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Abstract. Secure multiparty computation (MPC) addresses the chal-
lenge of evaluating functions on secret inputs without compromising their
privacy. A central question in multiparty computation is to understand
the amount of communication needed to securely evaluate a circuit of
size s. In this work, we revisit this fundamental question in the setting of
information-theoretically secure MPC in the correlated randomness model,
where a trusted dealer distributes correlated random coins, independent
of the inputs, to all parties before the start of the protocol. This setting is
of strong theoretical interest, and has led to the most practically efficient
MPC protocols known to date.
While it is known that protocols with optimal communication (pro-
portional to input plus output size) can be obtained from the LWE
assumption, and that protocols with sublinear communication o(s) can
be obtained from the DDH assumption, the question of constructing
protocols with o(s) communication remains wide open for the important
case of information-theoretic MPC in the correlated randomness model;
all known protocols in this model require O(s) communication in the
online phase.
In this work, we exhibit the first generic multiparty computation protocol
in the correlated randomness model with communication sublinear in
the circuit size, for a large class of circuits. More precisely, we show the
following: any size-s layered circuit (whose nodes can be partitioned into
layers so that any edge connects adjacent layers) can be evaluated with
O(s/log log s) communication. Our results holds for both boolean and
arithmetic circuits, in the honest-but-curious setting, and do not assume
honest majority. For boolean circuits, we extend our results to handle
malicious corruption.

Keywords.multiparty computation, correlated randomness model, information-
theoretic security, sublinear communication

1 Introduction

Secure multiparty computation (MPC) allows n players with inputs (x1, · · · , xn)
to jointly evaluate a function f , while leaking no information on their own input
beyond the output of the function. It is a fundamental problem in cryptography,
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which has received a considerable attention since its introduction in the seminal
works of Yao [Yao86], and Goldreich, Micali, and Wigderson [GMW87b,GMW87a]
(GMW). One of the core questions in secure multiparty computation is to under-
stand the amount of communication needed to securely compute a function. For
almost three decades after the protocols of Yao and GMW, all known construc-
tions of secure computation protocols required a communication proportional to
the circuit size of the function, and understanding whether this was inherent was
a major open problem.

Secure Computation with Sublinear Communication. In 2009, this situ-
ation changed with the introduction by Gentry of the first fully-homomorphic
encryption scheme [Gen09] (FHE), which led to secure computation protocols
with communication independent of the size of the function (proportional only
to its input size and its output size), under (a circular-security variant of) the
LWE assumption. This resolved the long-standing open problem of designing
MPC protocols with optimal (asymptotic) communication, although only under
a specific assumption. More recently, the circuit-size barrier was broken again
under the DDH assumption in [BGI16], for a large class of structured circuits1
and in the two-party case. However, while these results are of strong theoretical
interest, they require expensive computations.

Secure Computation in the Correlated Randomness Model. While se-
cure computation (with no honest majority) is known to require computational
assumptions, it was observed in several works (e.g. [IPS08,DPSZ12]) that ex-
ecuting a pre-computation phase independent of the inputs to the protocol,
during which correlated random bits are distributed to the parties, allows to
make the online phase both information-theoretically secure and significantly
more efficient, by removing any expensive cryptographic operation from the
online computation phase. These observations led to the development of in-
creasingly efficient secure computation protocols in the correlated randomness
model, e.g. [KOS16,DNNR17], which are currently considered the most practical
secure computation protocols. Yet, unlike computationally secure protocols, all
known unconditionally secure protocols in the correlated randomness model (with
computation and storage polynomial in the circuit size) require communication
proportional to the circuit size of the function. Therefore, the major question of
understanding the communication required for multiparty computation remains
wide open for the important case of MPC in the correlated randomness model,
which captures the best candidates for practical secure computation. This is the
question we address in this work: must MPC protocols in the correlated random-
ness model inherently use a communication linear in the size of the circuit? Or,
in other words, can we get the best of both worlds: unconditional security with
high practical efficiency, and sublinear communication?
1 The work of [BGI16] considered, as we will do in this work, boolean circuits which
can be divided into layers such as any edge connects adjacent layers. Such circuits
are called layered boolean circuits.
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On the Communication of Secure Computation in the Correlated Ran-
domness Model. A partial answer to this question was given in [IKM+13],
where the authors designed a one-time truth-table protocol, which allows to
evaluate any function f : {0, 1}n 7→ {0, 1}m with unconditional security in the
correlated randomness model, with optimal communication O(n+m). However,
this protocol requires storing an exponential number (in n) of correlated ran-
dom bits (polynomial in the size of the entire truth-table of f), which makes it
practical only for boolean functions with very small inputs. Furthermore, it was
argued in [IKM+13] that reducing the amount of correlated random coins from
exponential to polynomial (in the input size) for any function f is unlikely to be
feasible, as it would imply an unexpected breakthrough for long-standing open
problems related to private information retrieval.

While this negative result does not rule out a sublinear-communication
protocol with small storage for circuits, this observation and the fact that all
known protocols (with polynomial storage) have communication proportional
to the circuit size s of the function have been seen as indications that breaking
the circuit-size barrier for multiparty computation in the correlated randomness
model might be non-trivial. For instance, it was mentioned in [DZ13] that “the
results and evidence we know suggest that getting constant overhead [over the
circuit size of the function] is the goal we can realistically hope to achieve”. More
recently in [DNPR16], the authors mentioned that “whether we can have constant
round protocols and/or communication complexity much smaller than the size
of the circuit and still be efficient (polynomial-time) in the circuit size of the
function is a long-standing open problem”.

In [DNPR16], the authors made progresses toward understanding why existing
protocols have been stuck at the circuit-size barrier, by identifying a property
shared by all known efficient protocols in the correlated randomness model, which
states (informally) that they evaluate the function in a “gate-by-gate” fashion,
and require communication for every multiplication gate. They demonstrated
that all protocols following this approach (with passive security and dishonest
majority) must inherently have communication proportional to the circuit size of
the function. They concluded that improving the communication complexity of
secure computation in the correlated randomness model requires a fundamentally
new approach, and mentioned that the main question left open in their work is
to find out whether their bound does hold for any protocol which is efficient in
the circuit size of the function. This is the problem we address in this work.

1.1 Our Contribution

In this paper, we construct for the first time protocols with polynomial storage
and communication sublinear in the circuit size, for a large class of circuit.
Perhaps surprisingly, our results turn out to be relatively simple to obtain; it
appears however that this simple solution was missed in previous works.

Sublinear Protocol for Structured Circuits. We exhibit a generic secure
computation protocol in the correlated randomness model, with communication
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sublinear in the circuit size. More specifically, we consider layered boolean circuits
(LBC), whose nodes can be arranged into layers so that any edge connects adjacent
layers. We prove the following: for any N , there is an unconditionally secure
N -party protocol that evaluates an arbitrary LBC of size s with n inputs and m
outputs, with total communication

O

(
n+N ·

(
m+

s

log log s

))
,

sublinear in the size of the circuit, and polynomial storage O(s2/log log s), in
the correlated randomness model against semi-honest adversaries, with dishonest
majority. While this requires an arguably large storage, it can be reduced to
being only slightly superlinear in s, namely

O

(
s · 2(log s)

1/c

log log s

)
,

at the cost of increasing the communication to O(n+N · (m+ c · s/log log s)) (for
an arbitrary c = o(log log n)). Our protocol enjoys perfect security, computational
complexity O(s log s/log log s+n+m), and round complexity d/log log s, where d
is the depth of the circuit. All the constants involved are very small (in fact equal
to one, up to low order terms), and the computation involves solely searching
lookup tables.

Extensions. We generalize our result to secure evaluation of arbitrary layered
arithmetic circuits (LAC) over any (possibly exponentially large) field F, by relying
on a connection between MPC with correlated randomness and the classical
notion of private simultaneous message protocols [FKN94]. The resulting protocol
for arithmetic circuits has costs comparable to the boolean version. Furthermore,
we show that all our results can be extended to the stronger function-independent
preprocessing model, where only a bound on the size of the circuit is known in
the preprocessing phase, and that the communication can be improved for “tall
and narrow” circuits. Eventually, using the techniques of [DNNR17,KOR+17],
our protocols directly extend to the malicious setting for boolean circuits, at
an additive cost of N · κ bits of communication (for some statistical security
parameter κ), and a O(κ) overhead in computation and correlated randomness
(more advanced techniques from [DNNR17] can be used to make this overhead
constant).

