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Abstract. LowMC is a block cipher family designed in 2015 by Al-
brecht et al. It is optimized for practical instantiations of multi-party
computation, fully homomorphic encryption, and zero-knowledge proofs.
LowMC is used in the Picnic signature scheme, submitted to NIST’s
post-quantum standardization project and is a substantial building block
in other novel post-quantum cryptosystems. Many LowMC instances use
a relatively recent design strategy (initiated by Gérard et al. at CHES
2013) of applying the non-linear layer to only a part of the state in each
round, where the shortage of non-linear operations is partially compen-
sated by heavy linear algebra. Since the high linear algebra complexity
has been a bottleneck in several applications, one of the open questions
raised by the designers was to reduce it, without introducing additional
non-linear operations (or compromising security).
In this paper, we consider LowMC instances with block size n, partial
non-linear layers of size s ≤ n and r encryption rounds. We redesign
LowMC’s linear components in a way that preserves its specification, yet
improves LowMC’s performance in essentially every aspect. Most of our
optimizations are applicable to all SP-networks with partial non-linear
layers and shed new light on this relatively new design methodology.
Our main result shows that when s < n, each LowMC instance belongs
to a large class of equivalent instances that differ in their linear layers. We
then select a representative instance from this class for which encryption
(and decryption) can be implemented much more efficiently than for an
arbitrary instance. This yields a new encryption algorithm that is equiv-
alent to the standard one, but reduces the evaluation time and storage
of the linear layers from r · n2 bits to about r · n2 − (r − 1)(n − s)2.
Additionally, we reduce the size of LowMC’s round keys and constants
and optimize its key schedule and instance generation algorithms. All of
these optimizations give substantial improvements for small s and a rea-
sonable choice of r. Finally, we formalize the notion of linear equivalence
of block ciphers and prove the optimality of some of our results.
Comprehensive benchmarking of our optimizations in various LowMC
applications (such as Picnic) reveals improvements by factors that typ-
ically range between 2x and 40x in runtime and memory consumption.

Keywords: Block cipher, LowMC, Picnic signature scheme, linear
equivalence



1 Introduction

LowMC is a block cipher family designed by Albrecht et al. [2], and is heav-
ily optimized for practical instantiations of multi-party computation (MPC),
fully homomorphic encryption (FHE), and zero-knowledge proofs. In such ap-
plications, non-linear operations incur a higher penalty in communication and
computational complexity compared to linear ones. Due to its design strategy,
LowMC is a popular building block in post-quantum designs that are based on
MPC and zero-knowledge protocols (cf. [6,7,10,14,9]). Most notably, it is used in
the Picnic signature algorithm [8] which is a candidate in NIST’s post-quantum
cryptography standardization project.4

Instances of LowMC are designed to perform well in two particular met-
rics that measure the complexity of non-linear operations over GF(2). The first
metric is multiplicative complexity (MC), which simply counts the number of
multiplications (AND gates in our context) in the circuit. The second metric is
the multiplicative (AND) depth of the circuit.

The relevance of each metric depends on the specific application. For ex-
ample, in the context of MPC protocols, Yao’s garbled circuits [20] with the
free-XOR technique [16] (and many of their variants) have a constant number
of communication rounds. The total amount of communication depends on the
MC of the circuit as each AND gate requires communication, whereas XOR op-
erations can be performed locally. In an additional class of MPC protocols (e.g.,
GMW [13]), the number of communication rounds is linear in the ANDdepth of
the evaluated circuit. The performance of these protocols depends on both the
MC and ANDdepth of the circuit.

In order to reduce the complexity of non-linear operations for a certain level
of security, LowMC combines very dense linear layers over GF(2)n (where n is
the block size) with simple non-linear layers containing 3×3 Sboxes of algebraic
degree 2. The LowMC block cipher family includes a huge number of instances,
where for each instance, the linear layer of each round is chosen independently
and uniformly at random from all invertible n× n matrices.

The design strategy of LowMC attempts to offer flexibility with respect to
both the MC and ANDdepth metrics. In particular, some LowMC instances
minimize the MC metric by applying only a partial non-linear layer to the state
of the cipher at each round, while the linear layers still mix the entire state.
In general, this approach requires to increase the total number of rounds in the
scheme in order to maintain a certain security level, but this is compensated by
the reduction in the size of the non-linear layers and the total AND count is
generally reduced. The global parameters of LowMC that are most relevant for
this paper are (1) the block size of n bits, (2) the number of rounds r (which is
determined according to the desired security level), and (3) a parameter s which

4 https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/

Round-1-Submissions
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denotes the domain length of each non-linear layer, namely, the number of bits
on which it operates (which may be smaller than n).5

While LowMC’s design aims to minimize the non-linear complexity of the
scheme at the expense of using many linear algebra (XOR) operations, in several
practical applications, XORs do not come for free and may become a bottleneck
in the implementation. This phenomenon was already noted and demonstrated
in the original LowMC paper. Indeed, due to the large computational cost of
LowMC’s dense linear layers, one of the open problems raised by its designers
was to reduce their computational cost, presumably by designing more specific
linear layers that offer the same security level with improved efficiency.

More recently, the high cost of LowMC’s linear operations influenced the
design of the Picnic signature algorithm, where the most relevant metric is
the MC that affects the signature size. In order to minimize the AND count
(and the signature size), the LowMC instances used by Picnic should have a
very small partial non-linear layer in each round (perhaps using only a single
3× 3 Sbox). However, such an instance has a large number of rounds r and each
encryption requires computation of r matrix-vector products that increase the
signing and verification times. Consequently, the Picnic designers settled for
non-linear layers of intermediate size in order to balance the signature size on
one hand and the signing and verification times on the other.

In fact, in Picnic there is another source of inefficiency due to the heavy
cost of the linear operations in LowMC’s key schedule: the computation of
LowMC inside Picnic involves splitting the LowMC instance to 3 related
instances which are evaluated with a fresh share of the key in each invocation.
Therefore, in contrast to standard applications, the key schedule has to be run
before each cipher invocation and it is not possible to hard-code the round keys
into the LowMC instance in this specific (and very important) application. In
LowMC, each of the r+ 1 round keys is generated by applying an independent
n×κ random linear transformation to the κ-bit master key. Therefore, the total
complexity of the key schedule is (r+ 1) · n · κ in both time and memory, which
is a substantial overhead on the signing and verification processes in Picnic.

Our Contribution In this paper we revisit the open problem of the LowMC
designers to reduce the complexity of its linear operations, focusing on instances
with partial non-linear layers (i.e., s < n). We consider a generalized LowMC
construction in which the r linear layers are selected uniformly at random from
the set of all invertible matrices and the non-linear layers are arbitrary and
applied to s bits of the n-bit internal state in each of the r rounds. Our results
are divided into several parts.

1. The round keys and constants of a generalized LowMC cipher require mem-
ory of (r + 1) · n bits. We compress them to n+ r · s bits. We then consider
LowMC’s linear key schedule (with a master key of size κ bits) and reduce

5 The LowMC specification denotes by m the number of 3 × 3 Sboxes in each non-
linear layer and therefore s = 3m in our context.

3



its complexity from (r + 1) · n · κ to n · κ+ r · (s · κ). This has a substantial
effect on the performance of Picnic, as described above.

2. The linear algebra of the encryption (and decryption) algorithm requires
matrices of size r·n2 bits and performs matrix-vector products with about the
same complexity. We describe a new algorithm that uses matrices requiring
only r ·n2− (r−1)(n− s)2 bits of storage and about the same linear algebra
time complexity (using standard matrix-vector products6).

3. We consider the complexity of generating a generalized LowMC instance,
assuming its linear layers are sampled at random. We devise a new sampling
algorithm that reduces this complexity7 from about r·n3 to n3+(r−1)·(s2·n).
Our sampling algorithm further reduces the number of uniform (pseudo)
random bits required to sample the linear layers from about r · n2 to n2 +
(r − 1) · (n2 − (n− s)2). These optimizations are useful in applications that
require frequent instance generation, e.g. for the RASTA design strategy [11].

4. We address the question of whether the linear layer description we use during
encryption is optimal (i.e., minimal) or can be further compressed. Indeed, it
may seem that the formula n2 +(r−1)(n2− (n−s)2) is suboptimal, and the
formula n2 +(r−1) ·s ·n2 is more reasonable, as it is linear in s (similarly to
the reduction in the size of the round keys). However, we prove (under two
assumptions which we argue are natural) that no further optimizations that
reduce the linear layer sizes are possible without changing their functionality.

Table 1 summarizes our improvements and the assumptions under which they
can be applied to an SP-network with partial non-linear layers. Surprisingly, al-
though the open problem of the LowMC designers presumably involved chang-
ing the specification of LowMC’s linear layers to reduce its linear algebra com-
plexity, our improvements achieve this without any specification change. All of
these improvements are significant for s� n and r that is not too small.

