Designated-verifier pseudorandom generators,
and their applications

Geoffroy Couteau* and Dennis Hofheinz**

KIT, Karlsruhe

Abstract. We provide a generic construction of non-interactive zero-
knowledge (NIZK) schemes. Our construction is a refinement of Dwork
and Naor’s (FOCS 2000) implementation of the hidden bits model using
verifiable pseudorandom generators (VPRGs). Our refinement simplifies
their construction and relaxes the necessary assumptions considerably.
As a result of this conceptual improvement, we obtain interesting new
instantiations:

— A designated-verifier NIZK (with unbounded soundness) based on
the computational Diffie-Hellman (CDH) problem. If a pairing is
available, this NIZK becomes publicly verifiable. This constitutes the
first fully secure CDH-based designated-verifier NIZKs (and more
generally, the first fully secure designated-verifier NIZK from a non-
generic assumption which does not already imply publicly-verifiable
NIZKs), and it answers an open problem recently raised by Kim and
Wu (CRYPTO 2018).

— A NIZK based on the learning with errors (LWE) assumption, and
assuming a non-interactive witness-indistinguishable (NIWI) proof
system for bounded distance decoding (BDD). This simplifies and
improves upon a recent NIZK from LWE that assumes a NIZK for
BDD (Rothblum et al., PKC 2019).

Keywords: non-interactive zero-knowledge, computational Diffie-Hellman,
learning with errors, verifiable pseudorandom generators.

1 Introduction

Zero-knowledge proof systems allow a prover to convince someone of the truth
of a statement, without revealing anything beyond the fact that the statement
is true. After their introduction in the seminal work of Goldwasser, Micali, and
Rackoff [20], they have proven to be a fundamental primitive in cryptography.
Among them, non-interactive zero-knowledge proofs |5 (NIZK proofs), where the
proof consists of a single flow from the prover to the verifier, are of particular in-
terest, in part due to their tremendous number of applications in cryptographic
primitives and protocols, and in part due to the theoretical and technical chal-
lenges that they represent.

* Supported by ERC grant “PREP-CRYPTO” (724307).
** Supported by ERC grant “PREP-CRYPTO” (724307) and DFG project GZ HO
4304/4-2.

2 Geoffroy Couteau and Dennis Hoftheinz

On Building Non-Interactive Zero-Knowledge Proofs. It is known that
zero-knowledge proofs for arbitrary NP languages can be constructed from any
one-way function [19]|, and that this is a minimal assumption [30,|32,39]. In
contrast, non-interactive zero-knowledge proofs have proven to be considerably
harder to construct. NIZKs in the plain model can only exist for trivial lan-
guages [31]; therefore, NIZKs for non-trivial languages are typically constructed
in the common reference string model, where the prover and the verifier are given
access to a common string honestly generated ahead of time in a setup phase.
Generic constructions of NIZK proof systems for NP in the CRS model have been
described from primitives such as doubly-enhanced trapdoor permutations |17],
invariant signatures [21], and verifiable pseudorandom generators [16], where the
last two are known to be also necessary for NIZKs. However, concrete instanti-
ations of these primitives are currently known only from factorization-related
assumption [5], pairing-based assumptions |8, and indistinguishability obfus-
cation |4,9] (together with injective one-way functions). More recently, direct
constructions of NIZKs in the CRS model have been given from pairings [24}26],
or from strong and less-understood assumptions such as indistinguishability ob-
fuscation [41[38] and exponentially-strong KDM-secure encryption [7].

A fundamental and intriguing open question remains: is it possible to build
NIZKs from other classical and well-established assumptions, such as discrete-
logarithm-type assumptions, or lattice-based assumptions? Faced with the dif-
ficulty of tackling this hard problem upfront, the researchers have investigated
indirect approaches, which can be divided into two main categories: the bottom-
up approach, and the top-down approach.

The Bottom-Up Approach. This line of research fundamentally asks the
following: starting from classical assumptions, either generic (OWF, public-key
encryption) or concrete (CDH, LWE), how close to full-fledged NIZKs in the
CRS model can we get, in terms of functionality? Early results in this direc-
tion have established the existence of NIZKs for NP in the preprocessing model
(where the prover and the verifier execute ahead of time a preprocessing phase
to generate respectively a secret proving key and a secret verification) assuming
any one-way function [15], and designated-verifier NIZKs for NP (where anyone
can compute a proof, but a secret verification key is required to verify a proof)
from any semantically-secure public-key encryption scheme [33]. In addition to
requiring the prover and/or the verifier to hold a secret key, these early results
all suffered from a severe limitation: they only achieve a bounded form of sound-
ness, where forging a proof for an incorrect statement is hard only if the prover
is not given access to a verification oracle. This strongly limits their usability as
a replacement for full-fledged NIZKs in most applications. More recently, various
NIZK proof systems with unbounded soundness have been proposed, from the
LPN assumption in the preprocessing model [6], from strong form of partially
homomorphic encryption in the designated-verifier setting [11], and from LWE
in the designated-prover setting [29] (where a secret key is required to compute
a proof but anyone can verify a proof; the latter work also implies a NIZK with

Designated-verifier PRGs, and their applications 3

unbounded soundness in the preprocessing model from a strong variant of the
Diffie-Hellman assumption). A slightly different approach was taken in |2], where
the authors introduce (and construct from the DDH assumption) implicit zero-
knowledge proofs, which are not NIZKs, but can replace them in applications
related to secure computation.

The Top-Down Approach. This line of research tackles the problem from
another angle: sticking with the goal of building full-fledged NIZKs in the CRS
model, it attempts to identify the minimal “missing piece” which would allow
to build NIZKs from classical assumptions. The work of [34] conjectured that a
NIZK proof system for a specific language (GapSVP) would allow to build a NIZK
proof system for all of NP from lattice assumptions, and the work of [37] almost
confirmed this conjecture, by establishing that a non-interactive zero-knowledge
proof for a specific language (bounded distance decoding, BDD) would imply the
existence of a full-fledged NIZK proof system for NP in the CRS model, from
the LWE assumption.

1.1 Owur Contribution

In this paper, we revisit the problem of building non-interactive zero-knowledge
proofs for NP from classical assumptions, investigating both the bottom-up ap-
proach and the top-down approach.

Our starting point is a fresh view on the work [16] of Dwork and Naor. In
a nutshell, they construct a NIZK proof for NP by implementing the hidden
bits model (HBM, [17]) using a tool they call verifiable pseudorandom generator
(VPRG)E Intuitively, a VPRG is a pseudorandom generator (PRG) that allows
to selectively prove that certain parts of the PRG output are consistent (relative
to a commitment to the PRG input).

In the first part of our work, we relax the definition of VPRGs, and show that
the relaxed definition is still sufficient to implement the HBM (and thus to obtain
NIZK proofs for NP). Unlike the definition of |16], our definition also generalizes
to the designated-verifier setting. In the second part of our work, we show that
our new definition allows for considerably simple and new instantiations, both
in the designated-verifier and standard (publicly verifiable) setting. We obtain
instantiations from computational assumptions which were so far not known to
imply NIZKs for NP. Specifically, we provide:

— A designated-verifier NIZK (DVNIZK) system for NP from the CDH assump-
tion (with adaptive unbounded soundness and adaptive multi-theorem zero-
knowledge). If the underlying group allows for a (symmetric) pairing, our
construction can be made publicly verifiable. This is the first DVNIZK for
NP from a concrete (i.e., non-generic) assumption that is not already known
to imply publicly verifiable NIZKs for NP. Our result resolves an open prob-
lem recently raised by Kim and Wu in [29], regarding the possibility of

! In the HBM, there exist unconditionally secure NIZK proofs [17].

4 Geoffroy Couteau and Dennis Hoftheinz

building multi-theorem NIZKs from DDH in the preprocessing model. Note
that our result achieves a strictly stronger form of NIZK and under a weaker
assumption.

— A NIZK system for NP (satisfying adaptive soundness and adaptive multi-
theorem zero-knowledge) that assumes LWE and a non-interactive witness-
indistinguishable proof system II’ for BDD. If IT’ is designated-verifier,
resp. publicly verifiable, then so is our NIZK system for NP. Our scheme
improves the mentioned work of [37] that requires non-interactive zero-
knowledge proof system for BDD. (We comment below on what allows us
to avoid the need for simulation inherent in the approach of [37].)

1.2 Our approach

The proof system of Dwork and Naor. To outline our conceptual contri-
bution, we provide more background on the definitions and model of Dwork and
Naor [16]. First, the hidden bits model (HBM) is an abstract model of compu-
tation for a prover and a verifier that allows to formulate the NIZK protocol
for graph Hamiltonicity from [17] in a convenient way. In the HBM, the prover
receives an ideally random string hb = (hb;)!_; € {0,1}" of bits, as well as an
NP-statement x with witness w. In order to prove x, the prover then selects a
subset S C [¢t] of bit indices and auxiliary information M. The verifier is then
invoked with hb[S] = (hb;);cs and M, and outputs 1 if it is convinced of the
truth of x. |17] provide a NIZK proof in the HBM that is statistically sound and
statistically zero-knowledge. (Of course, at least one of those properties will have
to become computational when implementing the HBM.)

Now Dwork and Naor [16] implement the HBM using VPRGs. Formally, a
VPRG is a pseudorandom generator G : {0,1}* — {0,1}™ which allows to
construct commitments pvk to seeds (i.e., G-inputs) s and publicly verifiable
openings of individual bits of G(s) (relative to pvk). |16] require the following:

1. pvk information-theoretically determines a unique value y in the image of G,

2. valid openings to bits not consistent with the y determined by pvk do not

exist, and

3. an opening computationally leaks nothing about unopened bits of y.
Given a VPRG, [16]| implement the HBM as follows. The prover initially selects
a seed s & {0,1}* and then generates a commitment pvk to s. This implicitly
sets hb = G(s). After selecting S, the prover then sends to the verifier pvk and
an opening of hb[S].

Observe that this protocol may still allow the prover to cheat by choosing
a “bad” seed s that might allow breaking soundness. However, since the HBM
protocol of |17] is statistically sound, there can be only comparatively few “bad”
HBM strings hb that allow cheating. Hence, the probability that there exists a
seed s such that hb = G(s) is bad will be negligibleﬂ

2 A formal argument requires a little care in choosing parameters, and in randomizing
hb with an additional component in the NIZK common reference string.

