
The General Sieve Kernel
and New Records in Lattice Reduction

Martin R. Albrecht1, Léo Ducas2, Gottfried Herold3,
Elena Kirshanova3, Eamonn W. Postlethwaite1, Marc Stevens2?

1 Information Security Group, Royal Holloway, University of London
2 Cryptology Group, CWI, Amsterdam, The Netherlands

3 ENS Lyon, Laboratoire LIP, France

Abstract. We propose the General Sieve Kernel (G6K, pronounced
/Ze.si.ka/), an abstract stateful machine supporting a wide variety of
lattice reduction strategies based on sieving algorithms. Using the ba-
sic instruction set of this abstract stateful machine, we first give concise
formulations of previous sieving strategies from the literature and then
propose new ones. We then also give a light variant of BKZ exploiting
the features of our abstract stateful machine. This encapsulates several
recent suggestions (Ducas at Eurocrypt 2018; Laarhoven and Mariano
at PQCrypto 2018) to move beyond treating sieving as a blackbox SVP
oracle and to utilise strong lattice reduction as preprocessing for sieving.
Furthermore, we propose new tricks to minimise the sieving computation
required for a given reduction quality with mechanisms such as recycling
vectors between sieves, on-the-fly lifting and flexible insertions akin to
Deep LLL and recent variants of Random Sampling Reduction.
Moreover, we provide a highly optimised, multi-threaded and tweakable
implementation of this machine which we make open-source. We then
illustrate the performance of this implementation of our sieving strategies
by applying G6K to various lattice challenges. In particular, our approach
allows us to solve previously unsolved instances of the Darmstadt SVP
(151, 153, 155) and LWE (e.g. (75, 0.005)) challenges. Our solution for the
SVP-151 challenge was found 400 times faster than the time reported for
the SVP-150 challenge, the previous record. For exact-SVP, we observe
a performance crossover between G6K and FPLLL’s state of the art
implementation of enumeration at dimension 70.

? The research of MA was supported by EPSRC grants EP/P009417/1,
EP/S02087X/1 and by the European Union Horizon 2020 Research and Innovation
Program Grant 780701; the research of LD was supported by a Veni Innovational
Research Grant from NWO under project number 639.021.645 and by the European
Union Horizon 2020 Research and Innovation Program Grant 780701; the research
of EP was supported by the EPSRC and the UK government as part of the Cen-
tre for Doctoral Training in Cyber Security at Royal Holloway, University of London
(EP/P009301/1); the research of GH and EK was supported by ERC Starting Grant
ERC-2013-StG-335086-LATTAC.

1 Introduction

Sieving algorithms have seen remarkable progress over the last few years. Briefly,
these algorithms find a shortest vector in a lattice by considering exponentially
many lattice vectors and searching for sums and differences that produce shorter
vectors. Since the introduction of sieving algorithms in 2001 [AKS01], a long
series of works, e.g. [MV10b, BGJ15, HK17], have proposed asymptotically faster
variants; the asymptotically fastest of which has a heuristic time complexity of
20.292d+o(d), with d the dimension of the lattice [BDGL16].

Such algorithms for finding short vectors are used in lattice reduction algo-
rithms. These improve the “quality” of a lattice basis (see Section 2) and are
used in the cryptanalysis of lattice-based cryptography.

On the other hand, lattice reduction libraries such as [dt18a, AWHT16] im-
plement enumeration algorithms, which also find a shortest vector in a lattice.
These algorithms perform an exhaustive search over all lattice points within a
given target radius by exploiting the properties of projected sublattices. Enumer-
ation has a worst-case time complexity of d

1
2ed+o(d) [Kan83, HS07] but requires

only polynomial memory.
While, with respect to running time, sieving already compares favourably

in relatively low dimensions to simple enumeration4 (Fincke–Pohst enumera-
tion [FP85] without pruning), the Darmstadt Lattice Challenge Hall of Fame for
both approximate SVP [SG10] and LWE [FY15] challenges has been dominated
by results obtained using enumeration. Sieving has therefore not, so far, been
competitive in practical dimensions when compared to state of the art enumera-
tion with heavy preprocessing [Kan83, MW15] and (extreme) pruning [GNR10]
as implemented in e.g. FPLLL/FPyLLL [dt18a, dt18b]. Here, “pruning” means
to forego exploring the full search space in favour of focussing on likely can-
didates. The extreme pruning variant proceeds by further shrinking the search
space, and rerandomising the input and restarting the search on failure. In this
context “heavy preprocessing” means running strong lattice reduction, such as
the BKZ algorithm [Sch87, CN11], which in turn runs enumeration in smaller
dimensions, before performing the full enumeration. In short, enumeration cur-
rently beats sieving “in practice” despite having asymptotically worse running
time. Thus [MW15], relying on the then state of the art, estimated the crossover
point between sieving and enumeration for solving the Shortest Vector Problem
(SVP) as dimension d = 146 (or in the thousands, assuming extreme pruning
can be combined with heavy preprocessing without loss of performance).

Contribution. In this work, we report performance records for achieving var-
ious lattice reduction tasks using sieving. For exact-SVP, we are able to out-
perform the pruned enumeration of FPLLL/FPyLLL by dimension 70. For the
Darmstadt SVP Challenges (1.05-Hermite-SVP) we solve previously unsolved
challenges in dimensions {151, 153, 155} (see Figure 1 and Table 2), and our
4 For example, the Gauss sieve implemented in FPLLL (latsieve) beats its unpruned
SVP oracle (fplll -a svp) in dimension 50.

120 125 130 135 140 145 150 155
20

26

212

218

224

d

co
re

ho
ur
s

CN AN FK15
KT17 G6K

CN: Chen & Nguyen (HoF), BKZ+enum; AN: Aono & Nguyen (HoF), BKZ+enum;
FK15: [FK15], RSR; KT17: [TKH18]5, RSR; G6K: WorkOut with bgj1-sieve (this
work). “HoF” means data was extracted from the Darmstadt SVP Challenge Hall of
Fame [SG10]. Raw data .

Fig. 1: New Darmstadt SVP Challenge records.

running times are at least 400 times smaller than the previous records for com-
parable instances.

We also solved new instances (n, α) ∈ {(40, 0.005), (50, 0.015), (55, 0.015),
(60, 0.01), (65, 0.01), (75, 0.005)} of the Darmstadt LWE challenge (see Table 3).
For this, we adapted the strategy of [LN13], which consists of running one large
enumeration after a BKZ tour of small enumerations, to G6K. This improves
slightly upon the prediction of [ADPS16, AGVW17].

Our sieving performance is enabled by building on, generalising and extend-
ing previous works. In particular, the landscape of enumeration and sieving
started to change recently with [Duc18a, LM18]. For example, [Duc18a] specu-
lated that the crossover point, for solving SVP, between the SubSieve proposed
there and pruned enumeration would be around d = 90 if combined with faster
sieving than [MV10b]. A key ingredient for this performance gain was the reali-
sation of several “dimensions for free” by utilising heavy preprocessing and Babai
lifting (or size reduction) in said free dimensions. This may be viewed as a hybrid
of pruned enumeration with sieving, and is enabled by strong lattice reduction
preprocessing. In other words, we may consider these improvements as applying
lessons learnt from enumeration to sieving algorithms. It is worth recalling here
that the fastest enumeration algorithm relies on the input basis being quasi-HKZ

5 Their latest record (SVP-152) from Oct. 2018 is only reported in the HoF. It reports
a computation time of 800K CPU-hours. According to personal communications with
the authors, this translates to 36 · 800K= 28.8M core-hours.

d,CN,AN,FK15,KT17,G6K
123, , , , , 4
124, 7200, , , , 23
125,19200, , , , 47
126, , 2280, 1440, , 19
127, , , , , 85
128, , , 1920, , 94
129, , , , , 33
130, , 3900, 5952, ,
131, , , , , 41
132, , ,43200, ,
133, , , , , 71
134, , , , 158016,
135, , , , , 277
136, , , , , 354
137, , , , , 362
138, , , ,1680000,
139, , , , , 380
140, , , , 600000,
141, , , , , 190
142, , , , 840000,
143, , , , , 669
144, , , , 840000,
145, , , , , 1496
146, , , ,1536000,
147, , , , , 4790
148, , , ,5388000,
149, , , , , 4660
150, , , ,4350912,
151, , , , ,10980
152, , , ,28800000,
153, , , , ,21864
154, , , , ,
155, , , , ,25344

reduced [Kan83], but prior to [Duc18a, LM18] sieving was largely oblivious to
the quality of the input basis. Furthermore, both [Duc18a, LM18] suggest ex-
ploiting the fact that sieving algorithms hold a database of many short vectors,
for example by recycling them in future sieving steps. Thus, instead of treating
sieving as an SVP oracle outputting a single vector, they implicitly treat it as a
stateful machine where the state comprises the current basis and a database of
many relatively short vectors.

G6K, an abstract stateful machine. In this work, we embrace and push forward
in this direction. After some preliminaries in Section 2, we propose the General
Sieve Kernel (G6K, pronounced /Ze.si.ka/) in Section 3, an abstract machine for
running sieving algorithms, and driving lattice reduction. We define several basic
instructions on this stateful machine that not only allow new sieving strategies
to be simply expressed and easily prototyped, but also lend themselves to the
easy inclusion and extension of previous works. For example, the progressive
sieves from [Duc18a, LM18] can be concisely written as

Reset0,0,0, (ER, S)
d
, I0

where S means to sieve, I0 means to insert the shortest vector found into the
basis, ER means to increase the sieving dimension and Reset initialises the ma-
chine.

Beyond formalising previous techniques, our machine provides new instruc-
tions, namely EL, which allows one to increase the sieving dimension “towards the
left” (of the basis), and an insertion instruction I which is no longer terminal: it
is possible to resieve after an insertion, contrary to [Duc18a]. These instructions
increase the range of implementable strategies and we make heavy use of them
to achieve the above results.

The General Sieve Kernel also introduces new tricks to further improve effi-
ciency. First, all vectors encountered during the sieve can be lifted “on the fly”
(as opposed to only the final set of vectors in [Duc18a]) offering a few extra
dimensions for free and thus improved performance. Additionally, G6K keeps
insertion candidates for many positions so as to allow a posteriori choices of
the most reducing insertion, akin to Deep LLL [SE94] and the latest variants of
Random Sampling Reduction (RSR) [TKH18], enabling stronger preprocessing.

Lattice reduction with G6K. Using these instructions, in Section 4 we then create
reduction strategies for various tasks (SVP, BKZ-like reduction). These strategies
encapsulate and extend the contributions and the suggestions made in [Duc18a,
LM18], further exploiting the features of G6K. Using the instructions of our
abstract stateful machine, our fundamental operation, named the Pump, may be
written as

Resetκ,κ+β,κ+β , (EL, S)
β−f

, (I, Ss)β−f .

While previous works mostly focus on recursive lattice reduction within siev-
ing, we also explicitly treat and test utilising sieving within the BKZ algorithm.
Here, we report both negative and positive results. On the one hand, we report

that, at least in our implementation, the elegant idea of a sliding-window sieve
for BKZ [LM18] performs poorly and offer a discussion as to why. We also find
that the strategy from [Duc18a], consisting of “overshooting” the block size β of
BKZ by a small additive factor combined with “jumping” over the same number
of indices in a BKZ tour, does not provide a beneficial quality vs. time trade-off.
On the other hand, we find that from the second block of a BKZ tour onwards,
or always in the progressive BKZ case, cheaper sieving calls (involving less pre-
processing) suffice. We also find that opportunistically increasing the number
of dimensions for free beyond the optimal values for solving SVP improves the
quality vs. time trade-off. Thus, we vindicate the suggestion to move beyond
treating sieving merely as an SVP oracle in BKZ.