We stress that our optimized encryption algorithm is applicable to any SP-
network with partial non-linear layers (such as Zorro8 [12]) since it does not
assume any special property of the linear or non-linear layers. Yet, if the lin-
ear layers are not selected uniformly at random, the question of whether our
algorithm is more efficient compared to the standard one depends on the spe-
cific design. On the other hand, when designing new SP-networks with partial
non-linear layers, one may use our optimized linear layers as a starting point
for additional improvements. We further note that the reduced complexity of
the linear layer evaluation during encryption is also useful for adversaries that
attempt to break LowMC instances via exhaustive search.

6 Optimizations in matrix-vector multiplications (such as the “method of four Rus-
sians” [1]) can be applied to both the standard and to our new encryption algorithm.

7 Using asymptotically fast matrix multiplication and invertible matrix sampling al-
gorithms will reduce the asymptotic complexity of both the original and our new
algorithm. Nevertheless, it is not clear whether they would reduce their concrete
complexity for relevant choices of parameters.

8 Although Zorro is broken [3,18,19], its general design strategy remains valid.
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Metric Unoptimized Optimized Sect. Assumption

RK and RC M (r + 1) · n n+ s · r 3.1 None

KS T/M (r + 1) · (n · κ) n · κ+ r · (s · κ) 3.2 Linear KS

LL evaluation T/M r · n2 n2 + (r − 1) · (n2 − (n− s)2) 5 None

LL sampling
T r · n3 n3 + (r − 1) · (s2 · n)

7
Random LL

R r · n2 n2 + (r − 1) · (n2 − (n− s)2) sampling

Table 1. Improvements in time/memory/randomness (T/M/R) and assumptions un-
der which they are applicable (RK = round keys, RC = round constants, KS = key
schedule, LL = linear layer).

Parameters Memory Runtime
n s r LowMC Picnic

128 30 20 2.38x 1.41x 1.34x
192 30 30 3.99x 2.48x 1.72x
256 30 38 4.84x 2.82x 2.01x
128 3 182 16.51x 6.57x 4.74x
192 3 284 31.85x 11.50x 7.97x
256 3 363 39.48x 16.18x 10.83x

Table 2. Multiplicative gains (previous / new) in memory consumption and in runtimes
for LowMC encryption and Picnic signing and verification.

Table 2 compares9 the size of LowMC’s linear layers in previous implemen-
tations to our new encryption algorithm for several instances. The first three
instances are the ones used by the Picnic signature algorithm and for them we
obtain a multiplicative gain of between 2.38x and 4.84x in memory consumption.
Runtime-wise we obtain an improvement of a factor between 1.41x to 2.82x for
LowMC encryption and by a factor between 1.34x to 2.01x for Picnic.

Even more importantly, prior to this work, reducing s (in order to optimize
the MC metric) while increasing r (in order to maintain the same security level
for a LowMC instance) increased the linear algebra complexity proportionally
to the increase in the number of rounds, making those instances impractical.
One of the main consequences of this work is that such a reduction in s now also
reduces the linear algebra complexity per round, such that the larger number
of rounds is no longer a limiting factor. In particular, the last three instances
in Table 2 correspond to a choice of parameters with a minimal value of s that
minimizes signature sizes in Picnic. For those instances, we reduce the size of
the linear layers by a factor between 16.51x to 39.48x and improve runtimes
by up to a factor of 16x. Moreover, compared to the original Picnic instances
that use s = 30, using our optimizations, instances with s = 3 reduce memory
consumption and achieve comparable runtime results.

9 For key size and the allowed data complexity, we refer to the full version.
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Our Techniques The first step in reducing the size of the round keys and
constants is to exchange the order of the key and constant additions with the
application of the linear layer in a round of the cipher. While this is a common
technique in symmetric cryptography, we observe that in case s < n, after re-
ordering, the constant and key additions of consecutive rounds can be merged
through the n− s bits of the state that do not go through the non-linear trans-
formation. Applying this process recursively effectively eliminates all the key
and constant additions on n− s bits of the state (except for the initial key and
constant additions). We then exploit the linear key schedule of LowMC and
compute the reduced round keys more efficiently from the master key.

In order to derive our new encryption algorithm, we show that each (gen-
eralized) LowMC instance belongs to a class of equivalent instances which is
of a very large size when s � n. We then select a representative member of
the equivalence class that can be implemented efficiently using linear algebra
optimizations which apply matrices with a special structure instead of random
matrices (yet the full cipher remains equivalent). This requires a careful exami-
nation of the interaction between linear operations in consecutive rounds which
is somewhat related to (but more complex than) the way that round keys and
constants of consecutive rounds interact. After devising the encryption algo-
rithm, we show how to sample a representative member of an equivalence class
more efficiently than a random member. Our new sampling algorithm breaks
dependencies among different parts of the linear layers in a generalized LowMC
cipher, shedding further light on its internal structure.

Finally, we formalize the notion of linear equivalence among generalized
LowMC ciphers. This allows us to prove (based on two natural assumptions)
that we correctly identified the linear equivalence classes and hence our descrip-
tion of the linear layers is optimal in size and we use the minimal amount of
randomness to sample it. The formalization requires some care and the proof of
optimality is somewhat non-standard (indeed, the claim that we prove is non-
standard).

Related Work Previous works [4,5] investigated equivalent representations of
AES and other block ciphers obtained by utilizing the specific structure of their
Sboxes (exploiting a property called self-affine equivalence [5]). On the other
hand, our equivalent representation and encryption algorithm is independent of
the non-linear layer and can be applied regardless of its specification. Yet we
only deal with block ciphers with partial non-linear layers in this paper.

Paper Organization The rest of the paper is organized as follows. We describe
some preliminaries in Section 2. Our first optimizations regarding round keys,
constants, and the key schedule are described in Section 3. In Section 4, we prove
basic linear algebra properties, which are then used in our optimized encryption
algorithm, described in Section 5. Our evaluation of LowMC implementations
that make use of these optimization are detailed in Section 6. Next, our optimized
instance generation algorithm for sampling the linear layers is given in Section 7.
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Finally, we prove the optimality of our description of the linear layers in Section 8
and conclude in Section 9.

2 Preliminaries

2.1 Notation

Given a string of bits x ∈ {0, 1}n, denote by x[|d] its d most significant bits
(MSBs) and by x[d|] its d least significant bits (LSBs). Given strings x, y, denote
by x‖y their concatenation. Given a matrix A, denote by A[∗, i] its i’th column,
by A[∗, d|] its first d columns and by A[∗, |d] its last d columns. Given two ma-
trices A ∈ GF(2)d1×d2 and B ∈ GF(2)d1×d3 denote by A‖B ∈ GF(2)d1×(d2+d3)

their concatenation. Denote by Id ∈ GF (2)d×d the identity matrix.
Throughout this paper, addition x + y between bit strings x, y ∈ {0, 1}n is

performed bit-wise over GF(2)n (i.e., by XORing them).

2.2 Generalized LowMC Ciphers

We study generalized LowMC (GLMC) ciphers where the block size is n bits,
and each non-linear layer operates on s ≤ n bits of the state. Each instance is
characterized by a number of rounds r, round keys ki for i ∈ {0, . . . , r} and round
constants Ci, for i ∈ {0, . . . , r}. The cipher consists of r (partial) invertible non-
linear layers Si : {0, 1}s → {0, 1}s and r invertible linear layers Li ∈ GF(2)n×n

for i ∈ {1, . . . , r}.
A GLMC instance is generated by choosing each Li independently and uni-

formly at random among all invertible n× n matrices.10 However, we note that
the main encryption algorithm we devise in Section 5 is applicable regardless
of the way that the linear layers are chosen. We do not restrict the invertible
non-linear layers.

The encryption procedure manipulates n-bit words that represent GLMC
states, while breaking them down according to their s LSBs (which we call
“part 0 of the state”) and n − s MSBs (which we call “part 1 of the state”).
To simplify our notation, given any n-bit string x, we denote x(0) = x[s|] and
x(1) = x[|n− s].

The basic GLMC encryption procedure is given in Algorithm 1. Decryption
is performed by applying the inverse operations to a ciphertext.

Key Schedule The key schedule optimization of Section 3.2 assumes that round
keys are generated linearly from the master key (as in LowMC) and we now
define appropriate notation. The master key k is of length κ bits. It is used to
generate round key ki for i ∈ {0, 1, . . . , r} using the matrix Ki ∈ GF (2)n×κ,
namely, ki = Ki · k. During instance generation, each matrix {Ki}ri=0 is chosen
uniformly at random among all n× κ matrices.