Designated-verifier PRGs, and their applications 5

Our conceptual improvement. We show that points 1. and 2. from the VPRG
definition can be simplified. Specifically:

— We require that pvk uniquely determines some y, but we do not require that
y is in the image of G. Instead, we require that the bitlength |pvk| of pvk is
short (i.e., independent of m). Observe that now up to 2/Pl “bad” y (and
thus “bad” hb) might exist. However, since |pvk| is still short (compared to
m), essentially the original proof strategy of [17] applies.

— We only require that it is computationally infeasible to come up with an
opening not, consistent with y. This relaxation requires a careful tracking of
“bad events” during the security proof, but is essentially compatible with the
proof strategy from [16].

Our first change allows us to omit an explicit proof of consistency of pvk that
was necessary in [16]. This simplification will be highly useful in our concrete
instantiations. Furthermore, our second change allows to consider designated-
verifier NIZKs. Indeed, observe that the original requirement 2. above states
that no valid openings inconsistent with y exist. This excludes designated-verifier
realizations of VPRGs in which the verifier secret key can be used to forge proofs.
However, since most existing DVNIZK proofs have this property (otherwise, they
could be made publicly verifiable by making the secret verification key public),
they are not helpful to construct VPRGs in the sense of [16]. In contrast, our
relaxation is compatible with existing DVNIZKs (and indeed our first VPRG
instantiation crucially relies on DVNIZKSs).

Concrete constructions. We offer two VPRG constructions from concrete
assumptions. The first construction assumes a CDH group G = (g) of (not
necessarily prime) order n. A seed is an exponent s € Z,, and a commitment
to s is ¢g°. Given public u;,v; € G (for ¢ € [t]), the i-th bit G(s); of the PRG
image is B(uj,v{), where B is a hard-core predicate of the CDH function. A
proof 7; that certifies a given G(s); consists of uf, v, as well as proofs that both
(9,9°% ui,uf) and (g, 9°, v;,v¢) are Diffie-Hellman tuples. In a designated-verifier
setting, such proofs are known from hash proof systems [10,/13]. Alternatively, a
symmetric pairing G X G — Gp can be used to check the Diffie-Hellman property
of these tuples even without explicit proof.

Our second construction assumes LWE and uses the notion of homomorphic
commitments from [22]. These commitments have a “dual-mode” flavor, much
like the commitments from [14126]. Specifically, under LWE, the public parame-
ters of these commitments can be switched between a “binding” mode (in which
commitments are perfectly binding) and a “hiding” mode (in which commit-
ments are statistically hiding). Furthermore, given a commitment comg to s, it
is possible to publicly compute a commitment come () to C(s) for any (a-priori
bounded) circuit C.

In our construction, we will assume any PRG G, and set com; to be a com-
mitment to a PRG seed s € {0,1}*. Let G; be a circuit that computes the
i-th bit of G. An opening of the i-th bit is then an opening of the commitment
comg, (s) to Gi(s). (Note that comg, () can be publicly computed from com;.)

6 Geoffroy Couteau and Dennis Hoftheinz

Unfortunately, in the construction of [22], the opening of commitments may re-
veal sensitive information about intermediate computation results (or even about
s in our case).

Hence, we will have to assume an additional proof system to open commit-
ments without revealing additional information. For the commitments of |22],
the corresponding language is the language of a BDD problem. Fortunately, the
strong secrecy properties of these commitments allow us to restrict ourselves to
a witness-indistinguishable (and not necessarily zero-knowledge) proof system
for BDDF]

Relation to [37]. We note that recently, [37] established a reduction from
NIZKs for NP from LWE to the existence of an NIZK for BDD, also through
implementing the HBM. Informally, and casting the construction of their work
in the language of VPRGSE| the core reason why a NIZK was required in [37] is
the need for a consistency proof for pvk (as in [16]). Since the consistency of pvk
is a unique-witness relation, and since the proof must hide predicates of the seed,
it does not seem feasible to replace this NIZK, e.g., by a NIWI or a witness-hiding
proof. We note that although NIWIs for NP imply the existence of NIZKs for NP,
it is not clear whether a NIWI for a simple language such as BDD can be used
to build a NIZK for BDD.

Relation to [1]. We also note that Abusalah [1] also implements the HBM
using Diffie-Hellman-related assumptions (such as CDH in a pairing-friendly
group). However, he does not follow the PRG-based paradigm of [16] that we
refine. Instead, he directly generalizes the original HBM implementation of [17]
to generalizations of trapdoor permutations.

1.3 Concurrent Works

Concurrently and independently to our work, two other works [27,/35] have
achieved a result comparable to the first of our two main contributions, namely,
designated-verifier non-interactive zero-knowledge proofs for NP from CDH. In
all three works, the construction proceeds in a comparable way, by designing
a CDH-based primitive which allows to compile the hidden-bit model into a
designated-verifier NIZK. We summarize below the main differences between
our works.

3 One might wonder why we do not follow another route to obtain VPRGs from NIWI
proofs for BDD. Specifically, |3},23] construct even verifiable random functions from
a NIWI for a (complex) LWE-related language. However, these constructions inher-
ently use disjunctions, and it seems unlikely that the corresponding NIWIs can be
reduced to the BDD language.

* The actual construction of [37] relies on a new notion of public-key encryption with
prover-assisted oblivious ciphertext sampling, but the high level idea is comparable
to the VPRG-based approach. A side contribution of our construction is that it is
conceptually much simpler and straightforward than the construction of |37].

Designated-verifier PRGs, and their applications 7

— The work of [35] provides in addition a construction of malicious designated-
verifier NIZK for NP, where the setup consists of an (honestly generated)
common random string and the verifier then gets to choose his own (poten-
tially malicious) public/secret key pair to generate and verify proofs. The
assumption underlying their construction is a stronger “one-more type” vari-
ant of CDH (i.e., the hardness of solving n+ 1 CDH challenges given n calls
to an oracle solving CDH).

— The work of |27] provides two relatively different additional constructions of
NIZKs: a designated-prover NIZK for NP with proofs of size |C| + poly())
(where C is the circuit checking the NP relation), under a strong Diffie-
Hellman-type assumption over pairing groups, and a preprocessing NIZK
for NP with proofs of size |C| + poly(\) from the DDH assumption over
pairing-free groups.

— The construction of NIZKs for NP assuming LWE and a NIWI for BDD is
new to our work.

1.4 Organization

Section[2]introduces necessary preliminaries about non-interactive proof systems.
Section [3] formally introduces designated-verifier pseudorandom generators, and
defines their security properties. Section [4] provides a generic construction of a
(designated-verifier) non-interactive zero-knowledge proof system for NP from
our relaxed and generalized notion of DVPRGs, by instantiating the hidden bit
model. Section [f] provides two instantiations of DVPRGs, from the CDH assump-
tion in arbitrary group, and from the LWE assumption assuming in addition a
NIWI proof system for BDD (where the resulting scheme is publicly verifiable iff
the NIWI scheme is publicly verifiable).

2 Preliminaries

Notation. Throughout this paper, A denotes the security parameter. A proba-
bilistic polynomial time algorithm (PPT, also denoted efficient algorithm) runs
in time polynomial in the (implicit) security parameter A. A function f is negligi-
ble if for any positive polynomial p there exists a bound B > 0 such that, for any
integer k > B, |f(k)| < 1/|p(k)|. An event occurs with overwhelming probability
when its probability is at least 1 — negl(\) for a negligible function negl. Given
a finite set S, the notation ¢~ S means a uniformly random assignment of an
element of S to the variable x. We represent adversaries as interactive proba-
bilistic Turing machines; the notation Adv® indicates that the machine Adv is
given oracle access to O. Adversaries will sometimes output an arbitrary state st
to capture stateful interactions. For an integer n, [n] denotes the set of integers
from 1 to n. Given a string = of length n, we denote by x; its ith bit (for any
i < n), and by x[S] the subsequence of the bits of = indexed by a subset S of

[n].

8 Geoffroy Couteau and Dennis Hoftheinz

2.1 Non-Interactive Zero-Knowledge

We recall the definition of non-interactive zero-knowledge (NIZK) proofs and
argument.

Definition 1 (Non-Interactive Zero-Knowledge Argument System). A
non-interactive zero-knowledge argument system for an NP-language & with re-
lation Ry is a triple of probabilistic polynomial-time algorithms (Setup, Prove,
Verify) such that

- Setup(1>‘), outputs a common reference string crs and a trapdoor T,

— Prove(crs, x,w), on input the crs crs, a word x, and a witness w, outputs a
proof T,

— Verify(crs, z,m, T), on input the crs crs, a word z, a proof 7, and the trapdoor
T, outputs b € {0,1},

which satisfies the completeness, soundness, and zero-knowledge properties de-
fined below.

If the trapdoor 7 of the non-interactive proof system is set to L (or, al-
ternatively, if it is included in the crs), we call the argument system publicly
verifiable. Otherwise, we call it a designated-verifier non-interactive argument
system. If the soundness guarantee holds with respect to computationally un-
bounded adversary, we have a NIZK proof system.

Definition 2 (Perfect Completeness). A non-interactive argument system
(Setup, Prove, Verify) for an NP-language £ with witness relation Ry satis-
fies perfect completeness if for every x € £ and every witness w such that
Ry (‘rﬂ w) =1,

Pr[(crs, T) <& Setup(1*), 7 « Prove(crs, z, w) : Verify(crs,z, 7, T) = 1] = 1.

The soundness notion can come in several flavors: it is non-adaptive if the
adversary must decide on a word on which to forge a proof before the common
reference string is drawn, and it is adaptive if the adversary can dynamically
choose the word given the common reference string. We will consider a strong
variant of adaptive soundness, denoted unbounded adaptive soundness, where
the adversary is given oracle access to a verification oracle. Note that in the
publicly-verifiable setting, this is equivalent to the standard soundness notion,
where the adversary must forge a valid proof on an incorrect statement without
the help of any oracle. However, in the designated-verifier setting, this is a strictly
stronger notion: the standard soundness notion only guarantees, in this setting,
that the argument system remains sound as long as the prover receives at most
logarithmically many feedback on previous proofs. On the other hand, if the
argument system satisfies unbounded soundness, its soundness is maintained
even if the adversary receives an arbitrary (polynomial) number of feedback on
previous proofs.

