
Aurora: Transparent Succinct Arguments for R1CS

Eli Ben-Sasson1, Alessandro Chiesa2, Michael Riabzev1, Nicholas Spooner2, Madars
Virza3 and Nicholas P. Ward2

1 Technion/STARKWare eli@cs.technion.ac.il
mriabzev@cs.technion.ac.il

2 UC Berkeley alexch@berkeley.edu nick.spooner@berkeley.edu
npward@berkeley.edu

3 MIT Media Lab madars@mit.edu

Abstract. We design, implement, and evaluate a zero knowledge succinct non-
interactive argument (SNARG) for Rank-1 Constraint Satisfaction (R1CS), a
widely-deployed NP language undergoing standardization. Our SNARG has a
transparent setup, is plausibly post-quantum secure, and uses lightweight cryptog-
raphy. A proof attesting to the satisfiability of n constraints has size O(log2 n); it
can be produced with O(n logn) field operations and verified with O(n). At 128
bits of security, proofs are less than 250 kB even for several million constraints,
more than 10× shorter than prior SNARGs with similar features.
A key ingredient of our construction is a new Interactive Oracle Proof (IOP)
for solving a univariate analogue of the classical sumcheck problem [LFKN92],
originally studied for multivariate polynomials. Our protocol verifies the sum of
entries of a Reed–Solomon codeword over any subgroup of a field.
We also provide libiop, a library for writing IOP-based arguments, in which
a toolchain of transformations enables programmers to write new arguments by
writing simple IOP sub-components. We have used this library to specify our
construction and prior ones, and plan to open-source it.

Keywords: zero knowledge; interactive oracle proofs; succinct arguments; sum-
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1 Introduction

A zero knowledge proof is a protocol that enables one party (the prover) to convince
another (the verifier) that a statement is true without revealing any information beyond
the fact that the statement is true. Since their introduction [49], zero knowledge proofs
have become fundamental tools not only in the theory of cryptography but also, more
recently, in the design of real-world systems with strong privacy properties.

For example, zero knowledge proofs are the core technology in Zcash [18, 1], a
popular cryptocurrency that preserves a user’s payment privacy. While in Bitcoin [65]
users broadcast their private payment details in the clear on the public blockchain (so
other participants can check the validity of the payment), users in Zcash broadcast
encrypted transaction details and prove, in zero knowledge, the validity of the payments
without disclosing what the payments are.

Many applications, including the aforementioned, require that proofs are succinct,
namely, that proofs scale sublinearly in the size of the witness for the statement, or
perhaps even in the size of the computation performed to check the statement. This strong
efficiency requirement cannot be achieved with statistical soundness (under standard
complexity assumptions) [47], and thus one must consider proof systems that are merely
computationally sound, known as argument systems [34]. Many applications further
require that a proof consists of a single non-interactive message that can be verified
by anyone; such proofs are cheap to communicate and can be stored for later use (e.g.,
on a public ledger). Constructions that satisfy these properties are known as (publicly
verifiable) succinct non-interactive arguments (SNARGs) [46].

In this work we present Aurora, a zero knowledge SNARG for (an extension of)
arithmetic circuit satisfiability whose argument size is polylogarithmic in the circuit size.
Aurora also has attractive features: it uses a transparent setup, is plausibly post-quantum
secure, and only makes black-box use of fast symmetric cryptography (any cryptographic
hash function modeled as a random oracle).

Our work makes an exponential asymptotic improvement in argument size over
Ligero [4], a recent zero knowledge SNARG with similar features but where proofs
scale as the square root of the circuit size. For example, Aurora’s proofs are 20× smaller
than Ligero’s for circuits with a million gates (which already suffices for representative
applications such as Zcash).

Our work also complements and improves on Stark [13], a recent zero knowledge
SNARG that targets computations expressed as bounded halting problems on random
access machines. While Stark was designed for a different computation model, we can
still study its efficiency when applied to arithmetic circuits. In this case Aurora’s prover
is faster by a logarithmic factor (in the circuit size) and Aurora’s proofs are concretely
much shorter, e.g., 15× smaller for circuits with a million gates.