10 Alternatively, they can be selected in a pseudo-random way from a short seed, as in
LowMC.
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Input : x0
Output : xr+1

begin
x1 ← x0 + k0 + C0

for i ∈ {1, 2, . . . , r} do
yi ← Si(x

(0)
i )‖x(1)i

xi+1 ← Li(yi) + ki + Ci

end
return xr+1

end
Algorithm 1: Basic encryption.

2.3 Breaking Down the Linear Layers

Given Li (which is an n × n matrix), we partition its n-bit input into the first
s LSBs (part 0 of the state that is output by Si) and the remaining n − s bits
(part 1 of the state). Similarly, we partition its n-bit output into the first s LSBs
(that are inputs of Si+1) and the remaining n− s bits. We define 4 sub-matrices
of Li that map between the 4 possible pairs of state parts:

L00
i ∈ GF(2)s×s, L01

i ∈ GF(2)s×(n−s),

L10
i ∈ GF(2)(n−s)×s, L11

i ∈ GF(2)(n−s)×(n−s).

Thus, in our notation Labi for a, b ∈ {0, 1} maps the part of the state denoted by
b to the part of the state denoted by a.

Li =

[
L00
i L01

i

L10
i︸︷︷︸
s

L11
i︸︷︷︸

n−s

]
} s
}n− s

We extend our notation Labi by allowing a, b ∈ {0, 1, ∗}, where the symbol ‘∗ ‘
denotes the full state. Therefore,

L0∗
i ∈ GF(2)s×n, L1∗

i ∈ GF(2)(n−s)×n, L∗0i ∈ GF(2)n×s, L∗1i ∈ GF(2)n×(n−s),

are linear transformations which are sub-matrices of Li, as shown below.

Li =

[
L0∗
i

L1∗
i

]
, Li =

[
L∗0i L∗1i

]
2.4 Complexity Evaluation

In this paper, we analyze the complexity of the linear layers of generalized
LowMC schemes. We will be interested in the two natural measures of time
complexity (measured by the number of bit operations) and memory complexity
(measured by the number of stored bits) of a single encryption (or decryption)

8



of an arbitrary plaintext (or ciphertext). The linear layers are naturally repre-
sented by matrices, and thus evaluating a linear layer on a state is a simply a
matrix-vector product. Since the time and memory complexities of evaluating
and storing the linear layers are proportional in this paper, we will typically refer
to both as the linear algebra complexity of the linear layers. For algorithms that
generate GLMC instances, we will be interested in time complexity and in the
number of random bits (or pseudo-random bits) that they use.

3 Optimized Round Key Computation and Constant
Addition

In this section we optimize the round key computation and constant addition in
a GLMC cipher. First, we show how to compress the round keys and constants
and then we optimize the key schedule of the cipher, assuming it is linear. These
optimizations are significant in case we need to run the key schedule for every
cipher invocation (which is the case in Picnic).

3.1 Compressing the Round Keys and Constants

We combine the last two linear operations in encryption Algorithm 1 and obtain

xi+1 ← Li(yi)+ki+Ci. Moreover, yi ← Si(x
(0)
i )‖x(1)i , namely Si only operates on

the first s bits of the state and does not change x
(1)
i . Based on this observation,

we perform the following:

– Modify xi+1 ← Li(yi) + ki + Ci to xi+1 ← Li(yi + L−1i · ki) + Ci.
– Split L−1i · ki into the lower s bits (the “non-linear part”, i.e., (L−1i · ki)(0))

and the upper n− s bits (the “linear part”, i.e., (L−1i · ki)(1)) and move the
addition of the upper n− s bits before the Sbox layer.

Figure 1 demonstrates one round of the cipher with the above modifications
(which do not change its output).

Next, we observe that the addition of (L−1i · ki)(1) at the beginning of the
round can be combined with the addition of ki−1 in the previous round. We can
now perform similar operations to round i− 1 and continue recursively until all
additions to the linear part of the state have been moved to the start of the
algorithm. In general, starting from the last round and iterating this procedure
down to the first, we eliminate all additions of the linear parts of the round keys
and move them before the first round. For each round i ≥ 1, we are left with a
reduced round key of size s.

In total, the size of the round keys is reduced from n · (r+ 1) to n+ s · r. We
remark that the same optimization can be performed to the constant additions,
reducing their size by the same amount. We denote the new reduced round key
of round i by k′i and the new reduced round constant by C ′i. The new encryption
procedure is given in Algorithm 2. Observe that all the values {k′i + C ′i}ri=0 can
be computed and stored at the beginning of the encryption and their total size
is n+ s · r.
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xi

Si

· Li

Ci

ki

xi+1

xi

(L−1
i · ki)

(1)

Si

(L−1
i · ki)

(0)

· Li

Ci

xi+1

Fig. 1. One round before (left) and after (right) splitting the round key addition.

Input : x0
Output : xr+1

begin
x1 ← x0 + k′0 + C′0
for i ∈ {1, 2, . . . , r} do

yi ← (Si(x
(0)
i ) + k′i + C′i)‖x

(1)
i

xi+1 ← Li(yi)
end
return xr+1

end
Algorithm 2: Encryption with reduced round keys and constants.

3.2 Optimizing the Key Schedule

We now deal with optimizing the round key computation of Algorithm 2, as-
suming a linear key schedule. The original key schedule applies r + 1 round key
matrices Ki to the κ-bit key k in order to compute the round keys ki = Ki ·k. It
therefore has a complexity of (r+1) · (n ·κ) (using a similar amount of memory).
We show how to reduce this complexity to n · κ+ r · (s · κ).

The main observation is that all transformations performed in Section 3.1 in
order to calculate the new round keys from the original ones are linear. These
linear transformations can be composed with the linear transformations Ki in
order to define linear transformations that compute the new round keys directly
from the master key k. Since the total size of the round keys is n+ s · r bits, we
can define matrices of total size n · κ + r · (s · κ) that calculate all round keys
from the master κ-bit key.

More specifically, we define the matrix L−1i which is the inverse of the linear
layer matrix Li, with the first s rows of this inverse set to 0. Applying the
iterative procedure defined in Section 3.1 from round r down to round i, we

10



obtain

PN,i =

r∑
j=i

(
j∏
`=i

L−1`

)
·Kj .

For i ≥ 1, the new round key k′i (for the non-linear part of the state) is computed
by taking the s least significant bits of PN,i ·k. Using the notation of Section 2.3,
we have

k′i = (PN,i)
0∗ · k.

Observe that the total size of all {(PN,i)0∗}ri=1 is r · (s · κ) bits. Finally, the new
round key k′0 is calculated by summing the contributions from the linear parts
of the state, using the matrix

PL = K0 +

r∑
j=1

(
j∏
`=1

L−1`

)
·Kj .

Therefore, we have k′0 = PL · k, where PL is an n × κ matrix. All matrices
{(PN,i)0∗}ri=1, PL can be precomputed after instance generation and we do not
need to store the original round key matrices Ki.

4 Linear Algebra Properties

In this section we describe the linear algebra properties that are relevant for the
rest of this paper. We begin by describing additional notational conventions.

4.1 General Matrix Notation

The superscript of Labi introduce in Section 2.3 has a double interpretation, as
specifying both the dimensions of the matrix and its location in Li. We will use
this notation more generally to denote sub-matrices of some n× n matrix A, or
simply to define a matrix with appropriate dimensions (e.g., A01 ∈ GF(2)s×(n−s)

may be defined without defining A and this should be clear from the context).
Therefore, dimensions of the matrices in the rest of the paper will be explicitly
specified in superscript as Aab, where a, b ∈ {0, 1, ∗} (we do not deal with ma-
trices of other dimensions). In case the matrix Aab is a sub-matrix of a larger
matrix A, the superscript has a double interpretation as specifying both the di-
mensions of Aab and its location in A. When no superscript is given, the relevant
matrix is of dimensions n × n. There will be two exceptions to this rule which
will be specified separately.

4.2 Invertible Binary Matrices

Denote by αn the probability that an n × n uniformly chosen binary matrix is
invertible. We will use the following well-known fact:
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Fact 1 [[15], page 126, adapted] The probability that an n × n uniform bi-
nary matrix is invertible is αn =

∏n
i=1(1 − 1/2i) > 0.2887. More generally,

for positive integers d ≤ n, the probability that a d × n binary matrix, cho-
sen uniformly at random, has full row rank of d is

∏n
i=n−d+1(1 − 1/2i) =(∏n

i=1(1− 1/2i)
)
/
(∏n−d

i=1 (1− 1/2i)
)

= αn/αn−d.

We will be interested in invertibility of matrices of a special form, described in
the following fact (which follows from basic linear algebra).

Fact 2 An n× n binary matrix of the form[
A00 A01

A10 In−s

]
is invertible if and only if the s× s matrix B00 = A00 +A01A10 is invertible and
its inverse is given by[

(B00)−1 −(B00)−1 ·A01

−A10 · (B00)−1 In−s −A10 · (B00)−1 ·A01

]
.