Static vs Adaptive Setting. While we focus for simplicity on the static setting
in this work, where the adversary decides before the protocol which parties to
corrupt, our protocols can be proven to also satisfy adaptive security in a relatively
straightforward way. Indeed, when it must reveal the input of a party which is
being corrupted by the adversary, the simulator of our main protocol (and its
variants) can easily explain the view of the adversary as being consistent with any
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input of its choice, by choosing the preprocessing material in an appropriate way.
As the view of the adversary will always consist of values perfectly masked by
random coins generated in the preprocessing phase, there will always be a choice
of preprocessing material which “unmask” the values known to the adversary to
any value chosen by the simulator.

1.2 Our Method

Perhaps surprisingly, our method does not depart significantly from existing
techniques in secure computation. Our starting point is the one-time truth-table
(OTTT) protocol of [IKM+13], which has optimal communication but requires
an exponential amount of data. It has been observed in several works that using
OTTT as an internal component in secure protocols can be used to reduce their
communication. For example, it was suggested to use OTTT to securely compute
S-boxes in AES in [DNNR17,KOR+17], as they can be efficiently represented as
small lookup-tables. More recently, the work of [DKS+17] developped methods to
automatically create tradeoffs between communication and computation in secure
protocols, by relying on a compiler that transforms high-level descriptions of a
function into a lookup-table-based representation of the function. All these works
rely on the fact that, for functions that can be broken into small interconnected
lookup-tables, the protocol of [IKM+13] can be used to save some communication.

Dividing Layered Boolean Circuits into Local Functions. In this work,
we show that this intuition can in fact be extended to arbitrary layered boolean
circuit of size s, and that the savings obtained this way lead to a protocol
with o(s) communication. Our protocol builds upon a variant of the result
of [IKM+13], which states that every function can be securely evaluated in the
correlated randomness model with perfect security, optimal communication, and
exponential storage. Our variant relies on the observation that when evaluating
local functions, where each output bit depends on a number c of input bits, we
can reduce the storage cost of the protocol of [IKM+13] from being exponential
in the input size to being only exponential in the locality parameter c. Indeed,
consider the task of securely evaluating a function with n input bits, and m
output bits. The protocol of [IKM+13] (called OTTT, for one-time truth table)
requires the parties to store shares of (a shifted version of) the truth table of the
function, which has size m · 2n, exponential in the input size. When the function
is c-local, however, there is a better solution: the parties can store shares of
(shifted variants of) truth tables corresponding to each function mapping c input
bits to a given output bit, for a total storage cost of m · 2c. Some care must be
taken, as doing straightfoward parallel repetitions of the OTTT protocol for each
subfunction would increase the communication from O(n) to O(c ·m); we show
that carefully avoiding redundancies in the secret-shared representation of the
input allows to bring this cost back to O(n). We formally state this result in a
lemma, which we call core lemma.

Given the core lemma, our result is obtained by breaking an arbitrary layered
circuit into chunks, each chunk containing some number k of consecutive layers.
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We observe that, as the underlying directed graph of the circuit has indegree 2,
each value associated to the last layer of a chunk can be computed as a function
of at most 2k values on the last layer of the previous chunk. Therefore, computing
all the values on the last layer of a chunk can be reduced to evaluating a 2k-local
function of the values on the last layer of the previous chunk. Using the core
lemma, this can be done using O(w · 22k) bits of preprocessing material, where w
is the width of the input layer, with a communication proportional to w only.
If the circuit has size s, width w, and depth d, this means that the circuit can
be securely evaluated in a chunk-by-chunk fashion, with total communication
O((d/k) ·w) = O(s/k), using O((d/k) ·22k) bits of correlated randomness; setting
k ← log log s gives the claimed result.2

Extending the Result to Arithmetic Circuit. The above method breaks
down in the case of arithmetic circuits over large order fields. While we can
decompose an arbitrary LBC into polynomial-size truth tables (by breaking it
into interconnected functions operating on logarithmically many inputs), this is
not true anymore for arithmetic circuit over fields of exponential size, where even
a function with a single input will have an exponential-size truth table. We never-
theless obtain a comparable result for arithmetic circuit, building upon a relation
with the notion of private simultaneous message (PSM) protocols [FKN94], which
establishes that PSM protocols with some additional decomposability property
can be used to build two-party secure computation protocols in the correlated
randomness model. This link was indirectly established in [BIKK14], where a
connection was drawn both between PSM and PIR, and between MPC in the
correlated randomness and PIR. Building upon a recent PSM protocol of [LVW17]
for multivariate polynomial evaluation, we get an arithmetic analogue of the
protocol of [IKM+13], which relies on the representation of arithmetic functions
as multivariate polynomials. From this protocol, we derive a new version of our
core lemma, tailored to the arithmetic setting, which directly leads to a secure
computation protocol with communication O(s/log log s) for layered arithmetic
circuits over arbitrary fields.

We note that, while lookup-table-based secure computation protocols for
boolean circuits have been investigated, the extension of this approach to the
arithmetic setting was (to our knowledge) never observed before. As a minor side
contribution of independent interest, we further observe that our generalization
to the arithmetic setting does in fact also provide some improvement over the
original TinyTable protocol [DNNR17] in the boolean setting: by replacing the
lookup-table-based representation of boolean gates by a multivariate-polynomial-
based representation, we show that the storage requirement of their protocol can
be reduced by 25%.

On the Lower Bounds of [IKM+13,DNPR16]. It should be noted that our
protocols do not follow the standard gate-by-gate design of unconditionally secure
2 We assume w · d = O(s) in this high level explanation for simplicity only, this is not
a necessary condition in the actual construction.
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protocols in the correlated randomness model, hence our result does not contradict
the lower bound of [DNPR16]. Moreover, our results apply only to circuits, while
the implausibility result of [IKM+13] assumes the existence of a low-storage
protocols for evaluating any function, which our results do not provide. Therefore,
they do not lead to unexpected breakthroughs for information-theoretic private
information retrieval.

1.3 Related Work

The possibility of securely computing functions given access to a source of
correlated random coins was first studied in the work of Beaver for the (MPC-
complete) oblivious-transfer functionality in [Bea95], and later generalized to the
commodity-based model, where multiple servers generate correlated random coins
in a honest majority setting in [Bea97]. The study of multiparty computation
in the preprocessing model, where the correlated-randomness coin-generation
phase is implemented with a computationally secure MPC protocol, was initiated
in [Kil88,Bea92, IPS08]. These works started a rich line of work on increasingly
efficient MPC protocols in the preprocessing model [IPS09,BDOZ11,NNOB12,
DPSZ12,DZ13,DLT14,LOS14,FKOS15,BLN+15,DZ16,KOS16,DNNR17].

The quest for secure multiparty computation protocols with low-communication
was initiated in [BFKR91], which gave a protocol with optimal communication,
albeit with exponential computation and only for a number of party linear in the
input size. An optimal communication protocol with exponential complexity was
also given in [NN01]. The work of [BI05] gives a low-communication protocol
for constant-depth circuit, for a number of parties polylogarithmic in the circuit
size. The breakthrough result of Gentry [Gen09] led to optimal communication
protocols in the computational setting [DFH12, AJL+12] under the LWE as-
sumption.3 More recently, computationally secure MPC protocols with sublinear
communication were achieved from the DDH assumption in [BGI16].

The study of low-communication protocols in the correlated randomness
model was initiated in [IKM+13], where a protocol with optimal communication
and exponential storage complexity was presented. The same paper showed that
improving the storage requirement for all functions would imply a breakthrough in
information-theoretic PIR. The work of [BIKK14] reduces the storage requirement
for functions with n inputs to 2O(

√
n), at the cost of increasing the communica-

tion complexity to 2O(
√
n). The work of [BIKO12] leads to low-communication

protocols in the correlated randomness model for the special case of depth-2
circuits with a layer of OR gates and a layer of gates computing a sum modulo
m, for composite m. All known protocols for evaluating arbitrary circuits in the
correlated randomness model (with polynomial computation and storage) use
communication linear in the circuit size. This limitation was formally studied
recently in [DNPR16], where it was shown that it is inherent in the setting of
gate-by-gate protocols.
3 More precisely, the protocol needs to assume the circular security of an LWE-based
encryption scheme; alternatively, it can be based on the LWE assumption only, but
the communication will grow with the depth of the circuit.
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The idea of using truth-table representation to reduce the communication
of secure computation protocols first arose in [CDv88], and was developped
in [IKM+13]. It was later used implicitely in [KK13], to construct one-out-of-two
oblivious transfer for short string from one-out-of-N oblivious transfer, and in the
works of [DNNR17,KOR+17,DKS+17] to evaluate circuits with an appropriate
structure.

