPSZK. Membership in BPPSZK should be viewed as
an easiness result: a consequence of this result and a theorem of Mahmoody
and Xiao [MX10] is that NCP with low noise cannot be NP-hard unless the
polynomial hierarchy collapses. Our result is the first non-NP-hardness result
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we know for NCP, complementing the NP-hardness result of Dumer, Micciancio
and Sudan [DMS99] for noise slightly larger than half the minimum distance,
namely where w/m ≈ 1/2 (but leaves a large gap in between). This is the
LPN/codes analog of a result for LWE/lattices that we have known for over a
decade [MV03]. We refer the reader to Section 5 for this result.

Collision-Resistant Hashing. Finally, we show a new cryptographic conse-
quence of the hardness of LPN with low noise, namely a construction of a
collision-resistant hash (CRH) function. Again, collion-resistant hashing from
LWE/lattices has been known for over two decades [Ajt96, GGH96] and we
view this result as an LPN/codes analog. The construction is extremely sim-

ple: the family of hash functions is parameterized by a matrix A ∈ Zn×n
1+c

2 for

some c > 0, its domain is the set of vectors x ∈ Zn1+c

2 with Hamming weight
2n/(c log n) and the output is simply Ax (mod 2). This is similar to a CRH
construction from the recent work of Applebaum et al. [AHI+17] modulo the
setting of parameters; what is new in our work is a reduction from the LPN
problem with error rate O(log2 n/n) to breaking this CRH function.

Related Work. Our LPN-based collision-resistant hash function was used in
[BLSV17] as a basis for constructing an identity based encryption scheme based
on LPN with very low noise. Concurrently with, and independently from, our
work, Yu et al. [YZW+17] constructed a family of collision-resistant hash func-
tions based on the hardness of LPN using the same main idea as in Section 6
of the present work. While the core ideas of the construction in the two works
is identical, [YZW+17] further discusses different parameter settings and some
heuristics upon whose reliance one can obtain a tighter connection between the
hardness of the CRH and the LPN problem.

2 Preliminaries

2.1 Notation

Throughout the paper, we will be working with elements in the additive group
Z2 with the usual addition operation. We will denote by bold lower-case letters
vectors over Zn2 for n > 1, and by bold upper-case letters matrices over Zm×n2 for
m,n > 1. We will make the assumption that all vectors are column vectors and
write aT to denote the row vector which is the transpose of a. The Hamming
weight of a ∈ Zn2 , written as wt(a), denotes the number of 1’s in a. For a set S,
we write s← S to denote that s is chosen uniformly at random from S. When D
is some probability distribution, then s ← D means that s is chosen according
to D.

The Berε distribution over Z2 is the Bernoulli distribution that outputs 1
with probability ε and 0 with probability 1 − ε. Let Smk be the set of all the
elements s ∈ Zm2 such that wt(s) = k.

A negligible function negl(n) is any function that grows slower than inverse
polynomial in n. In particular, for every polynomial p there is an n0 ∈ N such
that for every n > n0, negl(n) < 1/p(n).
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2.2 The Learning Parity with Noise (LPN) Problem

For an s ∈ Zn2 , and an ε ∈ [0, .5] let Ons,ε be an algorithm that, when invoked,

chooses a random a← Zn2 and e← Berε and outputs (a, sTa + e). An algorithm
A is said to solve the search LPNnε problem with probability δ if

Pr[AO
n
s,ε ⇒ s ; s← Zn2 ] ≥ δ.

Let Un be an algorithm that, when invoked, chooses random a← Zn2 and b← Z2

and outputs (a, b). We say that an algorithm A has advantage δ in solving the
decisional LPNnε problem if∣∣∣Pr[AO

n
s,ε ⇒ 0; s← Zn2 ]− Pr[AU

n

⇒ 0]
∣∣∣ ≥ δ.

The LPN problem has a search to decision reduction (c.f. [KS06]). Namely,
if there is an algorithm that runs in time t and has advantage δ in solving the
decisional LPNnε problem, then there is an algorithm that runs in time O(nt/δ)
that solves the search LPNnε problem with probability ≈ 1.