Designated-verifier PRGs, and their applications 9

Definition 3 (Unbounded Adaptive Soundness). A non-interactive argu-
ment system (Setup, Prove, Verify) for an NP-language £ with relation Ry sat-
isfies unbounded adaptive soundness if for any PPT A,

(crs, T) & Setup(1?),

P
' (z,7) & ACCs T (crs) : Verify(crs,z,m,T) =1 Nz ¢ L

=~ 0,

where A can make polynomially many queries to an oracle O(crs, -, -, T) which,
on input (x,), outputs Verify(crs, z, 7, T).

We now define zero-knowledge, which can again come in several flavors. We
will consider adaptive zero-knowledge argument systems, where the adversary
is allowed to pick a word on which to forge a proof after seeing the common
reference string. We will also distinguish single-theorem zero-knowledge, in which
the prover generates a single proof (and the length of the common reference string
can be larger than the length of the statement to prove) and multi-theorem zero-
knowledge (where the adversary can adaptively ask for polynomially many proofs
on arbitrary pairs (z,w) for the same common reference string).

Definition 4 (Adaptive Single-Theorem Zero-Knowledge). A non-inter-
active argument system (Setup, Prove, Verify) for an NP-language £ with relation
R satisfies (adaptive) single-theorem zero-knowledge if for any stateful PPT
algorithm A, there exists a simulator (Simg,Simy) such that

[(crs, T) & Setup(1*),
Pr | (z,w) & A(crs, T), : (Rg(z,w)=1)A(A(r)=1)| —

7 & Prove(crs, z, w)

[(crs, T) & Simg(1%),
(z,w) & Alers, T), : (Rg(z,w)=1)A(A(r)=1) || ~0.
K & Simy (crs, T,)

Pr

Definition 5 (Adaptive Multi-Theorem Zero-Knowledge). A non-inter-
active argument system (Setup, Prove, Verify) for an NP-language £ with relation
R satisfies (adaptive) multi-theorem zero-knowledge if for any stateful PPT
algorithm A, there exists a simulator (Simg,Sim1) such that A has negligible
advantage in distinguishing the experiments Expi{(’o(lA) and Expi{(’l(l)‘) given
on Figure 1]

Note that Ogm is only given the witness w to artificially enforce that A
queries only words z in the language .Z.

Zero-knowledge is a strong, simulation-style security notion. A common re-
laxation of zero-knowledge to an indistinguishability-based security notion is
known as witness-indistinguishability.

Definition 6 (Computational Witness-Indistinguishability). A non-inter-
active proof system (Setup, Prove, Verify) for an NP-language £ with relation Ry

10 Geoffroy Couteau and Dennis Hofheinz

Expj"o(lk) :
(crs, T) & Setup(1*)

return b & AGwove(ers) (crs)

ExpZy! (17) :
(crs, T) & Simo(1*)
return b & A%sm (€7 (crs)

Oprove(crs, z, w) :
if Re(xz,w) =1 then
return Prove(crs, z, w)

Osim(crs, T, z,w) :

if Re(z,w) =1 then

return Sim;(crs, T,)

else else
return | return |
end if end if
Fig. 1. Experiments EpokO(*) and Expz“(), and oracles Opove(crs, z, w) and

Osim(crs, T, z,w), for the (adaptive) multi-theorem zero-knowledge property of a non-
interactive argument system. A outputs b € {0, 1}.

is (computationally) witness-indistinguishable if for any PPT algorithm A,

(crs, T) & Setup(1*), Alcrs,) =
Pr | (z,wo,w;) & A(crs), : A R (z,wo) =
7w & Prove(crs, z,wo) ARg(z,w) =

(crs, T) & Setup(1*), Alcrs,) =

— Pr | (2, wg,w1) & Alcrs), : ARy (2, wg) = ~0
7 & Prove(crs, x,w1) ARg(z,w;) =

*@5@

We call such a proof system a non-interactive witness-indistinguishable (NIWI)
proof system.

It is known that the existence of a NIWI proof system for NP implies the
existence of a NIZK proof system for NP in the CRS model |17]. However, this
does not extend to proof systems for specific languages: the existence of a NIWI
proof system for a language £ does not generally imply the existence of a NIZK
proof system in the CRS model for the same language.

3 Designated-Verifier Pseudorandom Generators

Verifiable pseudorandom generators (VPRG) have been introduced in the seminal
paper of Dwork and Naor [16], as a tool to construct non-interactive witness-
indistinguishable proofs and NIZKs in the CRS model. Informally, a VPRG en-
hances a PRG with verifiability properties: the prover can compute a kind com-
mitment to the seed (called the werification key), and issue proofs that a given
position i of the pseudorandom string stretched from the committed seed is equal
to a given bit. Furthermore, this proof does not leak anything about the output
values at positions j # i.

Designated-verifier PRGs, and their applications 11

In this section, we revisit the notion of verifiable pseudorandom generators.
Toward our goal of building VPRGs from new assumptions, we significantly
weaken the binding property of VPRGs (which states, informally, that the ver-
ification key binds the prover to the seed) to a security notion that is simpler
to achieve and still allows to build NIZKs in the CRS model, and we extend the
definition to the more general setting of designated-verifier VPRGs (DVPRGs)
(this strictly encompasses public VPRGs since we recover the standard notion by
restricting the secret verification key to be).

3.1 On Defining DVPRGs

A natural attempt to define the binding property of a DVPRG would be as
follows: it should be infeasible, for any polytime adversary, to output two ac-
cepting proofs my and 7 that a given output of the PRG is equal to 0 and
1 respectively (relative to the same committed parameters) . However, this se-
curity notion turns out to be too weak for the construction of non-interactive
witness-indistinguishable proofs from VPRG of [16]. Intuitively, this stems from
the fact that a cheating prover will never send more than a single proof for a
given output, hence we cannot extract two contradictory proofs from this ad-
versary. Instead, the argument of [16] crucially rely on the following stronger
definition: a VPRG is binding if for every (possibly malicious) public verification
key pvk, there exists a single associated string x in the range of the stretching
algorithm of the DVPRG, and for any accepting proof 7 of correct opening to a
subset y[I] of the bits of a string y, it must hold that y[I] = z[I].

Unfortunately, this binding property turns out to be too strong for our pur-
pose. The reason is that we seek to build candidate DVPRGs from assumptions
such as LWE, where natural approaches lead to schemes where there exists ma-
licious public verification keys associated to strings which are not in the range
of the DVPRG, and which cannot be distinguished from honest verification keys
(typically, in our LWE-based construction, an honest verification key will be a
list of LWE samples, which are indistinguishable from random samples). A com-
parable issue arose in the work of [37], which tackled this issue by appending
to the verification key (or, in their language, the public key of an obliviously-
sampleable encryption scheme) a NIZK proof of validity.

Instead, we opt for a different approach and introduce a weaker binding
property for DVPRGs, which does not require assuming any specific structure of
the public verification key beyond its length. Namely, we consider the following
notion: a DVPRG is binding if there exists a (possibly inefficient) extractor Ext
such that no PPT adversary can output a triple (pvk,i,7) where m is a proof
of correct opening of position i to 1 — x;, and & = Ext(pvk). Note that our
definition does only consider verification keys generated by a computationally
bounded adversary (instead of arbitrary pvk), and does not require pvk to be
in the range of the DVPRG. This binding notion would in fact be trivial to
achieve without further constraints (e.g. one could define pvk to be a sequence
of extractable commitments to each bits of the pseudorandom string stretched
from the seed), hence we further require that pvk must be short (of size s(\), for

12 Geoffroy Couteau and Dennis Hofheinz

a polynomial s independent of the stretch of the DVPRG). Afterward, we prove
that this weaker notion still suffices to build NIZKs for NP in the CRS model.

Generalizing to the designated-verifier setting, where verification can involve
a secret-verification key, we strengthen the above property to the unbounded
binding property, which states that no PPT adversary can produce a triple
(pvk,i,m) as above, even given oracle access to a verification oracle (which has
the secret verification key hardcoded). We note that the above weakening of the
binding notion is also necessary for our generalization to the designated-verifier
setting: in this setting, the stronger binding notion of |16] does typically not
hold, since there always exists accepting proofs of opening to an incorrect bit (if
this was not the case, we could safely make the secret verification key public,
since it would not allow to find proofs of opening to incorrect values); however,
it is infeasible to find such proof (without knowing the secret verification key).
Below, we formally introduce designated-verifier pseudorandom generators and
the corresponding security notions.

3.2 Definition

Definition 7 (Designated-Verifier Pseudorandom Generator). 4 desig-
nated-verifier pseudorandom generator (DVPRG) is a four-tuple of efficient al-
gorithms (Setup, Stretch, Prove, Verify) such that

— Setup(1*,m), on input the security parameter (in unary) and a bound m(\) =
poly(X), outputs a pair (pp,T) where pp is a set of public parameters (which
contains 1*), and T is a trapdoor;

— Stretch(pp), on input the public parameters, outputs a triple (pvk,x,aux),
where pvk is a public verification key of polynomial length s(X) independent of
m, x is an m-bit pseudorandom string, and aux is an auziliary information;

— Prove(pp, aux, i), on input the public parameters, auziliary informations aux,
an index i € [m), outputs a proof m;

— Verify(pp, pvk, T, 4, b,), on input the public parameters, a public verification
key pvk, a trapdoor T, a position i € [m], a bit b, and a proof 7, outputs a
bit B;

which is in addition complete, hiding, and binding, as defined below.

Note that the above definition also captures publicly verifiable pseudorandom
generators, which are DVPRGs where we restrict Setup(1*,m) to always output
pairs of the form (pp, L1).

Definition 8 (Completeness of a DVPRG). For any i € [m], a perfectly
complete DVPRG scheme (Setup, Stretch, Prove, Verify) satisfies:

(pp, T) & Setup(1*,m),
Pr | (pvk, 2, aux) & Stretch(pp), : Verify(pp, pvk, 7,4, z;,7) = 1 | = 1.
7 & Prove(pp, aux, i),

Designated-verifier PRGs, and their applications 13

We now define the binding property of a DVPRG. We consider a flavor of the
binding property which is significantly weaker than the one considered in [16],
yet still suffices for the application to NIZKs (see the discussion in Section .