Implementation. In Section 5, we then propose and describe an open-source,
tweakable, multi-threaded, low-level optimised implementation of G6K, featur-
ing several sieve variants [MV10b, BGJ15, HK17].6 Our implementation is care-
fully optimised to support multiple cores in all time consuming operations, is
highly parameterised and makes heavy use of the SimHash test [Cha02, FBB+15,
Duc18a]. It combines a C++ kernel with a Python control module. Thus, our
higher level algorithms are all implemented in Python for easy experimenta-
tion. Our implementation is written with a view towards being extensible and
reusable and comes with documentation and tests. We consider hackable and
usable software a contribution in its own right.

Performance and Records. Using and tuning our implementation of G6K then
allows us to obtain the variety of performance records for solving lattice chal-
lenges as described above. We describe our approach in Section 6. There, we also
describe our experiments for the aforementioned BKZ strategies.

Complementary information on the performance of our implementation is
provided in the full version.

Discussion. A natural question is how our results affect the security of lattice-
based schemes, especially the NIST PQC candidates. Most candidates have been
extremely conservative, and thus we do not expect the classical security claim
of any scheme to be directly affected by our results. We note, however, that our
results on BKZ substantiate further the prediction made in several analyses of
NIST PQC candidates that the cost of the SVP oracle can be somewhat amor-
tised in BKZ [PAA+17, Sec 4.2.6]. Thus, our results provide further evidence
that the 8 d · CSV P cost model [ACD+18] is an over-estimate,7 but they nev-
ertheless do not reach the lower bound given by the “core-hardness” estimates.
However, we stress that our work justifies the generally conservative approach
and we warn against security estimates based on a state of the art that is still
in motion.
6 Our implementation is available at https://github.com/fplll/g6k/.
7 Note that, in addition, this already follows in the enumeration regime from [LN13]
which we adapt to the sieving regime in Section 6.

https://github.com/fplll/g6k/

On the other hand, the memory consumption of sieving eventually becomes
a difficult issue for implementation, and could incur slowdowns due to memory
access delays and bandwidth constraints. Though, it is not so clear that these
difficulties are insurmountable, especially to an attacker having access to custom
hardware. For example Kirchner claimed [Kir16] that simple sieving algorithms
such as the Nguyen–Vidick sieve are implementable by a circuit with Area =
Time = 20.2075n+o(n). Ducas further conjectured [Duc18b] that bgj1 (a simplified
version of [BGJ15]) can be implemented with Area = 20.2075n+o(n) and Time
= 20.142n+o(n). More concretely, the algorithms that we have implemented mostly
consider contiguous streams of data, making the use of disks instead of RAM
plausibly not so penalising.

One may also argue that such an area requirement on its own is already
unreasonable. Yet, such arguments should also account for what amount of wall-
time is considered reasonable. For example, the walltime of a bruteforce search
costing 2128 CPU-cycles on 264 cores at 4GHz runs for 264 cycles = 232 sec-
onds ≈ 134 years; larger walltimes with fewer cores can arguably be considered
irrelevant for practical attacks.

2 Preliminaries

2.1 Notations and Basic Definitions

We start counting at zero. All vectors are denoted by bold lower case letters and
are to be read as column vectors. Matrices are denoted by bold capital letters.
We write a matrix B as B = (b0, . . . ,bn−1) where bi is the i-th column vector
of B. We may also denote bi by B[i] and the j-th entry of bi by B[i, j]. If
B ∈ Rd×n has full column rank n, the lattice L generated by the basis B is
denoted by L(B) = {Bx |x ∈ Zn}. We denote by (b∗0, . . . ,b

∗
n−1) the Gram–

Schmidt orthogonalisation of the matrix B = (b0, . . . ,bn−1). That is, we define

µi,j =

〈
b∗j ,bi

〉〈
b∗j ,b

∗
j

〉 and b∗i = bi −
i−1∑
j=0

µi,j · b∗j .

The process of updating bi ← bi−bµijebj , for j ∈ {i−1, . . . , s} with 0 ≤ s < i,
is known as “size reduction” or “Babai’s Nearest Plane” algorithm. We also define
b◦i = b∗i / 〈b∗i ,b∗i 〉 and extend this to B◦ column wise. For i ∈ {0, . . . , n− 1}, we
denote the projection orthogonally to the span of (b0, . . . ,bi−1) by πi. For 0 ≤
` < r ≤ n, we denote by B[`:r] the local projected basis, (π`(b`), . . . , π`(br−1)).
When the basis is clear from context L[`:r] denotes the lattice generated by
B[`:r]. We refer to the left (resp. the right) of a context [` : r] and by “the
context [` : r]” implicitly refer also to L[`:r] and B[`:r]. More generally, we speak
of the left (resp. the right) as a direction to refer to smaller (resp. larger) indices
and of contexts becoming larger as r − l grows.

The Euclidean norm of a vector v is denoted by |v|. The volume of a lattice
L(B) is Vol(L(B)) =

∏
i |b∗i |, an invariant of the lattice. The first minimum of

a lattice L is the length of a shortest non zero vector, denoted by λ1(L). We use
the abbreviations Vol(B) = Vol(L(B)) and λ1(B) = λ1(L(B)).

2.2 Sieving, Lattice Reduction and Heuristics

Sieving algorithms build databases of lattice vectors, exponentially sized in the
lattice dimension. In the simplest sieves, it is checked whether the sums or dif-
ferences of any pair of database vectors is shorter than one of the summands or
differands. More importantly for G6K as an abstract stateful machine is the prop-
erty of sieving [NV08, MV10b] that, after sieving in some L, this database con-
tains a constant fraction, which we are able to set, of {w ∈ L : |w| ≤ R ·gh(L)}.
Here gh(L) is the expected length of the shortest vector of a lattice L (see Defi-
nition 2), and R is a small constant determined by the sieve (see Section 5.1). It
is this information that G6K will leverage when changing context and inserting.

Lattice reduction is the process of taking a basis for a given L and find-
ing subsequent bases of L with shorter and closer to orthogonal vectors. Two
important notions of reduction are HKZ and BKZ-β reduction. The BKZ algo-
rithm [SE94, CN11] takes as input a lattice basis of L and a block size β and
outputs a BKZ-β reduced basis of L.

Definition 1 (Hermite–Korkine–Zolotarev, Block-Korkine–Zolotarev).
A size-reduced basis B = (b0, . . . ,bd−1) of a lattice L is Hermite–Korkine–
Zolotarev (HKZ) reduced if |b∗i | = λ1(L[i:d]),∀ i < d. It is Block-Korkine–
Zolotarev with block size β (BKZ-β) reduced if |b∗i | = λ1(L[i:min{i+β,d}]),∀ i < d.

Intuitively BKZ reduction requires that a given index in the basis is as short as
possible when considering only a local projected sublattice, with the locality pa-
rameterised by β. The cost of BKZ increases with β. The LLL algorithm [LLL82]
can be thought of as BKZ-2 and is often used as a cheap starting point for lattice
reduction. Equally, HKZ reduction can be thought of as BKZ-d and is a strong
notion of reduction.

The BKZ algorithm internally calls an SVP oracle in dimension ≤ β, i.e. an
algorithm that solves the Shortest Vector Problem (or an approximate variant
of it) in dimension β.

The Gaussian heuristic predicts that the number, |L ∩ B|, of lattice points
inside a measurable body B ⊂ Rn is approximately Vol(B)/Vol(L). Applied to
Euclidean n-balls, it leads to the following prediction of λ1(L) for a given L.

Definition 2 (Gaussian Heuristic). We denote by gh(L) the expected first
minimum of a lattice L according to the Gaussian heuristic. For a full rank
lattice L ⊂ Rd, it is given by

gh(L) =
√
d/2πe ·Vol(L)1/d. (1)

The quality of a basis after lattice reduction can be measured by a quantity
called the root Hermite factor.

Definition 3 (Root Hermite Factor). For a basis B of a d-dimensional lat-
tice, the root Hermite factor is defined as

δ =
(
|b0| /Vol (B)

1/d)1/d
. (2)

For BKZ-β, the root Hermite factor is a well behaved quantity. For small block-
sizes the root Hermite factor is experimentally calculated [GN08b] and for larger
blocksizes [Che13] it follows the asymptotic formula

δ(β)
2(β−1)

= (β/(2πe))(βπ)
1
β , (3)

which tends towards 1. Finally we reproduce the Geometric Series Assumption
(GSA) [Sch03] which, given β, heuristically determines the lengths of consecutive
Gram–Schmidt basis vectors. It is reasonably accurate for β > 50 and β �
d [Ngu10, CN11, YD17].

Definition 4 (Geometric Series Assumption). Let B be a BKZ-β reduced
basis, then the Geometric Series Assumption states that |b∗i | ≈ δ(β)

−2 ∣∣b∗i−1∣∣.
3 The General Sieve Kernel

3.1 Design Principles

In this section we propose the General Sieve Kernel (Version 1.0), an abstract
machine supporting a wide variety of lattice reduction strategies based on sieving
algorithms. It minimises the sieving computation effort for a given reduction
quality by:

– offering a mechanism to recycle short vectors from one context to some-
what short vectors in an overlapping context, therefore already starting the
sieve closer to completion. This formalises and generalises some of the ideas
proposed in [Duc18a, LM18].

– being able to lift vectors to a larger context than the one currently consid-
ered. These vectors are considered for insertion at earlier positions. But as an
extension to [Duc18a], which only lifted the final database of vectors, G6K is
able to lift-and-compare all vectors encountered during the sieve. From this,
we expect a few extra dimensions for free.8

– deferring the decision of where to insert a short vector until after the search
effort. This is contrary to formal definitions of more standard reduction al-
gorithms, e.g. BKZ or Slide [GN08a] reduction, and inspired by Deep LLL
and recent RSR variants [TKH18].

The underlying computations per vector are reasonably cheap, typically linear
or quadratic in the dimension of the vector currently being considered. The most
critical operation, namely the SimHash test [Cha02, FBB+15, Duc18a] may be
asymptotically sublinear or even polylogarithmic; in practice it consists of about
a dozen x86 non vectorised instructions for vectors of dimension roughly one
hundred.
8 Lifting is somewhat more expensive than considering a pair of vectors. We are there-
fore careful to only lift a fraction of all considered vectors, namely only the considered
vectors below a certain length of, say,

√
1.8 · gh(L[`:r]).

3.2 Vectors, Contexts and Insertion

All vectors considered by G6K live in one of the projected lattices L[`:r] of
a lattice L. More specifically, they are represented in basis B[`:r] as integral
vectors v ∈ Zn where n = r − `, i.e. we have w = B[`:r] · v for some w ∈ Rd.
Throughout, we may represent the (projected) lattice vector w by the vector v.
It is convenient, and efficient, to also keep a representation, v◦ ∈ Rn, of w in
the orthonormalised basis B◦[`:r]. This conversion costs O(n2).