The following fact is known in some contexts as The Piling-Up Lemma
[Mat93].

Lemma 2.1. For all ε ∈ [0, 12 ] it holds that Pr[e1 + . . . + ek = 0; ei ← Berε] =
1
2 + 1

2 · (1− 2ε)
k
.

2.3 The Nearest Codeword Problem

An (binary) (n,m, d)-code C is a subset of {0, 1}m such that |C| = 2n and for any
two codewords x,y ∈ C, wt(x⊕y) ≤ d. The code is linear (denoted [n,m, d]-code)
if C is the row span of some matrix C ∈ {0, 1}n×m.

Definition 2.1 (Nearest Codeword Problem (NCP)). The nearest code-
word problem NCPn,m,w is characterized by n,m,w ∈ Z and is defined as follows.
The input consists of a matrix C ∈ Zn×m which is the generator of a code, along
with a vector t ∈ Zm such that t = sTC + xT for some s ∈ Zn2 ,x ∈ Zm2 with
wt(x) = w. The problem is to find s.

Note that our definition requires wt(x) = w, as opposed to the more relaxed
requirement wt(x) ≤ w. However since w comes from a polynomial domain
{0, . . . ,m} the difference is not very substantial (in particular, to solve the re-
laxed version one can go over all polynomially-many relevant values of w and
try solving the exact version).

In this work, we consider a variant of the problem which is restricted to
balanced codes, which are codes where all non-zero codewords have hamming
weight close to 1/2. We start by defining balanced codes and then present bal-
anced NCP.

Definition 2.2. A code C ⊆ {0, 1}m is β-balanced if its minimum distance is at
least 1

2 (1− β)m and maximum distance is at most 1
2 (1 + β)m.



6 Z. Brakerski, V. Lyubashevsky, V. Vaikuntanathan and D. Wichs

Definition 2.3 (balanced NCP (balNCP)). The balanced nearest codeword
problem balNCPn,m,w,β is characterized by n,m,w ∈ Z and β ∈ (0, 1), and is
defined as follows. The input consists of a matrix C ∈ Zn×m which is the gener-
ator of a β-balanced code, along with a vector t ∈ Zm such that tT = sTC + xT

for some s ∈ Zn2 ,x ∈ Zm2 with wt(x) = w. The problem is to find s.

The balNCPn,m,w,β problem has a unique solution when w ≤ 1
4 (1− β)m.

Standard decoding algorithms allow to solve NCP in polynomial time with
success probability (1− w

m )n [BK02] or even deterministically in time (1− w
m )−n ·

poly(n,m) [APY09]. We are not aware of improved methods that apply to bal-
anced codes.

To conclude this section we show via a straightforward probabilistic argument
that most sparse linear codes are indeed balanced (this is essentially the Gilbert-
Varshamov Bound). This is to serve as sanity check that the definition is not
vacuous and will also be useful when we apply our SZK results to the LPNnε
problem which naturally induces random codes.

Lemma 2.2. A random linear code C ⊆ Zm2 of dimension n is β-balanced with

probability at least 1 − 2n−β
2m/4+1. In particular, when β ≥ 3

√
n/m a random

linear code is β-balanced with probability 1− negl(n).

Proof. Let C ← Zn×m2 be a randomly chosen generator matrix. Then the asso-
ciated code C fails to be β-balanced if and only if there exists some s 6= 0 ∈ Zn2
such that |wt(sTC)− m

2 | >
β
2m. For any fixed s 6= 0 the vector sTC is uniformly

random in Zm2 and therefore by the Chernoff bound:

Pr
[∣∣∣ wt(sTC)− m

2

∣∣∣ > βm
2

]
≤ 2 exp

(
−β

2m

4

)
By the union bound, the probability that the code is not β-balanced is at most

2n+1 exp

(
−β

2m

4

)
≤ 2n−

β2m
4 +1.