Finally, we prove (in the full version) a simple proposition regarding random
matrices.

Proposition 1. Let A ∈ GF(2)n×n be an invertible matrix chosen uniformly at
random and let B11 ∈ GF(2)(n−s)×(n−s) be an arbitrary invertible matrix (for
s ≤ n) that is independent from A. Then the matrix

C =

[
A00 A01 ·B11

A10 A11 ·B11

]
is a uniform invertible matrix.

4.3 Normalized Matrices

Definition 1. Let A1∗ be a Boolean matrix with full row rank of n − s (and
therefore it has n−s linearly independent columns). Let COL(A) denote the first
set of n−s linearly independent columns of A1∗ in a fixed lexicographic ordering
of columns sets. Then, these columns form an (n− s)× (n− s) invertible matrix
which is denoted by Ȧ, while the remaining columns form an (n− s)× s matrix
which is denoted by Ä. Moreover, denote Â = Ȧ−1 ·A1∗ ∈ GF(2)(n−s)× (in this
matrix Â, the columns of COL(A) form the identity matrix).

Remark 1. The only exception to the rule of Section 4.1 has to do with Defini-
tion 1 (and later with the related Definition 2). In this paper, the decomposition
of Definition 1 is always applied to matrices A1∗ ∈ GF(2)(n−s)×n (in case A1∗

is a sub-matrix of A, it contains the bottom n− s rows of A). Hence the result-
ing matrices Ȧ ∈ GF(2)(n−s)×(n−s), Ä ∈ GF(2)(n−s)×s and Â ∈ GF(2)(n−s)×n

have fixed dimensions and do not need any superscript. On the other hand,
we will use superscript notation to denote sub-matrices of these. For example
Â10 ∈ GF(2)(n−s)×s is a sub-matrix of Â, consisting of its first s columns.

12



It will be convenient to consider a lexicographic ordering in which the columns
indices of A1∗ are reversed, i.e., the first ordered set of n− s columns is {n, n−
1, . . . , s+1}, the second is {n, n−1, . . . , s+2, s}, etc. To demonstrate the above
definition, assume that COL(A) = {n, n − 1, . . . , s + 1} is a consecutive set of
linearly independent columns. Then, the matrix A1∗ is shown below.

A1∗ =
[
Ä︸︷︷︸
s

Ȧ︸︷︷︸
n−s

] }
n− s

We can write A = (Ȧ · Ȧ−1) ·A = Ȧ · (Ȧ−1 ·A) = Ȧ · Â, where

Â = Ȧ−1 ·A1∗ =
[
Ȧ−1 · Ä︸ ︷︷ ︸

s

In−s︸︷︷︸
n−s

] }
n− s. (1)

Normalized Equivalence Classes Given an invertible matrix A ∈ GF(2)n×n,
define

N(A) =

[
A0∗

Â

]
=

[
A0∗

Ȧ−1 ·A1∗

]
=

[
Is 001

010 Ȧ−1

]
·A.

The transformation N(·) partitions the set of invertible n× n boolean matrices
into normalized equivalence classes, where A,B are in the same normalized equiv-
alence class if N(A) = N(B). We denote A↔N B the relation N(A) = N(B).

Proposition 2. Two invertible n× n boolean matrices A,B satisfy A↔N B if
and only if there exists an invertible matrix C11 such that

A =

[
Is 001

010 C11

]
·B.

For the proof of Proposition 2, we refer the reader to the full version.
Let Φ = {N(A) | A ∈ GF(2)n×n is invertible} contain a representative from

each normalized equivalence class. Using Fact 1 and Proposition 2, we deduce
the following corollary.

Corollary 1. The following properties hold for normalized equivalence classes:

1. Each member of Φ represents a normalized equivalence class whose size is
equal to the number of invertible (n − s) × (n − s) matrices C11, which is

αn−s · 2(n−s)
2

.
2. The size of Φ is

|Φ| = αn · 2n
2

αn−s · 2(n−s)2
= αn/αn−s · 2n

2−(n−s)2 .

4.4 Matrix-Vector Product

Definition 2. Let A1∗ and B∗1 be two Boolean matrices such that A1∗ has full
row rank of n− s. Define B̌A = B · Ȧ ∈ GF(2)n×(n−s).

When A is understood from the context, we simply write B̌ instead of B̌A.
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Remark 2. The notational conventions that apply to Definition 1 also apply Def-
inition 2 (see Remark 1), as it is always applied to matrices A1∗ ∈ GF(2)(n−s)×n

and B∗1 ∈ GF(2)n×(n−s), where B̌ ∈ GF(2)n×(n−s) (and its sub-matrices are
denoted using superscript).

Proposition 3. Let A1∗ and B∗1 be two Boolean matrices such that A1∗ has full
row rank of n− s. Let C = B∗1 ·A1∗ ∈ GF(2)n×n. Then, after preprocessing A1∗

and B∗1, C can be represented using b = n2 − s2 + n bits. Moreover, given x ∈
GF(2)n, the matrix-vector product Cx can be computed using O(b) bit operations.

Note that the above representation of the n×n matrix C is more efficient than
the trivial representation that uses n2 bits (ignoring the additive lower order term
n). It is also more efficient than a representation that uses the decomposition
C = B∗1 ·A1∗ which requires 2n(n− s) = (n2 − s2) + (n− s)2 ≥ n2 − s2 bits.
Proof. The optimized representation is obtained by “pushing” linear algebra
operations from A1∗ into B∗1, which “consumes” them, as formally described
next. Note that since A1∗ has full row rank of n−s, we use definitions 1 and 2, and
write C = B∗1 ·A1∗ = B∗1 ·(Ȧ·Ȧ−1)·A1∗ = (B∗1 ·Ȧ)·(Ȧ−1 ·A1∗) = B̌ ·Â, where B̌
and Â can be computed during preprocessing. Let us assume that the last n− s
columns of A1∗ are linearly independent (namely, COL(A1∗) = {n, n−1, . . . , s+
1}). Then due to (1), Â can be represented using s(n− s) bits and the matrix-
vector product Cx can be computed using O(s(n− s) + n(n− s)) = O(n2 − s2)
bit operations by computing Âx = (Ȧ−1 · Ä) · x[s|] + x[|n− s].

We assumed that the last n − s columns of A1∗ are linearly independent.
If this is not the case, then COL(A1∗) can be specified explicitly (to indicate
the columns of Â that form the identity) using at most n additional bits. The
product Âx is computed by decomposing x according to COL(A1∗) (rather than
according to its s LSBs). �

Remark 3. Consider the case that A1∗ is selected uniformly at random among
all matrices of full row rank. Then, using simple analysis based on Fact 1, n− s
linearly independent columns of A1∗ are very likely to be found among its n−s+3
last columns. Consequently, the additive low-order term n in the representation
size of C can be reduced to an expected size of about 3 log n (specifying the 3
indices among are final n − s + 3 that do not belong in COL(A1∗)). Moreover,
computing the product Âx requires permuting only 3 pairs of bits of x on average
(and then decomposing it as in the proof above).

5 Optimized Linear Layer Evaluation

In this section, we describe our encryption algorithm that optimizes the linear
algebra of Algorithm 2. We begin by optimizing the implementation of a 2-round
GLMC cipher and then consider a general r-round cipher.

It will be convenient to further simplify Algorithm 2 by defining k′′0 = k′0+C ′0.

For i > 0, we move the addition of k′i + C ′i into Si by redefining S′′i (x
(0)
i ) =

Si(x
(0)
i ) + k′i +C ′i. This makes the Sbox key-dependent, which is not important

14



Input : x0
Output : xr+1

begin
x1 ← x0 + k0
for i ∈ {1, 2, . . . , r} do

yi ← Si(x
(0)
i )‖x(1)i

xi+1 ← Li(yi)
end
return xr+1

end
Algorithm 3: Simplified encryption.

for the rest of the paper. Finally, we abuse notation for simplicity and rename
k′′0 and S′′i back to k0 and Si, respectively. The outcome is given in Algorithm 3.

5.1 Basic 2-Round Encryption Algorithm

We start with a basic algorithm that attempts to combine the linear algebra
computation of two rounds. This computation can be written as(

x
(0)
3

x
(1)
3

)
=

[
L00
2 L01

2

L10
2 L11

2

](
y
(0)
2

y
(1)
2

)
,

(
x
(0)
2

x
(1)
2

)
=

[
L00
1 L01

1

L10
1 L11

1

](
y
(0)
1

y
(1)
1

)
.

