
Efficient Ratcheting:
Almost-Optimal Guarantees for Secure Messaging

Daniel Jost[0000−0002−6562−9665], Ueli Maurer, and Marta Mularczyk?

Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland.
{dajost,maurer,mumarta}@inf.ethz.ch

Abstract. In the era of mass surveillance and information breaches,
privacy of Internet communication, and messaging in particular, is a
growing concern. As secure messaging protocols are executed on the
not-so-secure end-user devices, and because their sessions are long-lived,
they aim to guarantee strong security even if secret states and local
randomness can be exposed.
The most basic security properties, including forward secrecy, can be
achieved using standard techniques such as authenticated encryption.
Modern protocols, such as Signal, go one step further and additionally
provide the so-called backward secrecy, or healing from state exposures.
These additional guarantees come at the price of a moderate efficiency
loss (they require public-key primitives).
On the opposite side of the security spectrum are the works by Jaeger and
Stepanovs and by Poettering and Rösler, which characterize the optimal
security a secure-messaging scheme can achieve. However, their proof-of-
concept constructions suffer from an extreme efficiency loss compared to
Signal. Moreover, this caveat seems inherent.
This paper explores the area in between: our starting point are the
basic, efficient constructions, and then we ask how far we can go towards
the optimal security without losing too much efficiency. We present a
construction with guarantees much stronger than those achieved by Signal,
and slightly weaker than optimal, yet its efficiency is closer to that of
Signal (only standard public-key cryptography is used).
On a technical level, achieving optimal guarantees inherently requires key-
updating public-key primitives, where the update information is allowed
to be public. We consider secret update information instead. Since a
state exposure temporally breaks confidentiality, we carefully design such
secretly-updatable primitives whose security degrades gracefully if the
supposedly secret update information leaks.

1 Introduction and Motivation

1.1 Motivation

The goal of a secure-messaging protocol is to allow two parties, which we from
now on call Alice and Bob, to securely exchange messages over asynchronous
? Research was supported by the Zurich Information Security and Privacy Center
(ZISC).

communication channels in any arbitrary interleaving, without an adversary
being able to read, alter, or inject new messages.

Since mobile devices have become a ubiquitous part of our lives, secure-
messaging protocols are almost always run on such end-user devices. It is generally
known, however, that such devices are often not very powerful and vulnerable
to all kinds of attacks, including viruses which compromise memory contents,
corrupted randomness generators, and many more [14, 13]. What makes it even
worse is the fact that the sessions are usually long-lived, which requires storing
the session-related secret information for long periods of time. In this situation it
becomes essential to design protocols that provide some security guarantees even
in the setting where the memory contents and intermediate values of computation
(including the randomness) can be exposed.

The security guarantee which is easiest to provide is forward secrecy, which,
in case of an exposure, protects confidentiality of previously exchanged messages.
It can be achieved using symmetric primitives, such as stateful authenticated
encryption [2].

Further, one can consider healing (also known as post-compromise recovery
or backward secrecy). Roughly, this means that if after a compromise the parties
manage to exchange a couple of messages, then the security is restored.1 Providing
this property was the design goal for some modern protocols, such as OTR [5]
and Signal [15]. The price for additional security is a loss of efficiency: in both of
the above protocols the parties regularly perform a Diffie-Hellman key exchange
(public-key cryptography is necessary for healing). Moreover, the above technique
does not achieve optimal post-compromise recovery (in particular, healing takes
at least one full round-trip). The actual security achieved by Signal was recently
analyzed by Cohn-Gordon et al. [7].

This raises a more conceptual question: what security guarantees of secure
messaging are even possible to achieve? This question was first formulated by
Bellare et al. [4], who abstract the concept of ratcheting and formalize the notions
of ratcheted key exchange and communication. However, they only consider a
very limited setting, where the exposures only affect the state of one of the
parties. More recently, Jaeger and Stepanovs [11], and Poettering and Rösler [16]
both formulated the optimal security guarantees achievable by secure messaging.
To this end, they start with a utopian definition, which cannot be satisfied by
any correct scheme. Then, one by one, they disable all generic attacks, until
they end with a formalization for which they can provide a proof-of-concept
construction. (One difference between the two formalizations is that [11] considers
exposing intermediate values used in the computation, while [16] does not.) The
resulting optimal security implies many additional properties, which were not
considered before. For example, it requires post-impersonation security, which
concerns messages sent after an active attack, where the attacker uses an exposed
state to impersonate a party (we will say that the partner of the impersonated
party is hijacked).

1 Of course, for the healing to take effect, the adversary must remain passive and not
immediately use the compromised state to impersonate a party.

2

Unfortunately, these strong guarantees come at a high price. Both construc-
tions [11, 16] use very inefficient primitives, such as hierarchical identity-based
encryption (HIBE) [9, 10]. Moreover, it seems that an optimally-secure protocol
would in fact imply HIBE.

This leads to a wide area of mostly unexplored trade-offs with respect to
security and efficiency, raising the question how much security can be obtained
at what efficiency.

1.2 Contributions

In this work we contribute to a number of steps towards characterizing the
area of sub-optimal security. We present an efficient secure-messaging protocol
with almost-optimal security in the setting where both the memory and the
intermediate values used in the computation can be exposed.

Unlike the work on optimal security [11, 16], we start from the basic techniques,
and gradually build towards the strongest possible security. Our final construction
is based on standard digital signatures and CCA-secure public-key encryption.
The ciphertext size is constant, and the size of the secret state grows linearly with
the number of messages sent since the last received message (one can prove that
the state size cannot be constant). We formalize the precise security guarantees
achieved in terms of game-based security definitions.

Intuitively, the almost-optimal security comes short of optimal in that in
two specific situations we do not provide post-impersonation security. The first
situation concerns exposing the randomness of one of two specific messages,2
and in the second, the secret states of both parties must be exposed at almost
the same time. The latter scenario seems rather contrived: if the parties were
exposed at exactly the same time, then any security would anyway be impossible.
However, one could imagine that the adversary suddenly loses access to one of
the states, making it possible to restore it. Almost-optimal guarantees mean that
the security need not be restored in this case.

It turns out that dealing with exposures of the computation randomness
is particularly difficult. For example, certain subtle issues made us rely on a
circularly-secure encryption scheme. Hence, we present our overall proof in the
random oracle model. We stress, however, that the random oracle assumption is
only necessary to provide additional guarantees when the randomness can leak.

1.3 Further Related Work

Most work on secure messaging [4, 11, 16, 8], including this paper, considers the
situation where messages can only be decrypted in order (so out-of-order messages
must be either buffered or dropped). In a recent work, Alwen, Coretti and Dodis
[1] consider a different setting in which it is required that any honestly-generated
message can be immediately decrypted. The authors motivate this property by
practical aspects, as for example immediate decryption is necessary to prevent
2 Namely, the messages sent right before or right after an active impersonation attack.

3

certain denial-of-service attacks. Moreover, immediate decryption is actually
achieved by Signal. This setting requires different definitions of both authenticity
and correctness. Moreover, requiring the ability to immediately decrypt messages
appears to incur a significant hit on the post-impersonation security a protocol
can guarantee.

We find it very interesting to analyze the optimal and sub-optimal security
guarantees in the setting of [1], and how providing them impacts the efficiency.
However, this is not the focus of this work. Note that most practical secure
messengers buffer the messages on a central server, so that even if parties are
intermittently offline, they receive all their messages once they go online. Hence,
not handling out-of-order messages should not significantly affect practicality.

In a recent concurrent and independent work, Durak and Vaudenay [8] also
present a very efficient asynchronous communication protocol with sub-optimal
security. However, their setting, in contrast to ours, explicitly excludes exposing
intermediate values used in computation, in particular, the randomness. Allowing
exposure of the randomness seems much closer to reality. Why would we assume
that the memory of a device can be insecure, but the sampled randomness is
perfect? Our construction provides strong security if the randomness fully leaks,
while [8] gives no guarantees even if a very small amount of partial information is
revealed. In fact, it is not clear how to modify the construction of [8] to work in
the setting with randomness exposures. We note that the proof of [8], in contrast
to ours, is in the standard model. On the other hand, we only need the random
oracle to provide the additional guarantees not considered in [8].

2 Towards Optimal Security Guarantees

In this section we present a high-level overview of the steps that take us from
the basic security properties (for example, those provided by Signal) towards
the almost-optimal security, which we later implement in our final construction.
We stress that all constructions use only standard primitives, such as digital
signatures and public-key encryption. The security proofs are in the random
oracle model.

2.1 Authentication

We start with the basic idea of using digital signatures and sequence numbers.
These simple techniques break down in the presence of state exposures: once a
party’s signing key is exposed, the adversary can inject messages at any time in
the future. To prevent this and guarantee healing in the case where the adversary
remains passive, we can use the following idea. Each party samples a fresh signing
and verification key with each message, sends along the new (signed) verification
key, and stores the fresh signing key to be used for the next message. If either of
the parties’ state gets exposed, say Alice’s, then Eve obtains her current signing
key that she can use to impersonate Alice towards Bob at this point in time.
If, however, Alice’s next message containing a fresh verification key has already

4

been delivered, then the signing key captured by the adversary becomes useless
thereby achieving the healing property.