This is negligible in n when β ≥ 3
√
n/m. ut

2.4 Statistical Zero Knowledge

Statistical zero-knowledge (SZK) is the class of all problems that admit a zero-
knowledge proof [GMR89] with a statistically sound simulation. Sahai and Vad-
han [SV03] showed that the following problem is complete for SZK.

Definition 2.4. The promise problem Statistical Distance (SD) is defined by
the following YES and NO instances. For a circuit C : {0, 1}n → {0, 1}m, we let
C(Un) denote the probability distribution on m-bit strings obtained by running C
on a uniformly random input. Let SD(D0, D1) denote the statistical (variation)
distance between the distributions D0 and D1.

ΠY ES := {(C0, C1) : C0, C1 : {0, 1}n → {0, 1}m and SD(C0(Un), C1(Un)) ≥ 2/3}
ΠNO := {(C0, C1) : C0, C1 : {0, 1}n → {0, 1}m and SD(C0(Un), C1(Un)) ≤ 1/3}
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By BPPSZK, we mean decision problems that can be reduced to the sta-
tistical distance problem using randomized reductions. While in general such
reduction could query the SD oracle on inputs that violate the promise (namely,
a pair of circuits/distributions whose statistical distance lies strictly between 1/3
and 2/3), the reductions we present in this paper will respect the SD promise.
Search-BPPSZK is defined analogously.

3 A Smoothing Lemma for Noisy Codewords

Let C ⊆ Zm2 be a binary linear code with generating matrix C ∈ Zn×m2 . We
say that a distribution R over Zm2 smooths C if the random variable Cr for
r ← R is statistically close to uniform over Zn2 . We say that R also smooths
noisy codewords if for every vector x of sufficiently low Hamming weight, it
holds that (Cr,xT r) is statistically close to the distribution UZn2 ×Berε for some
ε.

The notion of smoothing will play an important role in our reductions in
this work. In particular, we would like to characterize families of codes that are
smoothed by distributions supported over low Hamming weight vectors. To this
end, we show that for balanced codes, there exist such smoothing distributions.
(Similar statements have been shown before in the high-error regime, e.g., by
Kopparty and Saraf [KS10].)

We note that while our proof uses harmonic analysis, it is also possible to
prove it using the Vazirani XOR Lemma [Vaz86, Gol95]. However, we find that
our method of using harmonic analysis demonstrates more straightforwardly
the analogy of our lemma to smoothing in the lattice world (which is most
often proved using harmonic analysis), see comparison in the end of this section.
Furthermore, this suggests an approach if one wants to analyze the non-binary
setting.

We start by defining our family of smoothing distributions Rd,m.

Definition 3.1. Let d,m ∈ N. The distribution Rd,m over Zm2 is defined as
follows. Sample (with replacement) d elements t1, . . . , td uniformly and indepen-
dently from [m]. Output x = ⊕di=1uti , where uj is the j-th standard basis vector.
One can easily verify that Rd,m is supported only over vectors of Hamming weight
at most d.

We can now state and prove our smoothing lemma for noisy codewords.

Lemma 3.1. Let β ∈ (0, 1) and let C ∈ Zn×m2 be a generating matrix for a
β-balanced binary linear code C ⊆ Zm2 . Let c ∈ Zm2 be a word of distance w from
C. Let s,x be s.t. cT = sTC + xT and wt(x) = w.

Consider the distribution (a, b) generated as follows. Sample r ← Rd,m and
set a = Cr, b = cT r. Then it holds that the joint distribution of (a, b − sTa) is
within statistical distance δ from the product distribution UZn2 × Berε, where

δ ≤ 2(n+1)/2 · (β + 2w
m )d and

ε = 1
2 −

1
2 (1− 2w

m )d.
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Proof. Let e denote the value b − sTa. We bound the distance of [ ae ] =
[

C
xT

]
r

from U{0,1}n × Berε using simple harmonic analysis. Let f be the probability
density function of [ ae ], and consider its (binary) Fourier Transform:

f̂(y, z) = E
a,e

[(−1)y
T a+ze] = E

r
[(−1)(y

TC+zxT )r] , (1)

It immediately follows that f̂(0, 0) = 1. Moreover

f̂(0, 1) = E
r
[(−1)x

T r] . (2)

Recalling that r = ⊕di=1uti we have

E
r
[(−1)x

T r] =

d∏
i=1

E
ti

[(−1)x
Tuti ] = (1− 2w

m )d ,

since each ti is sampled uniformly and independently in [m] and thus has a w
m

probability to hit a coordinate where x is one. Recalling the definition of ε, we
have f̂(0, 1) = 1− 2ε.