On the Relation to [DNNR17]. At a late stage of our work on this paper, it
was brought to our attention that the main techniques underlying the proof of
our core lemma – informally, breaking a function into interconnected truth-tables,
representing each outgoing wires from a table with secret-shared values, and
carefully avoiding all redundancies for wires which are used by several tables – are
already implicitely present in [DNNR17]. Indeed, [DNNR17] already explored the
possibility of breaking a circuit into small interconnected truth table, avoiding
redundancies in the secret-shared representation of the values associated to each
wire, and envisionned the possibility of generalizing this to larger tables. However,
it appears that the authors of [DNNR17] have overlooked the surprising potential
consequences of these techniques, which we explore in this paper. Therefore,
our work can be seen as indentifying and abstracting out the technical ideas
underlying our main result (as well as providing additional contributions, such
as the extension to the arithmetic setting), but while the core lemma is new
to our work, we cannot (and do not) claim the novelty of the techniques used
in its proof, which should be credited to [DNNR17]. Still, we believe that our
result remains interesting and surprising, and that it deserves to be explicitely
presented.

1.4 On the Practical Efficiency of our Protocols

In spite of its theoretical nature, our result can in fact lead to concrete efficiency
improvements for secure multiparty computation. We focus for simplicity on
the case of two-party computation, and argue that our protocols can lead to
improved efficiency, for useful types of computation. The state-of-the-art protocol
for secure two-party computation in the correlated randomness model is, to our
knowledge, the protocol of [DNNR17] (in both the passive setting and the active
setting), which also relies on an OTTT-based evaluation of a boolean circuit. In
the online phase, the protocol of [DNNR17] communicates 2 bits per AND gate
(one from each player), and no bit at all for XOR and NOT gates (we note that
our protocols can be readily adapted to allow for free XOR and NOT gates as
well).

Concrete Efficiency. Using our protocol with k = 2, we get a two-party
protocol which communicates on average a single bit per AND gate, improving
over the protocol of [DNNR17] by 50% in both the passive and the active setting,
for arbitrary layered circuits. This comes at the cost of storing 8 times more
preprocessed data (a factor 22k/k = 8 for k = 2), and a factor 2k/k = 2 in
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computation (which comes from the need to search four-times larger lookup-
tables). As noted in [DNNR17], the limiting factor in a concrete implementation
of TinyTable is the bandwidth, hence we expect that an implementation of our
protocol would result in concrete improvements over [DNNR17] in the speed of
the online phase.

On the Generality of Layered Boolean Circuits. Unlike [DNNR17], how-
ever, our construction is restricted to layered boolean circuits. While this is a
large class of circuits, and getting improved secure computation protocols for
this class was already seen as an interesting goal in previous papers [BGI16], one
might wonder whether this class captures useful circuits, ones that arise naturally
in some applications. We argue that it is the case, by providing a (non-exhaustive)
list of types of circuits that are well-suited for our protocols. We stress that this
list is only for illustration purpose; many more examples can be found.

– FFT circuit. The circuit for the fast Fourier transform, which is used in
signal processing and integer multiplication, and the circuit for permutation
networks [Wak68], which allow to compute arbitrary permutations of the
input, have the exact same structure and are layered. For these circuits,
which occur naturally in many applications, our protocol leads to an online
communication of O(n log n/log log n) instead of O(n log n).

– Symmetric crypto primitives. It was already observed previously that any
computation involving large truth tables, such as block ciphers (e.g. AES),
have the appropriate structure to be evaluated efficiently with our approach.
More generally, algorithms that proceed in sequences of low-complexity
rounds, where each round requires only the state of the previous round
(and the input), are naturally “layered by blocks”, which suffices for our
result to apply. This structure is common to many primitives in symmetric
cryptography.

– Circuits for problems with a dynamic-programming algorithm. Dynamic pro-
gramming algorithm naturally proceed in stages, such that the computation at
each stage depends on a (usually small) state of values stored after the previous
stage. Such dynamic programming algorithms arise for example in various use-
ful types of distance measures used in genetic computation, such as the Smith-
Waterman distance [SW81], or the Levenshtein distance [Lev66] and its vari-
ants (LCS, weighted Levenshtein distance, etc). Privacy-preserving genomic
computations are an important application of secure computation, hence the
secure computation of the aforementioned measures (which are among the
fundamental building blocks of computational biology) has been considered
at length (see e.g. [AKD03,SPO+06,JKS08,HEKM11,ALSZ13,CKL15]). The
natural circuit for computing Levenshtein and Smith-Waterman distances
have size O(n2 log n), but can be computed with online communication O(n2)
with our protocol (the log n shaving comes from the high locality of dynamic
programming algorithms; our result leads to better sublinearity guarantee
for very local computations).
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1.5 On Implementing the Correlated Randomness Model

It is well known that the distribution of correlated random coins in the prepro-
cessing phase can be implemented by any generic MPC protocol. However, in our
setting, generic approaches would require a communication superlinear in the
circuit size. We note that, for the specific case of generating random shares of
correlated strings, there are better (theoretical) solutions: under the learning with
error assumption, or under (variants of) the decisional Diffie-Hellman assumption
in the two-party case, the preprocessing phase of our protocols can be imple-
mented with constant communication poly(λ) (where λ is a security parameter),
independent of the size of the circuit, resulting in protocols with sublinear total
communication O(s/log log s + poly(λ)), and information-theoretically secure
online phase.

We briefly sketch how the preprocessing phase can be implemented with
constant communication. The main technical tool is a primitive known as homo-
morphic secret sharing [BGI16] (HSS); the idea of using HSS to the implement
preprocessing phase of MPC protocols was suggested in [BGI17,BCG+17]. In-
formally, an HSS scheme for a class of functions F allows to secretly share an
input x between several parties, such that given its share, each party can locally
compute an additive share of f(x), for any f ∈ F . Given an HSS scheme for all
circuits, the preprocessing phase can be implemented as follows: we assume with-
out loss of generality that the trusted dealer first samples a long random string
x, computes f(x) for some specified function f , and distributes random additive
shares of f(x) to the parties (e.g. in our protocol, f would output ≈ s/log log s
shifted truth-tables). To implement this preprocessing phase, the parties jointly
and securely construct, using a general purpose MPC protocol, an homomorphic
secret sharing of a random PRF key K. Then, all parties locally evaluate the
function f ′ that takes some counter c, generates pseudorandom coins x from this
counter using the PRF with key K (e.g. by computing PRF(K, c), PRF(K, c+ 1),
and so on), and returns f(x). This way, with no further communication ex-
cept for a one-time generation of the sharing of K (which takes communication
poly(λ), independently of s), the parties obtain correlated (pseudo) random coins.
An HSS scheme for all functions (and a PRF) can be constructed under the
LWE assumption [BGI15,JRS17]. With a more involved construction, a protocol
can also be obtained from DDH: under the DDH assumption, there exists an
approximately-correct HSS scheme for NC1 [BGI16], in the two-party setting.
Noting that the preprocessing function is parallelizable (in NC0) and that there
exists PRFs in NC1 under the DDH assumption, we can implement the previous
strategy from DDH. The correlated random coins obtained this way are not all
correct, but the approximately-correct HSS scheme of [BGI16] allows the parties
to make the error probability arbitrarily small, and to detect when an output is
erroneous. By setting the error parameter so that, with overwhelming probability,
a small (constant) number of correlated random coins will be erroneous, and by
introducing some redundancy in the coins generated this way, the parties can
simply reveal to each other which correlated coins are susceptible to be erroneous
(indicating the position of erroneous bits only requires O(log s) communication),
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and locally delete them. To prove security in spite of this small leakage, we need
to rely on slightly leakage-resilient PRF and HSS, which can both be constructed
from DDH-based primitives using standard approaches. We refer the reader to
the full version [BCG+18] of [BCG+17] for a detailed overview of this approach.

1.6 Organization

Section 2 introduces our notations, and recalls standard preliminaries on circuits.
In section 3, we summarize the contributions of this paper in the form of a list
of theorems, formally state the core lemma on which these theorems are based,
and prove it. Section 4 builds upon the core lemma; it introduces our main
protocol and several variants, and proves its security. In Section 5, we discuss
the extension of our protocols to the malicious setting. Eventually, Section 6 lists
some questions left open by our work, that we believe to be of interest for future
works.

2 Preliminaries

Notations. Let k be an integer. We let {0, 1}k denote the set of bitstrings of
length k. For two strings (x, y) in {0, 1}k, we denote by x⊕ y their bitwise xor.
Given a subset S of [k], x[S] denotes the subsequence of the bits of x with indices
from S. We use bold letters to denote vector; for a vector x = (x1, · · · , xN ), x[S]
denotes the vector (x1[S], · · · , xN [S]). For a matrix M , we denote M |i,j its entry
(i, j).