Definition 9 (Binding Property of a DVPRG). Let (Setup, Stretch, Prove,
Verify) be a DVPRG. A DVPRG is binding if there exists a (possibly inefficient)
extractor Ext such that for any PPT A, it holds that

(pp, T) & Setup(1*,m),
Pr (kaa i7 7T) <$; A(pp)v : Verlfy(pp, ka7 T7 7:7 1- Zi, 71—) =1|~ 0.
x < Ext(pvk)

As for non-interactive zero-knowledge proofs, the designated-verifier setting
requires to explicitly consider whether the adversary is given access to a verifica-
tion oracle. We therefore extend the above definition and consider the unbounded
binding property:

Definition 10 (Unbounded Binding Property of a DVPRG). Let (Setup,
Stretch, Prove, Verify) be a DVPRG. A DVPRG satisfies unbounded binding if
there exists a (possibly inefficient) extractor Ext such that for any PPT A, it
holds that

(pp, T) <& Setup(1*,m),
Pr | (pvk,i,m) & AVei®®pTo) (pp) : Verify(pp, pvk, T,4,1 — z;,m) = 1| = 0.
x < Ext(pvk)

Note that in the case of publicly verifiable pseudorandom generators, where T is
set to L, this security notion is equivalent to the binding property.

We now define equivocability. Intuitively, it states that no computationally
bounded adversary can distinguish honestly generated proofs of correctness for
bits of the pseudorandom sequence from simulated proofs (using 7) of opening
to true random bits.

Definition 11 (Equivocability of a DVPRG). A designated-verifier pseu-
dorandom generator (Setup, Stretch, Prove, Equivocate, Verify) is equivocable if
there are two additional algorithms (SimSetup, Equivocate) such that

— SimSetup(lA,m), on input the security parameter in unary, outputs a triple
(PP, T, T5),

— Equivocate(pp, pvk, i,b, T5), on input the public parameters, a public verifica-
tion key pvk, an index i € [m], a bit b, and a simulation trapdoor Ts, outputs
a simulated proof 7';

14 Geoffroy Couteau and Dennis Hofheinz

such that the following distributions are computationally indistinguishable:

(pp, T) & Setup(1*,m),
(pvk, x, aux) & Stretch(pp) : (pp,pvk, T, x,) » = Dy
nd (Prove(pp, aux, 7)),

(pp, T, Ts) < SimSetup(1*,m),
~ ¢ (pvk, 2, aux) & Stretch(pp), z < {0,1}™, : (pp,pvk, T, z,) p = D;.
7 & (Equivocate(pp, pvk, i, z;, T3))s

A weaker variant of equivocability is the following hiding property, which
states that an adversary cannot guess the value of a particular output (with
non-negligible advantage over the random guess), even if he is given the values
of all other outputs together with proofs of correct opening. This notion is im-
plied by the equivocability property, and it suffices for for the Dwork and Naor
construction of a NIZK proof system for NP; however, equivocable DVPRGs al-
low for a simpler and more direct construction of NIZKs, without having to rely
on the FLS transform which constructs NIZKs from NIWI [17].

Definition 12 (Hiding Property of a DVPRG). 4 DVPRG scheme (Setup,
Stretch, Prove, Verify) is hiding if for any i € [m] and any PPT adversary A that
outputs bits, it holds that:

(pp, T) <& Setup(1*,m),
Pr | (pvk, z,aux) < Stretch(pp), : A(pp, pvk, i, (z;,7;)j2i) = 73 | =~ 1/2.
(m; & Prove(pp, aux, j));

Eventually, we define an additional security notion, the consistency, which
will prove useful to analyze the unbounded binding property of one of our can-
didates:

Definition 13 (Consistency of a DVPRG). Given a DVPRG (Setup, Stretch,
Prove, Verify) and a pair (pp,T) = Setup(1*,m;r) for some random coin r, we
define for any e the set e-Good(r) to be the set of 4-tuples (pvk, i, 7, ;) satisfying

Pr |T" & Dist(r) : Verify(pp, pvk, 7', i, 2;,7) = 1| > ¢,

where Dist(r) samples random pairs (pp’, T') with Setup(1*,m) subject to the
constraint pp’ = pp, and outputs T'. Note that for any & > e, it holds that
¢’-Good(r) C e-Good(r). Then, we say that a DVPRG is consistent if there exists
a negligible function € such that for any PPT adversary A,

pp |7 € R (pp, T) = Setup(1*, m:v), (pvk,i,m,b) & A(pp) : |
(pvk,i,m,b) € e-Good(r) \ 1-Good(r) o

In the full version of this paper |12|, we prove the following:

Theorem 14. Let G = (Setup, Stretch, Prove, Verify) be a binding and consistent
DVPRG, such that for any r, the distribution Dist(r) is efficiently sampleable.
Then G is unbounded binding.

Designated-verifier PRGs, and their applications 15

4 DVNIZK Proof for NP from DVPRG

4.1 The Hidden Bit Model, and HB Proofs

The hidden bit model is an ideal formalization of a scenario in which both the
prover and the verifier have access to a long string of hidden random bits (let us
denote with hb the random bits and ¢ = ¢(\) the length of the hidden string). In
this idealized model, the prover can send to the verifier a subset S C [t] of the
positions of the hidden bits (together with additional informations). The verifier
is restricted to inspecting only the bits of hb residing in the locations specified
by the prover, while the prover can see hb entirely.

Definition 15. A non-interactive proof system HB in the hidden bit model is a
pair of PPT algorithms (HB.Prove, HB. Verify) such that

— HB.Prove(hb, z,w), on input a random bit string hb € {0,1}*, and a word
x € £ with witness w, outputs a subset S C [t] together with a string M of
auzxiliary informations,

— HB.Verify(z, hb[S], M), on input a word x, the subsequence of hb indexed by
S, and an auziliary information M, outputs b € {0,1},

which satisfies the following perfect completeness, e-soundness, and (adaptive,
single-theorem) zero-knowledge properties:

— Perfect Completeness. For any x € . with witness w, any hb € {0,1}¢,
and for (S, M) & HB.Prove(hb, z,w), it holds that HB.Verify(x, hb[S], M) =
1.

— e-Soundness. For any (possibly unbounded) adversary A,

. hb & {0,1}¢, <.
(z,S, M) & A(hb) : HB.Verify(x,hb[S], M) = 1Az ¢ . -

— Single-Theorem Zero-Knowledge. For any (possibly unbounded) stateful
adversary A, there exists a simulator (Sim, Sim’,) such that for every x €
Z and any w satisfying Ry (z,w) =1,

o the distributions

{(hb[S], S, M) : hb & {0,1}*, (S, M) & HB.Prove(hb, , w)}

and {Sim(x)} are perfectly indistinguishable;
o the distributions

{(hb, S, M) : hb & {0,1}*, (S, M) & HB.Prove(hb, z,w)}
and
{(hb, S, M) : (hb[S], S, M) & Sim(x), hb & Sim’,(hb[S], S, M, z,w)}

are perfectly indistinguishable. That is, the simulator can generate (hb[S],
S, M) without a witness, and find a completion of the hidden string hb
given a witness w, which is identically distributed to an honestly gener-
ated hidden string and proof with w.

16 Geoffroy Couteau and Dennis Hofheinz

Note that in the hidden bit model, the parties do not have access to a common
random string, but to a string of bits which are perfectly hidden to the verifier
until the prover opens a subsequence of them. Therefore, the adaptive and non-
adaptive formulations of zero-knowledge are equivalent since the verifier does
not get to see anything about hb before producing a word = with a witness w
(put differently, it is equivalent to define zero-knowledge for all x € £ or with
respect to adversarially chosen z). Examples of non-interactive proof systems
in the hidden-bit model can be found in [17,28]. We stress that the security of
these proof systems is unconditional (although a specific implementation of the
HB model can involve cryptography).

4.2 A DVNIZK for NP from any DVPRG

We describe on Figure 2 a general transformation that converts any (uncondi-
tional) proof system in the HB model into a DVNIZK for the same language,
given any DVPRG. The DVNIZK inherits the specificities of the DVPRG: it sat-
isfies unbounded soundness and/or statistical soundness whenever the DVPRG
is unbounded binding and/or statistically binding. At the exception of using a
DVPRG instead of a VPRG, the proof system is identical to the one of |16} Sec-
tion 5.1] (actually, |[16] provides a ZAP in the plain model where the first flow can
be fixed non-uniformly, which immediately implies a NIZK in the CRS model.
Our construction does not imply a ZAP in the plain model, as we need to setup
a CRS containing, in particular, the public parameters of the DVPRG. These
public parameters must be honestly sampled to maintain the hiding property,
hence they cannot be picked by the verifier in the first round.)

While the scheme is almost identical to the scheme of [16], the proof of
soundness is more involved, as it must cope with the weaker binding property
of our PRGs. To prove soundness, we proceed as follows: we identify a “bad
event”, which occurs whenever the adversary outputs pvk and a proof m for
some position ¢ of correct opening to 1 — x;, where x = Ext(pvk) (Ext being
the possibly inefficient extractor guaranteed by the unbounded binding security
notion of the DVPRG). We show that when this bad even does not happen, then
there is a string (essentially = @ p, where p is a long random string which is
part of the CRS) which is a bad string, in the sense that if this string is used
as the hidden bit string of the HB proof system, there exists accepting proofs
of incorrect statement with respect to this hidden string. Then, we rely on the
statistical soundness of the HB proof system to argue that only a tiny fraction
of all possible strings (of a given length) are bad strings. Since p is random and
x is uniquely defined given pvk, we can rely on the fact that pvk is short to
argue, with a counting argument, that there is a negligible probability (over the
random choice of p) that there exists a short pvk such that p @ Ext(pvk) is a bad
string. Hence, this situation is statistically unlikely, and we must be in the case
where the bad event happens; then, we conclude the proof by observing that an
occurrence of this bad event directly contradicts the unbounded binding property
of the DVPRG. In contrast, the argument of [16] uses a counting argument over
all possible seeds of the VPRG, which crucially relies on their stronger binding

Designated-verifier PRGs, and their applications 17

property which states that any possible pvk is in the stretch of the PRG, and is
bound to a seed (while this seed need not be unique, all seeds associated to a
given pvk must lead to the same pseudorandom string).