Now let us consider the setting where y 6= 0. In that case, let us denote
v = yTC, a nonzero codeword in C. Since C is balanced it follows that wt(v) ∈
[ 12 (1−β)m, 12 (1+β)m]. Let us further denote (v′)T = yTC+zxT , since wt(x) ≤ w
it follows that wt(v′) ∈ 1

2 (1± β′)m for β′ = β + 2w
m . For y 6= 0 we thus get

f̂(y, z) = E
r
[(−1)(v

′)T r] =

d∏
i=1

E
ti

[(−1)(v
′)Tuti ] . (3)

Since each ti is sampled uniformly from [m], it follows that v′uti (mod 2) = 0
with probability εi ∈ 1

2 (1± β′). Therefore for all i ∈ [d] it holds that∣∣∣∣Eti[(−1)v
′uti ]

∣∣∣∣ = |1− 2εi| ≤ β′ . (4)

We conclude that ∣∣∣f̂(y, z)
∣∣∣ ≤ (β′)d . (5)

Now we are ready to compare with UZn2×Berε. Let g be the probability density
function of UZn2 × Berε, and let ĝ be its Fourier Transform. Then ĝ(0, 0) = 1,
ĝ(0, 1) = 1− 2ε and ĝ(y, z) = 0 for all y 6= 0. Therefore∥∥∥f̂ − ĝ∥∥∥2

2
=
∑
y,z

∣∣∣f̂(y)− ĝ(y)
∣∣∣2 ≤ ∑

y∈Zn2 \{0}
z∈Z2

(β′)2d ≤ 2n+1(β′)2d . (6)

By Parseval’s theorem, we have that

‖f − g‖22 =
1

2n+1

∥∥∥f̂ − ĝ∥∥∥2
2
≤ (β′)2d , (7)
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and going to `1 norm we have

‖f − g‖1 ≤ 2(n+1)/2 ·
∥∥∥f̂ − ĝ∥∥∥

2
≤ 2(n+1)/2 · (β′)d , (8)

which completes the proof. ut

Relation to Lattice Smoothing. To conclude this section, let us briefly ex-
plain the analogy to smoothing lemmas for lattices [MR04]. Our explanation
is intended mostly for readers who are familiar with lattice smoothing and the
notion of q-ary lattices, and wish to better understand the connection to our
notion of smoothing. Other readers may safely skip this paragraph. We recall
that the goal of smoothing in the lattice world is to find a distribution D (a
Gaussian in the lattice case), such that reducing it modulo a lattice L results in
an almost uniform distribution over the cosets of the lattice. Let us restrict our
attention to integer lattices, integer distributions and integer cosets. Formally,
D (mod L) is uniform over Z/L. Now let C be a generating matrix for a binary
code, and consider the so called “perp lattice” L = Λ⊥2 (C) = {x ∈ Zm : Cx = 0
(mod 2)} = C⊥ + 2Zm. That is, the lattice corresponding to the dual code of
C plus all even vectors. Each integer cosets of the lattice L corresponds to a
vector y where the respective coset is Ly = {x ∈ Zm : Cx = y (mod 2)}. Thus
a smoothing distribution D is one where drawing r from D and computing Cr
(mod 2) is close to uniform. Therefore, our smoothing lemma above shows that
for 2-ary lattices one can devise non-trivial (and useful) smoothing distributions,
and these distributions are not discrete Gaussians as usually considered in the
lattice literature. Finally, the fact that we can smooth the code together with a
noisy codeword is somewhat analogous to Gaussian leftover hash lemmas in the
context of lattices.