2.1 Circuits

Boolean Circuits. A boolean circuit C with n inputs and m outputs is a
directed acyclic graph with two types of nodes:

– The input nodes are labelled according to variables {x1, · · · , xn};
– The gates are labelled according to a base B of boolean functions.

In this work, we will focus on boolean circuits with indegree two (hence, B
contains boolean functions with domain {0, 1} or {0, 1}2). C contains m gates
with no children, which are called output gates. If there is a path between two
nodes (v, v′), we say that v is an ancestor of v′. The size size(C) of C is the
number of its nodes; its depth depth(C) is the length of the longest path from
an input node to an output gate. The width of a circuit C = (V,E) is defined
as width(C) = max1≤i≤depth(C) #{v ∈ V | (0 ≤ depth(v) ≤ i) ∧ (∃w, (v, w) ∈
E ∧ depth(w) > i)}.

Layered Boolean Circuits. In this work, we will consider a special type of
boolean circuits, called layered boolean circuits (LBC). An LBC is a boolean
circuit C whose nodes can be partitioned into d = depth(C) layers (L1, · · · , Ld),
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such that any edge (u, v) of C satisfies u ∈ Li and v ∈ Li+1 for some i ≤ d− 1.
Note that the width of a layered boolean circuit is also the maximal number of
non-output gates contained in any single layer. Evaluating a circuit C on input
x ∈ {0, 1}n is done by assigning the bits of x to the variables {x1, · · · , xn}, and
then associating to each gate g of C (seen as a boolean function) the bit obtained
by evaluating g on the values associated to its parent nodes. The output of C on
input x, denoted C(x), is the bit-string associated to the output gates.

Arithmetic Circuits. We define arithmetic circuits over a field F comparably
to boolean circuits, as directed acyclic graphs with input nodes and arithmetic
gates. Input nodes are labeled with variables {x1, · · · , xn} over F, and the gates
compute negation, addition, or multiplication over F. Note that boolean circuits
correspond to the special case of arithmetic circuits over the field F2; we extend
layered boolean circuits to layered arithmetic circuits (LAC) in a similar way.

2.2 One-Time Truth Tables

We recall the one-time truth-table protocol of [IKM+13], which is at the heart
of our protocols. It allows multiple parties to jointly evaluate a function f :
X1 ×X2 × · · · ×XN 7→ Z, by sharing between all parties a scrambled version of
the truth table of f . We focus for simplicity on a scenario where all parties receive
the same output, but the protocol can be trivially generalized to a setting where
the parties receive different outputs. The protocol is represented on Figure 1;
it has optimal communication

∑
i log|Xi|+N · log|Z|, and exponential storage

complexity |Z|·
∏
i|Xi| per party.

3 Theorems and Core Lemma

In this section, we formally introduce the theorems which we will prove in this
work, state the core lemma from which we will derive them, and prove it.

Network Model. We consider protocols involving N parties communicating
over synchronous and authenticated broadcast channel. Note that broadcasts
channels can be unconditionally implemented from (insecure) point-to-point
channels in the correlated randomness model.

Functionalities. An N -party functionality F : X1×X2×· · ·×Xn 7→ Z1×Z2×
· · · × ZN specifies a mapping from the N input of each party to N outputs (one
for each party). Such functionalities capture arbitrary non-reactive computation
tasks. A useful special case of (randomized) N -party functionalities are secret
sharing functionalities for functions over an abelian group (G,+): a protocol
computes secret shares of a function g : G 7→ G if it computes the (randomized)
N -party functionality which, on input (x1, · · · , xN ) ∈ GN , outputs N uniformly
random group elements (z1, · · · , zN ) ∈ GN subject to

∑N
i=1 zi = g(

∑N
i=1 xi).
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Protocol OTTT

Functionality:
– Public parameters: an N -party functionality f : X1 ×X2 × · · · ×XN 7→ Z,

where the (Xi,+) and (Z,+) are groups.
– The parties (P1, · · · , PN ) hold respective inputs x = (x1, · · · , xN );
– Output: each party Pi learns z = f(x).

Preprocessing :
1. Sample r = (r1, · · · , rN )

$← X1 ×X2 × · · · ×XN . Let M denote the truth-
table of f permuted with the shifts r, i.e., for any x ∈ X1×X2×· · ·×XN ,
M |x+r= f(x).

2. Let (Mi)i≤N be a random (N -out-of-N) secret sharing of M . Output
(ri,Mi) to each party Pi.

Protocol(x) :
1. Each party Pi with input xi broadcasts ui ← xi + ri.
2. Each party Pi broadcasts zi ←Mi|u. All parties reconstruct z ←

∑N
i=1 zi.

Fig. 1. Protocol OTTT for evaluating an arbitrary N -party functionality f in the
correlated randomness model, against a passively corrupted majority

This captures the situation where the parties hold secret shares of an input to a
(deterministic) function, and want to receive secret shares of the output of the
function.

3.1 Theorems

Following is a summary of the results that we obtain in the subsequent sections.

Theorem 1. For any N -party functionality f represented by a layered (boolean
or arithmetic) circuit C of size s with n inputs and m outputs, and for any
integer k, there is a perfectly secure protocol which realizes f in the preprocessing
model against semi-honest parties, without honest majority, with communication
n+N · (m+ ds/ke) and storage n/N + (m+ ds/ke) · (22k + 1).

In the above theorem, “storage” refers to the number of correlated random
coins stored by each party at the end of the preprocessing phase (counted as
a number of bits in the boolean case, and as a number of field elements in the
arithmetic case). This gives, setting k = log log s,

Corollary 2. There is a protocol that perfectly realizes any N -party functionality
f (in the function-dependent preprocessing model and against semi-honest parties,
without honest majority) represented by a layered (boolean or arithmetic) circuit
C of size s with n inputs and m outputs, with communication O(n+N · (m+
s/log log s)) and polynomial storage.

Building on the same techniques, we can also obtain a comparable result
in the stronger function-independent correlated randomness model, where the
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correlated randomness is not allowed to depend on the target functionality (but
is only given a bound on its size):

Theorem 3. For any N -party functionality f represented by a layered (boolean
or arithmetic) circuit C of size s with n inputs and m outputs, and for any integer
k, there is a perfectly secure protocol which realizes f in the function-independent
preprocessing model against semi-honest parties, without honest majority, with
communication n+N · (m+ ds/ke) and storage n/N + (m+ ds/ke) · (2k+22

k

+ 1).

Setting k = log log log s gives us

Corollary 4. There is a protocol that perfectly realizes any N -party functionality
f (in the function-independent preprocessing model and against semi-honest
parties, without honest majority) represented by a layered (boolean or arithmetic)
circuit C of size s with n inputs and m outputs, with communication O(n+N ·
(m+ s/log log log s)) and polynomial storage.

Finally, we can obtain a stronger sublinearity guarantee for “tall and narrow”
layered circuits:

Theorem 5. For any N -party functionality f represented by a layered (boolean
or arithmetic) circuit C of size s and width w with n inputs and m outputs,
and for any integer k, there is a perfectly secure protocol which realizes f in the
preprocessing model against semi-honest parties, without honest majority, with
communication n+N · (m+ ds/ke) and storage n/N + (m+ ds/ke) · (2w·k + 1).

For example, setting k =
√

log s gives us

Corollary 6. There is a protocol that perfectly realizes any N -party functionality
f (in the preprocessing model and against semi-honest parties, without honest
majority) represented by a “tall and narrow” layered (boolean or arithmetic)
circuit C of size s and width w = O(

√
log s) with n inputs and m outputs, with

communication O(n+N · (m+ s/
√

log s)) and polynomial storage.

Alternatively, we get a protocol with communication O(s/log s) for constant-
width circuit (which corresponds to the complexity class SC0). This can again be
generalized to the stronger function-independent correlated randomness model.
In the next section, we proceed with the description of our protocol. We first
focus on the case of layered boolean circuits, and then discuss our extension to
the case of arithmetic circuits.

3.2 Core Lemma

In this section, we state and prove the core lemma which underlies our results.

Definition 7 (Local Function). A Function g : Fn2 7→ Fm2 is c-local (for some
integer c ≤ n) if on any input x ∈ Fn2 , any output bit of g(x) depends on at most
c bits from x.
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Lemma 8 (Core Lemma). For any c-local function g : Fn2 7→ Fm2 , there is
an information-theoretic semi-honest N -party secure computation protocol (with
dishonest majority) in the correlated randomness model for computing secret
shares of g with total online communication N ·n bits, and correlated randomness
m · 2c + n bits per party.