Note that x
(0)
2 and y

(0)
2 are related non-linearly as y

(0)
2 = S2(x

(0)
2 ). On the

other hand, since x
(1)
2 = y

(1)
2 we can compute the contribution of y

(1)
2 to x3 at

once from y1 by partially combining the linear operations of the two rounds as(
t
(0)
3

t
(1)
3

)
=

[
L01
2 L

10
1 L01

2 L
11
1

L11
2 L

10
1 L11

2 L
11
1

](
y
(0)
1

y
(1)
1

)
. (2)

The linear transformation of (2) is obtained from the product L2 ·L1 by ignoring

the terms involving L00
2 and L10

2 (that operate on y
(0)
2 ). Note that (2) defines an

n× n matrix that can be precomputed.

We are left to compute the contribution of y
(0)
2 to x3, which is done directly

as in Algorithm 3 by

x
(0)
2 ← L0∗

1 (y1), y
(0)
2 ← S2(x

(0)
2 ), t′3 ← L∗02 (y

(0)
2 ). (3)

This calculation involves s× n and n× s matrices. Finally, combining the con-
tributions of (2) and (3), we obtain

x3 ← t3 + t′3.

Overall, the complexity of linear algebra in the two rounds is n2 + 2sn instead
of 2n2 of Algorithm 3. This is an improvement provided that s < n/2, but is
inefficient otherwise.
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5.2 Optimized 2-Round Encryption Algorithm

The optimized algorithm requires a closer look at the linear transformation of (2).
Note that this matrix can be rewritten as the product(

t
(0)
3

t
(1)
3

)
=

[
L01
2

L11
2

] [
L10
1 L11

1

](y(0)1

y
(1)
1

)
. (4)

More compactly, this n × n linear transformation is decomposed as L∗12 · L1∗
1 ,

namely, it is a product of matrices with dimensions (n− s)× n and n× (n− s).
In order to take advantage of this decomposition, we use Proposition 3 which
can be applied since L1∗

1 has full row rank of n− s. This reduces linear algebra
complexity of L∗12 · L1∗

1 from n2 to n(n − s) + n(n − s) − (n − s)2 = n2 − s2,
ignoring an additive low order term of 3 log n, as computed in Remark 3.

Input : x0
Output: x3
begin

x1 ← x0 + k0
y1 ← S1(x

(0)
1 )‖x(1)1

x
(0)
2 ← L0∗

1 (y1)

y
(0)
2 ← S2(x

(0)
2 )

x3 ← L∗02 (y
(0)
2 )

x3 ← x3 + Ľ2(L̂1(y1))
return x3

end
Algorithm 4: Optimized 2-round
encryption.

Input : x0
Output: x3
begin

x1 ← x0 + k0
y1 ← S1(x

(0)
1 )‖x(1)1

x
(0)
2 ← L0∗

1 (y1)

z
(1)
2 ← L̂1(y1)

y
(0)
2 ← S2(x

(0)
2 )

x3 ← L∗02 (y
(0)
2 )

x3 ← x3 + Ľ2(z
(1)
2 )

return x3
end

Algorithm 5: Refactored 2-round
encryption.

Algorithm 4 exploits the decomposition L∗12 · L1∗
1 = Ľ2 · L̂1. Altogether, the

linear algebra complexity of 2 rounds is reduced to

n2 + 2sn− s2 = 2n2 − (n− s)2

(or 2n2 − (n − s)2 + 3 log n after taking Remark 3 into account). This is an
improvement by an additive factor of about s2 compared to the basic 2-round
algorithm above and is an improvement over the standard complexity of 2n2 for
essentially all s < n.

5.3 Towards an Optimized r-Round Encryption Algorithm

The optimization applied in the 2-round algorithm does not seem to generalize
to an arbitrary number of rounds in a straightforward manner. In fact, there
is more than one way to generalize this algorithm (and obtain improvements
over the standard one in some cases) using variants of the basic algorithm of
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Section 5.1 which directly combines more that two rounds. These variants are
sub-optimal since they do not exploit the full potential of Proposition 3.

The optimal algorithm is still not evident since the structure of the rounds
of Algorithm 4 does not resemble their structure in Algorithm 3 that we started

with. Consequently, we rewrite it in Algorithm 5 such that z
(1)
2 = L̂1(y1) is

computed already in round 1 instead of round 2. The linear algebra in round 2
of Algorithm 5 can now be described using the n× n transformation(

x
(0)
3

x
(1)
3

)
=

[
L00
2 Ľ01

2

L10
2 Ľ11

2

](
y
(0)
2

z
(1)
2

)
.

Note that z
(1)
2 is a value that is never computed by the original Algorithm 3.

When we add additional encryption rounds, we can apply Proposition 3 again
and “push” some of the linear algebra of round 2 into round 3, then “push” some
of the linear algebra of round 3 into round 4, etc. The full algorithm is described
in detail next.

5.4 Optimized r-Round Encryption Algorithm

In this section, we describe our optimized algorithm for evaluating r rounds of
a GLMC cipher. We begin by defining the following sequence of matrices.

For i = 1 : R1∗
1 = L1∗

1

R̂1 = (Ṙ1)−1 ·R1∗
1 .

For 2 ≤ i ≤ r − 1 : Ťi = L∗1i · Ṙi−1
R1∗
i = L10

i ‖Ť 11
i .

R̂i = (Ṙi)
−1 ·R1∗

i .

For i = r : Ťr = L∗1r · Ṙr−1.

Basically, the matrix Ťi combines the linear algebra of round i with the linear
algebra that is pushed from the previous round (represented by Ṙi−1). The
matrix R̂i is the source of optimization, computed by normalizing the updated
round matrix (after computing Ťi). The byproduct of this normalization is Ṙi,
which is pushed into round i+ 1, and so forth.

Before we continue, we need to prove the following claim (the proof is given
in the full version).

Proposition 4. The matrix R1∗
i has full row rank of n−s for all i ∈ {1, . . . , r−

1}, hence (Ṙi)
−1 exists.

The general optimized encryption algorithm is given in Algorithm 6. At a

high level, the first round can be viewed as mapping the “real state” (y
(0)
1 , y

(1)
1 )

into the “shadow state” (x
(0)
2 , z

(1)
2 ) using the linear transformation(

x
(0)
2

z
(1)
2

)
=

[
L00
1 L01

1

R̂10
1 R̂11

1

](
y
(0)
1

y
(1)
1

)
.
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Input : x0
Output : xr+1

begin
x1 ← x0 + k0
y1 ← S1(x

(0)
1 )‖x(1)1 . Round 1

x
(0)
2 ← L0∗

1 (y1)

z
(1)
2 ← R̂1(y1)
for i ∈ {2, . . . , r − 1} do

y
(0)
i ← Si(x

(0)
i ) . Round i

x
(0)
i+1 ← L00

i (y
(0)
i ) + Ť 01

i (z
(1)
i )

z
(1)
i+1 ← R̂i(y

(0)
i ‖z

(1)
i )

end

y
(0)
r ← Sr(x

(0)
r ) . Round r

xr+1 ← L∗0r (y
(0)
r ) + Ťr(z

(1)
r )

return xr+1

end
Algorithm 6: Optimized r-round encryption.

In rounds i ∈ {2, . . . , r − 1}, the shadow state (y
(0)
i , z

(1)
i ) (obtained after

applying Si(x
(0)
i )) is mapped to the next shadow state (x

(0)
i+1, z

(1)
i+1) using the

linear transformation (
x
(0)
i+1

z
(1)
i+1

)
=

[
L00
i Ť 01

i

R̂10
i R̂11

i

](
y
(0)
i

z
(1)
i

)
.

Finally, in round r, the shadow state (y
(0)
r , z

(1)
r ) is mapped to the final real

state (x
(0)
r+1, x

(1)
r+1) using the linear transformation(

x
(0)
r+1

x
(1)
r+1

)
=

[
L00
r Ť 01

r

L10
r Ť 11

r

](
y
(0)
r

z
(1)
r

)
.

Complexity Evaluation As noted above, Algorithm 6 applies r linear transforma-
tion, each of dimension n×n. Hence, ignoring the linear algebra optimizations for
each R̂i, the linear algebra complexity of each round is n2, leading to a total com-
plexity of r ·n2. Taking the optimizations into account, for each i ∈ {1, . . . , r−1},
the actual linear algebra complexity of R̂i is reduced by (n− s)2 to n2− (n− s)2
(as R̂i contains the (n− s)× (n− s) identity matrix). Therefore, the total linear
algebra complexity is

r · n2 − (r − 1)(n− s)2.

Taking Remark 3 into account, we need to add another factor of 3(r − 1) log n.

Remark 4. Note that Algorithm 6 is obtained from Algorithm 3 independently
of how the instances of the cipher are generated. Hence, Algorithm 6 is applicable
in principle to all SP-networks with partial non-linear layers.
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Correctness We now prove correctness of Algorithm 6 by showing that its output
value is identical to a standard implementation of the scheme in Algorithm 3.
For each i ∈ {0, 1, . . . , r + 1}, denote by x̄i the state value at the beginning of
round i in a standard implementation and by ȳi the state after the application
of Si. The proof of Proposition 5 are given in the full version.