4 A Worst Case Balanced NCP to Average Case LPN
Reduction

Theorem 4.1. Assume there is an algorithm that solves the search LPNnε prob-
lem with success probability α in the average case by running in time T and
making q queries. Then, for every d ≤ m ∈ Z there is an algorithm that solves
search balNCPn,m,w,β in the worst case in time T · poly(n,m) with success prob-
ability at least α− q · δ where

δ ≤ 2(n+1)/2 · (β + 2w
m )d

ε = 1
2 −

1
2 (1− 2w

m )d .

Proof. Assume A is an algorithm for the LPN problem as in the theorem. Define
B as follows:

– Input: C ∈ Zn×m2 , t ∈ {0, 1}m. By assumption C is the generator of a β-
balanced code and tT = sTC+xT for some s ∈ Zn2 ,x ∈ Zm2 with wt(x) ≤ w.
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1. Sample s′ ← Zn2 and set cT = tT + (s′)TC = (s + s′)TC + xT .

2. Run the algorithm A. Every time A request a new LPN sample, choose
r← Rd,m and set a = Cr, b = cT r and give a, b to A.

3. If at some point A outputs s∗ ∈ Zn2 then output s∗ − s′.

By Lemma 3.1 each of the values (a, b) given to A during step 2 is δ-close to
a fresh sample from Ons∗,ε where s∗ = s + s′ is uniformly random over Zn2 . By
assumption, if A were actually given samples from Ons∗,ε is step 2 it would output
s∗ in step 3 with probability α. Therefore if A makes q queries in step 2, the
probability that it outputs s∗ in step 3 is at least α−qδ. This proves the theorem.

ut

Corollary 4.1. Let m = nc for some constant c > 1, β = 1√
n
, w = dm log2 n

n e.
Assume that search balNCPn,m,w,β is hard in the worst case, meaning that for
every polynomial time algorithm its success probability on the worst case in-
stance is at most negl(n). Then for some ε < 1

2 −
1

O(n4) search LPNnε is hard in

the average case, meaning that for every polynomial time algorithm its success
probability on a random instance is at most negl(n).

Proof. Follows directly from the theorem by setting d = d2n/ log ne and noting
that:

δ ≤ 2(n+1)/2 · (β + 2w
m )d ≤ 2(n+1)/2−(d/2) logn+O(1) ≤ 2−n/2+O(1) = negl(n)

ε = 1
2 −

1
2 (1− 2w

m )d ≤ 1

2
− 2−(4

w
md+1) ≤ 1

2
− 1/O(n4)

ut

The above says that the wost-case hardness of balNCP with very low error-

rate w/m ≈ log2 n
n implies the average-case hardness of LPNnε with very high

error-rate ε = 1/2−1/O(n4). Note that a random linear code is β-balanced with
overwhelming probability when β ≥ 3

√
n/m so for a sufficiently large m the

restriction on β is satisfied by most codes.

Other choices of parameters may also be interesting. For example, we can
set the error-rate to be w/m ≈ 1/

√
n and d = 2n/ log n while keeping m =

nc for some c > 1, β = 1/
√
n the same as before. Then if we assume that

balNCPn,m,w,β is (T (n), δ(n)) hard in the worst case (meaning that for every
T (n) time algorithm the success probability on the worst case instance is at
most δ(n)) this implies LPNnε is (T ′(n), δ′(n)) hard in the average where ε(n) =
1/2 − 2−

√
n/ logn, T ′(n) = T (n)/poly(n) and δ′(n) = δ(n) + T ′(n)2−(n−1)/2.

Note that, as far as we know, the balNCPn,m,w,β with noise rate w/m = 1
√
n

may be (T (n), δ(n)) hard for some T (n) = 2Ω(
√
n), δ(n) = 2−Ω(

√
n), which

would imply the same asymptotic hardness for LPNnε . Although the error-rate
ε = 1/2− 2−

√
n/ logn is extremely high, it is not high enough for the conclusion

to hold statistically and therefore this connection may also be of interest.
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5 Statistical Zero Knowledge for Balanced NCP and
LPN

In this section, we show that for certain parameter regimes, balNCP ∈ Search-BPPSZK
and is thus unlikely to be NP-hard [MX10]. Towards this end, we use a decision
to search reduction analogous to the canonical one known for the LPN problem.
We consider the following randomized samplers (with an additional implicit pa-
rameter d):

– Randomized sampler Samp0(C, t) takes as input a matrix C ∈ {0, 1}n×m

and a word t ∈ {0, 1}m. It samples r
$← Rd,m and outputs (Cr, tT r).