The above technique already allows to achieve quite meaningful guarantees:
in fact, it only ignores post-impersonation security. We implement this idea and
formalize the security guarantees of the resulting construction in Section 3.

2.2 Confidentiality

Assume now that all communication is authentic, and that none of the parties
gets impersonated (that is, assume that the adversary does not inject messages
when he is allowed to do so). How can we get forward secrecy and healing?

Forward secrecy itself can be achieved using standard forward-secure au-
thenticated encryption in each direction (this corresponds to Signal’s symmetric
ratcheting layer). However, this technique provides no healing.

Perfectly Interlocked Communication. The first, basic idea to guarantee
healing is to use public-key encryption, with separate keys per direction, and
constantly exchange fresh keys. The protocol is sketched in Figure 1. Note that
instead of using a PKE scheme, we could also use a KEM scheme and apply the
KEM-DEM principle, which is essentially what Signal does for its asymmetric
ratcheting layer.

Let us consider the security guarantees offered by this solution. Assume for the
moment that Alice and Bob communicate in a completely interlocked manner, i.e.,
Alice sends one message, Bob replies to that message, and so on. This situation is
depicted in Figure 1. Exposing the state of a party, say Alice, right after sending
a message (dk1A, ek

0
B in the figure) clearly allows to decrypt the next message

(m2), which is unavoidable due to the correctness requirement. However, it no
longer affects the confidentiality of any other messages. Further, exposing the
state right after receiving a message has absolutely no effect (note that a party
can delete its secret key immediately after decrypting, since it will no longer
be used). Moreover, exposing the sending or receiving randomness is clearly no
worse than exposing both the state right before and after this operation. Hence,
our scheme obtains optimal confidentiality guarantees (including forward-secrecy
and healing) when the parties communicate in such a turn-by-turn manner.

The Unidirectional Case. The problems with the above approach arise when
the communication is not perfectly interlocked. Consider the situation when Alice
sends many messages without receiving anything from Bob. The straightforward
solution to encrypt all these messages with the same key breaks forward secrecy:
Bob can no longer delete his secret key immediately after receiving a message,
so exposing his state would expose many messages received by him in the past.
This immediately suggests using forward-secure public-key encryption [6], or the
closely-related HIBE [9, 10] (as in the works by Jaeger et al. and Poettering et
al.). However, we crucially want to avoid using such expensive techniques.

5

Alice Bob

dk0A, ek
0
B dk0B, ek

0
A

[m1]ek0
B
, ek1

A

dk1A, ek
0
Breveals m2

−, ek1A reveals nothing

[m2]ek1A
, ek

1
B

−, ek1B

dk1B, ek
1
A

Fig. 1. Constantly exchanging fresh public-keys achieves optimal security when com-
munication is authenticated and in a strict turn-by-turn fashion.

The partial solution offered by Signal is the symmetric ratcheting. In essence,
Alice uses the public key once to transmit a fresh shared secret, which can then
be used with forward-secure authenticated encryption. However, this solution
offers very limited healing guarantees: when Alice’s state is exposed, all messages
sent by her in the future (or until she receives a new public key from Bob) are
exposed. Can we do something better?

The first alternative solution which comes to mind is the following. When
encrypting a message, Alice samples a fresh key pair for a public-key encryption
scheme, transmits the secret key encrypted along with the message, stores the
public key and deletes the secret key. This public key is then used by Alice to
send the next message. This approach is depicted in Figure 2. However, this
solution totally breaks if the sending randomness does leak. In essence, exposing
Alice’s randomness causes a large part of Bob’s next state to be exposed, hence,
we achieve roughly the same guarantees as Signal’s symmetric ratcheting.

Alice Bob

ek0B dk0B
[m

1, dk 1
B]ek0

Bek1B

dk1B
reveals m2,m3

(unavoidable)

(ek1B, dk
1
B)← Pke.Gen

dk1B reveals m2, m3, m4

(no healing)

[m
2, dk 2

B]ek1
Bek2B

dk2B

Fig. 2. First attempt to handle asynchronous messages, where one party (here Alice)
can send multiple messages in a row. This solution breaks totally when the randomness
can leak.

6

Hence, our approach will make the new decryption key depend on the previous
decryption key, and not solely on the update information sent by Alice. We note
that, for forward secrecy, we still rely on the update information being transmitted
confidentially. This technique achieves optimal security up to impersonation (that
is, we get the same guarantees as for simple authentication). The solution is
depicted in Figure 3. At a high level, we use the ElGamal encryption, where a
key pair of Bob is (b0, g

b0) for some generator g of a cyclic group. While sending
a message, Alice sends a new secret exponent b1 encrypted under gb0 , the new
encryption key is gb0gb1 , and the new decryption key is b0 + b1.3 This idea is
formalized in Section 4.

Alice Bob

gb0 b0

[m1, b1]
gb0gb0+b1

b0 + b1 reveals m2,m3

b1 � Z|G|

[m2, b2]
gb0+b1gb0+b1+b2

b0 + b1 + b2

Fig. 3. Second attempt to handle asynchronous messages, where one party (here Alice)
can send multiple messages in a row.

2.3 A First Efficient Scheme

Combining the solutions for authentication and confidentiality from the previous
subsections already yields a very efficient scheme with meaningful guarantees.
Namely, we only give up on the post-impersonation security. That is, we achieve
the optimal guarantees up to the event that an adversary uses the exposed state
of a party to inject a message to the other party.

One may argue that such a construction is in fact the one that should be
used in practice. Indeed, the only guarantees we can hope for after such an active
impersonation concern the party that gets impersonated, say Alice, towards
the other one, say Bob: Alice should not accept any messages from Bob or
the adversary anymore, and the messages she sends should remain confidential.
Observe that the former guarantee potentially enables Alice to detect the attack
by the lack of replies to her messages. However, providing those guarantees to

3 Looking ahead, it turns out that in order to prove the security of this construction,
we need circular-secure encryption. We achieve this in the random oracle model.

7

their full extent seems to inherently require very inefficient tools, such as HIBE,
in contrast to the quite efficient scheme outlined above.

In the next subsections we make further steps towards our final construc-
tion, which provides some, but not all, after-impersonation guarantees, thereby
compromising between efficiency and security.

2.4 Post-Impersonation Authentication

Consider the situation where the adversary exposes the state of Alice and uses it
to impersonate her towards Bob (that is, he hijacks Bob). Clearly, due to the
correctness requirement, the adversary can now send further messages to Bob.
For the optimal security, we would require that an adversary cannot make Alice
accept any messages from Bob anymore, even given Bob’s state exposed at any
time after the impersonation.

Note that our simple authentication scheme from Section 2.1 does not achieve
this property, as Bob’s state contains the signing key at this point. It does
not even guarantee that Alice does not accept messages sent by the honest Bob
anymore. The latter issue we can easily fix by sending a hash of the communication
transcript along with each message. That is, the parties keep a value h (initially
0), which Alice updates as h← Hash(h ‖ m) with every message m she sends,
and which Bob updates accordingly with every received message. Moreover, Bob
accepts a message only if it is sent together with a matching hash h.

To achieve the stronger guarantee against an adversary obtaining Bob’s state,
we additionally use ephemeral signing keys. With each message, Alice generates
a new signing key, which she securely sends to Bob, and expects Bob to sign
his next message with. Intuitively, the adversary’s injection “overwrites” this
ephemeral key, rendering Bob’s state useless. Note that for this to work, we need
the last message received by Bob before hijacking to be confidential. This is not
the case, for example, if the sending randomness leaks.4 For this reason, we do
not achieve optimal security. In the existing optimal constructions [16, 11] the
update information can be public, which, unfortunately, seems to require very
strong primitives, such as forward-secure signatures.

2.5 Post-Impersonation Confidentiality

In this section we focus on the case where the adversary impersonates Alice
towards Bob (since this is only possible if Alice’s state exposed, we now consider
her state to be a public value).

Consider once more the two approaches to provide confidentiality in the
unidirectional case, presented in Section 2.2 (Figures 2 and 3). Observe that
if we assume that the randomness cannot be exposed, then the first solution
from Figure 2, where Alice sends (encrypted) a fresh decryption key for Bob,
already achieves very good guarantees. In essence, during impersonation the
4 Note that this also makes the choice of abstraction levels particularly difficult, as we
need confidentiality, in order to obtain authentication.

8

adversary has to choose a new decryption key (consider the adversary sending
[m3, d̄k

3
B]ek2B in the figure), which overwrites Bob’s state. Hence, the information

needed to decrypt the messages sent by Alice from this point on (namely, dk2B) is
lost.5 In contrast, the second solution from Figure 3 provides no guarantees for
post-impersonation messages: after injecting a message and exposing Bob’s state,
the adversary can easily compute Bob’s state from right before the impersonation
and use it to decrypt Alice’s messages sent after the attack.

While the former idea has been used in [8] to construct an efficient scheme
with almost-optimal security for the setting where the randomness generator is
perfectly protected, we aim at also providing guarantees in the setting where the
randomness can leak. To achieve this, we combine the two approaches, using both
updating keys from the latter scheme and ephemeral keys from the former one,
in a manner analogous to how we achieved post-impersonation authentication.
More concretely, Alice now sends (encrypted), in addition to the exponent, a
fresh ephemeral decryption key, and stores the corresponding encryption key,
which she uses to additionally encrypt her next message. Now the adversary’s
injected message causes the ephemeral decryption key of Bob to be overwritten.