Before proving Lemma 8, it is instructive to compare its guarantees to
the protocol obtained by applying directly the one-time truth-table protocol
of [IKM+13] to the N -party functionality computing secret shares of g. Applying
the OTTT protocol to the N -party functionality which sums its entries (over
F2) before evaluating g, we get a protocol with total communication N · n and
correlated randomness m · 2N ·n. However, it is straightforward to improve this
protocol, by applying the OTTT protocol to the 1-party functionality g, and
letting the trusted dealer distribute random shares of the shift r to all parties
in the preprocessing phase: in the online phase, each party broadcasts his share
of the input x, masked with his share of the shift r; this allows all parties to
reconstruct x+ r. With this modification, the parties need only to store a share
of the one-dimensional truth-table of g, of size m · 2n.

Therefore, Lemma 8 can be seen as an generalization of the result of [IKM+13],
which shifts the exponential cost of the correlated randomness from the input
size to the locality parameter of the function. In the most general case, when
c = n, we recover the result of [IKM+13] (for the special case of the secret sharing
functionalities, and up to an additive factor n); when c < n, however, this leads
to a protocol which uses a smaller amount of correlated randomness.

Proof. Let g : Fn2 7→ Fm2 be a c-local function. Without loss of generality, we
assume that each output bit of g depends on exactly c input bits. For j = 1 to
m, we denote by Sj ⊂ [n] the size-c subset of the bits of the input on which the
j’th output bit depends. We denote by gj ← restrict(g, j) the following function:
gj : Fc2 7→ F2 is the function which, for any x ∈ Fn2 , computes the j’th output bit
of g(x) when given the appropriate subset x[Sj ] of the bits of x as input.

We describe on Figure 2 the protocol Πlocal, which allows N parties hold-
ing shares of an input x to securely compute (in the semi-honest model, with
correlated randomness) shares of g(x), for some c-local function g. Below, we
prove that Πlocal satisfies all the properties of Lemma 8. It follows immediately
by inspection that the total communication of Πlocal is N · n bits, and that the
amount of preprocessing material stored by each party is m · 2c + n. We now
turn our attention to correctness and security.

Claim. The protocol Πlocal is correct.
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Protocol Πlocal

Functionality:
– Public parameters: a c-local function g : Fn2 7→ Fm2 , and the m size-c subsets
Sj ⊂ [n] of the bits of the input on which the j’th output bit of g depends.

– Input: the parties (P1, · · · , PN ) hold random shares (x1, · · · , xN ) of an
input x over Fn2 ;

– Output: the parties output uniformly random shares of g(x).
Πlocal.Preprocessing(g) :

1. Sample (r1, · · · , rN )
$← Fn2 × · · · × Fn2 . Set r ←

∑N
i=1 ri.

2. For j = 1 to m, let gj ← restrict(g, j).
3. Let Mj denote the truth-table of gj permuted with the shift r[Sj ], i.e., for

any y ∈ Fc2, Mj |y+r[Sj ]= gj(y). Note that Mj is of size 2c.
4. Let (M i

j)i≤N,j≤m be random (N -out-of-N) secret sharings of the Mj .
Output (ri, (M

i
j)j≤m) to each party Pi for i = 1 to N .

Πlocal.Protocol(g,x) :
1. Each party Pi with share xi broadcasts ui ← xi + ri. Let u←

∑N
i=1 ui.

2. Output: each party Pi outputs, for j = 1 to m, zi,j ←M i
j |u[Sj ].

Fig. 2. Protocol Πlocal for securely computing secret shares of a function g between N -
party, with semi-honest and information-theoretic security in the correlated randomness
model.

Proof: for any j ∈ [m],

N∑
i=1

zi,j =

N∑
i=1

M i
j |u[Sj ]

= Mj |u[Sj ] by definition of the M i
j

= Mj |∑
i xi[Sj ]+ri[Sj ]

by definition of u

= Mj |x[Sj ]+r[Sj ]
= gj(x[Sj ]) by definition of Mj

= g(x)[j] by definition of gj .

We now turn our attention to security. We represent on Figure 3 the ideal
secret-sharing functionality for g. Note that the functionality explicitely allows
the adversary to choose the output of the corrupted parties; this is a standard
(and minor) technicality of protocols whose output is secret shared between the
parties. An alternative is to let the functionality pick the output of all parties at
random; however, to realize this functionality, we would need to add a (simple)
resharing step at the end of the protocol Πlocal, which would add unnecessary
communication to the protocol.

Claim. The protocol Πlocal implements the ideal functionality Flocal with perfect
security against a semi-honest corruption of a majority of the parties.
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Ideal Functionality Flocal

The functionality is parametrized with the description of a function g : Fn2 7→ Fm2 ,
and the identities of and adversary A and N parties P1, · · · , PN . The functionality
aborts if it receives any incorrectly formatted message.

1. On input a message (corrupt, C) with C ( [N ] from A , set H ← [N ] \ C and
store (H,C).

2. On input a message (input, xi) from each party Pi for i ∈ [N ], store z ←
g(
∑
i∈N xi) and send ready to A .

3. On input a message (set-output, (zi)i∈C) from A , pick |H| uniformly random
values (zi)i∈H ∈ (Fn2 )|H| under the constraint

∑
i∈H zi = z −

∑
i∈C zi.

4. On input a message (send, R) from A with R ∈ [N ], send zi to each party Pi
with i ∈ R, and ⊥ to all other parties, then terminate.

Fig. 3. Ideal Functionality Flocal for the secure computation of secret shares of g(x) on
an input x ∈ Fn2 shared between N parties.

Proof: let H ⊂ [N ] denote the subset of honest parties, and let C ← [N ] \
H denote the subset of (passively) corrupted parties; the simulator Sim first
sends (corrupt, C) to Flocal on behalf of the ideal aversary A . Sim simulates the
preprocessing phase by distributing uniformly random coins (ri, (M

i
j)j≤m)i∈C

to all corrupted parties. In the online phase, the simulator picks random ui
in Fn2 for every i ∈ H, and broascasts them on behalf of the honest parties.
When he receives (ui)i∈C , he computes for each i ∈ C xi ← ui − ri, and
zi ← (M i

j |u[Sj ])j≤m ∈ Fm2 . He sends (input, xi) on behalf of each corrupted party
Pi to the ideal functionality Flocal, and wait until he receives ready from Flocal.
Then, he sends (set-output, (zi)i∈C) and (send, R) on behalf of A to Flocal, where
R is the set of parties that can obtain the output (which Sim can obtain by
observing which corrupted parties aborted early). It is immediate to see that the
view of the environment (which consists of the preprocessing material, the ui,
and the outputs of the parties) in the ideal world with Sim is perfecty distributed
as its view in the real world. This concludes the proof of the core lemma.

4 A Sublinear Protocol for Layered Circuits

In this section, we prove Theorem 1, by exhibiting a generic secure multiparty
computation protocol in the correlated randomness model against passive corrup-
tion of a majority of the parties, for any layered boolean circuit, with sublinear
communication in the circuit size s. Informally, the construction proceeds by
breaking the layered circuit into chunks, each chunk containing k = k(s) consecu-
tive layers, for some function k. The parties will evaluate the circuit by computing
shares of the values carried by the wires leaving a chunk, given as input shares of
the values carried by the wires entering the chunk. As a chunk contains k layers
and the directed graph of the circuit has indegree 2, this task corresponds to
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the secure evaluation of (shares of) a 2k-local function, with (approximately) w
inputs and w outputs (where w is the width of the circuit). By the core lemma
(Lemma 8), this can be done with communication O(w) and using O(w · 22k) bits
of correlated randomness per party. After d/k chunk evaluations (d is the depth
of the circuit), the parties end up with shares of the values the output wires,
which they can broadcast to reconstruct the output. The total communication
involved is O(dw/k) = O(s/k), with O(22

k · s/k) bits of correlated randomness
per party.

4.1 Construction

Let C be a layered boolean circuit with n inputs and m outputs, of size s and
depth d = d(n), with layers (L1, · · · , Ld). For i = 1 to d, we let wi denote the
width of the layer Li. We fix an arbitrary ordering of the nodes.

Let k be an integer. We divide C into d′ = dd/ke chunks (chi)i≤d′ , each chunk
containing k consecutive layers (the last chunk contains less layers is k does not
divide d). Let t ∈ [k] be chosen so that the sum of the widths of the t’th layer of
each chunk is bounded by ds/ke (such a t necessarily exists, otherwise, we would
get a contradiction: s =

∑d
i=1|Li|=

∑k
i=1(

∑d/k
j=1|Ljk+i|) >

∑k
i=1ds/ke ≥ s).