Below we list the three operations that extend or shrink a vector to the left
or to the right.

– Extend Right (inclusion) er : L[`:r] → L[`:r+1]

(v0, . . . vn−1) 7→ (v0, . . . vn−1, 0)

(v◦0 , . . . v
◦
n−1) 7→ (v◦0 , . . . v

◦
n−1, 0)

– Shrink Left (projection) sl : L[`:r] → L[`+1:r]

(v0, . . . vn−1) 7→ (v1, . . . vn−1)

(v◦0 , . . . v
◦
n−1) 7→ (v◦1 , . . . v

◦
n−1)

– Extend Left (Babai-lift) el : L[`:r] → L[`−1:r]

(v0, . . . , vn−1) 7→ (−bce, v0, . . . , vn−1)
(v◦0 , . . . , v

◦
n−1) 7→ ((c− bce) ·

∣∣b∗`−1∣∣ , v◦0 , . . . v◦n−1),
where c =

n−1∑
j=0

µ`+j,`−1 · vj .

These operations maintain, somewhat, the shortness of vectors. Indeed,

|er(w)| = |w| , |sl(w)| ≈
√
(r − `− 1)/(r − `) · |w| , |el(w)|2 ≤ |w|2 +

∣∣b∗`−1∣∣2 /4.
More properly, “shortness” should be considered relative to the Gaussian heuris-
tic of a context, gh(L[`:r]). For BKZ-β reduced bases, and growing in accuracy
as r − `→∞,

gh(L[`:r])

gh(L[`:r+1])
and

gh(L[`:r])

gh(L[`+1:r])
≈ δ(β),

gh(L[`:r])

gh(L[`−1:r])
≈ δ(β)−1.

We may then calculate an approximate growth factor, relative to the Gaussian
heuristics of the contexts, for each of the three operations

|er(w)| · gh(L[`:r])

|w| · gh(L[`:r+1])
≈ δ(β),

|sl(w)| · gh(L[`:r])

|w| · gh(L[`+1:r])
≈
√
r − `− 1

r − `
· δ(β),

|el(w)| · gh(L[`:r])

|w| · gh(L[`−1:r])
≤ δ(β)−1

(
1 +

∣∣b∗`−1∣∣2
4 · |w|2

)1/2

.

While it would seem natural to also define a Shrink Right operation, we have
not found a geometrically meaningful way of doing so. Moreover, we have no
algorithmic purpose for it.

Insertion. Performing an insertion (the elementary lattice reduction operation)
of a vector is less straightforward. For i ≤ ` < r, n′ = r−i, n = r−` an insertion
of a vector w at position i is a local change of basis making w = B[i:r] · v the
first vector of the new local projected basis, i.e. applying a unimodular matrix
U ∈ Zn′×n′

to B[i:r] such that (B[i:r] ·U)[0] = w. While doing so, we would like
to recycle a database of vectors currently living in the context [` : r].

In the case i = `, this causes no difficulties, and one could apply any change
of basis U to the database. But to exploit dimensions for free, we will typically
have i < `, which is more delicate. If we can ensure that

Span((B ·U)[i:`+1]) = Span(B[i:`] ∪ {w}) (4)

then one can simply project all the database vectors orthogonally to w, to end
up with a database in a new smaller context [`+1 : r]. If it holds that v[j] = ±1
for some j ∈ {`, . . . , r − 1} an appropriate matrix U can be constructed as

U =

(
Ij×j 0

v 0 0
0 In′−j−1×n′−j−1

)
. (5)

However, it is important that the local projected bases remain somewhat re-
duced. If not, numerical stability issues may occur. Moreover, the condition that
v contains a ±1 in the context [` : r] is often not satisfied without sufficient
reduction. While we must be careful to not alter the vector space inside the siev-
ing context, we can nevertheless perform a full size reduction (upper triangular
matrix T with unit diagonal) on the whole of B[i:r], as well as two local LLL
reductions UL and UR on B[i:`+1] and B[`+1:r].

U′ = U ·T ·
(
UL 0
0 UR

)
. (6)

Note that Span((B ·U′)[i:`+1]) = Span((B ·U)[i:`+1]), so that condition (4) is
preserved.

3.3 G6K: a Stateful Machine

The General Sieve Kernel is defined by the following internal states and instruc-
tions.

State

– A lattice basis B ∈ Zd×d, updated each time an insert is made (Section 3.2).
Associated with it is its Gram–Schmidt Orthonormalisation basis B◦.

– Positions 0 ≤ κ ≤ ` ≤ r ≤ d. We refer to the context [` : r] as the sieving
context, and [κ : r] as the lifting context. We define n = r − ` (the sieving
dimension).

– A database db of N vectors in L[`:r] (preferably short).
– Insertion candidates cκ, . . . , c` where ci ∈ L[i:r] or ci = ⊥.

Instructions

– Initialisation (InitB): initialise the machine with a basis B ∈ Zd×d.
– Reset (Resetκ,`,r): empty database, and set (κ, `, r).
– Sieve (S): run some chosen sieving algorithm. During execution of the algo-

rithm, well chosen visited vectors are lifted from L[`:r] to L[κ:r] (by iterating
el just on these vectors). If such a lift improves (i.e. is shorter than) the best
insertion candidate ci at position i, then it replaces ci. We call this optional9
feature on-the-fly lifting.

– Extend Right, Shrink Left, Extend Left (ER, SL, EL): increase or decrease `
or r and apply er, sl or el to each vector of the database. All three operations
maintain the insertion candidates (except for EL which drops c`).

– Insert (I): choose the best insertion candidate ci for κ ≤ i ≤ `, according
to a score function, and insert it at position i. The sieving context changes
to [` + 1 : r] and the database is updated as described in Section 3.2. If no
insertion candidate is deemed suitable, then we simply run SL so as to ensure
that the sieving context will end up as expected.10 When we write Ii, we
mean that insertion is only considered at position i.

– Grow or Shrink (ResizeN): change the database to a given size N . When
shrinking, remove the longest vectors from the database. When growing,
sample new vectors (using some unspecified sampling algorithm11). Typi-
cally, we will not explicate the calls to these operations, and assume that
calling a sieve includes resizing the database to the appropriate size, for
example N = O(

√
4/3

n
) for the 2-sieves of [NV08, MV10b, BGJ15].

Our implementation of this machine offers more functionality, such as the ability
to monitor its state and therefore the behaviour of the internal sieve algorithm,
and to tune the underlying algorithms.

4 Reduction Algorithms using G6K

Equipped with this abstract machine, we can now reformulate, improve and gen-
eralise strategies for lattice reduction with sieving algorithms. In the following
we will assume that the underlying sieve algorithm has a time complexity pro-
portional to Cn, with n the dimension of the SVP instance, and we also define
C ′ = 1/(1 − 1/C). This second constant approximates the multiplicative over-
head

∑n
i=1 C

i/Cn encountered on iterating sieves in dimensions 1 to n. Note
that this overhead grows when C decreases. More concretely, depending on the
sieve, C can range from 4/3 down to

√
3/2, giving C ′ = 4 up to C ′ ≈ 5.45.

9 The alternative being to only consider the vectors of the final database for lifting.
10 Note that sl can be viewed as the trivial insertion of the vector vκ = (1, 0, . . . , 0).
11 When possible we prefer to sample by summing random pairs of vectors from the

database.

4.1 The Pump

In this section we propose a sequence of instructions called the Pump. They
encompass the progressive sieving strategy proposed in [Duc18a, LM18] as well
as the dimensions for free and multi-insertion tricks of [Duc18a]. The original
progressive sieving strategy can be written as

Reset0,0,0, (ER, S)
d
, I0. (7)

Similarly, a SubSievef which attempts a partial HKZ reduction using sieving
with f dimensions for free can be written as

SubSievef : Reset0,f,f , (ER, S)
d−f

, I0, I1, . . . , Id−f−1.12 (8)

We note that due to the newly introduced EL operation, it is also possible to
perform the progressive sieving right to left

Reset0,d,d, (EL, S)
d−f

, I0, I1, . . . , Id−f−1. (9)

Perhaps surprisingly, experimentally the left variant of progressive sieving per-
forms substantially better. In combination with certain sieving methods, the
right variant even fails completely, this will be discussed in more detail in Sec-
tion 4.5.

To arrive at Pump, note first that G6K maintains insertion candidates at
many positions. We can therefore relax the insertion positions of (9) and choose
those that appear to be optimal. The choice of insertion position is discussed in
Section 4.4.

Secondly, due to on-the-fly lifting, we note that the sequence (9) considers
many more insertion candidates for the first insertion than for subsequent inser-
tions. Moreover, we noticed that after several insertions, the database contained
vectors much longer than recent inserts. By sieving also during the “descent
phase”, i.e. when inserting and shrinking the sieve context, we remedy this im-
balance and expect to obtain a more strongly reduced basis, ideally obtaining
an HKZ reduced context.

In summary, we define the parameterised Pumpκ,f,β,s as the following sequence

Pumpκ,f,β,s : Resetκ,κ+β,κ+β ,

pump-up︷ ︸︸ ︷
(EL, S)β−f ,

pump-down︷ ︸︸ ︷
(I, Ss)β−f . (10)

where 0 ≤ κ ≤ κ + β ≤ d, 0 ≤ f ≤ β, and where s ∈ {0, 1} controls whether
we sieve during pump-down. One may expect the cost of these extra sieves to
be close to a multiplicative factor of 2, but experimentally the factor can reach
3 for certain sieves (e.g. bgj1), as more collisions13 seem to occur during the
descent phase. This feature is mostly useful for weaker reduction tasks such as
BKZ, see PumpNJumpBKZTour below.
12 This sequence refers to SubSieve+(L, f) with Sieve being progressive [Duc18a].
13 A collision is when a new vector v to be inserted in the database equals ±v2 for

some v2 already present in the database.

4.2 SVP

To solve the shortest vector problem on the full lattice, starting from an LLL
reduced basis B, we proceed as in [Duc18a], that is, we iterate Pump0,f,d,s for
decreasing values of f . While only the last Pump delivers the shortest vector, the
previous iterations provide a strongly reduced basis (near HKZ reduced), which
allows more dimensions for free to be achieved. We expect to obtain further
dimensions for free due to on-the-fly lifting.

Similarly, for solving SVP in context [κ : κ+ β] (e.g. as a block inside BKZ),
we instead make iterative calls to Pumpκ,f,β,s.

Note that we can decrease f in larger increments than 1 to balance the
cost of the basis reduction effort and the search for the shortest vector itself.
Indeed, with increments of 1, the overhead factor C ′ for C =

√
3/2 is C ′ ≈ 4.45.

Decreasing f by 2 gives an overhead of C ′ = 1/(1 − C−2) = 3 and by 3 gives
C ′ = 1/(1−C−3) ≈ 2.19. Such speed-ups are worth losing 1 or 2 dimensions for
free.

We therefore define WorkOut as the following sequence of Pump

WorkOutκ,β,f,f+,s : Pumpκ,β−f+,β,s, Pumpκ,β−2f+,β,s,

Pumpκ,β−3f+,β,s, . . . Pumpκ,f,β,s,
(11)

where f+ is the increment mentioned above. From experiments on exact-SVP
and SVP Challenges, we found it worthwhile to deactivate sieving in the descent
phase (s = 0), though activating it (s = 1) is preferable in other contexts, or to
use less memory at a larger time cost. Similarly, for certain tasks (e.g. the SVP
Challenges, i.e. 1.05-Hermite-SVP) we found the optimal increment, f+, to be 2
or 3. This parameter also drives a time-memory trade-off; setting f+ to 1 saves
on memory by allowing for a larger f , but at a noticeable cost in time.