As was the case for authentication, this solution does not provide optimal
security, since we rely on the fact that the last message, say c, received before
impersonation, is confidential. Moreover, in order to achieve confidentiality we
also need the message sent by Alice right after c to be confidential.

2.6 The Almost-Optimal Scheme

Using the ideas sketched above, we can construct a scheme with almost-optimal
security guarantees. We note that it is still highly non-trivial to properly combine
these techniques, so that they work when the messages can be arbitrarily inter-
leaved (so far we only considered certain idealized settings of perfectly interlocked
and unidirectional communication).

The difference between our almost-optimal guarantees and the optimal ones
[16, 11] is in the imperfection of our post-impersonation security. As explained in
the previous subsections, for these additional guarantees we need two messages
sent by the impersonated party (Alice above) to remain confidential: the one
right before and the one right after the attack. Roughly, these messages are not
confidential either if the encryption randomness is exposed for one of them, or
if the state of the impersonated party is exposed right before receiving the last
message before the attack. Note that the latter condition basically means that
both parties are exposed at almost the same time. If they were exposed at exactly
the same time, any security would anyway be impossible.

In summary, our almost-optimal security seems a very reasonable guarantee
in practice.

5 We can assume that Alice sends this value confidentially. It makes no sense to consider
Bob’s state being exposed, as this would mean that both parties are exposed at the
same time, in which case, clearly, we cannot guarantee any security.

9

3 Unidirectional Authentication

In this section we formalize the first solution for achieving authentication, sketched
informally in Section 2.1. That is, we consider the goal of providing authentication
for the communication from a sender (which we call the signer) to a receiver
(which we call the verifier) in the presence of an adversary who has full control
over the communication channel. Additionally, the adversary has the ability to
expose secrets of the communicating parties. In particular, this means that for
each party, its internal state and, independently, the randomness it chose during
operations may leak.

We first intuitively describe the properties we would like to guarantee:

– As long as the state and sampled randomness of the signer are secret, the
communication is authenticated (in particular, all sent messages, and only
those, can only be received in the correct order). We require that leaking the
state or the randomness of the verifier has no influence on authentication.

– If the state right before signing the i-th message or the randomness used
for this operation is exposed, then the adversary can trivially replace this
message by one of her choice. However, we want that if she remains passive
(that is, if she delivers sufficiently many messages in order), and if new secrets
do not leak, then the security is eventually restored. Concretely, if only the
state is exposed, then only the i-th message can be replaced, while if the
signing randomness is exposed, then only two messages (i and i + 1) are
compromised.

Observe that once the adversary decides to inject a message (while the signer is
exposed), security cannot be restored. This is because from this point on, she can
send any messages to the verifier by simply executing the protocol. We will say
that in such case the adversary hijacks the channel, and is now communicating
with the verifier.

The above requirements cannot be satisfied by symmetric primitives, because
compromising the receiver should have no effect on security. Moreover, in order
to protect against deleting and reordering messages, the algorithms need to be
stateful. Hence, in the next subsection, we define a new primitive, which we
call key-updating signatures. At a high level, a key-updating signature scheme
is a stateful signature scheme, where the signing key changes with each signing
operation, and the verification key changes with each verification. We require
that the verification algorithm is deterministic, so that leaking the randomness
of the verifier trivially has no effect.

3.1 Key-Updating Signatures

Syntax. A key-updating signature scheme KuSig consists of three polynomial-
time algorithms (KuSig.Gen,KuSig.Sign,KuSig.Verify). The probabilistic algo-
rithm KuSig.Gen generates an initial signing key sk and a corresponding veri-
fication key vk. Given a message m and sk, the signing algorithm outputs an

10

Game KuSig-UF

Initialization
(sk, vk)← KuSig.Gen
s, r ← 0
B ← array initialized to ⊥
win← false
lost← false
Exposed← ∅
return vk

Oracle Sign
Input: (m, leak) ∈ M× {true, false}
s← s+ 1
z � R
(sk, σ)← KuSig.Sign(sk,m; z)
B[s]← (m,σ)
if leak then

Exposed← Exposed ∪ {s− 1, s}
return (σ, z)

else
return σ

Oracle Expose

Exposed← Exposed ∪ {s}
return sk

Oracle Verify
Input: (m,σ) ∈ M×Σ

(vk, v)← KuSig.Verify(vk,m, σ)
if v = 0 then

return (0, vk)
r ← r + 1
if B[r] 6= (m,σ) then

if r − 1 ∈ Exposed then
lost← lost ∨ ¬win

else
win← true

return (1, vk)

Finalization

return win ∧ ¬lost

Fig. 4. The strong unforgeability game for key-updating signatures.

updated signing key and a signature: (sk′, σ)← KuSig.Sign(sk,m). Similarly, the
verification algorithm outputs an updated verification key and the result v of
verification: (vk′, v)← KuSig.Verify(vk,m, σ).

Correctness. Let (sk0, vk0) be any output of KuSig.Gen, and let m1, . . . ,mk

be any sequence of messages. Further, let (ski, σi)← KuSig.Sign(ski−1,mi) and
(vki, vi)← KuSig.Verify(vki−1,mi, σi) for i = 1, . . . , k. For correctness, we require
that vi = 1 for all i = 1, . . . , k.

Security. The security of KuSig is formalized using the game KuSig-UF, de-
scribed in Figure 4. For simplicity, we define the security in the single-user setting
(security in the multi-user setting can be obtained using the standard hybrid
argument).

The game interface. The game without the parts of the code marked by boxes
defines the interface exposed to the adversary.

At a high level, the adversary wins if he manages to set the internal flag win
to true by providing a message with a forged signature. To this end, he interacts
with three oracles: Sign, Verify and Expose. Using the oracle Sign, he can
obtain signatures and update the secret signing key, using the oracle Verify, he
can update the verification key (or submit a forgery), and the oracle Expose
reveals the secret signing key.

A couple of details about the above oracles require further explanation. First,
the verification key does not have to be kept secret. Hence, the updated key is

11

always returned by the verification oracle. Second, we extend the signing oracle
to additionally allow “insecure” queries. That is, the adversary learns not only
the signature, but also the randomness used to generate it.

Disabling trivial attacks. Since the game described above can be trivially won
for any scheme, we introduce additional checks (shown in boxes), which disable
the trivial “wins”.

More precisely, the forgery of a message that will be verified using the key
vk, for which the signing key sk was revealed is trivial. The key sk can be
exposed either explicitly by calling the oracle Expose, or by leaking the signing
randomness using the call Sign(m, true). To disable this attack, we keep the
set Exposed, which, intuitively, keeps track of which messages were signed using
an exposed state. Then, in the oracle Verify, we check whether the adversary
decided to input a trivial forgery (this happens if the index r − 1 of currently
verified message is in Exposed). If so, the game can no longer be won (the variable
lost is set to true).6

Advantage. For an adversary A, let Advku-suf
KuSig (A) denote the probability that

the game KuSig-UF returns true after interacting with A. We say that a key-
updating signature scheme KuSig is KuSig-UF secure if Advku-suf

KuSig (A) is negligible
for any PPT adversary A.

3.2 Construction

We present a very simple construction of a KuSig, given any one-time signature
scheme Sig, existentially-unforgable under chosen-message attack. The construc-
tion is depicted in Figure 5. The high-level idea is to generate a new key pair for
Sig with each signed message. The message, together with the new verification key
and a counter,7 is then signed using the old signing key, and the new verification
key is appended to the signature. The verification algorithm then replaces the
old verification key by the one from the verified signature.

Theorem 1. Let Sig be a signature scheme. The construction of Figure 5 is
KuSig-UF secure, if Sig is 1-SUF-CMA secure.

A proof of Theorem 1 is presented in the full version of this work [12].

3.3 Other Definitions of Key-Updating Signatures

Several notions of signatures with evolving keys are considered in the literature.
For example, in forward-secure signatures [3] the signing key is periodically
updated. However, in such schemes the verification key is fixed. Moreover, the
6 The adversary knows which states are exposed, and hence can check himself before
submitting a forgery attempt, whether this will make him lose the game.

7 In fact, the counter is not necessary to prove security of the construction, since every
message is signed with a different key. However, we find it cleaner to include it.

12

Construction of KuSig

Algorithm KuSig.Gen

(sk, vk)← Sig.Gen
return ((sk, 0), (vk, 0))

Algorithm KuSig.Sign

Input: ((sk, s),m; (zG, zS)) ∈ SS ×M×R
s← s+ 1
(sk′, vk′)← Sig.Gen(zG)
σ ← Sig.Sign(sk, vk′ ‖ s ‖ m; zS)
return ((sk′, s), (σ, vk′))

Algorithm KuSig.Verify

Input: ((vk, r),m, (σ, vk′)) ∈ SV ×M×Σ
v ← Sig.Verify(vk, vk′ ‖ (r + 1) ‖ m,σ)
if ¬v then

return ((vk, r), false)
else

return ((vk′, r + 1), true)

Fig. 5. The construction of key-updating signatures.

goal of forward secrecy is to protect the past (for signatures, this means that
there exists some notion of time and exposing the secret key does not allow to
forge signatures for the past time periods). On the other hand, we are interested
in protecting the future, that is, the scheme should “heal” after exposure.