For i = 1 to d′, we denote ti the index of the t’th layer in chi; it holds that∑d′

i=1 wti ≤ ds/ke.
For i = 1 to d′, we let mi denote the number of output nodes between the

layers Lti−1
and Lti (

∑
imi = m). For any i ≤ d′, and j ≤ wti +mi, we denote

ni,j the j’th node of the layer Lti ∈ chi if j ≤ w, and the (j −w)’th output node
between the layers Lti−1

and Lti otherwise. We associate two sets to each ni,j : we
let Ai,j denote the set of ancestors of ni,j which belong to Lti−1

(A1,j is empty
for all j ≤ wt1 +m1), and we let Ii,j denote the set of input nodes between the
layers Lti−1 and Lti which are ancestors of ni,j . We let αi,j (resp. ιi,j) denote
the size of the set Ai,j (resp. Ii,j). We illustrate this construction on Figure 4.
Observe that C has indegree 2, which implies that any node ni,j of the t’th layer
of a chunk can have at most 2k ancestors in the t’th layer of the previous chunk,
hence αi,j + ιi,j ≤ 2k.

Our protocol proceeds by evaluating the circuit C on an input x (seen as
a size-N vector (x1, · · · , xN ) over {0, 1}n/N , where xj is the input of the party
Pj) in a chunk-by-chunk fashion. We say that the parties evaluate a chunk i
when they compute (shares of) all the values associated to the nodes of the
layer Lti , as well as (shares of) all the values associated to the output nodes
between the layers Lti−1 and Lti . Each chunk will be evaluated during a round.
We will denote by yi,` the bitstring of the shares of the values on Lti computed
by the party P` in the i’th round, and yi =

⊕N
`=1 yi,` the reconstructed value.

Similarly, we denote by zi,` the bitstring of the shares of the values on the output
wires between Lti−1

and Lti computed by the party P` in the i’th round, and
zi =

⊕N
`=1 zi,` the reconstructed output string. For simplicity, for any ` ≤ N , we

denote by y0,` an arbitrary dummy string (this is just to simplify the description
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Fig. 4. Illustration of the construction of the sets (Ai,j , Ii,j) for a node ni,j on a layered
directed acyclic graph. The index j is taken equal to 2 on this figure. The dashed edges
denote the paths of the graph that end at ni,2.

of the protocol; as the A1,j are empty, these strings will not have any effect on
the protocol anyway).

For any i ≤ d′ and j ≤ wti +mi, we let fi,j denote the following function: on
input the substring x[Ii,j ] of the input string x, and the bitstring yi−1[Ai,j ] (whose
bits form a substring of the values in Lti−1), fi,j outputs the value associated to
the node ni,j . We let δi ← wti +mi denote the number of functions fi,j for a fixed
i. Finally, we denote by fi : Fwti+n2 7→ Fδi2 the following function: on input the
string yi−1 associated to the distinguished layer of the (i− 1)’th chunk and the
input string x, fi outputs (fi,j(x[Ii,j ], yi−1[Ai,j ]))j≤δi = (yi, zi). Observe that,
by construction, fi is a 2k-local function (the j’th output bit of fi depends on
αi,j + ιi,j ≤ 2k input bits). The full protocol is represented on Figure 5.

4.2 Proof of Theorem 1

We now argue that the protocol Πsub satisfies all the properties outlined in
Theorem 1.

Correctness. It follows immediately by inspection: by the correctness of Πlocal,
the values yi,` computed by the parties form shares of the outputs of the functions
fi,j evaluated on the ancestors (in Lti−1) of the nodes of layer Lti (and the
ancestors in Lti−1 of the output nodes between the layers Lti1 and Lti), as well as
on the input nodes between the layers Lti1 and Lti . By definitions, those values
are exactly the values associated to the output nodes between the layers Lti1
and Lti and the nodes in the layer Lti . From there, it immediately follows that
the reconstructed outputs (z1, · · · , zm) are correct.

Security. We prove that the protocol Πsub is perfectly secure against an adversary
passively corrupting a majority of the parties. The ideal functionality Fsub that



20 Geoffroy Couteau

Protocol Πsub

Functionality:
– Public parameters: a layered boolean circuit C of size s and depth d, with n

input gates and m output gates, and an integer k.
– The parties (P1, · · · , PN ) hold respective inputs x = (x1, · · · , xN ) of length
n/N (we assume inputs of equal length for simplicity, but the protocol can
be adapted to inputs of different lengths in a straightfoward way);

– Output: all the parties learn C(x).
Πsub.Preprocessing(C) : for i = 1 to d′ = dd/ke, execute Πlocal.Preprocessing(fi).
Πsub.Protocol(C,x) :

– For i = 1 to d′, all parties execute Πlocal.Protocol(fi, (yi−1,x)) (using their
shares of yi−1 and x; note that y0 = by definition). Each party P` gets as
output (yi,`, zi,`).

– Output: all the parties broadcast the zi,` for i = 1 to d′. All the parties
reconstruct the output z = (

∑
` zi,`)i≤d′ .

Fig. 5. Protocol Πsub for evaluating a layered boolean circuit C of size s and depth d,
with n input gates and m output gates, in the correlated randomness model against
passive corruption of up to N − 1 parties.

Πsub must realize is straightforward; it is represented on Figure 6. The simulator
Sim simply simulates Πsub in the Flocal hybrid model, relying on the simulator
for Πlocal to interface with the real protocol. As Πsub is a simple sequential
composition of executions of Πlocal, security follows immediately.

Complexity. We now analyze the communication, storage, computation, and
interaction of the protocol Πsub. We first outline a straightforward optimization:
observe that each execution of Πlocal to evaluate (shares of) the output of one
of the fi operates, in particular, on the input x (whose length is n). Instead of
using independent executions of Πlocal, where the input vector x ends up being
re-shared between the parties for each execution, the parties can share it only
once in an “input sharing step”, before the execution of the first instance of Πlocal,
and reuse these shares in each execution. With this optimization, the parties
exchange n bits in the input sharing step, and N · (δi) bits during the i’th round
of the circuit evaluation step, for i = 1 to d′ = dd/ke. Therefore, the total number
of bits exchanged is

n+N ·
d′∑
i=1

wti−1 +mi−1 ≤ n+N · (m+ ds/ke)

(note that the additive factor n would be n · d′ without the simple optimization
outlined above). The amount of correlated randomness stored by each party can
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Ideal Functionality Fsub

The functionality is parametrized with the description of a circuit C : Fn2 7→ Fm2 ,
and the identities of and adversary A and N parties P1, · · · , PN . The functionality
aborts if it receives any incorrectly formatted message.

1. On input a message (corrupt, C) with C ( [N ] from A , set H ← [N ] \ C and
store (H,C).

2. On input a message (input, x`) from each party P` for ` ∈ [N ], store z ←
C(x1, · · · , x`) and send ready to A .

3. On input a message (send, R) from A with R ∈ [N ], send z to all parties P`
with ` ∈ R, and ⊥ to all other parties, then terminate.

Fig. 6. Ideal Functionality Fsub for the secure computation of secret shares of g(x) on
an input x ∈ Fn2 shared between N parties.

be upper bounded by

n/N +

d′∑
i=1

δi∑
j=1

2αi,j+ιi,j ≤ n/N +

d′∑
i=1

δi∑
j=1

22
k

≤ n/N + (m+ ds/ke) · 22
k

,

where the first inequality comes from the fact that any node ni,j of the t’th layer
of a chunk can have at most 2k ancestors in the t’th layer of the previous chunk,
which leads to the claimed total storage. Eventually, the round complexity of
the protocol is d′ + 1 = O(s/k), and the computation performed by each party
essentially boils down to performing m+ ds/ke searches in lookup tables of size
bounded by 22

k

, which takes time (m+ ds/ke) · 2k.