Proposition 5. For each i ∈ {1, . . . , r − 1} in Algorithm 6, y
(0)
i = ȳ

(0)
i , x

(0)
i+1 =

x̄
(0)
i+1 and z

(1)
i+1 = (Ṙi)

−1(x̄
(1)
i+1).

Proposition 6. Algorithm 6 is correct, namely xr+1 = x̄r+1.

Proof. By Algorithm 6 and using Proposition 5,

xr+1 =L∗0r (y(0)r ) + Ťr(z
(1)
r ) = L∗0r (ȳ(0)r ) + L∗1r · Ṙr−1

(
(Ṙr−1)−1(x̄(1)r )

)
=

L∗0r (ȳ(0)r ) + L∗1r (ȳ(1)r ) = Lr(ȳr) = x̄r+1.

�

6 Applications to LowMC in Picnic and Garbled Circuits

To verify the expected performance and memory improvements, we evaluate
both suggested optimizations in three scenarios: LowMC encryption, the digital
signature scheme Picnic, and in the context of Yao’s garbled circuits. We discuss
the details on the choice of LowMC instances and how LowMC is used in
Picnic and garbled circuits and their applications in the full version. Throughout
this section, we benchmark LowMC instances with block size n, non-linear layer
size s and r rounds and simply refer to them as LowMC-n-s-r. For the evaluation
in the context of Picnic, we integrated our optimizations in the SIMD-optimized
implementation available on GitHub.11 For the evaluation in a garbled circuit
framework, we implement it from scratch. All benchmarks presented in this
section were performed on an Intel Core i7-4790 running Ubuntu 18.04.

6.1 LowMC

We first present benchmarking results for encryption of LowMC instances se-
lected for the Picnic use-case, i.e., with data complexity 1, and s = 3, as well
as the instances currently used in Picnic with s = 30. While the optimized
round key computation and constant addition (ORKC, Section 3) already re-
duces the runtime of a single encryption by half, which we would also obtain
by pre-computing the round keys (when not used inside Picnic), the optimized
linear layer evaluation (OLLE, Section 5) significantly reduces the runtime even
using a SIMD optimized implementation. For s = 30, we achieve improvements
by a factor up to 2.82x and for s = 3 up to a factor of 16.18x, bringing the per-
formance of the instances with only one Sbox close to ones with more Sboxes.

11 See https://github.com/IAIK/Picnic for the integration in Picnic and https:

//github.com/IAIK/Picnic-LowMC for the matrix generation.
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LowMC-n-s-r w/o opt. with ORKC with OLLE Improv. (old / new)

128-30-20
R 3.29 2.36 2.33 1.41x
S 84.2 55.0 35.4 2.38x

192-30-30
R 10.03 5.64 4.04 2.48x
S 369.8 211.2 92.8 3.99x

256-30-38
R 16.41 9.21 5.81 2.82x
S 620.8 353.5 128.3 4.84x

128-3-182
R 30.93 17.13 4.71 6.57x
S 749.9 383.9 45.4 16.51x

192-3-284
R 90.99 47.32 7.91 11.50x
S 3449.5 1743.2 108.3 31.85x

256-3-363
R 167.05 78.64 10.32 16.18x
S 5861.4 2963.7 148.5 39.48x

Table 3. Benchmarks (R) of LowMC-n-s-r instances using SIMD, without optimiza-
tion, with ORKC, and OLLE (in µs). Sizes (S) of matrices and constants stored in
compiled implementation (in KB).

w/o opt. with ORKC with OLLE Improv. (old / new)
Parameters Sign Verify Sign Verify Sign Verify Sign Verify

Picnic-128-30-20 3.56 2.41 2.71 1.89 2.65 1.87 1.34x 1.29x
Picnic-192-30-30 10.91 7.76 7.52 5.22 6.33 4.44 1.72x 1.75x
Picnic-256-30-38 22.80 15.63 15.41 10.82 11.37 7.88 2.01x 1.98x

Picnic-128-3-182 20.49 14.23 11.78 8.28 4.32 3.11 4.74x 4.57x
Picnic-192-3-284 80.76 58.23 42.85 29.94 10.13 7.29 7.97x 7.99x
Picnic-256-3-363 192.65 139.62 91.77 64.45 18.47 12.89 10.43x 10.83x

Table 4. Benchmarks of Picnic-n-s-r using SIMD without optimizations, with ORKC,
and OLLE (in ms).

Memory-wise we observe huge memory reductions for the instances used in
Picnic. While ORKC reduces the required storage for the LowMC matrices
and constants to about a half, OLLE further reduces memory requirements sub-
stantially. As expected, the instances with a small number of Sboxes benefit most
significantly from both optimizations. For example, for LowMC-256-10-38 the
matrices and constants shrink from 620.8 KB to 128.3 KB, a reduction by 79 %,
whereas for LowMC-256-1-363 instead of 5861.4 KB encryption requires only
148.5 KB, i.e., only 2.5 % of the original size. The full benchmark results and
sizes of the involved matrices and constants are given in Table 3.

6.2 Picnic

We continue with evaluating our optimizations in Picnic itself. In Table 4
we present the numbers obtained from benchmarking Picnic with the origi-
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Parameters w/o opt. with M4RM with OLLE Improv. (old / new)

LowMC-128-3-287 8.46 8.01 0.69 12.26x
LowMC-192-3-413 25.26 20.59 1.54 16.40x
LowMC-256-3-537 66.50 40.88 2.69 24.72x

Table 5. Benchmarks of LowMC-n-s-r instances with standard linear layer using
method of four Russians (M4RM) and OLLE (in seconds for 210 circuit evaluations).

nal LowMC instances, as well as those with s = 3.12 For instances with 10
Sboxes we achieve an improvement of up to a factor of 2.01x. For the extreme
case using only 1 Sbox, even better improvements of up to a factor of 10.83x
are possible. With OLLE those instances are close to the performance numbers
of the instances with 10 Sboxes, reducing the overhead from a factor 8.4x to a
factor 1.6x. Thus those instances become practically useful alternatives to obtain
the smallest possible signatures.

6.3 Garbled Circuits

Finally, we evaluated LowMC in the context of garbled circuits, where we com-
pare an implementation using the standard linear layer and round-key com-
putation (utilizing the method of four Russians to speed up the matrix-vector
products) to an implementation using our optimizations. In Table 5 we present
the results of our evaluation. We focus on LowMC instances with 1 Sbox, since
in the context of garbled circuits, the number of AND gates directly relates to
the communication overhead. Instances with only 1 Sbox thus minimize the size
of communicated data. In terms of encryption time, we observe major improve-
ments of up to a factor of 24.72x when compared to an implementation without
any optimizations, and a factor of 15.9x when compared to an implementation
using the method of four Russians. Since in this type of implementation we have
to operate on a bit level instead of a word or 256-bit register as in Picnic, the
large reduction of XORs has a greater effect in this scenario, especially since up
to 99% of the runtime of the unoptimized GC protocol is spent evaluating the
LowMC encryption circuit.

7 Optimized Sampling of Linear Layers

In this section we optimize the sampling of linear layers of generalized LowMC
ciphers, assuming they are chosen uniformly at random from the set of all invert-
ible matrices. Sampling the linear layers required by Algorithm 6 in a straight-
forward manner involves selecting r invertible matrices and applying additional

12 Picnic instances may internally use the Fiat-Shamir (FS) or Unruh (UR) trans-
forms. However, as both evaluate LowMC exactly in the same way, only numbers
for Picnic instances using the FS transform are given. Namely, improvements to
LowMC encryption apply to Picnic-FS and Picnic-UR in the same way.
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linear algebra operations that transform them to normalized form. This increases
the complexity compared to merely sampling these r matrices in complexity
O(r · n3) using a simple rejection sampling algorithm (or asymptotically faster
using the algorithm of [17]) and encrypting with Algorithm 3.

We show how to reduce the complexity from O(r · n3) to13

O(n3 + (r − 1)(s2 · n)).

We also reduce the amount of (pseudo) random bits requires to sample the linear
layers from about r ·n2 to about r ·n2−(r−1)

(
(n−s)2−2(n−s)

)
. We note that

similar (yet simpler) optimizations can be applied to sampling the key schedule
matrices of the cipher (in case it is linear and its matrices are selected at random,
as considered in Section 3.2).

The linear layer sampling complexity is reduced in three stages. The first
stage breaks the dependency between matrices of different rounds. The second
stage breaks the dependency in sampling the bottom part of each round matrix
(containing n−s rows) from its top part. Finally, the substantial improvement in
complexity for small s is obtained in the third stage that optimizes the sampling
of the bottom part of the round matrices. Although the first two stages do not
significantly reduce the complexity, they are necessary for applying the third
stage and are interesting in their own right.