The notion closest to our setting is that of key-updateble digital signatures
[11]. Here the difference is that their notion provides stronger guarantees (hence,
the construction is also less efficient). In particular, in key-updateble digital
signatures the signing key can be updated with any (even adversarially chosen)
public information. In contrast, in our definition the secret key is updated secretly
by the signer, and only part of the information used to update it is published as
part of the signature.8

Relaxing the requirements of key-updateble digital signatures allows us to
achieve a very efficient construction ([11] uses rather inefficient forward-secure
signatures as a building block). On the other hand, the stronger guarantee seems
to be necessary for the optimal security of [11].

4 Unidirectional Confidentiality

In this section we formalize the second solution for achieving confidentiality in
the unidirectional setting, where the sender, which we now call the encryptor
generates some secret update information and communicates it (encrypted) to
the receiver, which we now call the decryptor. In the following, we assume that
the secret update information is delivered through an idealized secure channel.

The setting is similar to the one we considered for authentication: the secret
states and the randomness of the encryptor and of the decryptor can sometimes be
exposed. However, now we also assume that the communication is authenticated.

8 For example, in our construction the public part of the update is a fresh verification
key, and the secret part is the corresponding signing key. This would not satisfy the
requirements of [11], since there is no way to update the signing key using only the
fresh verification key.

13

We assume authentication in the sense of Section 3, however, we do not consider
hijacking the channel. In this section we give no guarantees if the channel is
hijacked.

At a high level, the construction presented in this section should provide the
following guarantees:

– Exposing the state of the encryptor should have no influence on confidentiality.
Moreover, leaking the encryption randomness reveals only the single message
being encrypted.

– Possibility of healing: if at some point in time the encryptor delivers to
the decryptor an additional (update) message through some out-of-band
secure channel, then any prior exposures of the decryption state should have
no influence on the confidentiality of future messages. (Looking ahead, in
our overall construction such updates will indeed be sometimes delivered
securely.)

– Weak forward secrecy: exposing the decryptor’s state should not expose
messages sent before the last securely delivered update.

For more intuition about the last two properties, consider Figure 6. The
states 1 to 7 correspond to the number of updates applied to encryption or
decryption keys. The first two updates are not delivered securely (on the out-of-
band channel), but the third one is. Exposing the decryption key at state 5 (after
four updates) causes all messages encrypted under the public keys at states 4, 5
and 6 to be exposed. However, the messages encrypted under keys at states 1 to
3 are not affected.

1 2 3 4 5 6 7[)[)[
insecure insecure secure insecure insecure secure

. . .

exposed

Fig. 6. Intuition behind the confidentiality guarantees.

To formalize the above requirements, we define a new primitive, which we
call secretly key-updatable public-key encryption (SkuPke).

4.1 Secretly Key-Updatable Public-Key Encryption

At a high level, a secretly key-updatable public-key encryption scheme is a public-
key encryption scheme, where both the encryption and the decryption key can
be (independently) updated. The information used to update the encryption
key can be public (it will be a part of the encryptor’s state, whose exposure
comes without consequences), while the corresponding update information for
the decryption key should be kept secret (this update will be sent through the
out-of-band secure channel).

14

In fact, for our overall scheme we need something a bit stronger: the update
information should be generated independently of the encryption or decryption
keys. Moreover, the properties of the scheme should be (in a certain sense)
preserved even when the same update is applied to many independent key pairs.
The reason for these requirements will become more clear in the next section,
when we use the secretly key-updatable encryption to construct a scheme for the
sesqui-directional setting.

The security definition presented in this section is slightly simplified and it
does not consider the above additional guarantees. However, it is sufficient to
understand our security goals. In the proof of the overall construction we use the
full definition presented in the full version [12], which is mostly a straightforward
extension to the multi-instance setting.

Syntax. Formally, a secretly key-updatable public-key encryption scheme SkuPke
consists of six polynomial-time algorithms (SkuPke.Gen,SkuPke.Enc,SkuPke.Dec,
SkuPke.UpdateGen,SkuPke.UpdateEk,SkuPke.UpdateDk). The probabilistic algo-
rithm SkuPke.Gen generates an initial encryption key ek and a corresponding
decryption key dk. Then, the probabilistic encryption algorithm can be used to en-
crypt a message m as c← SkuPke.Enc(ek,m), while the deterministic decryption
algorithm decrypts the message: m← SkuPke.Dec(dk, c).

Furthermore, the probabilistic algorithm SkuPke.UpdateGen generates public
update information ue and the corresponding secret update information ud,
as (ue, ud) ← SkuPke.UpdateGen. The former can then be used to update an
encryption key ek′ ← SkuPke.UpdateEk(ue, ek), while the latter can be used to
update the corresponding decryption key dk′ ← SkuPke.UpdateDk(ud, dk).

Correctness. Let (ek0, dk0) be the output of SkuPke.Gen, and let (ue1, ud1), . . . ,
(uek, udk) be any sequence of outputs of SkuPke.UpdateGen. For i = 1 . . . k, let
eki ← SkuPke.UpdateEk(uei, ei−1) and dki ← SkuPke.UpdateDk(udi, di−1). A
SkuPke is called correct, if SkuPke.Dec(dkk,SkuPke.Enc(ekk,m)) = m for any
message m with probability 1.

Security. Figure 7 presents the single-instance security game for a SkuPke
scheme, which we describe in the following paragraphs.

The game interface. The interface exposed to the adversary is defined via the
part of the code not marked by boxes.

We extend the standard notion of IND-CPA for public-key encryption, where
the adversary gets to see the initial encryption key ek and has access to a left-or-
right Challenge oracle. Furthermore, the adversary can generate new update
information by calling the oracle UpdateGen, and later apply the generated
updates to the encryption and decryption key, by calling, respectively, the oracles
UpdateEk and UpdateDk. In our setting the adversary is allowed to expose
the randomness and the state of parties. The encryption state is considered

15

Game SkuPke-CPA

Initialization
b � {0, 1}
Ue,Ud ← array initialized to ⊥
ind, indd, inde ← 1

NLeak← {1}
Chal← ∅
exp← −1
ek, dk ← SkuPke.Gen
return ek

Oracle UpdateGen
Input: z ∈ R ∪ {⊥}

ind← ind + 1
if z = ⊥ then

(Ue[ind],Ud[ind])← SkuPke.UpdateGen

NLeak← NLeak ∪ {ind}
return Ue[ind]

else
(Ue[ind],Ud[ind])← SkuPke.UpdateGen(z)
return (Ue[ind],Ud[ind])

Oracle Challenge

Input: (m0,m1, i) ∈ M2 × (N \ {0, 1})
nc1 ← exp ≥ inde ∧ (inde, exp] ∩ NLeak = ∅)
nc2 ← exp < inde ∧ (exp, inde] ∩ NLeak = ∅)

if |m0| 6= |m1| ∨ i > ind ∨ nc1 ∨ nc2 then
return ⊥

Chal← Chal ∪ {inde}
c← SkuPke.Enc(ek,mb ‖ Ud[i])
return c

Oracle Expose
if exp ≥ 0 then

return ⊥
ne1 ← ∃c ∈ Chal (c ≥ indd] ∧ (indd, c] ∩ NLeak = ∅)
ne2 ← ∃c ∈ Chal (c < indd] ∧ (c, indd] ∩ NLeak = ∅)
if ne1 ∨ ne2 then

return ⊥
exp← indd

return dk

Oracle UpdateEk
if inde ≥ ind then

return ⊥
inde ← inde + 1
ek ← SkuPke.UpdateEk(Ue[inde], ek)
return ek

Oracle UpdateDk
if indd ≥ ind then

return ⊥
indd ← indd + 1
dk ← SkuPke.UpdateDk(Ud[indd], dk)

Finalization
Input: d ∈ {0, 1}

return (d = b)

Fig. 7. The single-instance confidentiality game for secretly key-updatable encryption.

public information, hence, the key ek and the public update Ue[ind] are always
returned by the corresponding oracles. The decryption key dk can be revealed by
calling the Expose oracle9, and the secret decryption updates — by setting the
randomness for the oracle UpdateGen. Finally, the Challenge oracle encrypts
the message together with the previously generated secret update information,
chosen by the adversary (recall the idea sketched in Section 2.2).