For solving exact-SVP, it is not clear when to stop this process because we are
never certain that a vector is indeed the shortest vector of a lattice (except maybe
by running a very costly non pruned enumeration). In these cases, one should
therefore guess, from experimental data, a good number f of dimensions for
free. Note that it is is rarely critical to achieve exact-SVP, and lattice reduction
algorithms such as BKZ tolerate approximations.

In some cases, such as the Darmstadt SVP Challenge, we do not have to solve
exact-SVP, but rather find a vector of a prescribed norm, near the Gaussian
heuristic. In this case we do not need to predetermine f and simply iterate the
Pump until satisfaction. As a consequence, we also add an extra option to the
Pump to allow early aborts when it finds a satisfying candidate cκ. In practice we
observe significant savings from this feature, i.e. we observe the Pump aborting
before reaching its topmost dimension, or at the beginning of the descent phase.

4.3 BKZ

Having determined the appropriate parameters f, f+, s for solving SVP-β (made
implicit in the following), the naïve implementation of BKZ is given by the

following program

NaiveTourβ : WorkOut0,β , WorkOut1,β+1, . . .

WorkOutd−β,d, . . . , WorkOutd−1,d.
(12)

Several strategies to amortise the cost of sieving inside BKZ were suggested
in [Duc18a, LM18]. These aimed to reduce the cost of a tour of BKZ-β below
d (or d − β) times the cost of SVP in dimension β. Again, these strategies are
implementable as a sequence of G6K instructions.

Namely, the sliding-window strategy of [LM18] can be expressed as

SlidingWindowTourβ : Reset0,0,0, (ER, S)
β
, (I`, S, ER, S)

d−β
, (I`, S)

β
. (13)

It is also possible to combine this strategy with the dimensions for free of [Duc18a].
However, there are two caveats. First, it relies on extend right, which is currently
problematic in our implementation of G6K, see Section 4.5. Secondly, even if this
issue is solved, we remark that inside a BKZ tour it is preferable to run LLL on
the full basis periodically. From the sandpile point of view [MV10a, HPS11], not
doing so implies that a “bump” accumulates at the right of the reduced blocks,
as we try to push the sand to the right. We see no clear strategies to recycle the
vectors of a block when calling a full LLL.

Alternatively, [Duc18a] identified two other potential amortisations. First, it
is noted that the WorkOut (or even just a Pump) in a block [κ : κ+ β] leaves the
next block [κ + 1 : κ + β + 1] already quite well reduced. It may therefore not
be necessary to do a full WorkOut, but simply run the last Pump of this WorkOut,
therefore saving up to a factor of C ′ in the running time.

The second suggestion of [Duc18a] consists of overshooting the blocksize β,
so that a Pump in dimension β′ > β attempts to HKZ reduce a larger block. In
particular for parameter j, let β′ = β + j − 1 and after a Pumpκ,f,β′ jump by
j blocks. This decreases the number of calls to the Pump to d/j and may also
slightly improve the quality of the reduction, but increases the cost of the Pump
calls by a factor of Cj−1. It is argued that such a strategy could give a speed-up
factor ranging from 2.2 to 3.6 for a fixed basis reduction quality. In this case we
therefore perform the following sequence

PumpNJumpTourβ′,f,j : Pump0,f,β′ , Pumpj,f,β′ , Pump2j,f,β′ , . . . (14)

We alter the version above to allow for more opportunism. Since choosing f to
almost certainly solve exact-SVP in blocks is costly, we instead embrace the idea
of achieving the most basis reduction from a given sieving context. Extending
the lift context makes the lift operation more expensive, but gives more insertion
candidates, and therefore a new trade-off to be optimised over. Note that while
Pumpκ′,f+κ−κ′,β+κ−κ′ for κ′ < κ takes more dimensions for free than Pumpκ,f,β ,
it still provides the same insertion candidates, cκ, . . . , cκ+f . It also provides new
insertion candidates cκ′ , . . . , cκ−1. This is because the sieving contexts do not
shrink, and so, provided we take care in the first few blocks, the quality cannot
decrease. To achieve this start with Pumps with f = 0 and move the sieving

context right until the desired f is attained, then continue as before. Set f ′ > f ,
β = β + f ′ − f (i.e. to fix the sieve context sizes), β′ = β + j − 1,14 and perform

PumpNJumpTourβ′,f ′,j : Pump0,0,β′−f ′ , Pump0,j,β′−f ′+j , . . . , Pump0,f ′,β′ ,

Pumpj,f ′,β′ , Pump2j,f ′,β′ , . . .
(15)

4.4 Scoring for Inserts

The issue of deciding where in a basis to insert given candidates throughout
reduction has already been discussed in [TKH18], in the context of the SVP
Challenges. Until the actual shortest vector is found, these insertions have the
purpose of improving the basis quality. Inserting at an early position may degrade
quality at later positions, because we do not know a priori how inserting ci will
affect B[`:r] for i ≤ ` < r. Therefore one must find a good trade-off between
making long lasting yet weak improvements at early positions, and strong yet
fragile improvements at later positions.

One way to achieve this is to use the scoring proposed in [TKH18], a function
over the whole basis which measures the global effect of each potential insert,
i.e. checking exactly how inserting ci affects theB[`:r]. We use a simplified variant
of this scoring which scores the improvement of each potential insert according
to the following local condition

ς(i) =

{
0, if ci = ⊥
θ−i · |b∗i |

2
/ |ci|2 , otherwise

(16)

for some constant θ ≥ 1 and take the maximum over the valid indices. Setting
θ = 1 corresponds to always choosing the “most improving” candidate, while
setting θ quite large (say 10) corresponds to always inserting at the earliest
position.

To optimise θ, we ran WorkOut0,d,f for f = 30 and d = 110, measured
γ = gh(L)/ gh(L[f :d]), and chose θ = 1.04 which minimised this quantity γ. We
recall [Duc18a] that γ must be below a certain threshold to guarantee the success
of exact-SVP in dimension d with f dimensions for free.

The optimal value of θ may differ depending on other parameters, e.g. dimen-
sion, approximation factor, and the context, e.g. exact-SVP, 1.05-Hermite-SVP,
BKZ, and the question of optimising insertion strategies requires more theoret-
ical and experimental attention. We hope that our open source implementation
will ease such future research.

4.5 Issue with Extend Right

As mentioned earlier, our current implementation does not support the ER op-
eration very well. In more detail, the issue is that after running a sieve in the
context [` : r], and applying ER, the vectors in the database are padded with
14 For Figure 4 we choose yet more opportunism and do not increase β to β′.

0 to be defined over the context [` : r + 1]; geometrically, these vectors remain
in the context [` : r], and so will all their potential combinations considered by
the sieve. While we do add some fresh vectors to increase the database size, the
fraction of those fresh vectors in the database is rather small: 1−

√
3/4 ≈ 13%.

This alone seems to slow down the Gauss sieve when used in right-progressive
sieving compared to left-progressive sieving.

The situation is even worse in the faster sieves we implement. Indeed, apart
from the reference Gauss sieve, our sieves are not guaranteed to maintain the
full-rankness of the database. This is because, for performance purposes, we
relax the replacement condition. In the standard Gauss sieve, x ± y may only
replace x or y if it is shorter. We relax this and allow x ± y to replace the
current longest vector z in the database. Fresh vectors are much longer than the
recycled ones, therefore they are quickly replaced by combinations of recycled
vectors, effectively meaning there is little representation of the newly introduced
basis vector after an ER.

While we tried to implement countermeasures to avoid losing rank, they
had a noticeable impact on performance, and were not robust. For this work,
we therefore avoid the use of extend right, as reductions based on extend left
already perform well. We leave it as an open problem to develop appropriate
variants of fast sieve algorithms that avoid this issue.

5 Implementation details

5.1 Sieving

We implemented several variants of sieving, namely: a Gauss sieve [MV10b],
a relaxation of the Nguyen–Vidick sieve [NV08], a restriction of the Becker–
Gama–Joux sieve [BGJ15] and a 3-sieve [BLS16, HK17]. All exploit the SimHash
speed-up [Cha02, FBB+15, Duc18a].

The first two were mostly implemented for reference and testing purposes,
and therefore are not multi-threaded. Nevertheless, we fall back to Gauss sieve in
small dimensions for efficiency and robustness; as discussed earlier, Gauss sieve
is immune to loss of rank, which we sometimes experienced with other sieves in
small dimensions (say, n < 50), even when not using extend right.

The termination condition for the sieves follows [Duc18a], namely, they stop
when we have obtained a given ratio of the expected number of vectors of norm
less than R · gh(L[`:r]). The saturation radius is dictated by the asymptotics
of the algorithm at hand, namely, R is such that the sieve uses a database of
N = O(Rn) vectors. In particular R =

√
4/3 for all implemented sieves, except

for the 3-sieve for which one can choose R2 ∈
[
3
√
3/4, 4/3

]
≈ [1.299, 1.333].

Nguyen–Vidick Sieve (nv) and Gauss Sieve (Gauss) The Nguyen–Vidick
sieve finds pairs of vectors (v1,v2) from the database, whose sum or difference
gives a shorter vector, i.e. |v1 ± v2| < max{|v| : v ∈ db}. Once such a pair is
found, the longest vector from the database gets replaced by v1±v2. The size of

the database is a priori fixed to the asymptotic heuristic minimum 20.2075n+o(n)

required to find enough such pairs. The running time of the Nguyen–Vidick sieve
is quadratic in the database size.

The Gauss sieve algorithm, similar to the Nguyen–Vidick sieve, searches for
pairs with a short sum, but the replacement and the order in which we process the
database vectors differ. More precisely, the database now is (implicitly) divided
into two parts, the so called “list” part and the “queue” part. This separation is
encoded in the ordering, with the list part being the first τ vectors. Both parts
are kept separately sorted. The list part has the property that the shortness of
v1 ± v2 has been checked for all pairs of vectors v1,v2 in the list. We then only
check pairs (v1,v2), where v1 comes from the queue part and v2 from the list
part. As opposed to Nguyen–Vidick sieve, once a reduction is found, the longer
vector from the pair (v1,v2) gets replaced by v1 ± v2, not the longest in the
database. In the case where the list vector v2 gets replaced, the result of the
reduction v1 ± v2 is put into the “queue” part and the search is continued with
the same “queue” vector v1. Otherwise, if the queue vector v1 was the longest
and is replaced, we restart comparing v1 with all list vectors. A vector is moved
from the “queue” to the “list” part once no reduction with the “list” vectors
can be found. Asymptotically, the running time and the database size for the
Gauss sieve is the same as for the Nguyen–Vidick sieve, but it performs better
in practice.

Becker–Gama–Joux Sieve (bgj1) The sieve algorithm from [BGJ15] accel-
erates the Nguyen–Vidick sieve [NV08] from 20.415n+o(n) down to 20.311n+o(n)

by using locality sensitive filters, while keeping the memory consumption to its
bare minimum for a 2-sieve, namely 20.2075n+o(n).