DVNIZK Proof System I7

Let . be a language and let y € .Z be a word with witness w. Let A + |y|. The
DVNIZK relies on an HB proof system HB for the statement y € . which
uses £ = £()\) hidden bits, and achieves 2~ *-statistical soundness. Let G =
(G.Setup, G.Stretch, G.Prove, G.Verify) be a DVPRG, with public verification
key size s(A\) and output size m()), satisfying m > (1 + s/A\)¢ + £2/X. In
the following, we consider the HB proof system HB’ obtain by executing HB
m/¢ times in parallel (with independent hidden bits) and accepting only if
all executions are accepted. Note that HB’ uses m hidden bits and achieves
27 M/ statistical soundness.

— IT.Setup(1*) : on input the security parameter in unary, compute
(pp, T) & G.Setup(1*,m())), and p & {0,1}™. Output crs < (pp,p)
and 7.

— I1.Prove(crs,y,w) : parse crs as (pp,p). Compute (pvk,z,aux) &
G.Stretch(pp). Pick 6 & {0,1}5. For i = 1 to m, set hb; + x; ® p; ®
0(i—1 mod 0)+1- Define hb = (hb;); to be the hidden string of HB'. Com-
pute an HB proof (S, M) < HB'.Prove(hb, 3, w). For every i € S, compute
m & G.Prove(pp, aux,). Output (pvk, 8, S, hb[S], M, (7;)ics).

— II.Verify(crs, G, m, T) : parse crs as (pp,p) and w as
(pvk, 0, S,hb[S], M, (7;)ics). For every i € S, set x; <+ hb; ® p; ®
0(i—1 mod £)+1 and check that G.Verify(pp, pvk,T,4,2:,m;). Check that
HB' .Verify(y, hb[S], M) returns 1. Output 1 if all checks succeeded, and 0
otherwise.

Fig. 2. Designated-verifier non-interactive zero-knowledge proof system II for a lan-
guage .Z using a DVPRG G and an HB proof system HB

Theorem 16. Let G be a hiding unbounded binding DVPRG, and let (II.Setup,
I1.Prove, I1 Verify) be the DVNIZK proof system given on Figure @ Then II sat-
isfies computational witness-indistinguishability and unbounded adaptive sound-
ness. Furthermore, if G is equivocable, Il satisfies (adaptive, single-theorem)
zero-knowledge.

The completeness of IT follows immediately from the completeness of HB
and G. In the remainder of this section, we prove Theorem The proof of
witness-indistinguishability is similar to the one given in [16], but the proof of
soundness is more involved (see the previous discussion).

18 Geoffroy Couteau and Dennis Hofheinz

4.3 Witness Indistinguishability of IT

We prove the witness-indistinguishability of I through a sequence of hybrids.
Let A be a PPT adversary; assume toward contradiction that

(crs, T) & IT.Setup(1?), Alers,m) =1
Pr (yu Wo, wl) <$_ A(CTS), : /\Rg(y7 U)()) =1
7 & I1.Prove(crs, y,wy) AR (y,wi) =1

(crs, T) & IT.Setup(1?), Alers,m) =1
- Pr (ya wOawl) <$_ A(CFS), : /\R_?(y7w0) =1 Z €
m & I1.Prove(crs,y,wy) ARg(y,wi) =1

for some non-negligible quantity e. Let us denote Hp for b € {0,1} the ex-
periment in which we set (crs,7) & IT.Setup(1*), (y,wo,w1) < A(crs), m &
I1.Prove(crs, y, wy), and output b’ & A(crs, 7).

Recall that HB' consists of m/¢ parallel repetitions of HB (with independent
hidden bits hb’). We consider a sequence of intermediate hybrids Hy ; for j =0
to m/{, in which we use the witness w; for the j first repetitions (computing
(S;,M;) as HB.Prove(hb?, y,wp)) and the witness wy for the repetitions j + 1
to m/¢. By a standard pigeonhole argument, there exists a j such that the
advantage of A in distinguishing Hy ; from Hy ;41 is at least ef/m. We further
divide Hy ; in the following sub-hybrids:

— Hop jo. In this hybrid, we modify the generation of (hle,SjH,MjH).
Namely, we compute (pvk,z,aux) & G.Stretch(pp) (let z7+1, p7+1 denote
the (j + 1)-th block of ¢ bits of z, p), generate (hb’"'[S; 1], 51, Mj41) &
Simzk(y), hbj+1 <i Sim;k(hij[SjH], Sj+1, Mj+1, Y, wl), and set 6 < 1‘j+1@
Pi+1 @ hb’*1. The other repetitions of HB are executed as before; note that
it holds that hb; = x; © p; ® 0(;_1) mod ¢ for every i < m. By the (perfect)
single-theorem zero-knowledge property of HB, the distribution of (crs, 7) in
Hy ;1 is identical to its distribution in Hy j, hence the advantage of A in
distinguishing Hy ;1 from Hy j1+1 is at least ef/m.

— Hy k. We denote by ¢ — r the size of Sj11 (r is the size of the “unopened”
subsequence of hb’ +1). For k = 0 to r, we modify the generation of hb’ ™" as
follows: we generate as before (hb? ™ [S; 1], Sj41, Mj11) & Simu(y), denote

Rj41 the set [€] \ Sj41 of unopened positions of hb’**, and compute

o Wb/ "HO[R;] & Simy (hb? ' [Sj 4], 81, M1, 9, wo),

o Wb/ MRy] & Simy (hb? S 1], S50, Mg, y,w1). ‘
Then, we define hb’*'[R;,1] to be the string that agrees with hb? ™ ' [R; 1]
for positions 1 to k, and with hbj+1'0[Rj+1] for positions £+ 1 to r. By a
standard pingeonhole argument, there exists a k such that A distinguishes
Ho j.i from Hy j 41 with probability at least ef/(mr) > ¢/m.

Note that the string hb/*1 differs by a single bit between Hy ; and Ho jx+1-
From there, we immediately reach a contradiction to the hiding property of

Designated-verifier PRGs, and their applications 19

G: denoting ¢ < (j + 1)¢ + k + 1, we receive (pp, pvk,i, (x;, m)ii, compute
(hb/ 1S4 1], 801, Mjy1) < Simy(y), guess the value x; at random (completing
the string), and set 0 « 277 & p; 11 & hb’ ™!, Depending on our guess of z;,
the distribution of (crs,7) is either identical to its distribution in Hy ;1 or in
Hy j k41, hence we distinguish between z; = 0 and x; = 1 with probability at
least £/m. This concludes the proof.

4.4 Adaptive Single-Theorem Zero-Knowledge of IT

A witness-indistinguishable NIZK proof system for NP implies an adaptive zero-
knowledge proof system for NP, by the transformation of [17]. However, if G is
equivocable, there is a more direct construction: we prove that in this case,
the DVNIZK IT is adaptive single-theorem zero knowledge (and can be made
adaptive multi-theorem zero-knowledge using [17]); the argument is simpler than
for witness indistinguishability, does only use Sim,, (the simulator Siml, is not
needed), and does not require 6 (which can be removed from the construction —
we keep it in the proof below for simplicity). Let A be a PPT adversary against
the (adaptive) single-theorem zero-knowledge of IT. Let Sim = (Simg, Sim;) be
the following simulator:

— On input 1*, Simg computes (pp, T) < G.SimSetup(1*,m), and p & {0, 1}™.
He outputs crs < (pp,p) and T.

— On input (crs, T,%), Sim parses crs as (pp, p) and computes (pvk, 2/, aux) &
G.Stretch(pp). Then, Sim; runs (hb[S], S, M) < Sim,(y), where Sim,y is the
simulator of the zero-knowledge property of HB'. Sim; picks 6 < {0,1}".
For every i € S, he sets x; < hb; @ p; © 0(;_1 mod ¢)+1 and computes 7; &
G.Equivocate(pp, pvk, ¢, 2;, 7). Sim; outputs (pvk, 8, S, hb[S], M, (7;)ics).

We prove that

_(crs, T) & Setup(1*),

Pr | (y,w) & Acrs, T), : (Re(y,w)=1)AAm)=1)| —
7 & I1.Prove(crs, y, w)

[(crs, T) & Simg(1%),

Pr | (y,w) & A(ers, T), : (Re(y,w)=1)A(A(r)=1) || =0,
7 & Simy(crs, T, y)

through a sequence of hybrids.

— Game Hy. This is the real game, where we generate (crs, 7)) < Setup(1*),
run (y,w) & A(cers, T), © & IT.Prove(crs, y, w), and b & A(r).

— Game H;. In this game, we generate instead (crs, 7) as Simg(1*) (that is,
we compute (pp,7) < G.SimSetup(1*,m) and p < {0,1}™). Furthermore,
we modify II.Prove(crs,y,w) as follow: after computing (pvk,z’,aux) &
G.Stretch(pp), we pick = & {0,1}™ and set hb; i Pi©O3i—1 mod 0)+1- We

20 Geoffroy Couteau and Dennis Hofheinz

compute the HB proof (S, M) honestly using (y,w) and the hidden string
hb. Finally, we compute the 7; as G.Equivocate(pp, pvk, T, i, x;).

By the equivocability of G, the distribution of (pp, pvk, T, x, (7;)ics) in Hy
is computationally indistinguishable from its distribution in Hy, and the
rest of the proof is computed from (pp, pvk, T,) identically in both games,
hence there is a direct reduction from breaking the equivocability of G to
distinguishing Hy and H;.

— Game H,. In this game, instead of picking 2 <~ {0,1}™ and setting hb; <
x; D p; D 0(1',1 mod £)+1, W€ first pick hb & {0, 1} and set z; < hb; & p; ®
0(i—1 mod ¢)+1 for every i < m. Note that this is a purely syntactic change,
since hb and x are just a uniformly random sharing of (p;©0(;—1 mod £)4+1)i<m,
hence this game is perfectly indistinguishable from the previous one.

— Game Hj. In this game, we play as in Game Hs except that we compute
(hb[S], S, M) & Sim,(y) instead (note that the remaining hidden bits of
hb are never used). By the single-theorem zero-knowledge property of HB,
this game is perfectly indistinguishable from the previous one. Note that
Game Hjs does exactly correspond to the simulation with (Simg, Simy). This
concludes the proof.