Disabling trivial attacks. In essence, in the presence of exposures, it is not possible
to protect the confidentiality of all messages. As already explained, we allow an
exposure of the secret key to compromise secrecy of all messages sent between
two consecutive secure updates. Hence, the game keeps track of the following
events: generating a secure update (the set NLeak), exposing the secret key (the
variable exp), and asking for a challenge ciphertext (the set Chal). Then, the
adversary is not allowed to ask for a challenge generated using the encryption

9 For technical reasons, we only allow one query to the Expose oracle.

16

Construction of SkuPke

Algorithm SkuPke.Gen

x � Zq

return (gx, x)

Algorithm SkuPke.UpdateGen

x � Zq

return (gx, x)

Algorithm SkuPke.UpdateEk

Input: (ue, ek)
return ek · ue

Algorithm SkuPke.UpdateDk

Input: (ud, dk)
return (dk + ud) mod q

Algorithm SkuPke.Enc

Input: (ek,m)
r � Zq

return (gr,Hash|m|(ek
r)⊕m)

Algorithm SkuPke.Dec

Input: (dk, (c1, c2))

return Hash|c2|(c
dk
1)⊕ c2

Fig. 8. The construction of secretly key-updatable encryption.

key, corresponding to a decryption key, which is in the “exposed” interval (that
is, if all updates between the decryption key and the exposed state are insecure).
An analogous condition is checked by the Expose oracle.

Advantage. Recall that in this section we present the single-instance security
game, but in the proofs later we need the multi-instance version SkuPke-MI-CPA
defined in the full version [12]. Hence, we define security using the multi-instance
game. For an adversary A, let Advsku-cpa

SkuPke (A) := 2 Pr[ASkuPke-MI-CPA ⇒ true]− 1,
where Pr[ASkuPke-MI-CPA ⇒ true] denotes the probability that the game SkuPke-
MI-CPA returns true after interacting with an adversary A. We say that a
secretly key-updatable encryption scheme scheme SkuPke is SkuPke-MI-CPA
secure if Advsku-cpa

SkuPke (A) is negligible for any PPT adversary A.

4.2 Construction

We present an efficient construction of SkuPke, based on the ElGamal cryptosys-
tem. At a high level, the key generation, encryption and decryption algorithms
are the same as in the ElGamal encryption scheme. To generate the update
information, we generate a new ElGamal key pair, and set the public and private
update to, respectively, the new public and private ElGamal keys. To update the
encryption key, we multiply the two ElGamal public keys, while to update the
decryption key, we add the ElGamal secret keys. Finally, in order to deal with
encrypting previously generated update information, we need the hash function
Hashl(·), where l is the output length.

The construction is defined in Figure 8. We let G be a group of prime order
q, generated by g. These parameters are implicitly passed to all algorithms.

A proof of the following theorem is presented in the full version [12].

Theorem 2. The construction of Figure 8 is SkuPke-MI-CPA secure in the
random oracle model, if CDH is hard.

17

5 Sesquidirectional Confidentiality

The goal of this section is to define additional confidentiality guarantees in the
setting where also an authenticated back channel from the decryptor to the
encryptor exists (but we still focus only the properties of the unidirectional from
the encryptor to the decryptor). That is, we assume a perfectly-authenticated
back channel and a forward channel, authenticated in the sense of Section 3 (in
particular, we allow hijacking the decryptor).

It turns out that in this setting we can formalize all confidentiality properties
needed for our overall construction of a secure channel. Intuitively, the properties
we consider include forward secrecy, post-hijack security, and healing through
the back channel.

Forward secrecy. Exposing the decryptor’s state should not expose messages
which he already received.

Post-hijack guarantees. Ideally, we would like to guarantee that if the commu-
nication to the decryptor is hijacked, then all messages sent by the encryptor
after hijacking are secret, even if the decryptor’s state is exposed (note that
these messages cannot be read by the decryptor, since the adversary caused his
state to be “out-of-sync”). However, this guarantee turns out to be extremely
strong, and seems to inherently require HIBE. Hence, we relax it by giving up
on the secrecy of post-hijack messages in the following case: a message is sent
insecurely (for example, because the encryption randomness is exposed), the
adversary immediately hijacks the communication, and at some later time the
decryptor’s state is exposed. We stress that the situation seems rather contrived,
as explained in the introduction.

Healing through the back channel. Intuitively, the decryptor will update his state
and send the corresponding update information on the back channel. Once the
encryptor uses this information to update his state, the parties heal from past
exposures. At a high level, this means that we require the following additional
guarantees:

– Healing: messages sent after the update information is delivered are secret,
irrespective of any exposures of the decryptor’s state, which happened before
the update was generated.

– Correctness: in the situation where the messages on the back channel are
delayed, it should still be possible to read the messages from the forward
channel. That is, it should be possible to use a decryption key after i updates
to decrypt messages encrypted using an “old” encryption key after j < i
updates.

Challenges. It turns out that the setting with both the back channel, and the
possibility of hijacking, is extremely subtle. For example, one may be tempted to
use an encryption scheme which itself updates keys and provides some form of

18

forward secrecy, and then simply send on the back channel a fresh key pair for
that scheme. With this solution, in order to provide correctness, every generated
secret key would have to be stored until a ciphertext for a newer key arrives.
Unfortunately, this simple solution does not work. Consider the following situation:
the encryptor sends two messages, one before and one after receiving an update
on the back channel, and these messages are delayed. Then, the adversary hijacks
the decryptor by injecting an encryption under the older of the two keys. However,
if now the decryptor’s state is exposed, then the adversary will learn the message
encrypted with the new key (which breaks the post-hijack guarantees we wish to
provide). Hence, it is necessary that receiving a message updates all decryption
keys, also those for future messages. Intuitively, this is why we require that the
same update for SkuPke can be applied to many keys.

5.1 Healable And Key-Updating Public-Key Encryption

To formalize the requirements sketched above, we define healable and key-updating
public-key encryption (HkuPke). In a nutshell, a HkuPke scheme is a stateful
public-key encryption scheme with additional algorithms used to generate and
apply updates, sent on the back channel.

Syntax. A healable and key-updating public-key encryption scheme HkuPke con-
sists of five polynomial-time algorithms (HkuPke.Gen,HkuPke.Enc,HkuPke.Dec,
HkuPke.BcUpEk,HkuPke.BcUpDk).

The probabilistic algorithm HkuPke.Gen generates an initial encryption key ek
and a corresponding decryption key dk. Encryption and decryption algorithms are
stateful. Moreover, for reasons which will become clear in the overall construction
of a secure channel, they take as input additional data, which need not be kept
secret.10 Formally, we have (ek′, c) ← HkuPke.Enc(ek,m, ad) and (dk′,m) ←
HkuPke.Dec(dk, c,m), where ek′ and dk′ are the updated keys and ad is the
additional data. The additional two algorithms are used to handle healing through
the back channel: the operation (dk′, upd)← HkuPke.BcUpDk(dk) outputs the
updated decryption key dk′ and the information upd, which will be sent on the
back channel. Then, the encryption key can be updated by executing ek′ ←
HkuPke.BcUpEk(ek, upd).

Correctness. Intuitively, we require that if all ciphertexts are decrypted in
the order of encryption, and if the additional data used for decryption matches
that used for encryption, then they decrypt to the correct messages. Moreover,
decryption must also work if the keys are updated in the meantime, that is, if an
arbitrary sequence of HkuPke.BcUpDk calls is performed and the ciphertext is
generated at a point where only a prefix of the resulting update information has
10 Roughly, the additional data is needed to provide post-hijack security of the final

construction: changing the additional data means that the adversary decided to hijack
the channel, hence, the decryption key should be updated.

19

Game HkuPke-CPA

Initialization
b � {0, 1}
(ek, dk)← HkuPke.Gen
s, r, i, j ← 0

exposed← −1
hijacked← false
Challenges← ∅
B,U ← array initialized to ⊥
return ek

Oracle Encrypt
Input: (m, ad) ∈ M×AD
s← s+ 1
z � R
(ek, c)← HkuPke.Enc(ek,m, ad; z)
B[s]← (c, ad)
return (ek, c, z)

Oracle BcUpdateEk
if j = i then

return ⊥
j ← j + 1
ek ← HkuPke.BcUpEk(ek,U [j])

Oracle Challenge

Input: (m0,m1, ad) ∈ M2 ×AD
if |m0| 6= |m1| then

return ⊥
if j ≤ exposed then

return ⊥
(ek, c, z)← Encrypt(mb, ad)

Challenges← Challenges ∪ {s}
return (ek, c)

Oracle Decrypt
Input: (c, ad) ∈ C × AD

(dk,m)← HkuPke.Dec(dk, c, ad)
if m = ⊥ then

return ⊥
if hijacked ∨ (c, ad) 6= B[r + 1] then

hijacked← true
return m

else
r ← r + 1
return ⊥

Oracle BcUpdateDk
Input: leak ∈ {true, false}

if ¬hijacked then
i← i+ 1
z � R
(dk,U [i])← HkuPke.BcUpDk(dk; z)
if leak then

exposed← i
return (U [i], z)

else
return U [i]

Oracle Expose

vuln1 ← r /∈ Challenges
vuln2 ← r + 1 ≤ s ∧ r + 1 /∈ Challenges
if hijacked ∧ ¬vuln1 ∧ ¬vuln2 then

return dk

else if ∀e ∈ (r, s] e /∈ Challenges then
exposed← i
return dk

else
return ⊥

Finalization
Input: d ∈ {0, 1}

return (d = b)

Fig. 9. The confidentiality game for healable and key-updating encryption.

been applied to the encryption key using HkuPke.BcUpEk. A formal definition of
correctness is given in the full version [12].