This optimal complexity is reached using recursive filtering, however we only
implemented a variant of this algorithm with a single level of filtration (hence
the name bgj1). We leave it to future work to implement the full algorithm and
determine when the second level of filtration becomes interesting.

We briefly describe our simplified version. The algorithm finds reducing pairs
in the database by successively filling buckets according to a filtering rule, and
doing all pairwise tests inside a bucket. Concretely, it chooses a uniform direction
d ∈ Rn, |d| = 1, and puts in the bucket all database vectors taking (up to sign)
a small angle with d, namely all v such that |〈v,d〉| > α · |v|.

We choose α so that the size of the buckets is about the square root of the
size of the database (asymptotically, α2 → 1−

√
3/4 ≈ 0.3662). This choice bal-

ances the cost of populating the bucket (through testing the filtering condition)
and exploring inside the bucket (checking for pairwise reductions). Both cost
O(N) = 20.2075n+o(n); though in practice we found it faster to make the buckets
slightly larger, namely around 3.2

√
N . Also note that we can apply a SimHash

prefiltering before actually computing the inner product 〈v,d〉, but using a larger
threshold for the bucketing prefilter than for the reduction prefilter.

Following the heuristic arguments from the literature, and in particular the
wedge volume formula [BDGL16, Lemma 2.2], we conclude that this sieve suc-

ceeds after about (2/
√
3− 1/3)

−n/2 ≈ 20.142n+o(n) buckets, for a total complex-
ity of 20.349n+o(n).

3-sieve (triple_sieve) In its original versions [BLS16, HK17], the 3-sieve al-
gorithm aims to reduce memory consumption at the cost of a potential increase
in the running time. The 3-sieve algorithm searches not for pairs, but for triples
of vectors, whose sum gives a shorter vector (hence, the name 3-sieve). Clearly,
for a fixed size list of vectors, there are more possible triples than pairs and,
therefore, we can start with a shorter list and still find enough reductions. How-
ever, a (naïve) search now costs three iterations over the list. To speed-up the
naïve search, we can apply filtering techniques similar to the ones used for bgj1.
In particular, the 3-sieve algorithm with filtering described in [HK17] requires
memory 20.1788n+o(n) and runs in time 20.396n+o(n).

For any vector x from the database, the 3-sieve algorithm of [HK17] filters the
database by collecting all vectors v with a large enough inner product |〈x,v〉|.
For all pairs of these collected vectors (v1,v2), 3-sieve checks if |x± v1 ± v2|
gives a short(er) vector. Such an inner product test, as in bgj1, helps to identify
“promising” vectors which are likely to result in a length reduction. The only
subtlety lies in the fact that in order for a triple to give a reduction, the vectors
x,v1,v2 should be far apart, not close to each other as in 2-sieve. We handle
this by adjusting the inner product test and choosing the ± signs appropriately.

The version of the 3-sieve implemented in G6K splits the database into “list”
and “queue” parts in the same way as the Gauss sieve above. Further, it combines
2- and 3-sieves. Notice that the filtering process of 3-sieve is basically the same
as bucketing in bgj1, with a bucket centre defined by a database15 vector x.
When processing the bucket, we check not only whether a pair (v1,v2) from
the bucket gives a shorter vector, but also whether a triple (x,v1,v2) may. This
additional check has no noticeable impact on performance (we know in which
case we potentially are from the signs of the scalar products alone), but has the
potential to find more shorter vectors.

As a result, in this combined version of the sieve, we can find more reductions
than in 2-sieve if we keep the same database size as for 2-sieve. In such a memory
regime, most of the reductions will come from 2-reductions. Setting a smaller
database makes the algorithm look for more 3-reductions as 2-reductions become
less likely.

As triple_sieve finds more reductions than bgj1 with the same database
sizes, we may decrease the size of the database and check how the running time
degrades. The results of these experiments are shown in Figure 2. The leftmost
point corresponds to the minimal memory regime for 3-sieve, namely when the
database size is set to 20.1788n+o(n), while the rightmost point is for the bgj1
memory regime, that is the database size is set to 20.2075n+o(n). It turns out that
in moderate dimensions (i.e. 80–110), triple_sieve performs slightly better if
15 This relies on the fact that we do not use recursive filtering in bgj1: the asymp-

totically optimal choice from [BGJ15] mandates choosing the buckets centres in a
structured way, which is not compatible with choosing them as db elements.

1.3 1.305 1.31 1.315 1.32 1.325 1.33 1.335

215

216

R

C
P
U

ti
m
e
(s
ec
on

ds
)

algorithm triple_sieve run on dim 100
with 26 threads (average over 2 trials)

The X-axis is the parameter R such that the database size is set to 3.2 · Rn/2. In
particular, the right-most point corresponds to the size of a database set to 3.2·(4/3)n/2;
for the left-most point this value is set to 3.2 · (3

√
3/4)

n/2
. Raw data .

Fig. 2: Time-memory trade-off for our implementation of the 3-sieve algorithm.

the database size is a bit less than 20.2075n+o(n). Furthermore, these experiments
are consistent with theoretical results on the high memory regime for 3-sieve:
in [HKL18] it was proven that the running time of 3-sieve quickly drops down if
allowed slightly more memory, as Figure 2 shows.

5.2 The Three Layers: C++ / Cython / Python

Our implementation consists of three layers.

C++11. The lowest level routines are implemented in C++11. In particular, at
this level we define a Siever class which realises G6K for all sieves considered
in this work: Gauss, NV, BGJ1 and 3-sieve. The general design is similar to
FPLLL where algorithms are objects operating on matrices and Gram–Schmidt
objects. In particular, different sieves are realised as methods on the same object
(and thus the same database) allowing the caller to pick which sieve to run in
a given situation. For example, in small dimensions it is beneficial to run the
Gauss sieve and this design decision allows the database to be reused between
different sieves. Our C++ layer does not depend on any third party libraries
(except pthreads). On the other hand, our C++ layer is relatively low level.

Cython. Cython is a glue language for interfacing between CPython (the C
implementation of the Python programming language) and C/C++. We use
Cython for this exact purpose. Our Cython layer is relatively thin, mainly mak-
ing our C++ objects available to the Python layer and translating to and from
FPyLLL data structures [dt18b]. The most notable exception is that we imple-
mented the basis change computation of the insert instruction I (equations (5)
and (6)) in Cython instead of C++. The reason being that we call LLL on the
lifting context when inserting (the Cython function split_lll) which is realised
by calling FPyLLL. That is, while our C++ layer has no external dependencies,
the Cython layer depends on FPyLLL.

		memory		 cputime		 walltime		db_size

		1.2999999		 112495.3161		 4345.1117		 20.60

		1.302999		 88078.9300		 3408.4785		 20.77

		1.305999		 68142.0333		 2643.9435		 20.94

		1.308999		 52232.1861		 2035.0366		 21.10

		1.311999		 42156.6482		 1650.2967		 21.27

		1.314999		 36100.5347		 1421.0798		 21.43

		1.317999		 32150.5338		 1273.6114		 21.60

		1.320999		 30058.2943		 1197.6460		 21.76

		1.323999		 29000.3869		 1162.2114		 21.92

		1.326999		 28856.7092		 1162.7529		 22.09

		1.329999		 28584.2077		 1158.9546		 22.25

		1.333333		 29237.0089		 1189.6695		 22.43

Python. All our high level algorithms are implemented in (C)Python (2). Our
code does not use the functional-style abstractions from Section 3, but a more
traditional object-oriented approach where methods are called on objects which
hold the state. We do provide some syntactic sugar, though, enabling a user
to construct new instructions from basic instructions in a function-composition
style similar to the notation in Section 3. Nevertheless, this simplified abstraction
is not able to fully exploit all the features of our implementation, and significant
savings may be achieved by using the full expressivity of our library.

5.3 Vector Representation and Data Structures

The data structures of G6K have been designed for high performance sieving
operations and we have tried to minimise memory usage where possible. For
high performance we retain the following information about each vector v as an
entry e in the sieve database db:

– e.x: the vector v itself as 16-bit integer coordinates in basis B[`:r];
– e.yr: a 32-bit floating point vector to efficiently compute 〈v,v2〉, this is a

renormalised version of v◦;
– e.cv (compressed vector): a 256-bit SimHash of v;
– e.uid (unique identifier): a 64-bit hash of v;
– e.len: the squared length |v| as a 64-bit floating point number.

The entire database db is stored contiguously in memory, although unordered.
This memory is preallocated for the maximum database size within each Pump, to
avoid additional memory usage caused by reallocations of the database whenever
it grows.

To be able to quickly determine whether a potential new vector is already in
the database we additionally maintain a C++ unorderedset (i.e. a hash table)
uiddb containing 64-bit hashes uid of all vectors in db.16 This hash uid = H(x)
of x is simply computed as the inner product of x with a global random vector
in the ring Z/264Z, which has the additional benefit that H(x1 ± x2) can be
computed more efficiently as H(x1) ±H(x2). This allows us to cheaply discard
collisions without even having to compute x1 ± x2.

To maintain a sorted database we utilise a compressed database cdb that
only stores the 256-bit SimHash, 32-bit floating point length, and the 32-bit db-
index of each vector. This requires only 40 bytes per vector and everything is
also stored contiguously in memory. It is optimised for traversing the database
in order of increasing length and applying the SimHash as a prefilter, since
accessing the full entry in db only occurs a fraction of the time.

For the multi-threaded bgj1-sieve, the compressed database cdb is main-
tained generally sorted in order of increasing length. Initially cdb is sorted, then,
during sieving, vectors are replaced one-by-one starting from the back of cdb. It
is only resorted when a certain fraction of entries have been replaced. Since we
16 This unorderedset is in fact split into many parts to eliminate most blocking locks

during a multi-threaded sieve.

only insert a new vector if its length is below the minimum length of the range
of to-be-replaced vectors in cdb, this approach ensures that we always replace
the largest vector in db. In the sieve variants that split the database into queue
and list ranges, we regularly sort the individual ranges. In our multi-threaded
triple_sieve, the vectors removed during a replacement are chosen iteratively
from the backs of the two ranges.

Most sieving operations use buckets that are filled based on locality sensitive
filters. In bgj1, we use the same datastructure as cdb for the buckets, and thus
copy those compressed entries in contiguous memory reserved for that bucket.
For triple_sieve, we also store information about the actual scalar product
〈x,v〉 of the bucket elements v with the bucket centre x inside the bucket.

5.4 Multi-threading

G6K is able to efficiently use multi-threading for nearly all operations; a detailed
efficiency report can be found in the full version. Global per-entry operations
such as EL, ER, SL and I-postprocessing are simply distributed over all available
threads in the global threadpool.

During multi-threaded sieving we guarantee all write operations to entries
in db, cdb and the best lift database to be executed in a thread-safe manner
using atomic operations and write locks. (The actual locking strategies differ
per implementation.) We always perform all heavy computations before locking
and let each thread locally buffer pending writes and execute these writes in
batches to avoid bottlenecks in exclusive access of these global resources.

Threads reading entries in db and cdb do not use locking and can thus po-
tentially read partially overwritten entries. While this may result in some wasted
computations, no faulty vectors will be inserted in the db: for every new vector
we completely recompute its full entry e from e.x including its length and verify
it is actually shorter than the length of the to-be-replaced vector before actually
replacing it.