4.3 Extension to Layered Arithmetic Circuits

So far, our protocol does not readily extend to arithmetic circuits over (exponen-
tially large) finite fields. The main obstacle toward getting an arithmetic analogue
of the protocol Πsub lies in the generalization of the core lemma to the arithmetic
setting: our proof of Lemma 8 relies on the fact that we can use the OTTT
protocol of [IKM+13] to evaluate functions with a “small enough” truth-table.
While in the boolean case, any functionality with c input bits has a truth table
of size 2c, this is not true anymore for arithmetic functionalities over large fields,
where even single-input functions have truth table of exponential size. In addition,
the standard conversion of arithmetic circuits into boolean circuits would blow
up the size too much: any size-s arithmetic circuit can be securely evaluated
(in the correlated randomness model) with communication O(s) (counting the
number of field elements), but the conversion to a boolean circuit will in general
blow up the circuit size by a log s factor, while our protocol only saves a factor
log log s, and does therefore not lead to a sublinear communication protocol for
arithmetic circuits.
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Nevertheless, we show that our protocol can be extended to the arithmetic
setting, by exhibiting a natural analogue of the OTTT protocol, tailored to arith-
metic functions. Our starting point is the recent work of [LVW17], on conditional
disclosure of secret and private simultaneous message (PSM) protocols. The
authors of [LVW17] build an elegant PSM protocol for multivariate polynomial
evaluation. The protocol has the following features: Alice holds an n-variate
polynomial P of degree deg, Bob holds a vector of input x ∈ Fn, and both parties
share a common random string. They send a single simultaneous message to
a third player, Charlie, with optimal communication (Alice’s message has size
O(
(
n+deg
deg

)
), Bob’s message has size O(n)). This allows Charlie to learn P (x), and

nothing more. The protocol works as follows:

– The shared randomness is r ∈ Fn and a random n-variate degree-deg polyno-
mial R.

– Alice sends (x′, u)← (x + r, R(x + r)).
– Bob sends the polynomial Q(X) = P (X − r) +R(X).
– Charlie outputs Q(x′)− u.

The correctness follows immediately by inspection, and security follows by the
argument of [LVW17, Section 5.1]. The above PSM can be readily converted
into a 2-player arithmetic analogue of the OTTT protocol, which relies on a
multivariate polynomial representation of an arithmetic circuit (instead of a truth
table representation). We represent on Figure 7 a variant of the protocol Πlocal,
tailored to the arithmetic setting (over an arbitrary field F). Each party sends n
field elements (which is essentially optimal), and stores O(

(
n+deg
deg

)
) field elements.

Using the above protocol, we immediately get a generalization of Lemma 8:

Lemma 9. For any depth-k arithmetic circuit f : Fn 7→ Fm, there is an
information-theoretic semi-honest N-party secure computation protocol (with
dishonest majority) in the correlated randomness model for computing secret
shares of f with total online communication N · n elements of F, and correlated
randomness m ·

(
2k+1

2k

)
+ n ≈ m · 22k+1

/
√
π2k + n elements of F per party.

Therefore, we get polynomial storage (in s) by setting k ← log log s, as before.
This leads to a protocol for arithmetic circuits of size s, with n inputs and
m outputs, with polynomial storage and total communication O(n+N · (m+
s/log log s)).

Reducing Storage in TinyTable. While the idea of using a multivariate-
polynomial representation instead of a truth-table representation seems relatively
natural and is the key to extend the construction to the arithmetic setting, it
was not explicitly observed before. Somewhat surprisingly, we observe that even
in the original (boolean) setting of the TinyTable paper [DNNR17] (which uses
truth-table representation at the gate level, for two-party evaluation of AND
gates in boolean circuits), replacing truth-tables by multivariate polynomials
in normal form improves the construction: it reduces the storage of the parties
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Protocol POLY

Functionality:
– Public parameters: an arithmetic function f : Fn 7→ Fm of depth k over a

finite field F, and the m size-2k subsets Sj ∈ [n] of the coordinates of the
input on which the j’th coordinate of the output of f depends.

– The parties (P1, · · · , PN ) hold additive shares (x1, · · · ,xN ) of an input
x ∈ Fn;

– Output: the parties output uniformly random shares of f(x).
Preprocessing :

1. Sample (r1, · · · , rN )
$← Fn × · · · × Fn. Set r ←

∑N
i=1 ri.

2. For j = 1 to m, let fj ← restrict(f, j).
3. For j = 1 to m, Let Pj(X) denote the normal-form of fj , seen as a

2k-variate polynomial of degree 2k over F.
4. For j = 1 to m, let Qj(X) ← P (X − r[Sj ]) denote the polynomial P

shifted with r[Sj ].
5. For j = 1 to m, sample N − 1 uniformly random degree-2k n-variate

polynomials (Rij(X))i≤N−1, and set RNj (X) ← Qj(X) +
∑N−1
i=1 Rij(X).

Output (ri, (R
i
j(X))j≤m) to each party Pi.

Protocol(x) :
1. Each party Pi with share xi broadcasts ui ← xi + ri. Let u←

∑
i ui.

2. Each party Pi outputs, for j = 1 to m, zi,j ← Rij(u[Sj ]).

Fig. 7. Protocol POLY for evaluating an arithmetic function f over a finite field F in
the correlated randomness model, against a passively corrupted majority

by 25%. We sketch this observation below. The TinyTable protocol maintains
the following invariant: the parties know masked representation of all inputs
to some gate of the circuit, and will compute a masked representation of the
output. Typically, for a two-input AND gate, both parties will know u = x+ r
and v = y + s, where x, y are the inputs to the gate, and r, s are random masks.
In addition, the parties hold random shares of the truth-table of the function

Fr,s,t : (u, v)→ (u− r) · (v − s) + t,

where t is another fresh random coin. Observe that Fr,s,t(x+ r, y + s) = x · y + t,
maintaining the appropriate invariant. In the TinyTable paper, each party knows
a share F0, F1 of the truth-table of a function of this form, for each AND gate of
the circuit, and the output is computed by broadcasting F0(u, v), F1(u, v) and
reconstructing w = F0(u, v)⊕ F1(u, v). This represent a total storage of 4s bits
per party (and 2s bits of communication), where s is the number of AND gates
of the circuit.

Now, if we view instead Fr,s,t as a degree-2 polynomial in two variables, we
have Fr,s,t = uv + αu+ βv + γ for some appropriate (α, β, γ) = (−s,−r, t+ rs).
Observe that to randomly share Fr,s,t viewed as a multivariate polynomial, it
suffices to share additively each of its coefficients randomly; furthermore, the
leading coefficient of Fr,s,t is always one. Hence, we can improve the TinyTable
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AND gate evaluation protocol as follows: the parties receive shares (α0, β0, γ0)
and (α1, β1, γ1) of (α, β, γ) (this is identical to giving a random degree-one
bivariate polynomial R to one party, and Fr,s,t +R to the other party; note that
R needs only having degree one since it needs not hide the leading coefficient
of Fr,s,t, which is 1). Given public values u = x+ r and v = y + s, the parties
exchange w0 = α0u+β0v+γ0 and w1 = α1u+β1v+γ1, and publicly reconstruct
w = uv+w0 +w1. The communication and computation are essentially the same
as in [DNNR17], but the parties must now only store three bits per AND gate,
hence 3s bits in total, reducing the amount of storage required by the protocol
by 25%.

4.4 Further Extensions

We sketch in this section how to extend our protocol to the case of function-
independent correlated randomness, and to the case of tall-and-narrow circuits.

Function-Independent Preprocessing. We introduce below a variant of the
core lemma, tailored to function-independent preprocessing. Theorem 3 follows
immediately from this variant.

Lemma 10. For any c-local function g : Fn2 7→ Fm2 , there is an information-
theoretic semi-honest N -party secure computation protocol (with dishonest ma-
jority) in the function-independent correlated randomness model for computing
secret shares of g with total online communication N · n bits, and correlated
randomness m · 2c+2c + n bits per party.

Proof. To prove Lemma 10, we modify Πlocal as follows: instead of computing
shares of the truth table Mj of gj (which is of size 2c) permuted with the shift
r[Sj ], we consider the list (Mj,q)q≤22c of all possible truth tables, corresponding to
a lexicographic ordering of all possible functions gj , each table being shifted with
the same r[Sj ]. Each party Pi receives (ri, (M

i
j,q)q), which amounts to n+ 2c · 22c

bits of correlated randomness. In the online protocol Πlocal.Protocol, when the
functions gj are revealed, the parties locally drop all unnecessary shares of shifted
truth tables, keeping only the one corresponding to gj . The security analysis
immediately follows from the analysis of Πlocal.

Tall-and-Narrow Circuits. For tall-and-narrow circuits, whose width w is
small, the proof follows by observing that in this situation the bound on the size
of the sets Ai,j and Ii,j can be refined to |Ai,j |+|Ii,j |≤ w · k, hence the fi,j have
truth tables of size bounded by 2w·k. Theorem 5 follows immediately.

5 Malicious Setting

In the two-party case, combining our passively secure protocol Πsub with the
techniques of [DNNR17] directly implies the existence of a (statistical) uncon-
ditionally secure two-party protocol secure against malicious adversaries, with
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communication O(n + m + s
log log s + κ) for a layered boolean circuit of size s,

where κ is a statistical security parameter. Indeed, the protocol of [DNNR17]
has a structure similar to our protocol: it decomposes the circuit into tables,
and distributes scrambled version of these tables to the parties in the prepro-
cessing phase. Each gate of the circuit is evaluated using the OTTT protocol
to obliviously select the output of the gate from its corresponding scrambled
truth-table.