4.5 Unbounded Adaptive Soundness of IT

Let A be a PPT adversary against the soundness of I7, which is given oracle
access to a verification oracle O(crs,-,-,T). Let (crs,T) & II.Setup(1*), and
parse crs as (pp, p). Run (y, 7) & A(crs). Let € denote the probability (over the
coins of IT.Setup) that II.Verify(crs,y, 7w, 7) =1 and y ¢ &:

(crs, T) & Setup(1?),

Pr
(3,) & ACCT) (crs)

: I Verify(crs,y, m, T)=1ANy ¢ L | =e.

In the following, we assume for the sake of contradiction that e is non-
negligible. We will construct from A an adversary B which contradicts the
unbounded binding of G. B interacts with A in the unbounded soundness se-
curity experiment of IT. The challenger of the unbounded binding property of
G samples (pp,T) & Setup(1*,m). B receives pp and is given oracle access
to G.Verify(pp,-,T,-,-,-). It picks p & {0,1}™, sets crs + (pp, p), and runs
A(crs). Let ¢ be the number of queries that A asks to Ofcrs,-,-,7) in the
unbounded soundness security experiment of I1. B simulates the answers of
O(crs,-,+,T) as follows: on input @ = (pvk, 6,5, hb[S], M, (7;);cs) it sets for
every i € S x; < hb; @ pi © 0(i—1 mod ¢)+1 and calls G.Verify(pp,-,T,-,-,-) on
input (pvk,i,2;,m;). Then, it verifies the HB proof (S, hb[S], M) for the state-
ment y € £ and outputs 1 iff all checks succeeded. Then, A outputs a pair
(y, 7). Since B perfectly simulates crs and the answers of O(crs, -, -, T), it holds
that IT.Verify(crs,y, 7, T) = 1 Ay ¢ £ with probability ¢ over the coins of the
challenger and A, B. Finally, B parses 7 as (pvk™, 0, S, hb[S], M, (7;)ics), picks
i* & S, and outputs (pvk*,i*, 7). To simplify the analysis in the following, we
assume that B also outputs (crs,y, 7) in addition to (pvk™,i*,m;+) (it is only a

Designated-verifier PRGs, and their applications 21

syntactic modification that will make it more convenient to describe the proba-
bility experiments).

We analyze the probability that G.Verify(pp, pvk*, T,3*,1 — z;, m;<) = 1. Let
us call ‘bad’ a string hb for which there exists y ¢ .Z and an accepting proof of
y € £ under the HB proof system HB’. Under the 2-*™/*_statistical soundness
of HB’, the ratio of bad strings must be at most 2=2"/¢ < 225+ et us say that
a string hb’ is “close to a bad string w.r.t. pp” hb if there exists # € {0,1}* and a
public verification key pvk € {0,1}* such that hb’ = (2; ©hb; ©0(i—1 mod 0)+1)i
is a bad string, where 2 = Ext(pp, pvk). As there are at most 2°** possible choices
of (0, pvk), for any choice of public parameters pp, the ratio of strings which are
close to a bad string w.r.t. pp must be at most 272~57¢. 2¢+s = 27X Therefore,
with overwhelming probability 1 —2~* over the distribution of p, p is not close to
a bad string w.r.t. pp, hence there does not exist a string (y, pvk, 8) with y ¢ &
such that (hb;); = (2; © pi ® 0i—1 mod ¢)+1): is a bad string.

We consider two complementary cases, one of which must necessarily occur:

Case 1. With probability at least £/2, the output (y, 7) of A satisfies IT.Verify(crs,
y,w,T)=1Ay ¢ £, and for every i € S, it holds that G.Verify(pp, pvk*, T, i*,1—
x;,7;) = 1. That is,

(pp, T) & Setup(1*,m), II Verify(crs,y, m,T) =1
* . $. > €
Pr | (pvk*,i*, mp, crs,y, m) & B(pp), AY ¢$ AV € S, > 5
x <+ Ext(pp, pvk™) G Verify(pp, pvk™, T,i,1 — z;,m;) = 1
where B is given oracle access to G.Verify(pp,-, T, -,). Now, parse 7 as (pvk™, 0,

S,hb[S], M, (7;)ics). Let 2’ denote Ext(pp,pvk®), and let (hb}); = (2} & p; ®
O(i—1 mod £)+1>z‘- Since a random p has probability at most 1/2)‘ to be close to a
bad string w.r.t. pp, (hb); has probability at most 1/2* of being a bad string.
Therefore, if case 1 happens, we necessarily have (denoting y = /2 — 1/2*):

I1 Verify(crs,y, m,T) =1
(pp, T) ¢~ Setup(lx,m); Ay ¢ é(/\ Viye S,)
Pr (pvk*,i*,m*,crs, y,ﬂ') < B(pp)a : gVery(pp7 pvk*7 T,Z', 1-— iCi,’]Ti) =1 2 -

x < Ext(pp, pvk”) A hb’ is not a bad string

Note that the condition IT.Verify(crs,y,,T) = 1 implies that for all ¢ € S,
denoting x; < hb; @ p; ® ;-1 mod ¢)+1, G-Verify(pp, pvk*, T, i, z;,7;) = 1. De-
noting =’ = Ext(pp, pvk®), it holds by assumption that G.Verify(pp, pvk*, T ,i,1—
x;,m;) = 1 for every i € S, hence G.Verify(pp, pvk*, T,4,1 — 2}, m) = 0. This
implies that for any i € S, x; # 1 — a, hence that (x;);es = (2})ics, which in
turns implies that hb[S] = hb'[S]. Therefore, if case 1 happens, with probability
at least £/2 — 1/2* we have the following:

—y¢Z,
— I .Verify(crs,y,m,T) =1,
— hb[S] = hb'[9] is not a bad string.

22 Geoffroy Couteau and Dennis Hofheinz

However, by the soundness of the HB proof system HB’, there cannot exist any
accepting proof (S, hb[S], M) for a statement y ¢ . unless hb[S] is a bad string.
Since I1.Verify does also check the HB proof, this event can never happen and

we get:
5 1

2 20
contradicting our assumption that ¢ is non-negligible. Hence, case 1 never hap-
pens and the following case necessarily happens:

:O,

Case 2. There exists ¢ € S such that G.Verify(pp, pvk*, T,i,1 — 2;,m;) = 1 with
probability at least €/2. That is,

r II Verify(crs,y, m,T) =1 |
$)\ b b b

(pp, Z-)*(* Setup(l ,m)s; Ay ¢ L NTe S,

(pvk™,i*, mx, crs, y, m) < B(pp) G Verify(pp, pvk*, T,4,1 — x;,m;) = 1

Pr

Vv
l\.')'\ ™

Since B picks ¢* at random in a set S of size at most m, this gives us in particular

: GVerify(pp, pvk*, T, 1%, 1—z;, 7*) = 1| >

[(pp, T) & Setup(1*,m),
_(ka*a i*a T, CIS, Y, 7T) & B(pp)

Pr £

2m’

which immediately gives a contradiction to the unbounded binding of G, con-
cluding the proof.

Impact on our LWE-Based Instantiation. Note that our alternative proof
strategy, which does not use any assumed structure for pvk except a bound on its
length, is the key to our LWE-based instantiation. Indeed, if we had to assume
some structure of pvk (such as “pvk was honestly generated”), we would have to
include a NIZK proof of validity of pvk in our instantiation (which is similar to the
NIZK proof of validity for the public key used in [37]). Since there might not exist
more than a single witness for the validity of pvk, it seems unlikely that we could
use a NIWI instead of a NIZK here. By removing entirely the need for proving
validity of pvk in our LWE-based instantiation, we enable the construction of
a NIZK for NP from LWE using only a NIWI for a simple language (bounded
distance decoding), improving over the result of [37].

5 Constructions of Designated-Verifier Pseudorandom
Generators

5.1 A DVPRG from the CDH Assumption

Assumptions. Let DHGen denote a PPT algorithm which, on input 1%, outputs
an integer n, the description of a group G of order n, and a generator g of G.
The computational Diffie-Hellman assumption (CDH), with respect to g over
G, states that it is computationally infeasible, for any PPT algorithm which

Designated-verifier PRGs, and their applications 23

is given (n,g,G) and a random pair (g%, g°) from G2, to compute g*°. The
decisional Diffie-Hellman assumption (DDH), with respect to g over G, states
that it is computationally infeasible for any PPT algorithm to distinguish the
distribution {(¢%, ¢*, g%°) | (a,b) <& Z3} of random DDH tuples from the uniform
distribution over G3.

The twin (computational or decisional) Diffie-Hellman assumption (twin-
CDH and twin-DDH), defined in |10], are variants of the CDH and DDH as-
sumptions. The twin-CDH problem with respect to g over G states that it is
computationally infeasible, for any PPT algorithm which is given (n, g,G) and a
random triple (g%, g°, g¢) from G?, to compute (g%, g*¢); twin-DDH is its natu-
ral decisional variant. Twin-CDH (resp. twin-DDH) is equivalent to the standard
CDH (resp. DDH) assumption. However, there is a natural trapdoor test that
allows to check the correctness of twin-DDH tuples: let (o, 3) be a random pair
of exponents satisfying ¢g° = g®(¢?)~? (note that many such pairs exist). Then
given an input (g2, g, g¢), the probability for an arbitrary (possibly unbounded)
adversary A to output a pair (hy, hy) such that the truth value of A2 hy = (g%)*
does not agree with the truth value of (h; = g%) A (hy = g%°) is at most 1/n
(see |10]). Therefore, a verifier which is given the trapdoor («, 8) can check the
correctness of a twin Diffie-Hellman tuple, with negligible error probability. This
trapdoor test implies that the gap twin Diffie-Hellman problem, which states
that solving the twin-CDH problem is hard even given an oracle that solves the
twin-DDH problem, is at least as hard as the standard CDH problem.

Our Construction. Our construction will rely on the conjectured hardness of
the computational Diffie-Hellman (CDH) assumption. Let B : G* — {0,1}
be a predicate satisfying the following property: given (g%, g%, g¢), computing
B(g®, g, g%°) should be as hard (up to polynomial factors) as computing (g%, g%,
g%°). Note that this implies that distinguishing B(g®, g®°, ¢*°) from a random bit
given a random triple (g%, g°, g°) is as hard as solving CDH. There are standard
method to build this predicate using e.g. the Goldreich-Levin construction [18§],
see e.g. |10] for an illustration in the specific case of CDH. Our construction
proceeds as follows:

— Setup(1*,m) : sample (n, G, g) & DHGen(1*). For i = 1 to m, pick (a;, b;) &
72 and set (u;,v;) + (g%, g%). Set pp = (u;,vi)i<m. For i = 1 to m, pick
Bi & 7, and set o; < b; + a;f; (observe that (a;, 3;) are uniformly dis-
tributed exponents subject to v; = gaiui_ﬁ"). Output ppand T + (e, Bi)i<m.-
We also define SimSetup(1*,m) to be identical to Setup(1*,m) and define
T.=T.