7.1 Breaking Dependencies Among Different Round Matrices

Recall that for i ∈ {2, . . . , r}, the linear transformation of round i is generated
from the matrix [

L00
i Ť 01

i

L10
i Ť 11

i

]
(5)

where
Ťi = L∗1i · Ṙi−1.

For i = r, this gives the final linear transformation, while for i < r, the final
transformation involves applying the decomposition of Definition 1 to L10

i ‖Ť 11
i .

Since Ťi depends on the invertible (n−s)×(n−s) matrix Ṙi−1 (computed in the
previous round), a naive linear transformation sampling algorithm would involve
computing the linear transformations in their natural order by computing Ṙi−1
in round i−1 and using it in round i. However, this is not required, as the linear
transformation of each round can be sampled independently. Indeed, by using
Proposition 1 with the invertible matrix B11 = Ṙi−1, we conclude that in round i
we can simply sample the matrix given in (5) as a uniform invertible n×n matrix
without ever computing Ṙi−1. Therefore, the linear transformation sampling for
round r simplifies to selecting a uniform invertible n×n matrix, Lr. For rounds
i ∈ {1, . . . , r− 1}, we can select a uniform invertible n× n matrix, Li, and then
normalize it and discard Ṙi after the process. This simplifies Algorithm 6, and
it can be rewritten as in Algorithm 7. Note that we have renamed the sequence

{z(1)i } to {x(1)i } for convenience.

13 Further asymptotic improvements are possible using fast matrix multiplication.
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Input : x0
Output : xr+1

begin
x1 ← x0 + k0
for i ∈ {1, . . . , r − 1} do

yi ← Si(x
(0)
i )‖x(1)i . Round i

xi+1 ← L0∗
i (yi)‖L̂i(yi)

end

yr ← Sr(x
(0)
r )‖x(1)r . Round r

xr+1 ← Lr(yr)
return xr+1

end
Algorithm 7: Simplified and optimized r-round encryption.

7.2 Reduced Sampling Space

We examine the sample space of the linear layers more carefully.
For each of the first r − 1 rounds, the sampling procedure for Algorithm 7

involves selecting a uniform invertible matrix and then normalizing it according
to Definition 1. However, by Corollary 1, since each normalized equivalence class
contains the same number of αn−s · 2(n−s)

2

invertible matrices, this is equiva-
lent to directly sampling a uniform member from Φ to represent its normalized
equivalence class. If we order all the matrices in Φ, then sampling from it can be
done using log |Φ| uniform bits. However, encrypting with Algorithm 7 requires
an explicit representation of the matrices and using an arbitrary ordering is not
efficient in terms of complexity. In the rest of this section, our goal is to optimize
the complexity of sampling from Φ, but first we introduce notation for the full
sampling space.

Let the set Λr contain r-tuples of matrices defined as

Λr = Φr−1 × {A ∈ GF(2)n×n is invertible},

where Φr−1 = Φ× Φ . . .× Φ︸ ︷︷ ︸
r−1 times

.

The following corollary is a direct continuation of Corollary 1.

Corollary 2. The following properties hold:

1. Each r-tuple (L1, . . . , Lr−1, Lr) ∈ Λr represents a set of size (αn−s)
r−1 ·

2(r−1)(n−s)
2

containing r-tuples of matrices (L′1, . . . , L
′
r−1, L

′
r) such that(

N(L′1), . . . , N(L′r−1), L′r
)

= (L1, . . . , Lr−1, Lr).

2. Λr contains

|Λr| =
(αn)r · 2n2

(αn−s)r−1 · 2(r−1)(n−s)2
= (αn)r/(αn−s)

r−1 · 2r·n
2−(r−1)(n−s)2

r-tuples of matrices.
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As noted above, sampling from Λr reduces to sampling the first r−1 matrices
uniformly from Φ and using a standard sampling algorithm for the r’th matrix.

7.3 Breaking Dependencies Between Round Sub-Matrices

We describe how to further simplify the algorithm for sampling the linear layers
by breaking the dependency between sampling the bottom and top sub-matrices
in each round. From this point, we will rename the round matrix Li to a general
matrix A ∈ GF(2)n×n for convenience. In order to sample from Φ, the main
idea is to sample the bottom n − s linearly independent rows of A first, apply
the decomposition of Definition 1 and then use this decomposition in order to
efficiently sample the remaining s linearly independent rows of A. Therefore, we
never directly sample the larger n× n matrix, but obtain the same distribution
on output matrices as the original sampling algorithm.

Sampling the Bottom Sub-Matrix We begin by describing in Algorithm 8
how to sample and compute B̂ (which will be placed in the bottom n − s rows
of A) and COL(B1∗) using simple rejection sampling. It uses the sub-procedure
GenRand(n1, n2) that samples an n1 × n2 binary matrix uniformly at random.

Correctness of the algorithm follows by construction. In terms of complexity,
we keep track of the span of Ḃ using simple Gaussian elimination. Based on
Fact 1, the expected complexity of (a naive implementation of) the algorithm
until it succeeds is O((n − s)3 + s2(n − s)) due to Gaussian elimination and
matrix multiplication.

The Optimized Round Matrix Sampling Algorithm Let us first as-
sume that after application of Algorithm 8, we obtain B̂,COL(B1∗) such that
COL(B1∗) includes the n − s last columns (which form the identity matrix in
B̂). The matrix A is built by placing B̂ in its bottom n− s columns, and in this
case it will be of the block form considered in Fact 2. There is a simple formula
(stated in Fact 2) that determines if such matrices are invertible, and we can use
this formula to efficiently sample the top s rows of A, while making sure that
the full n× n matrix is invertible. In case COL(B1∗) does not include the n− s
last columns, then a similar idea still applies since A would be in the special
form after applying a column permutation determined by COL(B1∗). Therefore,
we assume that A is of the special form, sample the top s rows accordingly and
then apply the inverse column permutation to these rows. Algorithm 9 gives
the details of this process. It uses a column permutation matrix, denoted by P
(computed from COL(B1∗), such that B̂ ·P =

(
(Ḃ)−1 ·B̈

)
‖In−s is of the required

form. The algorithm also uses two sub-procedures:

1. GenRand(n1, n2) samples an n1 × n2 binary matrix uniformly at random.
2. GenInv(n1) samples a uniform invertible n1 × n1 matrix.

The complexity of the algorithm is O((n−s)3+s2(n−s)+s3+s2(n−s)+sn) =
O((n − s)3 + s2(n − s) + s3) (using naive matrix multiplication and invertible
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Output : B̂,COL(B1∗)
begin

B1∗ ← 0(n−s)×n, Ḃ ← 0(n−s)×(n−s)

COL(B1∗)← ∅, rank ← 0
for i ∈ {n, n− 1, . . . , 1} do

B1∗[∗, i]← GenRand(n− s, 1)
if rank = n− s or
B1∗[∗, i] ∈ span(Ḃ) then

continue
end
rank ← rank + 1
COL(B1∗)← COL(B1∗) ∪ {i}
Ḃ[∗, rank]← B1∗[∗, i]

end
if rank = n− s then

B̂ ← (Ḃ)−1 ·B1∗

return B̂,COL(B1∗)
else

return FAIL
end

end

Algorithm 8: SampleBottom() itera-
tion

Output : Round matrix for
Algorithm 7

begin

B̂,COL(B1∗)←
SampleBottom()
A1∗ ← B̂
C00 ← GenInv(s)
A′01 ← GenRand(s, n−s)
D10 ← (B̂ · P )10

A′00 ← C00 +A′01 ·D10

A0∗ ← (A′00‖A′01) · P−1

return A
end

Algorithm 9: Optimized
round matrix sampling.

matrix sampling algorithms), where the dominant factor for small s is (n− s)3.
The algorithm requires about sn+ n(n− s) = n2 random bits.

Proposition 7. Algorithm 9 selects a uniform matrix in Φ, namely, the distri-
bution of the output A is identical to the distribution generated by sampling a
uniform invertible n× n matrix and applying the transformation of Definition 1
to its bottom n− s rows.

For the proof of Proposition 7 we refer the reader to the full version.

7.4 Optimized Sampling of the Bottom Sub-Matrix

For small values of s, the complexity of Algorithm 9 is dominated by Algorithm 8
(SampleBottom()), whose complexity is O((n− s)3 + s2(n− s)). We now show
how to reduce this complexity to O(s(n−s)) on average. Thus, the total expected
complexity of Algorithm 9 becomes

O(s2(n− s) + s3) = O(s2 · n)

(using naive matrix multiplication and invertible matrix sampling algorithms).
Moreover, the randomness required by the algorithm is reduced from about
sn+ n(n− s) = n2 to about

sn+ (s+ 2)(n− s) = n2 − (n− s)2 + 2(n− s).
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Below, we give an overview of the algorithm. Its formal description and analysis
are given in the full version.