To enhance this protocol to security against malicious adversaries, [DNNR17]
uses a simple and natural information-theoretic authentication procedure. Namely,
for each entry b ∈ {0, 1} of a table given to the first party (let us call it A),
the trusted dealer additionaly generates two κ-bit string (x0, x1), hands xb to
A, and (x0, x1) to the other player B. This way, when A must send the entry b
of the table to B, she can authenticate b by sending it along with xb. B then
retrieves the corresponding value xb and checks that A honestly opened b; if A is
dishonest, she will be caught with probability 1− 2−κ. Note that the only local
computation performed by the parties are searches through lookup table, hence
authenticating each entry this way suffices to guarantee security of the entire
protocol.

However, directly applying this approach would require transmitting κ bits
per output of a table, which would increase the total communication by a factor
of κ. To avoid this overhead, the authors of [DNNR17] observe that it is not
necessary to explicitely authenticate each entry sent by a party. Instead, each
time A reveals an entry b corresponding to some authentication string xb, she
locally updates a “global MAC key” ∆A ← ∆A ⊕ xb, where ∆A is set to 0 at
the start of the protocol. Simultaneously, when he receives an entry b from A,
B retrieves the pair (x0, x1) corresponding to this entry, and locally updates
ΓB ← ΓB ⊕ xb, where ΓB is set to 0 at the start of the protocol. The parties
proceed symmetrically, with ∆B ,ΓA, when B sends an entry to A. At the end of
the protocol, A reveals ∆A and B reveals ∆B . If ∆B 6= ΓA, A aborts the protocol;
B does the same if ∆A 6= ΓB . If both checks passed, the parties reconstruct the
output. The analysis of [DNNR17] shows that this guarantees that no party can
cause its opponent to accept an incorrect output, except with probability 2−κ. It
increases the amount of preprocessed material by a factor κ,4 but only adds 2κ
bits to the total communication.

For completeness, we provide a full self-contained description of the maliciously-
secure two-party version of our protocol on Figure 8. We refer the reader to
Theorem 1 of [DNNR17] for a detailed proof of security against malicious ad-
versaries; it is straightforward to adapt the proof to our protocol (we note
that, while [DNNR17] focuses on small tables implementing standard two-input
boolean gates, [DNNR17, Section 2.3] already observes that this mechanisms can
be directly generalized to protocols evaluating larger tables).

4 A technique to amortize this overhead, using a linear MAC scheme, is described
in [DNNR17]; it applies to our setting as well, and allows to remove this factor κ
overhead in the storage complexity, but we focus on the more naive approach in this
work for simplicity.
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Extension to N Parties. While the work of [DNNR17] focused only on (mali-
ciously secure) two-party computation, it was subsequently observed in [KOR+17]
that the techniques used in [DNNR17] can be easily generalized to the multiparty
setting, for an arbitrary number N of parties. We refer the reader to [KOR+17]
for more details; this directly gives:

Theorem 11. For any N -party functionality f represented by a layered boolean
circuit C of size s with n inputs and m outputs, and for any integer k and
statistical security parameter κ, there is a κ-secure protocol which realizes f in the
preprocessing model against malicious adversaries with adaptive corruption (of
up to N − 1 parties), with communication n+N · (m+ ds/ke+ κ) and correlated
randomness n/N + (3κ+ 1) · (m+ ds/ke) · (22k + 1) per party.

6 Open Questions

While our work shows that a large class of circuits of size s can be securely
evaluated in the correlated randomness model using o(s) communication, many
questions related to the communication of MPC in the correlated randomness
model remain open.

Question 1. Can our protocols be extended to arbitrary non-layered circuits?

It is immediate to extend our protocol to any circuit that is layered “by blocks”
of depth c, in the sense that no edge crosses more than c consecutive layers, for
any c = o(log log s). However, generalizing our result to all circuits remains an
interesting open question.

Question 2. Can we achieve better sublinearity for unconditional MPC in the
correlated randomness model, in general or for specific circuits?

It is known that some specific functions can be evaluated in the correlated
randomness model, with stronger sublinearity guarantees than those obtained
in this work. In particular, matrix multiplication can be computed with commu-
nication linear in the size n2 of the matrices, while the best known algorithm
for multiplying matrices of size n requires O(nt) communication, with t ≈ 2.3.
The work of [BIKO12] also implies the existence of low-communication protocols
in the correlated randomness model, for N ≥ 3 parties, for specific types of
constant-depth circuits. It would be interesting to improve the sublinearity of
our work, and to characterize the functions for which better sublinearity can be
achieved.

Question 3. Can we achieve sublinear communication and linear storage at the
same time?

By a lower bound of [WW10], linear storage is the best we can hope for.
Our protocols only achieve slightly superlinear storage; in the regime where the
1/log log s factor would give non-trivial communication savings, this implies that
a rather large storage is required. Protocols for specific functions, such as matrix
multiplication, achieve both sublinearity and linear storage, but the question
remains open for more general functions.
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Protocol Πmal
sub

Functionality:
– Public parameters: a layered boolean circuit C of size s and depth d, with n

input gates and m output gates, and an integer k. We let κ denote a statistical
security parameter.

– The parties (P1, P2) hold respective inputs x = (x1, x2) of length n/2.
Πmal

sub .Preprocessing :
– Sample ρ = (ρ1, ρ2)

$← ({0, 1}n/2)2 and for i = 1 to d′, sample δi bits
ri = (ri,1, · · · , ri,δi) such that ri,j is 0 if (i, j) corresponds to an output gate,
and random otherwise (looking ahead, the bits ri,j will be used to mask the
output value of the function fi,j).

– For i = 1 to d′, for j = 1 to δi, let Mi,j denote the permuted truth table of
fi,j with shifts (ρ[Ii,j ], ri−1[Ai,j ]) and output masked with ri,j , i.e.:

Mi,j |(x⊕ρ)[Ii,j ],(y⊕ri−1)[Ai,j ]= fi,j(x[Ii,j ], y[Ai,j ])⊕ ri,j .

– For i = 1 to d′, for j = 1 to δi, sample a random truth-table R1
i,j over

{0, 1}2
αi,j+ιi,j , and let R2

i,j ← R1
i,j ⊕Mi,j .

– For ` = 1, 2, for i = 1 to d′, for j = 1 to δi, for q = 1 to 2αi,j+ιi,j , we denote
R`i,j,q the q’th entries of R`i,j . Sample 2 random κ-bit strings (s0`,i,j,q, s

1
`,i,j,q)

(looking ahead, these values will allow to authenticate the value R`i,j,q). To
simplify notations, we denote by s′`,i,j,q the value

s′`,i,j,q ← sb3−`,i,j,q, with b = R3−`
i,j,q.

– For ` = 1, 2, output to P`(
ρ`, (R

`
i,j)i≤d′,j≤δi ,

(
s0`,i,j,q, s

1
`,i,j,q, s

′
`,i,j,q

)
i,j,q

)
.

Πmal
sub .Protocol(x) :

– Initialization: for ` = 1, 2, P` sets ∆` = Γ` = 0κ.
– Input Sharing: for ` = 1, 2, P` broadcasts u` ← x`⊕ ρ`. Let u← (u1, u2). Set
v0 to be an arbitrary dummy string.

– Circuit Evaluation: for i = 1 to d′,
• For ` = 1, 2, P` sets

vi,` ←
(
R`i,1|u[Ii,1],vi−1[Ai,1], · · · , R

`
i,δi |u[Ii,δi ],vi−1[Ai,δi

]

)
.

• For ` = 1, 2, P` broadcasts vi,`; let vi ←
⊕N

`=1 vi,`.
• For ` = 1, 2, P` sets qi,j to be the string (u[Ii,j ],vi−1[Ai,j ]), and sets

∆` ← ∆` ⊕ s′3−`,i,j,qi,j ,Γ` ← Γ` ⊕ s
vi,3−`,j
`,i,j,qi,j

.

– Verification of all opened bits: for ` = 1, 2, P` sends ∆` to P3−`, and P3−`
checks that Γ3−` = ∆`.

– Output: For ` = 1, 2, P` broadcasts the δi-bit string vi,`,j for every i ≤ d′ and
j > wti . All the parties reconstruct z = (z1, · · · , zm) = (

⊕
` vi,`,j)i≤d′,j>wti .

Fig. 8. Two-party protocol Πmal
sub for evaluating a layered boolean circuit C of size s and

depth d, with n input gates and m output gates, in the correlated randomness model
against active corruption of one of the parties.
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