— Stretch(pp) : pick r & Z,, set pvk < ¢", and for i = 1 to m, set z; <&
B(pvk,ul,vT). Output (pvk,z,aux = r).

— Prove(pp, aux, i) : output m < (ul,v]).

— Equivocate(pp, pvk, Ts,4,0) : pick v’ & G, set v/ = pvk® (v/)~, and check
whether B(pvk,u’,v") = o; if it does not hold, start again. Output = «+
(u',v").

24 Geoffroy Couteau and Dennis Hofheinz

— Verify(pp, pvk, T, 4,0,) : parse 7 as (u/,v"), check whether B(pvk,u/,v") = o
and check whether (u')%v’ = pvk®. If both checks pass, output 1; otherwise,
output 0.

This construction follows the twin Diffie-Hellman paradigm of Cash, Kiltz,
and Shoup [10], which relies on the fact that computing the twin Diffie- Hellman
function, which on input (g%, g¥*, g¥2) outputs (¢*¥*, g*¥2), is at least as hard as
solving the CDH problem, even given an oracle for twin-DDH.

Theorem 17. If the CDH assumption holds over G, then the above construc-
tion is a computationally hiding unbounded statistically binding DVPRG. Fur-
thermore, if the DDH assumption holds over G, the above construction is also
equivocable.

Proof. Completeness follows easily by inspection. We now look at the unbounded
binding property; by Theorem it suffices to show that the scheme is binding,
consistent, and that we can efficiently sample trapdoors consistent with pp (a
proof of Theorem [14] is given in the full version of this paper [12]). From the
analysis of |10, Section 2], as (g%, g¥*, g¥2) uniquely define the pair (hy, he) such
that (hy = ¢*¥*) A (he = ¢®¥2) and any adversary has negligible probability 1/n
of outputting a non-twin-DH pair (hq, ho) that fools the test, it follows that the
scheme is statistically binding (the inefficient extractor Ext simply extracts r
from pvk = ¢g” and computes the string = as 2; & B(pvk, u},v}) for i = 1 to m).
Second, observe that we can efficiently sample trapdoors consistent with pp, by
storing the random values (a;, b;); and sampling each trapdoor T = (o, 5;) as
B; & Z, and o; < b; + a;0;. Therefore, this defines an efficiently sampleable
distribution Dist((a;, b;);).

We now show that our construction satisfies consistency. Let ¢ < 2/ nﬂ and
let A be an adversary that, on input pp = (u;, v;); = (g%, g%);, outputs a 4-tuple
(pvk,i,m = (u/,v"), o) such that

Pr[ﬂl <i Zn : VerlfY(ppv kaa (Oéi, bz + aiﬂi)a iv g, (’U/, U,)) = 1] Z €.

The above implies that A outputs (pvk,u’,v’) such that (u')%v’ = pvk® holds
with probability at least 2/n. Suppose now that (pvk, u;,v;,u’,v") is not a twin-
DH tuple; let us denote pvk = ¢g” and (u/,v’) = (g%, g*) with s # a;r or t # b;r.
Then the previous equation becomes g*%*t = g™ which gives

Bi(s — a;r) = rb; — t.

However, if s—a;r # 0 or 7b; —t # 0, then this equation holds with probability at
most 1/n over the random choice of §;, hence since we assumed that this equation
is satisfied with probability at least 2/n, it must be that s — a;r = rb; — t = 0,
hence (pvk, u;, v;, w’,v") is a twin-DH tuple. But then, it immediately follows that
the above equation is always satisfied, independently of the choice of 3;:

Pr[ﬁi & Zn : Verlfy(ppa ka7 (aia bi + a}iﬁi)) i7 a, (ulv ’Ul)) = 1] = 1;

® Since n is the order of G and G is a group in which CDH is assumed to hold, 2/n is
negligible in the security parameter.

Designated-verifier PRGs, and their applications 25

which concludes the proof of consistency. Since the DVPRG is also statistically
binding (in a bounded sense), we use Theorem [14] to conclude that the above
construction satisfies (statistical) unbounded binding.

We now discuss the hiding property. We show that a PPT adversary against
the hiding property of the above scheme implies the existence of a PPT ad-
versary that solves the computational twin Diffie-Hellman problem. The re-
sult follows from the proof of [10] that the computational twin Diffie-Hellman
problem is at least as hard as the CDH problem. The reduction is relatively
straightforward: given a position i < m, we pick (a;,b;);x:, receive a compu-
tational twin-DH challenge (co,c1,c2), and set pvk < co, (uj,v;) < (9% ,g%)
for every j # 4, and (u;,v;) < (c1,c2). We output pp < (u;,v;)j<m, PVk,
and (z;,7;) < (B(pvk,cgi,cgj),(cgi,cgj)) for every j # 4. Note that pp, pvk
and the x;,7; are distributed exactly as in an honest execution of the exper-
iment. Then, we run A(pp, pvk, (x;,7;);2;) and get a bit b. If A guesses the
value of x; = B(pvk,c},ch), where (c},cs) = (cf,c5) for the value r such that
co = pvk = ¢, then we efficiently find a hardcore bit for the twin-DH problem
with non-negligible probability. As guessing a hardcore bit for twin-DH is at
least as hard as solving the computational twin-DH problem, the proof follows.

Regarding equivocability, the reduction gets a DDH challenge (co, c1,¢2). It
sets pvk < g7, samples (ay, 8;); < Z2™ and pp = (u;,v;); as (c‘f'i,go‘iu;m)i with
random a;’s. It computes each proof m; as (u/,v’) < (c5¢, pvk® (u')~%). Observe
that the distribution of (pp, T, pvk, (7;);) is identical to the distribution obtained
with an honest run of the DVPRG when (cg, ¢1, ¢2) is a DDH tuple, and identical
to a run of the DVPRG with the algorithm Equivocate when (co, ¢1, ¢2). Hence,
distinguishing honest proofs from equivocated proofs is equivalent to breaking
the DDH assumption.

Corollary 18. Assuming the computational Diffie-Hellman assumption, there
exists an unbounded designated-verifier non-interactive (adaptive, multi-theorem)
zero-knowledge proof system for NP.

Note that the above construction also implies that the existence of a (publicly
verifiable) NIZK proof system for the DDH language (together with the CDH
assumption) would imply a NIZK proof system for NP.

5.2 A DVPRG from the LWE Assumption

We also give a construction of a DVPRG in the LWE setting. Our construc-
tion already assumes a designated-verifier NIWI proof system II for the LWE
language. We stress, however, that Il does not have to enjoy zero-knowledge;
witness-indistinguishability is sufficient. We also note that II can be publicly
verifiable, in which case the DVPRG becomes publicly verifiable.

Algebraic setting. We largely follow the presentation of |22] and abstract the
setting as far as possible. In the following, let n,m = poly()\) and ¢, 3 = 2PN

26 Geoffroy Couteau and Dennis Hofheinz

with m > n and ¢ > (be suitable integers. We also assume an error distribution
X that outputs integers e with |e| < S.
The Learning With Errors (LWE) problem (relative to n, m, g, 3) is to distin-

guish access to an oracle O™ _ (with hardwired uniform s € Zy) from access to

another oracle O'¢,. Here, O¢ _ (parameterized over s € Zy) outputs samples

(a,sTa+e) for fresh a & Zq and e < x, and O'r‘é"ael,s outputs (a,r) with fresh

ad Zy and 7 & Z4. The LWE assumption is that for every PPT adversary A,
’Pr [Aol"e"fus(ﬂ) - 1} _Pr [Aol"a"ﬁd(ﬂ) - 1} (~ 0,

where the probability is over s <~ Zq and the random coins of A and the oracles.
In the following, let A € Zy*™, and consider the language

La :={Au|ueZ] with ||u||, < B}.

Depending on A, LA may be trivial. However, if A can be written as A =
A . . .

<sTA’ " e) with ||e||c < B, then LA consists of all zero-encryptions under

Regev’s encryption scheme [36]. In that case, L4 is hard to decide under the

LWE assumption.

Homomorphic commitments. In the setting above, Gorbunov, Vaikuntanathan,
and Wichs [22] construct homomorphic trapdoor functions (HTDFs). As they
point out, HTDFs can also be viewed as homomorphic commitments. Formally,
an HTDF HF consists of the following PPT algorithms:

Key generation. HF.Setup(1*) outputs a keypair (pk,sk). We require that pk
defines input, output, and index sets U, V, and X. These sets must be effi-
ciently decidable, and we assume are efficiently samplable distributions Dy,
and Dy over U and V.

Function evaluation. f, . evaluates a deterministic function from ¢/ to V. We
can view foko(u) as a commitment under pk to z with random coins u.
Function inversion. Invg, , probabilistically samples a preimage of fux . We
require that for every (pk,sk) in the range of HF.Setup, every z € X, and
every v in the range of fu ;, the value Invg ,(v) is distributed statistically

close to a random preimage of v under fy . sampled from Dy,.

Homomorphic evaluation. Eval™ and Eval®“ allow homomorphic computa-
tions on inputs and outputs, in the following sense. For all pk in the range of
HF .Setup, all £ € N, all functions g (represented as circuits), all (x;, u;, v;) €

X xUxV (1 <i<{)withv; = foka, (¢;), and for u* := Evalffkb(g, (z5,ui)f_,)
out

ok (9 (vi)i_), we have

and v* := Eval
fpk,g(zl,..»,ze)(U*) ="

Dual-mode homomorphic commitments. For security, |22] require that it is com-
putationally hard to find (z, u, z’,u’) with z # 2’ and fok »(w) = fok,er (v'). When

Designated-verifier PRGs, and their applications 27

viewing HTDFs as commitment schemes, this corresponds to a computational
binding property. For our purposes, however, we require a stronger property
that [22] mention but do not formally define or use. Namely, in analogy to dual-
mode commitment schemes |26, we require that there are two computationally
indistinguishable ways to sample public keys: one way leads to a statistically
hiding commitment scheme, and the other to a statistically binding scheme. In
the HTDF setting, this translates to the following requirements:

Statistically hiding. For any fixed pk in the range of HF.Setup, and any z,z’ €
X, the random variables fox 5(u) and fok o (u) (for random u <— Dy) are
statistically close.