Recall that the output of SampleBottom() consists of B̂,COL(B1∗), where
B̂ contains In−s and s additional columns of n − s bits. The main idea is to
directly sample B̂ without ever sampling the full B1∗ and normalizing it. In or-
der to achieve this, we have to artificially determine the column set COL(B1∗)
(which contains the identity matrix in B̂), and the values of the remaining s
columns. The optimized algorithm simulates SampleBottom() (Algorithm 8).
This is performed by maintaining and updating the COL(B1∗) and rank vari-
ables as in SampleBottom() and sampling concrete vectors only when necessary.
For example, the columns of COL(B1∗) are not sampled at all and will simply
consist of the identity matrix in the output of the algorithm. There are 3 impor-
tant cases to simulate in the optimized algorithm when considering column i:

1. In SampleBottom(), full rank is not reached (i.e., rank < n − s) and col-
umn i is added to COL(B1∗). Equivalently, the currently sampled vector in
SampleBottom() is not in the subspace spanned by the previously sampled
vectors (whose size is 2rank). This occurs with probability 1− 2rank/2n−s =
1 − 2(n−s)−rank and can be simulated exactly by (at most) (n − s) − rank
coin tosses in the optimized algorithm (without sampling any vector).

2. In SampleBottom(), full rank is not reached (i.e., rank < n − s) and col-
umn i is not added to COL(B1∗). This is the complementary event to
the first, which occurs with probability 2(n−s)−rank. In SampleBottom(),
such a column i is sampled uniformly from the subspace spanned by the
previously sampled vectors whose size is 2rank. The final multiplication
with (Ḃ)−1 is a change of basis which transforms the basis of the pre-
viously sampled columns to the last rank vectors in the standard basis
e(n−s)−rank+1, e(n−s)−rank+2, . . . , en−s. Hence, column i is a uniform vec-
tor in the subspace spanned by e(n−s)−rank+1, e(n−s)−rank+2, . . . , en−s and
the optimized algorithm samples a vector from this space (using rank coin
tosses).

3. In SampleBottom(), full rank is reached (i.e., rank = n− s). The optimized
algorithm samples a uniform column using n − s coin tosses. This can be
viewed as a special case of the previously considered one, for rank = n− s.

Note that no linear algebra operations are performed by the optimized algorithm
and it consists mainly of sampling operations.

8 Optimality of Linear Representation

In this section, we prove that the representation of the linear layers used by
Algorithm 7 for a GLMC cipher is essentially optimal. Furthermore, we show that
the number of uniform (pseudo) random bits used by the sampling algorithm
derived in Section 7 is close to optimal. More specifically, we formulate two
assumptions and prove the following theorem under these assumptions, recalling
the value of |Λr| from Corollary 2.
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Theorem 1. Sampling an instance of a GLMC cipher with uniform linear lay-
ers must use at least

b = log |Λr| = log
(
(αn)r/(αn−s)

r−1 · 2r·n
2−(r−1)(n−s)2) ≥

r · n2 − (r − 1)(n− s)2 − 3.5r.

uniform random bits and its encryption (or decryption) algorithm requires at
least b bits of storage on average. Moreover, if a secure PRG is used to generate
the randomness for sampling, then it must produce at least b pseudo-random bits
and the encryption (and decryption) process requires at least b bits of storage on
average, assuming that it does not have access to the PRG.

We mention that the theorem does not account for the storage required by
the non-linear layers. The theorem implies that the code size of Algorithm 7 is
optimal up to an additive factor of about r · (3.5 + 3 log n), which is negligible
(less than 0.01 · b for reasonable choices of parameters).

8.1 Basic Assumptions

The proof relies on the following two assumptions regarding a GLMC cipher,
which are further discussed in the full version.

1. If a PRG is used for the sampling process, it is not used during encryption.
2. The linear layers are stored in a manner which is independent of the spec-

ification of the non-linear layers. Namely, changing the specification of the
non-linear layers does not affect the way that the linear layers are stored.

8.2 Model Formalization

We now define our model which formalizes the assumptions above and allows to
prove the optimality of our representation.

Definition 3. Given a triplet of global parameters (n, s, r), a (simplified) stan-
dard representation of a GLMC cipher is a triplet R = (k0,S,L) such that
k0 ∈ {0, 1}n, S = (S1, S2, . . . , Sr) is an r-tuple containing the specifications of r
non-linear invertible layers Si : {0, 1}s → {0, 1}s and L = (L1, L2, . . . , Lr) is an
r-tuple of invertible matrices Li ∈ GF(2)n×n. The r-tuple L is called a standard
linear representation.

To simplify notation, given a standard representation R = (k0,S,L), we denote
the encryption algorithm defined by Algorithm 3 as ER : {0, 1}n → {0, 1}n.

Definition 4. Two standard cipher representations R,R′ are equivalent (de-
noted R ≡ R′) if for each x ∈ {0, 1}n, ER(x) = ER′(x).

Definition 5. Two standard linear representations L,L′ are equivalent (denoted
L ≡ L′) if for each tuple of non-linear layers S, and key k0, (k0,S,L) ≡
(k0,S,L′).
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The requirement that (k0,S,L) ≡ (k0,S,L′) for any S, k0 captures the sec-
ond assumption of Section 8.1 that a standard representation of the linear layers
is independent of the non-linear layers (and the key).

Clearly, the linear equivalence relation partitions the r-tuples of standard
linear representations into linear equivalence classes. It is important to mention
that Theorem 1 does not assume that the encryption algorithm uses Algorithm 3
or represents the linear layers as an r-tuple of matrices. These definitions are
merely used in its proof, as shown next.

8.3 Proof of Theorem 1

We will prove the following lemma regarding linear equivalence classes, from
which Theorem 1 is easily derived.

Lemma 1. For any L 6= L′ ∈ Λr, L 6≡ L′.

The lemma states that each r-tuple of Λr is a member of a distinct equivalence
class, implying that we have precisely identified the equivalence classes.
Proof (of Theorem 1). Lemma 1 asserts that there are at least |Λr| linear equiva-
lence classes. Corollary 2 asserts that each r-tuple in Λr represents a set of linear
layers of size (αn−s)

r−1 · 2(r−1)(n−s)2 , hence every r-tuple in Λr has the same
probability weight when sampling the r linear layers uniformly at random. The
theorem follows from the well-known information theoretic fact that sampling
and representing a uniform string (an r-tuple in Λr) chosen out of a set of 2t

strings requires at least t bits on average (regardless of any specific sampling or
representation methods). �

The proof of Lemma 1 relies on two propositions which are implications of
the definition of equivalence of standard linear representations (Definition 5).

Proposition 8. Let L ≡ L′ be two equivalent standard linear representations.
Given k0,S, let R = (k0,S,L) and R′ = (k0,S,L′). Fix any x ∈ {0, 1}n and
i ∈ {0, 1, . . . , r+ 1}, and denote by xi (resp. x′i) the value ER(x) (resp. ER′(x))

at the beginning of round i. Then x
(0)
i = x

′(0)
i .

Namely, non-linear layer inputs (and outputs) have to match at each round
when encrypting the same plaintext with ciphers instantiated with equivalent
standard linear representations (and use the same key and non-linear layers).

Proposition 9. Let L ≡ L′ be two equivalent standard linear representations.
Given k0,S, let R = (k0,S,L) and R′ = (k0,S,L′). Fix any x ∈ {0, 1}n and
i ∈ {0, 1, . . . , r+ 1}, and denote by xi (resp. x′i) the value ER(x) (resp. ER′(x))

at the beginning of round i. Moreover, fix x̄ 6= x such that x̄i = x̄
(0)
i , x̄

(1)
i , where

x̄
(0)
i 6= x

(0)
i , but x̄

(1)
i = x

(1)
i . Then, x̄

′(1)
i = x

′(1)
i .

The proposition considers two plaintexts x and x̄ whose encryptions under
the first cipher in round i differ only in the 0 part of the state. We then look at
the second cipher (formed using equivalent standard linear representations) and
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claim that the same property must hold for it as well. Namely, the encryptions
of x and x̄ under the second cipher in round i differ only on the 0 part of the
state. For the proofs of Propositions 8 and 9 and Lemma 1, we refer the reader
to the full version.

9 Conclusions

SP-networks with partial non-linear layers (i.e., s < n) have shown to be ben-
eficial in several applications that require minimizing the AND count of the
cipher. Initial cryptanalytic results analyzing ciphers built with this recent de-
sign strategy contributed to our understanding of their security. In this paper, we
contribute to the efficient implementation of these SP-networks. In particular,
we redesign the linear layers of LowMC instances with s < n in a way that does
not change their specifications, but significantly improves their performance. We
believe that our work will enable designing even more efficient SP-networks with
s < n by using our optimizations as a starting point, allowing to use this design
strategy in new applications.
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