Security. The security of HkuPke is formalized using the game HkuPke-CPA,
described in Figure 9. Similarly to the unidirectional case, we extend the IND-CPA
game.

The interface. Consider the (insecure) variant of our game without the parts of
the code marked in boxes. As in the IND-CPA game, the adversary gets to see
the encryption key ek and has access to a left-or-right Challenge oracle. Since
HkuPke schemes are stateful, we additionally allow the adversary to update the

20

decryption key through the calls to the Decrypt oracle (which for now only
returns ⊥). The encryption key is updated using the calls to the Encrypt oracle
(where the encrypted message is known) and to the Challenge oracle.

Furthermore, in our setting the adversary is allowed to expose the randomness
and the state. To expose the state (that is, the decryption key), he can query the
Expose oracle. To expose the randomness of any randomized oracle, he can set
the input flag leak to true.

Finally, the adversary can access two oracles corresponding to the back
channel: the oracle BcUpdateDk executes the algorithm HkuPke.BcUpDk and
returns the update information to the adversary (this corresponds to sending
on the back channel), and the oracle BcUpdateEk executes HkuPke.BcUpEk
with the next generated update (since the channel is authenticated, the adversary
has no influence on which update is applied).

Disabling trivial attacks. Observe that certain attacks are disabled by the construc-
tion itself. For example, the randomness used to encrypt a challenge ciphertext
cannot be exposed.

Furthermore, the game can be trivially won if the adversary asks for a challenge
ciphertext and, before calling Decrypt with this ciphertext, exposes the decryption
key (by correctness, the exposed key can be used to decrypt the challenge). We
disallow this by keeping track of when the adversary queried a challenge in the
set Challenges, and adding corresponding checks in the Expose oracle. Similarly,
in the Challenge oracle we return ⊥ whenever the decryption key corresponding
to the current encryption key is known to the adversary. Finally, the decryptor
can be hijacked, which the game marks by setting hijacked to true. Once this
happens, the Decrypt oracle “opens up” and returns the decrypted message.

Moreover, ideally, exposing the secret key after hijacking would not reveal
anything about the messages (the adversary gets to call Expose “for free”, without
setting exposed). However, as already mentioned, we relax slightly the security.
In particular, exposing is free only when hijacking did not occur immediately
after leaking encryption randomness. This is checked using the conditions vuln1

and vuln2.

Advantage. In the following, let Advhku-cpa
HkuPke(A) := 2 Pr[AHkuPke-CPA ⇒ true]− 1,

where Pr[AHkuPke-CPA ⇒ true] denotes the probability that the game HkuPke-
CPA returns true after interacting with an adversary A. We say that a healable
and key-updating encryption scheme scheme HkuPke is HkuPke-CPA secure if
Advhku-cpa

HkuPke(A) is negligible for any PPT adversary A.

5.2 Construction

To construct a HkuPke scheme, we require two primitives: a secretly key-updatable
encryption scheme SkuPke from Section 4, and an IND-CCA2 secure public-key
encryption scheme with associated data PkeAd. Intuitively, the latter primitive is
a public-key encryption scheme, which additionally takes into account non-secret
associated data, such that the decryption succeeds if and only if the associated

21

Construction of HkuPke

Algorithm HkuPke.Gen

DKupd, DKeph, Ue ← array initialized to ⊥
(ekupd, DKupd[0])← SkuPke.Gen

(ekeph, DKeph[0])← PkeAd.Gen
s, r, i, j, trs, trr ← 0
iack ← −1
return ((ekupd, ekeph, s, j, Ue, trs),

(DKupd, DKeph, r, i, iack, trr))

Algorithm HkuPke.Enc

Input: ((ekupd, ekeph, s, j, Ue, trs),m, ad;
(z1, . . . , z4)) ∈ EK×M×AD×R

s← s+ 1
(Ue[s], ud)← SkuPke.UpdateGen(z1)

ĉ← SkuPke.Enc(ekupd, (m,ud, z2); z3)

c← PkeAd.Enc(ekeph, ĉ, ad; z4)
trs ← Hash(trs ‖ (c, j, ad))

ekupd ← SkuPke.UpdateEk(Ue[s], ek
upd)

(ekeph,_)← PkeAd.Gen(Hash(trs ‖ z2))
return ((ekupd, ekeph, s, j, Ue, trs), (c, j))

Algorithm HkuPke.BcUpDk

Input: ((DKupd, DKeph, r, i, iack, trr);
(z1, z2)) ∈ DK×R

i← i+ 1

(êk
upd
, d̂k

upd
)← SkuPke.Gen(z1)

(êk
eph
, d̂k

eph
)← PkeAd.Gen(z2)

DKupd[i]← d̂k
upd

DKeph[i]← d̂k
eph

return ((DKupd, DKeph, r, i, iack, trr),

(êk
upd
, êk

eph
, r))

Algorithm HkuPke.BcUpEk

Input: ((ekupd, ekeph, s, j, Ue, trs),

(êk
upd
, d̂k

eph
, rmsg)) ∈ EK × U

if rmsg ≥ s then
ekeph ← êk

eph

ekupd ← êk
upd

for `← (rmsg + 1), . . . , s do
ekupd ← SkuPke.UpdateEk(Ue[`], ek

upd)

return (ekupd, ekeph, s, j + 1, Ue, trs)

Algorithm HkuPke.Dec

Input: ((DKupd, DKeph, r, i, iack, trr), (c, imsg), ad) ∈ DK× C ×AD
if imsg ≥ iack ∧ imsg > i then

ĉ← PkeAd.Dec(DKeph[imsg], c, ad)
if ĉ 6= ⊥ then

m̂← SkuPke.Dec(DKupd[imsg], ĉ)
if m̂ ∈ M× SkuPke.U × PkeAd.DK then

(m,ud, z)← m̂
trr ← Hash(trr ‖ (c, imsg, ad))

(_, d̂keph
)← PkeAd.Gen(Hash(trr ‖ z2))

for `← 1 . . . i do
if ` < imsg then

DKeph[`]← ⊥
DKupd[`]← ⊥

else
DKeph[`]← d̂k

eph

DKupd[`]← SkuPke.UpdateDk(ud, DK
upd[`])

return ((DKupd, DKeph, r + 1, i, imsg),m)

return ((DKupd, DKeph, r, i, iack, trr),⊥)

Fig. 10. The construction of healable and key-updating encryption.

data has not been modified. A bit more formally, in the corresponding security
game the decryption oracle is only blinded if the adversary requests to decrypt
the challenge ciphertext together with the associated data provided with the
challenge. It will decrypt the challenge for any other associated data. A formal
description of this notion, together with a simple construction in the random
oracle model, is presented in the full version [12].

At the core of our construction, in order to encrypt a message m, we generate
an update ue, dd for an SkuPke scheme and encrypt the secret update information

22

ud together with m. This update information is then used during decryption to
update the secret key.

Unfortunately, this simple solution has a few problems. First, we need the
guarantee that after the decryptor is hijacked, his state cannot be used to decrypt
messages encrypted afterwards. We achieve this by adding a second layer of
encryption, using a PkeAd. We generate a new key pair during every encryption,
and send the new decryption key along withm and ud, and store the corresponding
encryption key for the next encryption operation. The decryptor will use his
current such key to decrypt the message and then completely overwrite it with
the new one he just received. Therefore, we call those keys “ephemeral”. The basic
idea is of course that during the hijacking, the adversary has to provide a different
ciphertext containing a new ephemeral key, which will then be useless for him
when exposing the receiver afterwards. In order to make this idea sound, we have
to ensure that this key is not only different from the previous one, but unrelated.
To achieve this, we actually do not send the new encryption key directly, but
send a random value z instead and then generate the key pairs using Hash(tr ‖ z)
as randomness. Here tr stands for a hash chain of ciphertexts and associated
data sent/received so far, including the current one. Overall, an encryption of m
is PkeAd.Enc(ekeph,SkuPke.Enc(ekupd, (m,ud, z2)), ad), for some associated data
ad.

Second, we need to provide healing guarantees through the back channel.
This is achieved by generating fresh key pairs for both, the updating and the
ephemeral, encryption schemes. For correctness, the encryptor however might
have to ignore the new ephemeral key, if he detects that it will be overwritten
by one of his updates in the meantime. He can detect this by the decryptor
explicitly acknowleding the number of messages he received so far as part of the
information transmitted on the backward-channel.

Third, observe that for correctness, the decryptor needs to store all decryption
keys generated during the back-channel healing, until he receives a ciphertext for
a newer key (consider the back-channel messages being delayed). In order to still
guarantee post-hijack security, we apply the SkuPke update ud to all secret keys
he still stores. This also implies that the encryptor has to store the corresponding
public update information and apply them the the new key he obtains from the
backward-channel, if necessary.

Theorem 3. Let SkuPke be a secretly key-updatable encryption scheme, and let
PkeAd be an encryption scheme with associated data. The scheme of Figure 10
is HkuPke-CPA secure in the random oracle model, if the SkuPke scheme is
SkuPke-MI-CPA secure, and the PkeAd is IND-CCA2-AD secure.

A proof of Theorem 3 is presented in the full version of this work [12].