Safely resorting cdb during sieving is the most complicated, since threads
do not block on reading cdb. Our implementations in G6K resolve this as fol-
lows. We let one thread resort cdb and use locking to prevent any insertions
(or concurrent resorting) by other threads. We keep the old cdb untouched as a
shadow copy for other threads, while computing a new sorted version that we
then atomically publish. Afterwards, other threads will then eventually switch
to the newer version. Insertions are always performed using cdb and never using
a shadow copy, even if e.g. a thread is still using a shadow copy for its main
operations, e.g. when building a bucket.

6 New Lattice Reduction Records

The experiments reported in this section are based on bgj1-sieving, except those
on BKZ and LWE which are based on triple_sieve, in the high memory regime
(N = Θ((4/3)

n/2
)). The switch occurred when improvements to the latter made

Machine CPUs base freq. cores threads HTC∗ RAM

L 4xIntel Xeon E7-8860v4 2.2Ghz 72 72 No 512GiB
S 2xIntel Xeon Gold 6138 2.0Ghz 40 80 Yes 256GiB
C 2xIntel Xeon E5-2650v3 2.3Ghz 20 40 Yes 256GiB
A 2xIntel Xeon E5-2690v4 2.6Ghz 28 56 Yes 256GiB
∗ HTC: Hyperthreading Capable.

Table 1: Details of the machines used for experiments.

it faster than the former (especially with pump-down sieve, s = 1). While it
seemed wasteful to rerun all the experiments, we nevertheless now recommend
triple_sieve over bgj1 for optimal performance within our library. The details
of the machines used for our various experiments are given in Table 1.

6.1 Exact-SVP

We first report on the efficiency of our implementation of G6K’s WorkOut (s = 0,
f+ = 1) when solving exact-SVP. The comparison with pruned enumeration is
given in Figure 3a. While fitted curves are provided, we highlight that they
are significantly below asymptotic predictions of 20.349d+o(d) for bgj1 and thus
unreliable for extrapolation.17 Based on these experiments, we report a crossover
with enumeration around dimension 70. Note that we significantly outperform
the guesstimates of a crossover at dimension 90 made in [Duc18a].

While our improved speed compared to [Duc18a] is mostly due to having
implemented a faster sieving algorithm, the new features of G6K also contribute
to this improved efficiency (see the full version for a detailed comparison). In
particular the on-the-fly lifting strategy offers a few extra dimensions for free as
depicted in Figure 3b. That is, our new implementation is not only faster but
also consumes less memory.

6.2 1.05-Hermite-SVP (a.k.a. Darmstadt SVP Challenges)

The detailed performance of our implementation when solving Darmstadt SVP
Challenges is given in Table 2. We also compare the running time of our experi-
ments with prior works in Figure 1. We warn the reader that the experiments of
Table 2 are rather heterogeneous – different machines, different software versions,
and different parametrisations were used – and therefore discourage extrapola-
tions. Moreover the design decisions below and the probabilistic nature of the
algorithm explain the non monotonic time and space requirements.

The parameters were optimised towards speed by trial and error on many
smaller instances (d ≈ 100). More specifically we ran WorkOut with parameters
17 This mismatch with theory can be explained by various kinds of overheads, but

mostly by the dimensions for free trick: as f = Θ(d/ log d) is quasilinear, the slope
will only very slowly converge to the asymptotic prediction.

(a) Average time in seconds to solve exact-SVP.

60 65 70 75 80 85 90 95 100

2−1

23

27

211

d

se
co
nd

s

BKZ + pruned enum (FPLLL)
G6K WorkOut
fit60...100 : log2 t = 0.249d− 14.7

fit80...100 : log2 t = 0.296d− 18.9

(b) Average number of dimensions for free when solving exact-SVP.

60 65 70 75 80 85 90 95 100
10

15

20

d

f [Duc18a]
G6K WorkOut
fit: f = 11.46 + 0.0757d

The running time was averaged over 60 trials (12 trials on random bases of 5 dif-
ferent lattices from [SG10]). Each instance was monothreaded, but ran in parallel
(20thread/20cores, not hyperthreaded) on machine C. Raw data .

Fig. 3: Performance for exact-SVP.

f = 16 + d/12, f+ = 3, s = 1; choosing f+ = 1 or 2 would cost more time and
less memory.18 The loop was set to exit as soon as a vector of the desired length
was found, and if it reached the minimal value of f , it would repeat this largest
Pump until success (this repetition rarely happened more than three times). The
sieve max dim column reports the actual dimension d− flast of the last Pump.

6.3 BKZ

To test PumpNJumpTour we compare its quality vs. time performance against
BKZ 2.0 [CN11] in FPyLLL and against NaiveTour (see Figure 4). We generate
random q-ary lattice bases, of dimension 180 with 90 equations modulo q = 230.
18 The number f = 16 + d/12 of dimensions for free is only meant to be a local

approximation, as we asymptotically expect f = Θ(d/ log d) even for O(1)-approx-
SVP [Duc18a].

d,FPLLL,G6K,d4f-G6K,d4f-Ducas18
60, 0.6605, 1.4487, 14.57,12.5
62, 0.8385, 2.1722, 15.12,10.2
64, 1.6328, 3.0787, 15.23,11.2
66, 1.9728, 3.5695, 16.87,12.7
68, 4.0930, 4.5182, 17.67,12.5
70,10.6600, 7.4665, 16.75,13.5
72, 9.3025, 8.7190, 17.68,13.0
74,20.5347, 12.2922, 17.95,12.2
76,31.1943, 16.1908, 17.93,14.5
78,48.7200, 26.6795, 16.92,13.2
80,76.0895, 26.2770, 19.00,14.8
82,159.005, 42.3323, 18.62,14.0
84,267.160, 61.4098, 18.13,
86,379.643, 115.8510, 16.57,
88,556.829, 134.8823, 18.32,
90,2613.46, 167.7543, 19.08,
92, , 311.5363, 18.05,
94, , 374.8102, 19.62,
96, , 814.6428, 17.13,
98, , 994.7679, 18.75,
100, , 1963.680, 18.08,

SVP Hermite Sieve Total Memory
dim Norm factor max dim Wall time CPU time usage Machine

155 3165 1.00803 127 14d 16h 1056d †246 GiB L

153 3192 1.02102 123 11d 15h 911d †139 GiB S

151 3233 1.04411 124 11d 19h 457.5d †160 GiB C

149 3030 0.98506 117 60h 7m 4.66kh †59 GiB S
147 3175 1.03863 118 123h 29m 4.79kh 67.0 GiB C
145 3175 1.04267 114 39h 3m 1496h 37.7 GiB C
143 3159 1.04498 110 17h 23m 669h 21.3 GiB C
141 3138 1.04851 105 4h 59m 190h 10.6 GiB C
139 3111 1.04303 108 9h 56m 380h 16.2 GiB C
137 3093 1.04472 107 9h 26m 362h 14.1 GiB C
136 3090 1.04937 108 9h 16m 354h 16.2 GiB C
135 3076 1.04968 108 7h 21m 277.4h 16.1 GiB C
133 3031 1.04133 103 1h 59m 71.7h 8.0 GiB C
131 2959 1.02362 100 1h 11m 41.5h 5.3 GiB C
129 2988 1.03813 98 54m 33.2h 4.2 GiB C
128 3006 1.04815 102 2h 32m 94.9h 7.6 GiB C
127 2972 1.04244 101 2h 17m 85.0h 6. GiB C
126 2980 1.04976 100 31m 19.2h 5.6 GiB C
125 2948 1.04393 99 1h 18m 47.6h 5.2 GiB C
124 2937 1.04032 98 39m 23.9h 4.4 GiB C
123 2950 1.04994 93 7m 4.0h 2.2 GiB C

†: Not measured, estimate.

Table 2: Performance on the Darmstadt SVP Challenges.

We prereduce the bases using one FPyLLL BKZ tour for each blocksize from 20
to 59 and then report the cumulative time taken by further progressive tours of
several BKZ variants.

Contrary to exact-SVP, we find it beneficial for the running time to activate
sieving during pump-down for all G6K based BKZ experiments. We further
find that triple_sieve is noticeably faster than bgj1; it seems that the former
suffers fewer collisions than the latter when sieving during the pump-down phase.

For all G6K based BKZ experiments we choose the number of dimensions
for free following the experimental fit of Figure 3b, that is f = 11.5 + 0.075β.
We also introduce a parameter e = f ′ − f to concretise the more opportunistic
PumpNJumpTour variant discussed at the end of Section 4.3.

To measure quality we use an averaged quality measurement, namely, the
slope metric of FPyLLL. This slope, ρ, is a least squares fit of the log |b∗i |

2.
For comparison this metric is preferable to the typical root Hermite factor as
it displays much less variance. In the GSA model, the slope ρ relates to the
root Hermite factor by δ = exp(−ρ/4). We also provide the predictions for
progressive tours given by the BKZ simulator of [CN11, Wal16]. We note that the

60

65

70

75

80

85

90

95

60

65

70

75

80

85

90

25 26 27 28 29 210 211 212 213 214 215 216 217

4

4.2

4.4

4.6

4.8

·10−2

sec

−
ρ

BKZ simulator
BKZ2.0 (fplll)
G6K NaiveBKZTour
G6K PumpNJump (j = 1, e = 0)

G6K PumpNJump (j = 1, e = 12)

G6K PumpNJump (j = 3, e = 12)

60

65

70

75

80

60

65

70

75

80

60

65

70

75

80

85

90

60

65

70

75

80

85

90

The time and slope are averaged over 8 instances for each algorithm. Each instance was
monothreaded, but ran in parallel (40threads/40cores, not hyperthreaded) on machine
S. We label the point by β for all multiples of 5. Raw data .

Fig. 4: Performance of BKZ-like algorithms.

simulator is optimistic compared to even the most “textbook” variants, BKZ2.0
and NaiveTour, a phenomenon already documented in [YD17, BSW18].

Conclusion. These experiments confirm that it is possible to outperform a naïve
application of an SVP-β oracle to obtain a quality equivalent to BKZ-β in less
time. Indeed, PumpNJumpTourβ,f,1 is about 4 times faster than NaiveTourβ,f for
the same reduction quality. Furthermore, the opportunistic variant with e = 12
gives even better quality per time, and also only requires a smaller β for the
same quality, therefore decreasing memory consumption. These experiments also
suggest that jumps j > 1 are not beneficial, they require similar running time
per quality, but with a larger memory consumption.