– Randomized sampler Sampi,σ(C, t) is parameterized by i ∈ [n], σ ∈ {0, 1},
takes as input a matrix C ∈ {0, 1}n×m and a word t ∈ {0, 1}m. It samples

r
$← Rd,m and ρ ∈ {0, 1} and outputs (Cr + ρui, t

T r + ρσ).

Lemma 5.1. Consider a generating matrix C ∈ {0, 1}n×m for a β-balanced
code, and let t = sTC + xT for some s ∈ {0, 1}n and x with hamming weight w.
Then the following hold:

1. The sampler Samp0(C, t) samples from a distribution that is δ-close to U{0,1}n×
Berε.

2. If si = σ then Sampi,σ(C, t) samples from a distribution that is δ-close to
U{0,1}n × Berε.

3. If si 6= σ then Sampi,σ(C, t) samples from a distribution that is δ-close to
U{0,1}n × U{0,1}.

Here, ε = 1
2 −

1
2 (1− 2w

m )d, δ = 2(n+1)/2 · (β + 2w
m )d.

Proof. Assertion 1 follows directly from Lemma 3.1.
For Assertion 2 we note that if si = σ then

(Cr + ρui, t
T r + ρσ) = (Cr, tT r) + ρ(ui, σ) = (Cr, tT r) + (ρui, s

T (ρui)) .

By Lemma 3.1 this distribution is within δ statistical distance to

(a, sTa + e) + (ρui, s
T (ρui)) ,

with (a, e) distributed U{0,1}n × Berε. Finally, we can write

(a, sTa + e) + (ρui, s
T (ρui)) = ((a + ρui), s

T (a + ρui) + e) ,

and since a′ = a + ρui is also uniformly distributed, the assertion follows.
For Assertion 3 we note that when si 6= σ, i.e. σ = si + 1 then

(Cr+ρui, t
T r+ρσ) = (Cr, tT r)+ρ(ui, σ) = (Cr, tT r)+(ρui, s

T (ρui))+(0, ρ) .

As above, by Lemma 3.1, this distribution is within δ statistical distance to

(a, sTa+e)+(ρui, s
T (ρui)) = ((a + ρui)︸ ︷︷ ︸

a′

, sT (a+ρui)+e)+(0, ρ) = (a′, sTa′+e+ρ) ,
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with (a, e) distributed U{0,1}n × Berε, and thus also (a′, e) distributed U{0,1}n ×
Berε and independent of ρ. Since ρ is uniform and independent of (a′, e) it follows
that (a′, sTa′ + e+ ρ) is distributed U{0,1}n × U{0,1}. ut

The following is an immediate corollary of Lemma 5.1.

Corollary 5.1. If si = σ then the distributions generated by Sampi,σ(C, t) and
Samp0(C, t) are within statistical distance at most 2δ.

If si 6= σ then the distributions generated by Sampi,σ(C, t) and Samp0(C, t)
are within statistical distance at least (1− 2ε)− 2δ.

Proof. A direct calculation shows that the statistical distance between Berε and
U{0,1} is 1− 2ε. Plugging in Lemma 5.1, the result follows. ut

We define the notion of a direct product sampler. This is just a sampler that
outputs multiple samplers.

Definition 5.1. Let D be a distribution and let k ∈ N, then D(k) is the distri-
bution defined by k independent samples from D.

Lemma 5.2. Consider distributions D1,D2 and values 0 ≤ δ1 ≤ δ2 ≤ 1 s.t.

dist(D1,D2) ∈ (δ1, δ2). Let k ∈ N then dist(D(k)
1 ,D(k)

2 ) ∈ (1−c1e−c2δ
2
1k, kδ2). For

some positive constants c1, c2.