6 Overall Security

So far, we have constructed two intermediate primitives that will help us build
a secure messaging protocol. First, we showed a unidrectional authentication

23

scheme that provides healing after exposure of the signer’s state. Second, we
introduced a sesqui-directional confidentiality scheme that achieves forward
secrecy, healing after the exposure of the receiver’s state, and it also provides
post-hijack confidentiality.

The missing piece, except showing that the schemes can be securely plugged
together, is post-hijack authentication: with the unidirectional authentication
scheme we introduced, exposing a hijacked party’s secret state allows an attacker
to forge signatures that are still accepted by the other party. This is not only
undesirable in practice (the parties lose the chance of detecting the hijack),
but it actually undermines post-hijack confidentiality as well. More specifically,
an attacker might trick the so far uncompromised party into switching over to
adversarially chosen “newer” encryption key, hence becoming a man-in-the-middle
after the fact.

In contrast to confidentiality, one obtains healing of authentication in the
unidirectional setting, but post-hijack security requires some form of bidirectional
communication: receiving a message must irreversibly destroy the signing key.
Generally, we could now follow the approach we took when dealing with the
confidentiality and define a sesqui-directional authentication game. We refrain
from doing so, as we believe that this does not simplify the exposition. As
the reader will see later, our solution for achieving post-hijack authentication
guarantees requires that the update information on the backward-channel is
transmitted confidentially. This breaks the separation between authentication and
confidentiality. More concretely, in order for a sesqui-directional authentication
game to serve as a useful intermediate abstraction on which one could then build
upon, it would now have to model the partial confidential channel of HkuPke in
sufficient details. Therefore, we avoid such an intermediate step, and build our
overall secure messaging scheme directly. First, however, we formalize the precise
level of security we actually want to achieve.

6.1 Almost-Optimal Security of Secure Messaging

Syntax. A secure messaging scheme SecMsg consists of the following triple
of polynomial-time algorithms (SecMsg.Init,SecMsg.Send,SecMsg.Receive). The
probabilistic algorithm SecMsg.Init generates an initial pair of states stA and
stB for Alice and Bob, respectively. Given a message m and a state stu of
a party, the probabilistic sending algorithm outputs an updated state and a
ciphertext c: (stu, c)← SecMsg.Send(stu,m; z). Analogously, given a state and a
ciphertext, the receiving algorithms outputs an updated state and a message m:
(stu,m)← SecMsg.Send(stu, c).

Correctness. Correctness of a secure messaging scheme SecMsg requires that if
all sent ciphertext are received in order (per direction), then they decrypt to the
correct message. More formally, we say the scheme is correct if no adversary can
win the correctness game SecMsg-Corr, depicted in Figure 11, with non-negligible
probability. For simplicity, we usually consider perfect correctness, i.e., even an
unbounded adversary must have probability zero in winning the game.

24

Game SecMsg-Corr

Initialization
(stA, stB)← SecMsg.Init
win← false
for u ∈ {A,B} do
Bu→ū,Mu→ū ← array initialized to ⊥
su, ru ← 0

Oracle Send
Input: (u,m) ∈ {A, B} ×M
su ← su + 1
z � R
(stu, c)← SecMsg.Send(stu,m; z)
Bu→ū[su]← c
Mu→ū[su]← m
return (c, z)

Oracle Receive
Input: u ∈ {A, B}

if ru ≥ sū then
return ⊥

ru ← ru + 1
(stu,m)← SecMsg.Receive(stu,Bū→u[ru])
if m 6=Mū→u[ru] then

win← true
return m

Finalization
return win

Fig. 11. The correctness game for a secure messaging scheme.

Security. The security of SecMsg is formalized using the game SecMsg-Sec,
described in Figure 12.

In general, the game composes the aspects of the security game for key-
updating signature scheme KuSig-UF, depicted in Figure 4 on Page 11, with the
sesqui-directional confidentiality game HkuPke-CPA, depicted in Figure 9 on
Page 20. Nevertheless, there are a few noteworthy points:

– The game can be won in two ways: either by guessing the bit b, i.e., breaking
confidentiality, or by setting the flag win to true, i.e., being able to inject
messages when not permitted by an appropriate state exposure. Note that
in contrast to the unidirectional authentication game, the game still has to
continue after a permitted injection, hence no lost flag exists, as we want to
guarantee post-hijack security.

– In contrast to the sesqui-directional confidentiality game, the Send oracle
takes an additional flag as input modeling whether the randomness used
during this operations leaks or not. This allows us to capture that a message
might not remain confidential because the receivers decryption key has been
exposed, yet it contributes to the healing of the reverse direction (which is
not the case if the freshly sampled secret key already leaks again).

– Observe that ru stops increasing the moment the user u is hijacked. Hence,
whenever hijackedu is true, ru corresponds to the number of messages he
received before.

– The two flags vuln1 and vuln2 correspond to the two situations in which we
cannot guarantee proper post-hijack security. First, vuln1 corresponds to the
situation that the last message from ū to u before u got hijacked was not
transmitted confidentiality. This can have two reasons: either the randomness
of the encryption of ū leaked, or u has been exposed just before receiving that
message. Observe that in order to hijack u right after that message, the state

25

of ū needs to be exposed right after sending that message. So in a model
where randomness does not leak, vuln1 implies that both parties’ state have
been compromised almost at the same time. Secondly, vuln2 implies that the
next message by ū was not sent securely either.

Game SecMsg-Sec

Initialization
(stA, stB)← SecMsg.Init
b � {0, 1}
win← false
for u ∈ {A,B} do
Bu→ū ← array initialized to ⊥
su, ru ← 0
hijackedu ← false
Exposedu ← {−1}
Challengesu→ū ← ∅

Oracle Send
Input: (u,m, leak)

∈ {A, B} ×M× {true, false}
su ← su + 1
z � R
(stu, c)← SecMsg.Send(stu,m; z)
if ¬hijackedu then

if leak then
Exposedu ← Exposedu ∪ {su}

Bu→ū[su]← c
if leak then

return (c, z)
else

return c

Oracle Challenge

Input: (u,m0,m1) ∈ {A, B} ×M2

if |m0| 6= |m1| ∨ hijackedu
∨ru ≤ max(Exposedū) then

return ⊥
c← Send(u,mb, false)
Challengesu→ū ← Challengesu→ū ∪ {su}
return c

Oracle Receive
Input: (u, c) ∈ {A, B} × C

(stu,m)← SecMsg.Receive(stu, c)
if m = ⊥ then

return ⊥
if hijackedu then

return m
else if c 6= Bū→u[ru + 1] then

if ru ∈ Exposedū then
hijackedu ← true

else
win← true

return m
else

ru ← ru + 1
return ⊥

Oracle Expose
Input: u ∈ {A, B}

vuln1 ← ru /∈ Challengesū→u
vuln2 ← (ru+1 ≤ su)∧ru+1 /∈ Challengesū→u

if hijackedu ∧¬vuln1 ∧ ¬vuln2 then
return stu

else if ∀i ∈ (ru, sū] i /∈ Challengesū→u then
if hijackedu then

Exposedu ← Exposedu ∪ {su, . . . ,∞}
else

Exposedu ← Exposedu ∪ {su}
return stu

else
return ⊥

Finalization
Input: d ∈ {0, 1}

return (d = b) ∨ win

Fig. 12. The game formalizing almost-optimal security of a secure messaging scheme.
The solid boxes indicate the differences in comparison to the game with optimal security.

6.2 Construction

Our basic scheme. As the first step, consider a simplified version of our scheme
depicted in Figure 13. This construction works by appropriatly combinding one
instance of our unidirectional key-updating signature scheme SkuSig, and one

26

instance of our healable and key-updating confidentiality scheme HkuPke, per
direction.

Alice Bob

dkA ekB

skA vkB

dkB ekA

skB vkA

c, upd, σ

(ekB, c)← HkuPke.Enc(ekB,m)

(dkA, upd)← HkuPke.BcUpDk(dkA)

(skeph
A , σ)← KuSig.Sign(skA, (c, upd)) (vkA, v)← KuSig.Verify(vkA, (c, upd), σ)

if v = true:

(dkB,m)← HkuPke.Dec(dkB, c)

ekA ← HkuPke.BcUpEk(ekA, upd)

Fig. 13. The scheme obtained by plugging our HkuPke and our SkuSig schemes together.
Note how the keys are only used for the corresponding direction, except the update
information for the encryption key of our sesqui-directional confidentiality scheme,
which is sent along the message.

Adding post-hijack authenticity. The scheme depicted in Figure 13 does not
provide any post-hijack authenticity, which we now add.

Observe that in order to achieve such a guarantee, we have to resort to
sesqui-directional techniques, i.e., we have to send some update information on
the channel from u to ū that affects the signing key for the other direction. Given
that this update information must “destroy” the signing key in case of a hijack,
we will use the following simple trick: the update information is simply a fresh
signing key under which the other party has to sign, whenever he acknowledges
the receipt of this message. Note that the signer only has to keep the latest such
signing key he received, and can securely delete all previous ones. Hence, whenever
he gets hijacked, the signing key that he previously stored, and that he needs
to sign his next message, gets irretrievably overwritten. This, of course, requires
that those signing keys are transmitted securely, and hence will be included in
the encryption in our overall scheme. However, the technique as described so far
does not heal properly. In order to restore the healing property, we will simply
ratchet this key as well in the usual manner: whenever we use it, we sample a
fresh signing key and send the verification key along. In short, the additional
signature will be produced with the following key:

– If we acknowledge a fresh message, i.e., we received a message since last
sending one, we use the signing key included in that message (only the last
one in case we received multiple messages).