6.4 LWE

The Darmstadt LWE challenges [FY15] are labeled by (n, α), where n denotes
the dimension of the secret in Zq, for some q, and α is a noise rate. Concretely
the challenges are given as (A,b) where As + e ≡ b mod q with A ∈ Zm×nq

		FPLLLt		FPLLLq		NaiveBKZt		NaiveBKZq		PnJj1e0t		PnJj1e0q		PnJj1e12t		PnJj1e12q		PnJj3e12t		PnJj3e12q		

		44.27375		0.04750375		425.507875		0.04744		96.372875		0.047495		164.45075		0.04646		60.261625		0.047045

		115.610375		0.047185		949.28575		0.0470625		201.405125		0.04719		342.4695		0.04564375		125.7965		0.0465275

		205.33875		0.04692375		1497.34675		0.0467125		311.0815		0.04692125		522.933875		0.045165		192.245625		0.04622

		431.710875		0.0466075		2156.027875		0.0464175		431.543875		0.0466425		724.854125		0.04482375		263.126125		0.04602375

		586.156625		0.046295		2841.80575		0.04616625		558.96775		0.04641625		933.5835		0.0446425		335.53475		0.04587375

		940.209		0.04605625		3651.247375		0.04589375		700.877375		0.0461875		1165.8005		0.0444975		416.6955		0.04569375

		1234.934		0.04576375		4490.07775		0.045655		851.62075		0.04596875		1405.307375		0.04440375		500.704		0.045625

		1764.517125		0.0455025		5486.623375		0.04539375		1019.443375		0.04572875		1673.430375		0.04424875		595.502875		0.0454075

		2395.988125		0.045235		6516.12		0.0451575		1197.4665		0.04554		1948.997		0.04410125		693.39075		0.04533625

		3180.793		0.04496375		7732.209		0.044915		1397.9355		0.04530875		2261.873125		0.04395625		801.80625		0.0451875

		4119.981		0.0447575		9004.209125		0.04469125		1611.366		0.0450975		2584.1315		0.04385		912.83125		0.04506125

		5277.33625		0.04451375		10495.67975		0.04447125		1854.12275		0.04488875		2952.871875		0.04368		1041.616		0.0449625

		6620.78875		0.04427		12039.382375		0.04420625		2108.79725		0.04465125		3332.3025		0.04360125		1174.285625		0.04494625

		8471.459375		0.04404875		13830.123375		0.04397625		2403.876125		0.04446875		3767.393125		0.04339		1328.50825		0.04471875

		10480.672375		0.043785		15700.086125		0.0437675		2709.219375		0.04426625		4215.38		0.04336		1485.8935		0.04462

		13311.963375		0.0435225		17880.718375		0.043565		3061.289125		0.04405375		4736.414375		0.0431875		1664.722875		0.0444125

		16643.5255		0.0433375		20436.582125		0.04338375		3476.553375		0.0438525		5347.22275		0.04295875		1878.379875		0.04422125

		21978.941875		0.0431225		23413.319		0.04317125		3965.725		0.04361625		6067.1985		0.042815		2132.260125		0.04391375

		28187.13975		0.04291		26886.904		0.04293		4549.745625		0.0433475		6917.103125		0.04257125		2428.19475		0.0437125

		36439.3045		0.04271125		30974.8585		0.0427175		5254.220125		0.043115		7942.53275		0.04227625		2785.28675		0.04350625

		45794.392125		0.04248		35802.59225		0.0425		6104.315875		0.0429125		9169.474		0.04208875		3218.81775		0.043225

		59252.611375		0.04224125		41506.67325		0.04228625		7123.56875		0.04270625		10645.95325		0.04191875		3733.2475		0.0429875

						48286.445875		0.04208875		8337.463375		0.04249875		12408.603		0.041695		4352.523125		0.04270875

						56307.247625		0.04186625		9817.741875		0.0422475		14557.601625		0.04149625		5115.333125		0.04253125

						65811.57825		0.04167125		11607.967125		0.042045		17184.662		0.0413225		6021.619875		0.04233625

										13789.940625		0.04183375		20403.244625		0.0411025		7147.32675		0.042075

										16451.082625		0.0416225		24353.212125		0.040905		8555.99425		0.04191625

										19203.81875		0.0414425		28412.808		0.04086		9962.620375		0.04181875

										22630.535		0.04130125		33449.6575		0.04068		11721.267625		0.04161875

										26880.626875		0.04111625		39681.348625		0.0404375		13936.531375		0.04138

										32153.838625		0.04093625		47442.5445		0.04027375		16656.9935		0.04118875

										38692.383125		0.04077625		57136.718375		0.04009625		20055.446375		0.04102375

										46905.399875		0.04054625		69295.037875		0.039955		24384.572125		0.04081625

										57131.358125		0.04038						29716.801375		0.0405975

										69133.67025		0.04021						36702.853		0.04038875

																		45399.9781428571		0.0401814285714286

																		57945.1073333333		0.0399733333333333

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

for some m, s ∈ Znq , e ∈ Zm and b ∈ Zmq . Each entry of e, the error, is sampled
independently from the Gaussian distribution over the integers with mean µ = 0
and standard deviation σ = α · q, while the entries of A and s are sampled
independently and uniformly from Zq. Both q and m are constant for a given n,
but increase with n.

Our method for solving LWE is via embedding e into a uSVP instance [Kan87,
BG14] but using the success condition originally given in [ADPS16] and exper-
imentally justified in [AGVW17]. We also use the embedding coefficient t = 1
following [ADPS16, AGVW17]. We choose the minimal β such that after BKZ-β
reduction, |πd−β(e)| < gh(L[d−β:d]). Therefore πd−β(e) will be inserted at index
d− η. It is shown in [AGVW17] that size reduction (here lifting) is then enough
to lift πd−β(e) to e. The success condition in [ADPS16, AGVW17] is√

β · σ < δ(β)
2β−d ·Vol (L)1/d. (17)

There is no a priori reason why the β used for BKZ reduction and the dimension
of the SVP call (the last full block in some BKZ-β tour) which first finds πd−β(e),
should be equal. For enumeration based algorithms it is customary to run one
large enumeration after the smaller enumerations inside BKZ, see [LN13]. To
apply this to sieving we alter the above inequality to allow a “decoupling” of
these quantities and then balance the expected total time cost.

Let β continue to denote the BKZ block size and η denote the dimension of
an SVP call on the lattice L[d−η:d]. We obtain the following inequality

√
η · σ < δ(η)

η−1 · δ(β)η−d+1 ·Vol (L)1/d. (18)

The left hand side is an approximation of the length πd−η(e) and the right hand
side an approximation of the Gaussian heuristic of L[d−η:d]. Indeed

gh(L[d−η:d]) =
√
η/2πe ·Vol (L[d−η:d])

1/η
=
√
η/2πe ·

 d−1∏
i=d−η

|b∗i |

1/η, (19)

and further δ(η)η−1 ∼
√
η/2πe in increasing η. By combining the GSA and the

estimate the root Hermite factor gives for |b0|, (18) may be derived from (19).

Implemented strategy and performance. To solve LWE instances in prac-
tice we implemented code which returns triples (β, η, d) that satisfy (18), and
choose the number of LWE samples accordingly. We then run PumpNJumpTour
with s = 1, j = 1, e = 12 and triple_sieve as the underlying sieve, and in-
crease β progressively (choosing f as the experimental fit of Figure 3b). After
each tour, we measure the walltime T elapsed since the beginning of the re-
duction, and predict the maximal dimension ν reachable by pumping up within
time T . We predict whether we expect to find the projected short vector in this
pump (ignoring on-the-fly lifting), following the reasoning of [Duc18a]. That is,
we check the inequality

√
ν · σ ≤

√
4/3 · gh(L[d−ν:d]). (20)

(n, α) Estimated (β, η, d) Successful (β, ν, ν′) CPU time Wall time M.

(65, 0.010) (108, 137, 244) (112, 124, 120) 2553h 60h A
(55, 0.015) (106, 135, 219) (110, 125, 103) 2198h 34h 50m S
(40, 0.030) (102, 133, 179) (108, 120, 111) 1116h 17h 43m S

(75, 0.005) (88, 118, 252) (88, 112, 107)‡ 591h 12h 26m S

(60, 0.010) (92, 122, 222) (94, 112, 106)† 579h 11h 59m S
(50, 0.015) (87, 118, 194) (81, 111, 95) 8h 36m 1h 23m S

†: There was also a failed search after β = 90, with ν = 115.
‡: There was also a failed search after β = 84, with ν = 115.

Table 3: Performances on Darmstadt LWE challenges.

If this condition is satisfied, we proceed with searching for the LWE solution
with this Pump (κ, f = ν − κ, β = d − κ, s = 0)19 otherwise, we continue BKZ
reduction with larger β. If this search is triggered but fails, we also go back to
reducing the basis with progressive BKZ, and reset the timer T . The search may
also succeed before reaching the pump dimension ν, in which case we denote by
ν′ the dimension at which it stops.

Details of the six new Darmstadt LWE records are in Table 3. It should
be noted that the CPU-time/walltime ratio can be quite far from e.g. 80, the
number of threads on machine S. This is because parallelism only kicks in for
sieves in large dimensions (see the full version), while the walltimes of some of
the computations were dominated by BKZ tours with medium blocksizes. One
could tailor the parameterisation to improve the walltime further, but this would
be in vain as we are mostly interested in the more difficult instances, which suffer
very little from this issue.

Acknowledgements

We thank Kenny Paterson for discussing a previous version of this draft. We
also thank Pierre Karpman for running some of our experiments.

References

[ACD+18] Martin R. Albrecht, Benjamin R. Curtis, Amit Deo, Alex Davidson,
Rachel Player, Eamonn W. Postlethwaite, Fernando Virdia, and Thomas
Wunderer, Estimate all the LWE, NTRU schemes!, SCN 18 (Dario Cata-
lano and Roberto De Prisco, eds.), LNCS, vol. 11035, Springer, Heidel-
berg, September 2018, pp. 351–367.

19 One could choose κ = 0 to be entirely sure not to miss the solution during the
lifting phase, but this increases the cost of lifting. Instead, we can choose κ such
that

√
κσ < gh(L[d−κ:d]), with a small margin of, say, five dimensions.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe,
Post-quantum key exchange—a new hope, 25th USENIX Security Sym-
posium (USENIX Security 16) (Austin, TX), USENIX Association, 2016,
pp. 327–343.

[AGVW17] Martin R. Albrecht, Florian Göpfert, Fernando Virdia, and Thomas Wun-
derer, Revisiting the expected cost of solving uSVP and applications to
LWE, ASIACRYPT 2017, Part I (Tsuyoshi Takagi and Thomas Peyrin,
eds.), LNCS, vol. 10624, Springer, Heidelberg, December 2017, pp. 297–
322.

[AKS01] Miklós Ajtai, Ravi Kumar, and D. Sivakumar, A sieve algorithm for the
shortest lattice vector problem, 33rd ACM STOC, ACM Press, July 2001,
pp. 601–610.

[AWHT16] Yoshinori Aono, Yuntao Wang, Takuya Hayashi, and Tsuyoshi Takagi,
Improved progressive BKZ algorithms and their precise cost estimation by
sharp simulator, EUROCRYPT 2016, Part I (Marc Fischlin and Jean-
Sébastien Coron, eds.), LNCS, vol. 9665, Springer, Heidelberg, May 2016,
pp. 789–819.

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven, New direc-
tions in nearest neighbor searching with applications to lattice sieving, 27th
SODA (Robert Krauthgamer, ed.), ACM-SIAM, January 2016, pp. 10–24.

[BG14] Shi Bai and Steven D. Galbraith, Lattice decoding attacks on binary LWE,
ACISP 14 (Willy Susilo and Yi Mu, eds.), LNCS, vol. 8544, Springer,
Heidelberg, July 2014, pp. 322–337.

[BGJ15] Anja Becker, Nicolas Gama, and Antoine Joux, Speeding-up lattice siev-
ing without increasing the memory, using sub-quadratic nearest neigh-
bor search, Cryptology ePrint Archive, Report 2015/522, 2015, http:
//eprint.iacr.org/2015/522.