Proof. The upper bound follows by union bound and the lower bound from the
Chernoff bound. ut

Theorem 5.1. There exists a Search-BPPSZK algorithm for solving balNCP
on instances of the following form. Letting C ∈ {0, 1}n×m, t ∈ {0, 1}m, w ∈ [m]
denote the balNCP input, we require that the code generated by C is β-balanced
and that n,m,w, β are such that there exist d ∈ [m] and k ≤ poly(n,m) for
which

2δk < 1/3 (9)

for δ = 2(n+1)/2 · (β + 2w
m )d, and

c1e
−c2(1−2ε−2δ)2k < 1/3 (10)

for δ as above, ε = 1
2 −

1
2 (1− 2w

m )d, and c1, c2 are the constants from Lemma 5.2.

Proof. We recall the problem Statistical Distance (SD) which is in SZK. This
problem takes as input two sampler circuits and outputs 0 if the inputs sample
distributions that are within statistical distance < 1/3 and 1 if the distributions
are within statistical distance > 2/3. We will show how to solve balNCP for the
above parameters using an oracle to SD.

Specifically, for all i = 1, . . . , n and σ ∈ {0, 1}, the algorithm will call the SD

oracle on input (Samp
(k)
0 (C, t),Samp

(k)
i,σ (C, t)), where Samp

(k)
(·) is the algorithm

that runs the respective Samp k times and outputs all k generated samples.



Worst-Case Hardness for LPN 13

Let αi,σ denote the oracle response on the (i, σ) call. Then if for any i it
holds that αi,0 = αi,1, then return ⊥. Otherwise set si to the value σ for which
αi,σ = 0. Return s.

By definition of our samplers, they run in polynomial time, so if k is poly-
nomial then our inputs to SD are indeed valid. Combining Corollary 5.1 and
Lemma 5.2, it holds that αi,σ = 0 if and only if s∗i = σ, where s∗ is the vector
for which tT = (s∗)TC + xT and wt(x) = w. The correctness of the algorithm
follows. ut

Corollary 5.2. Let m = nc for some constant c > 1, β = 1√
n
, w = dm log2 n

n e.
Then search balNCPn,m,w,β ∈ Search-BPPSZK.

Proof. In Theorem 5.1 set d = d2n/ log ne and k = n9. By the same calculation
as in Corollary 4.1 we have δ = negl(n) and ε ≤ 1

2 −1/O(n4). Therefore for large

enough n we have 2δk < 1/3 and c1e
−c2(1−2ε−2δ)2k = e−Ω(n) < 1/3 as required

by the theorem. ut

On Statistical Zero Knowledge and LPN. We notice that since sparse
random codes are balanced with overwhelming probability (Lemma 2.2), our
results in this section also imply that the LPN problem is in Search-BPPSZK

for error value log2 n
n . We note that even though in LPN the weight of the noise

vector (the distance from the code) is not fixed as in our definition of balNCP,
the domain of possible weights is polynomial and thus the exact weight can be
guessed with polynomial success probability. Once a successful guess had been
made, it can be verified once a solution had been found.

6 Collision-Resistant Hashing

In this section, we describe a collision-resistant hash function family whose se-
curity is based on the hardness of the (decisional) LPNnO(log2 n/n) problem. For

any positive constant c ∈ R+ and a matrix A ∈ Zn×n
1+c

2 , define the function

hA : Sn
1+c

2n/(c logn) → Zn2 as hA(r) := Ar. (11)

Notice that because∣∣∣Sn1+c

2n/(c logn)

∣∣∣ =

(
n1+c

2n/(c log n)

)
>

(
n1+c

2n/(c log n)

)2n/(c logn)

> 22n

and the size of Zn2 is exactly 2n, the function hA is compressing.
We now relate the hardness of finding collisions in the function hA, for a

random A, to the hardness of the decisional LPNnε problem.