– Otherwise, we use the one we generated during sending the last message.

27

To further strengthen post-hijack security, the parties also include a hash of
the communication transcript in each signature. This ensures that even if the
deciding message has not been transferred confidentially, at least the receiver
will not accept any messages sent by the honest but hijacked sender. A summary
of the additional signatures, the key handling, and the transcript involved in the
communication form Alice to Bob is shown in Figure 14. Of course, the actual
scheme is symmetric and these additional signatures will be applied by both
parties. See Figure 15 for the full description of our overall scheme.

Alice Bob

r, skeph, tr s, sack, vk
eph,VK eph,TR

. . . , vk eph
2 , smsg , σeph

(skeph
2 , vkeph

2)← Sig.Gen

smsg ← r

ĉ← (c, upd, vkeph
2 , smsg)

σeph ← Sig.Sign(skeph, (ĉ, tr))

skeph ← skeph
2

if smsg < sack ∨ smsg > s: reject

if sack < smsg: vk ← VK eph[smsg]

else: vk ← vkeph

veph ← Sig.Verify(vk, . . . , σeph)

if veph = true: vkeph ← vkeph
2

sack ← smsg

Enc
(m,

sk
eph

1
), . .

.

s← s+ 1

(skeph
1 , vkeph

1)← Sig.Gen

VK [s]← vkeph
1

TR[s]← Hash(TR[s− 1] ‖ ĉ))r ← r + 1

skeph ← skeph
1

tr ← Hash(tr ‖ ĉ))

Fig. 14. Handling of the additional signature keys for the communication from Alice
to Bob. Each message additionally includes an index smsg, indicating the number of
messages Alice received so far, which allows Bob to look up the corresponding verification
key. Moreover, they also maintain include a hash of the transcript in each signature.

Theorem 4. Let HkuPke be a healable and key-updating encryption scheme, let
KuSig be a key-updating signature scheme, and let Sig be a signature scheme.
The scheme SecChan of Figure 15 is SecMsg-Sec secure, if HkuPke scheme is
HkuPke-CPA secure, KuSig is KuSig-UF secure, and Sig is 1-SUF-CMA secure.

A proof of Theorem 4 can be found in the full version [12].

References

[1] Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: Security notions, proofs,
and modularization for the signal protocol. In: Advances in Cryptology — EURO-
CRYPT 2019. Springer Berlin Heidelberg, Berlin, Heidelberg (2019), to appear

28

[2] Bellare, M., Kohno, T., Namprempre, C.: Breaking and provably repairing the ssh
authenticated encryption scheme: A case study of the encode-then-encrypt-and-mac
paradigm. ACM Trans. Inf. Syst. Secur. 7(2), 206–241 (May 2004)

[3] Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener,
M. (ed.) Advances in Cryptology — CRYPTO’ 99. pp. 431–448. Springer Berlin
Heidelberg, Berlin, Heidelberg (1999)

[4] Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted
encryption and key exchange: The security of messaging. In: Advances in Cryptology
– CRYPTO 2017. pp. 619–650 (2017)

[5] Borisov, N., Goldberg, I., Brewer, E.: Off-the-record communication, or, why not to
use pgp. In: Proceedings of the 2004 ACM Workshop on Privacy in the Electronic
Society. pp. 77–84. WPES ’04, ACM, New York, NY, USA (2004)

[6] Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) Advances in Cryptology — EUROCRYPT 2003. pp. 255–271.
Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

[7] Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A Formal Se-
curity Analysis of the Signal Messaging Protocol. 2nd IEEE European Symposium
on Security and Privacy, EuroS and P 2017 pp. 451–466 (2017)

[8] Durak, F.B., Vaudenay, S.: Bidirectional asynchronous ratcheted key agreement
without key-update primitives. Cryptology ePrint Archive, Report 2018/889 (2018),
https://eprint.iacr.org/2018/889

[9] Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. In: Zheng, Y. (ed.)
Advances in Cryptology — ASIACRYPT 2002. pp. 548–566. Springer Berlin
Heidelberg, Berlin, Heidelberg (2002)

[10] Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) Advances in Cryptology — EUROCRYPT 2002. pp. 466–481. Springer
Berlin Heidelberg, Berlin, Heidelberg (2002)

[11] Jaeger, J., Stepanovs, I.: Optimal Channel Security Against Fine-Grained State
Compromise: The Safety of Messaging. In: Shacham, H., Boldyreva, A. (eds.)
Advances in Cryptology – CRYPTO 2018. pp. 33–62. Springer (2018)

[12] Jost, D., Maurer, U., Mularczyk, M.: Efficient Ratcheting: Almost-Optimal Guar-
antees for Secure Messaging. Cryptology ePrint Archive, Report 2018/954 (2018),
https://eprint.iacr.org/2018/954, (full version of this paper)

[13] Kaplan, D., Kedmi, S., Hay, R., Dayan, A.: Attacking the linux prng on android:
Weaknesses in seeding of entropic pools and low boot-time entropy. In: Proceedings
of the 8th USENIX Conference on Offensive Technologies. pp. 14–14. WOOT’14,
USENIX Association, Berkeley, CA, USA (2014)

[14] Li, Y., Shen, T., Sun, X., Pan, X., Mao, B.: Detection, classification and char-
acterization of android malware using api data dependency. In: Thuraisingham,
B., Wang, X., Yegneswaran, V. (eds.) Security and Privacy in Communication
Networks. pp. 23–40. Springer International Publishing, Cham (2015)

[15] Open Whisper Systems. Signal protocol library for java/android. GitHub repos-
itory (2017), https://github.com/WhisperSystems/libsignal-protocol-java,
accessed: 2018-10-01

[16] Poettering, Bertram and Rösler, Paul: Towards Bidirectional Ratcheted Key Ex-
change. In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO
2018. pp. 3–32. Springer International Publishing, Cham (2018)

29

https://eprint.iacr.org/2018/889
https://eprint.iacr.org/2018/954
https://github. com/WhisperSystems/libsignal-protocol-java

Construction SecChan of SecMsg

Algorithm SecMsg.Init

for u ∈ {A,B} do
(eku, dku)← HkuPke.Gen

(skupd
u , vkupd

u)← KuSig.Gen

(skeph
u , vkeph

u)← Sig.Gen
for u ∈ {A,B} do

stu ← (0, 0, 0, dku, ekū, sk
upd
u , vkupd

ū , skeph
u , vkeph

ū , [], 0, [])
return (stA, stB)

Algorithm SecMsg.Send

Input: (st,m; z) ∈ S ×M×R
(r, s, sack, dk, ek, sk

upd, vkupd, skeph, vkeph,VK eph, tr,TR)← st

(skeph
1 , vkeph

1)← Sig.Gen(z1) . The key pair for the backwards channel.
(skeph

2 , vkeph
2)← Sig.Gen(z2) . The key pair for the forwards channel.

. Encrypt.
(dk, upd)← HkuPke.BcUpDk(dk; z3)

(ek, c)← HkuPke.Enc(ek, (m, skeph
1), (upd, vkeph

2 , r); z4)

. Sign.
ĉ← (c, upd, vkeph

2 , r)

(skupd, σupd)← KuSig.Sign(skupd, (ĉ, tr); z5)

σeph ← Sig.Sign(skeph, (ĉ, tr); z6)

. Update the state.
s← s+ 1
VK [s]← vkeph

1
TR[s]← Hash(TR[s− 1] ‖ ĉ)
st← (r, s, sack, dk, ek, sk

upd, vkupd, skeph
2 , vkeph,VK eph, tr,TR)

return (st, (ĉ, σupd, σeph))

Algorithm SecMsg.Receive

Input: (st, (ĉ, σupd, σeph)) ∈ S × C
(r, s, sack, dk, ek, sk

upd, vkupd, skeph, vkeph,VK eph, tr,TR)← st

(c, upd, vkeph
msg, smsg)← ĉ

v ← false
if sack ≤ smsg ≤ s then

if smsg > sack then
vk ← V Keph[smsg]

else
vk ← vkeph

veph ← Sig.Verify(vk, (ĉ, TR[smsg]), σeph)

(vkupd, vupd)← KuSig.Verify(vkupd, ĉ, σupd)
v ← veph ∧ vupd

if v then
ek ← HkuPke.BcUpEk(ek, upd)

(dk, (m, skeph
msg))← HkuPke.Dec(dk, c, (upd, vkeph

msg, smsg))
r ← r + 1
tr ← Hash(tr ‖ ĉ)
st← (r, s, smsg, dk, ek, sk

upd, vkupd, skeph
msg, vk

eph
msg,VK eph, tr,TR)

return (st,m)
else

return (st,⊥)

Fig. 15. The construction of an almost-optimally secure messaging scheme.

30

	Efficient Ratcheting: Almost-Optimal Guarantees for Secure Messaging