[BLS16] Shi Bai, Thijs Laarhoven, and Damien Stehle, Tuple lattice sieving, Cryp-
tology ePrint Archive, Report 2016/713, 2016, http://eprint.iacr.org/
2016/713.

[BSW18] Shi Bai, Damien Stehlé, and Weiqiang Wen, Measuring, simulating and
exploiting the head concavity phenomenon in BKZ, ASIACRYPT 2018,
Part I (Thomas Peyrin and Steven Galbraith, eds.), LNCS, vol. 11272,
Springer, Heidelberg, December 2018, pp. 369–404.

[Cha02] Moses Charikar, Similarity estimation techniques from rounding algo-
rithms, 34th ACM STOC, ACM Press, May 2002, pp. 380–388.

[Che13] Yuanmi Chen, Réduction de réseau et sécurité concrète du chiffrement
complètement homomorphe, Ph.D. thesis, Paris 7, 2013, Thèse de doctorat
dirigée par Nguyen, Phong-Quang Informatique Paris 7 2013, p. 1 vol.
(133 p.).

[CN11] Yuanmi Chen and Phong Q. Nguyen, BKZ 2.0: Better lattice security
estimates, ASIACRYPT 2011 (Dong Hoon Lee and Xiaoyun Wang, eds.),
LNCS, vol. 7073, Springer, Heidelberg, December 2011, pp. 1–20.

[dt18a] The FPLLL development team, FPLLL, a lattice reduction library, Avail-
able at https://github.com/fplll/fplll, 2018.

[dt18b] The FPyLLL development team, FPyLLL, a lattice reduction library,
Available at https://github.com/fplll/fpylll, 2018.

[Duc18a] Léo Ducas, Shortest vector from lattice sieving: A few dimensions for free,
EUROCRYPT 2018, Part I (Jesper Buus Nielsen and Vincent Rijmen,
eds.), LNCS, vol. 10820, Springer, Heidelberg, April / May 2018, pp. 125–
145.

http://eprint.iacr.org/2015/522
http://eprint.iacr.org/2015/522
http://eprint.iacr.org/2016/713
http://eprint.iacr.org/2016/713
https://github.com/fplll/fplll
https://github.com/fplll/fpylll

[Duc18b] Léo Ducas, Shortest Vector from Lattice Sieving: a Few Dimensions
for Free (talk), https://eurocrypt.iacr.org/2018/Slides/Monday/
TrackB/01-01.pdf, April 2018.

[FBB+15] Robert Fitzpatrick, Christian H. Bischof, Johannes Buchmann, Özgür
Dagdelen, Florian Göpfert, Artur Mariano, and Bo-Yin Yang, Tuning
GaussSieve for speed, LATINCRYPT 2014 (Diego F. Aranha and Alfred
Menezes, eds.), LNCS, vol. 8895, Springer, Heidelberg, September 2015,
pp. 288–305.

[FK15] Masaharu Fukase and Kenji Kashiwabara, An accelerated algorithm for
solving SVP based on statistical analysis, JIP 23 (2015), no. 1, 67–80.

[FP85] U. Fincke and M. Pohst, Improved methods for calculating vectors of short
length in a lattice, including a complexity analysis, Mathematics of Com-
putation 44 (1985), no. 170, 463–463.

[FY15] Florian Göpfert F and A Yakkundimath, Darmstadt LWE Challenges,
https://www.latticechallenge.org/lwe_challenge/challenge.php,
2015, Accessed: 15-08-2018.

[GN08a] Nicolas Gama and Phong Q. Nguyen, Finding short lattice vectors within
Mordell’s inequality, 40th ACM STOC (Richard E. Ladner and Cynthia
Dwork, eds.), ACM Press, May 2008, pp. 207–216.

[GN08b] , Predicting lattice reduction, EUROCRYPT 2008 (Nigel P. Smart,
ed.), LNCS, vol. 4965, Springer, Heidelberg, April 2008, pp. 31–51.

[GNR10] Nicolas Gama, Phong Q. Nguyen, and Oded Regev, Lattice enumeration
using extreme pruning, EUROCRYPT 2010 (Henri Gilbert, ed.), LNCS,
vol. 6110, Springer, Heidelberg, May / June 2010, pp. 257–278.

[HK17] Gottfried Herold and Elena Kirshanova, Improved algorithms for the ap-
proximate k-list problem in euclidean norm, PKC 2017, Part I (Serge Fehr,
ed.), LNCS, vol. 10174, Springer, Heidelberg, March 2017, pp. 16–40.

[HKL18] Gottfried Herold, Elena Kirshanova, and Thijs Laarhoven, Speed-ups and
time-memory trade-offs for tuple lattice sieving, PKC 2018, Part I (Michel
Abdalla and Ricardo Dahab, eds.), LNCS, vol. 10769, Springer, Heidel-
berg, March 2018, pp. 407–436.

[HPS11] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé, Analyzing blockwise
lattice algorithms using dynamical systems, CRYPTO 2011 (Phillip Rog-
away, ed.), LNCS, vol. 6841, Springer, Heidelberg, August 2011, pp. 447–
464.

[HS07] Guillaume Hanrot and Damien Stehlé, Improved analysis of kannan’s
shortest lattice vector algorithm, CRYPTO 2007 (Alfred Menezes, ed.),
LNCS, vol. 4622, Springer, Heidelberg, August 2007, pp. 170–186.

[Kan83] Ravi Kannan, Improved algorithms for integer programming and related
lattice problems, 15th ACM STOC, ACM Press, April 1983, pp. 193–206.

[Kan87] Ravi Kannan,Minkowski’s convex body theorem and integer programming,
Mathematics of Operations Research 12 (1987), no. 3, 415–440.

[Kir16] Paul Kirchner, Re: Sieving vs. enumeration, https://groups.
google.com/forum/#!msg/cryptanalytic-algorithms/BoSRL0uHIjM/
wAkZQlwRAgAJ„ May 2016.

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Ĺovasz, Factoring polynomials with
rational coefficients, Mathematische Annalen 261 (1982), no. 4, 515–534.

[LM18] Thijs Laarhoven and Artur Mariano, Progressive lattice sieving, Post-
Quantum Cryptography - 9th International Conference, PQCrypto 2018
(Tanja Lange and Rainer Steinwandt, eds.), Springer, Heidelberg, 2018,
pp. 292–311.

https://eurocrypt.iacr.org/2018/Slides/Monday/TrackB/01-01.pdf
https://eurocrypt.iacr.org/2018/Slides/Monday/TrackB/01-01.pdf
https://www.latticechallenge.org/lwe_challenge/challenge.php
https://groups.google.com/forum/#!msg/cryptanalytic-algorithms/BoSRL0uHIjM/wAkZQlwRAgAJ
https://groups.google.com/forum/#!msg/cryptanalytic-algorithms/BoSRL0uHIjM/wAkZQlwRAgAJ
https://groups.google.com/forum/#!msg/cryptanalytic-algorithms/BoSRL0uHIjM/wAkZQlwRAgAJ

[LN13] Mingjie Liu and Phong Q. Nguyen, Solving BDD by enumeration: An
update, CT-RSA 2013 (Ed Dawson, ed.), LNCS, vol. 7779, Springer, Hei-
delberg, February / March 2013, pp. 293–309.

[MV10a] Manfred G. Madritsch and Brigitte Vallée, Modelling the LLL algorithm
by sandpiles, LATIN 2010 (Alejandro López-Ortiz, ed.), LNCS, vol. 6034,
Springer, Heidelberg, April 2010, pp. 267–281.

[MV10b] Daniele Micciancio and Panagiotis Voulgaris, Faster exponential time al-
gorithms for the shortest vector problem, 21st SODA (Moses Charika, ed.),
ACM-SIAM, January 2010, pp. 1468–1480.

[MW15] Daniele Micciancio and Michael Walter, Fast lattice point enumeration
with minimal overhead, 26th SODA (Piotr Indyk, ed.), ACM-SIAM, Jan-
uary 2015, pp. 276–294.

[Ngu10] Phong Q. Nguyen, The lll algorithm: Survey and applications, ch. Her-
mite’s Constant and Lattice Algorithms, pp. 19–69, Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2010.

[NV08] Phong Q. Nguyen and Thomas Vidick, Sieve algorithms for the shortest
vector problem are practical, J. Mathematical Cryptology 2 (2008), no. 2,
181–207.

[PAA+17] Thomas Poppelmann, Erdem Alkim, Roberto Avanzi, Joppe Bos,
Leo Ducas, Antonio de la Piedra, Peter Schwabe, and Douglas
Stebila, Newhope, Tech. report, National Institute of Standards
and Technology, 2017, available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

[Sch87] Claus-Peter Schnorr, A hierarchy of polynomial time lattice basis reduction
algorithms, Theor. Comput. Sci. 53 (1987), 201–224.

[Sch03] Claus Peter Schnorr, Lattice reduction by random sampling and birth-
day methods, STACS 2003 (Berlin, Heidelberg) (Helmut Alt and Michel
Habib, eds.), Springer Berlin Heidelberg, 2003, pp. 145–156.

[SE94] C. P. Schnorr and M. Euchner, Lattice basis reduction: Improved practical
algorithms and solving subset sum problems, Mathematical Programming
66 (1994), no. 1, 181–199.

[SG10] Michael Schneider and Nicolas Gama, Darmstadt SVP Challenges,
https://www.latticechallenge.org/svp-challenge/index.php, 2010,
Accessed: 17-08-2018.

[TKH18] Tadanori Teruya, Kenji Kashiwabara, and Goichiro Hanaoka, Fast lattice
basis reduction suitable for massive parallelization and its application to
the shortest vector problem, PKC 2018, Part I (Michel Abdalla and Ri-
cardo Dahab, eds.), LNCS, vol. 10769, Springer, Heidelberg, March 2018,
pp. 437–460.

[Wal16] Michael Walter, Sage implementation of Chen and Nguyen’s BKZ simu-
lator, http://pub.ist.ac.at/~mwalter/src/sim_bkz.sage, 2016.

[YD17] Yang Yu and Léo Ducas, Second order statistical behavior of LLL and
BKZ, SAC 2017 (Carlisle Adams and Jan Camenisch, eds.), LNCS, vol.
10719, Springer, Heidelberg, August 2017, pp. 3–22.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://www.latticechallenge.org/svp-challenge/index.php
http://pub.ist.ac.at/~mwalter/src/sim_bkz.sage

	The General Sieve Kernel and New Records in Lattice Reduction

		memory		 cputime		 walltime		db_size

		1.2999999		 112495.3161		 4345.1117		 20.60

		1.302999		 88078.9300		 3408.4785		 20.77

		1.305999		 68142.0333		 2643.9435		 20.94

		1.308999		 52232.1861		 2035.0366		 21.10

		1.311999		 42156.6482		 1650.2967		 21.27

		1.314999		 36100.5347		 1421.0798		 21.43

		1.317999		 32150.5338		 1273.6114		 21.60

		1.320999		 30058.2943		 1197.6460		 21.76

		1.323999		 29000.3869		 1162.2114		 21.92

		1.326999		 28856.7092		 1162.7529		 22.09

		1.329999		 28584.2077		 1158.9546		 22.25

		1.333333		 29237.0089		 1189.6695		 22.43