Theorem 6.1. For any constant c > 0, if there exists an algorithm A1 running
in time t such that

Pr
[
A1(hA)⇒ (r1, r2) ∈ Sn

1+c

2n/(c logn) s.t. r1 6= r2 and hA(r1) = hA(r2) ; A← Zn×n
1+c

2

]
≥ δ,
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then there exists an algorithm A2 that runs in time ≈ t and solves the decisional
LPNnε problem for any ε ≤ 1

4 with advantage at least δ · 2−16nε/(c logn)−1.

In particular, for ε = O(log2 n/n) and any δ = 1/poly(n), the advantage is
1/poly(n).

Proof. The algorithm A2 has access to an oracle that is either Ons,ε or Un. He

calls the oracle n1+c times to obtain samples of the form (ai, bi). He arranges
the ai and bi into a matrix A and vector b as

A =
[

a1 | · · · | an1+c

]
∈ Zn×n

1+c

2 , b =

 b1
· · ·
bn1+c

 ∈ Zn
1+c

2

and sends A to A1. If A1 fails to return a valid answer, then A2 outputs ans←
{0, 1}. If A1 does return valid distinct r1 and r2 such that hA(r1) = hA(r2), then
A2 returns ans = bT (r1 − r2).

We first look at the distribution of ans when the oracle that A2 has access to
is Un. In this case it’s easy to see that regardless of whether A1 returns a valid
answer, we’ll have Pr[ans = 0] = 1

2 because b is completely uniform in Zn1+c

2 .
On the other hand, if the oracle is Ons,ε, then we know that for all i, bi =

sTai + ei,

where ei ← Berε. This can be rewritten as sTA+eT = bT where e =

 e1
· · ·
en1+c

.

Therefore

bT (r1 − r2) = A(r1 − r2) + eT (r1 − r2) = eT (r1 − r2).

Since wt(ri) = 2n/(c log n), we know that wt(r1 − r2) ≤ 4n/(c log n). Since
the A that is sent to A1 is independent of e, we have that

Pr[eT ·(r1−r2) = 0 ; ei ← Berε] ≥
1

2
+

1

2
(1−2ε)4n/(c logn) ≥ 1

2
+2−16nε/(c logn)−1,

(12)
where the first inequality follows from Lemma 2.1 and the second inequality is
due to the assumption that ε ≤ 1

4 and the fact that 1− x ≥ 2−2x for x ≤ 1/2.
Thus when the oracle is Ons,ε, we have

Pr[ans = 0] ≥ 1

2
· (1− δ) +

(
1

2
+ 2−16nε/(c logn)−1

)
· δ =

1

2
+ δ · 2−16nε/(c logn)−1.

ut

6.1 Observations and Other Parameter Regimes.

As far as we know, the best attack against the hash function in (11) with c = 1
requires 2Ω(n) time, whereas the LPNnlog2 n/n problem, from which we can show a
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polynomial-time reduction, can be solved in time 2O(log2 n). Thus there is possi-
bly a noticeable loss in the reduction for this parameter setting. It was observed
in [YZW+17, Theorem 2, Theorem 3] that there are other ways to set the pa-
rameters in Theorem 6.1 which achieve different connections between the hash
function and the underlying LPN problem. For example, defining n = log2m
and c = logm/ log logm− 1 implies that there exists a hash function defined by

the matrix A ∈ Zlog2m×2m
2 such that succeeding with probability δ in finding

collisions in this hash function is at least as hard as solving LPNlog2m
ε problem

with advantage δ ·m−O(κε) for a constant κ. This is exactly the parameter setting
in [YZW+17, Theorem 3].6

Based on the state of the art of today’s algorithms, it’s clear that using a
hash function defined by an n × n2 matrix A is more secure than one defined
by a log2 n × 2n matrix (since one can trivially find collisions in the latter in

time 2O(log2 n)). There is, however, no connection that we’re aware of between
the LPN problems on which they are based via Theorem 6.1. In particular, we
do not know of any polynomial-time (in n) reductions that relate the hardness

of the LPNnlog2 n/n problem to the LPNlog2 n
ε problem for a constant ε.
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