Perfectly binding under alternate key generation. There exists a PPT al-
gorithm HF .Setupy;,4 that outputs public keys pky;,q with the following prop-
erties:

— PKyind ~ pk for public keys pk output by HF.Setup,

— the “function evaluation” and “homomorphic evaluation” properties above
also hold (perfectly) for public keys pkp;q,

— for all pky;,q in the range of HF.Setupy;.4, and all 2,2’ € X with z # 2/,
the sets {fok, 2(u) | v € U} and {fo, o' (u) | w € U} are disjoint.
In other words, there are no (z,u,2’,v') with # 2" and fu,, ,.«(u) =

fpkbind@' (u/)

The instantiation of Gorbunov, Vaikuntanathan, and Wichs. [22] offer a leveled
instantiation of dual-mode homomorphic commitments. That is, their construc-
tion only allows for an arbitrary, but a-priori bounded number of homomor-
phic base operations on commitments. If this number of operations is exceeded,
correctness will cease to hold. For our purposes, this leveled construction is
sufficient, since the number and type of homomorphic operations is known in
advance.

We further note that their HTDF application does not require any dual-mode
features. However, in |22 App. B|, they explicitly describe and analyze what we
call HF.Setupy;,q above. They show that their construction is secure (in the sense
above) under the LWE assumption.

We will not need to consider any specifics of their construction, except for
one. Namely, in their scheme, {0,1} C X C Z, and commitments to z are of
the form fo.(u) = AU + 2G for fixed A,G € Z7*™ defined in pk, and a
short U € Zy**™ with [|[U[[oc < B. In other words, commitments to z = 0
are composed of m elements of the language £ defined above. Furthermore, a
preimage u is the corresponding witness U. Hence, given an argument system for
LA, we can prove that a given commitment v commits to a given x by proving
that v —2G € LY.

Our construction. We can now give our construction of a DVPRG. We assume
dual-mode homomorphic commitments HF as described above, and any family
of PRGs G,, : {0,1}* — {0,1}™. In the following, let G,,; denote the circuit
that computes the i-th output bit of G,,,. Furthermore, we assume a NIWI proof

28 Geoffroy Couteau and Dennis Hofheinz

system IT = (I1.Gen, II.Prove, IT.Verify) for the language La. Slightly abusing
notation, we will use NIWI as an argument system for the language (£a)™.

— Setup(1*,m) runs pky,q < HF.Setupy,q(1*) and (crs, T) & I1.Gen(1*) (for
the language La given by the matrix A defined in pky;,4), and outputs public
parameters pp = (pky;ng, €rs) and a trapdoor T.

— Stretch(pp) samples s = (s1,...,5\) & {0,1}* and uy,...,ux & Dy, then
computes v; = fpk,, .5 (wi), and finally outputs pvk = (v;)};, = Gpn(s),
and aux = (s, (u;)2;). Observe that the size of pvk does not depend on m

— Prove(pp, aux, i) (for aux = (s, (%‘)?:1)) computes v; = fok,, .5 (Ui) exactly
as Stretch, and derives a witness u* = Eva éﬁbind(Gm7i, (sj,u;)}—,) that ex-
plains v* = Eval&iﬁnd (Gmsis (v5)j=1) as v* = fok,,p(u*). By our discussion
above, we have that hence v* — b;G € L with witness u*. Hence, Prove
next computes and outputs a proof 7 & IT.Prove(crs, v* — bG, u*).

— Verify(pp, pvk, 7,4, b, 7) parses pvk = (v;)X_, then computes

v* = Eval?“ (Gmyi, (vj))‘) ,

PKpind Jj=1

and finally returns IT.Verify(crs, v* — b;G, m, T).

Theorem 19. Assume that LWE holds for the parameters from [22], that G,
is pseudorandom, and that II is perfectly complete, computationally witness-
indistinguishable and satisfies unbounded adaptive soundness. Then the above
DVPRG is perfectly complete, equivocable, and has the unbounded binding prop-
erty.

We provide a proof of Theorem [19|in the full version [12].

References

1. Abusalah, H.: Generic instantiations of the hidden bits model for non-interactive
zero-knowledge proofs for NP. Master’s Thesis, RWTH Aachen (2013)

2. Benhamouda, F., Couteau, G., Pointcheval, D., Wee, H.: Implicit zero-knowledge
arguments and applications to the malicious setting. In: Gennaro, R., Robshaw,
M.J.B. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 107-129. Springer,
Heidelberg (Aug 2015)

3. Bitansky, N.: Verifiable random functions from non-interactive witness-
indistinguishable proofs. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS,
vol. 10678, pp. 567-594. Springer, Heidelberg (Nov 2017)

4. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,
Part II. LNCS, vol. 9015, pp. 401-427. Springer, Heidelberg (Mar 2015)

6 Strictly speaking, this may not be true, depending on G,,: the LWE parameters may
depend on the size of the G,y,,;, which in turn may depend on m. However, here we
implicitly assume that m < 2* and a suitable G, (e.g., one in which Gy i(s) is of
the form Fy(i) for a PRF F : {0,1}* — {0,1}).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Designated-verifier PRGs, and their applications 29

Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: 20th ACM STOC. pp. 103-112. ACM Press (May
1988)

Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Lie,
D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 18. pp. 896-912. ACM
Press (Oct 2018)

Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and correlation
intractability from strong KDM-secure encryption. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 91-122. Springer, Hei-
delberg (Apr / May 2018)

Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255-271. Springer,
Heidelberg (May 2003)

Canetti, R., Lichtenberg, A.: Certifying trapdoor permutations, revisited. In:
Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part I. LNCS, vol. 11239, pp. 476
506. Springer, Heidelberg (Nov 2018)

Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127-145. Springer,
Heidelberg (Apr 2008)

Chaidos, P., Couteau, G.: Efficient designated-verifier non-interactive zero-
knowledge proofs of knowledge. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part III. LNCS, vol. 10822, pp. 193-221. Springer, Heidelberg
(Apr / May 2018)

Couteau, G., Hofheinz, D.: Designated-verifier pseudorandom generators, and their
applications. Cryptology ePrint Archive (2019)

Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 45-64. Springer, Heidelberg (Apr / May 2002)
Damgard, I., Nielsen, J.B.: Perfect hiding and perfect binding universally com-
posable commitment schemes with constant expansion factor. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 581-596. Springer, Heidelberg (Aug 2002)
De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge with pre-
processing. In: Goldwasser, S. (ed.) CRYPTO’88. LNCS, vol. 403, pp. 269-282.
Springer, Heidelberg (Aug 1990)

Dwork, C., Naor, M.: Zaps and their applications. In: 41st FOCS. pp. 283-293.
IEEE Computer Society Press (Nov 2000)

Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: 31st FOCS. pp. 308-317.
IEEE Computer Society Press (Oct 1990)

Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
21st ACM STOC. pp. 25-32. ACM Press (May 1989)

Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design (extended abstract). In: 27th
FOCS. pp. 174-187. IEEE Computer Society Press (Oct 1986)

Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1), 186-208 (1989)

Goldwasser, S., Ostrovsky, R.: Invariant signatures and non-interactive zero-
knowledge proofs are equivalent (extended abstract). In: Brickell, E.F. (ed.)
CRYPTO92. LNCS, vol. 740, pp. 228-245. Springer, Heidelberg (Aug 1993)

30

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Geoffroy Couteau and Dennis Hofheinz

Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM
STOC. pp. 469-477. ACM Press (Jun 2015)

Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach to con-
structing and proving verifiable random functions. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017, Part II. LNCS, vol. 10678, pp. 537-566. Springer, Heidelberg (Nov
2017)

Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97-111. Springer,
Heidelberg (Aug 2006)

Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339-358. Springer,
Heidelberg (May / Jun 2006)

Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415-432. Springer,
Heidelberg (Apr 2008)

Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.. Designated veri-
fier /prover and preprocessing NIZKs from diffie-hellman assumptions. Eurocrypt
2019 (2019)

Kilian, J., Petrank, E.: An efficient noninteractive zero-knowledge proof system for
NP with general assumptions. Journal of Cryptology 11(1), 1-27 (Jan 1998)
Kim, S., Wu, D.J.: Multi-theorem preprocessing NIZKs from lattices. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 733-765.
Springer, Heidelberg (Aug 2018)

Ong, S.J., Vadhan, S.P.: Zero knowledge and soundness are symmetric. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 187-209. Springer, Heidelberg
(May 2007)

Oren, Y.: On the cunning power of cheating verifiers: Some observations about
zero knowledge proofs (extended abstract). In: 28th FOCS. pp. 462-471. IEEE
Computer Society Press (Oct 1987)

Ostrovsky, R., Wigderson, A.: One-way functions are essential for non-trivial zero-
knowledge. In: Theory and Computing Systems, 1993., Proceedings of the 2nd
Israel Symposium on the. pp. 3-17. IEEE (1993)

Pass, R., shelat, a., Vaikuntanathan, V.: Construction of a non-malleable encryp-
tion scheme from any semantically secure one. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 271-289. Springer, Heidelberg (Aug 2006)

Peikert, C., Vaikuntanathan, V.: Noninteractive statistical zero-knowledge proofs
for lattice problems. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
536-553. Springer, Heidelberg (Aug 2008)

Quach, W., Rothblum, R.D., Wichs, D.: Reusable designated-verifier NIZKs for all
NP from CDH. Eurocrypt 2019 (2019)

Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC. pp. 84-93. ACM Press
(May 2005)

Rothblum, R.D., Sealfon, A., Sotiraki, K.: Towards non-interactive zero-knowledge
for NP from LWE. PKC 2019 (2019)

Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable en-
cryption, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC. pp. 475-484. ACM
Press (May / Jun 2014)

Vadhan, S.P.: An unconditional study of computational zero knowledge. In: 45th
FOCS. pp. 176-185. IEEE Computer Society Press (Oct 2004)

	Designated-verifier pseudorandom generators, and their applications