The efficiency features of Aurora stem from a new Interactive Oracle Proof (IOP) that
solves a univariate analogue of the celebrated sumcheck problem [61], in which query
complexity is logarithmic in the degree of the polynomial being summed. This is an
exponential improvement over the original multi-variate protocol, where communication
complexity is (at least) linear in the degree of the polynomial. We believe this protocol
and its analysis are of independent interest.
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1.1 The need for a transparent setup

The first succinct argument is due to Kilian [57], who showed how to use collision-
resistant hashing to compile any Probabilistically Checkable Proof (PCP) [9, 43, 6, 5] into
a corresponding interactive argument. Micali then showed how a similar construction,
in the random oracle model, yields succinct non-interactive arguments (SNARGs) [63].
Subsequent work [55] noted that if the underlying PCP is zero knowledge then so is the
SNARG. Unfortunately, PCPs remain very expensive, and this approach has not led to
SNARGs with good concrete efficiency.

In light of this, a different approach was initially used to achieve SNARG im-
plementations with good concrete efficiency [67, 19]. This approach, pioneered in
[50, 45, 60, 29], relied on combining certain linearly homomorphic encodings with
lightweight information-theoretic tools known as linear PCPs [54, 29, 71]; this approach
was refined and optimized in several works [23, 22, 40, 51, 30, 52]. These constructions
underlie widely-used open-source libraries [70] and deployed systems [1], and their
main feature is that proofs are very short (a few hundred bytes) and very cheap to verify
(a few milliseconds).

Unfortunately, the foregoing approach suffers from a severe limitation, namely,
the need for a central party to generate system parameters for the argument system.
Essentially, this party must run a probabilistic algorithm, publish its output, and “forget”
the secret randomness used to generate it. This party must be trustworthy because
knowing these secrets allows forging proofs for false assertions. While this may sound
like an inconvenience, it is a colossal challenge to real-world deployments. When using
cryptographic proofs in distributed systems, relying on a central party negates the benefits
of distributed trust and, even though it is invoked only once in a system’s life, a party
trusted by all users typically does not exist!

The responsibility for generating parameters can in principle be shared across mul-
tiple parties via techniques that leverage secure multi-party computation [20, 32, 33].
This was the approach taken for the launch of Zcash [2], but it also demonstrated how
unwieldy such an approach is, involving a costly and logistically difficult real-world
multi-party “ceremony”. Successfully running such a multi-party protocol was a singular
feat, and systems without such expensive setup are decidedly preferable.

Some setup is unavoidable because if SNARGs without any setup existed then so
would sub-exponential algorithms for SAT [81]. Nevertheless, one could still aim for a
“transparent setup”, namely one that consists of public randomness, because in practice
it is cheaper to realize. Recent efforts have thus focused on designing SNARGs with
transparent setup (see discussion in Section 1.4).

1.2 Our goal

The goal of this paper is to obtain transparent SNARGs that satisfy the following
desiderata.

– Post-quantum security. Practitioners, and even standards bodies [66], have a strong
interest in cryptographic primitives that are plausibly secure against efficient quantum
adversaries. This is motivated by the desire to ensure long-term security of deployed
systems and protocols.
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– Concrete efficiency. We seek argument systems that not only exhibit good asymptotics
(in argument size and prover/verifier time) but also demonstrably offer good efficiency
via a prototype.

The second bullet warrants additional context. Most argument systems support an NP-
complete problem, so they are in principle equivalent under polynomial-time reductions.
Yet, whether such protocols can be efficiently used in practice actually depends on:
(a) the particular NP-complete problem “supported” by the protocol; (b) the concrete
efficiency of the protocol relative to this problem. This creates a complex tradeoff.

Simple NP-complete problems, like boolean circuit satisfaction, facilitate simple
argument systems; but reducing the statements we wish to prove to boolean circuits is
often expensive. On the other hand, one can design argument systems for rich problems
(e.g., an abstract computer) for which it is cheap to express the desired statements; but
such argument systems may use expensive tools to support these rich problems.

Our goal is concretely-efficient argument systems for rank-1 constraint satisfaction
(R1CS), which is the following natural NP-complete problem: given a vector v ∈ Fk and
three matricesA,B,C ∈ Fm×n, can one augment v to z ∈ Fn such thatAz◦Bz = Cz?
(We use “◦” to denote the entry-wise product.)

We choose R1CS because it strikes an attractive balance: it generalizes circuits by
allowing “native” field arithmetic and having no fan-in/fan-out restrictions, but it is
simple enough that one can design efficient argument systems for it. Moreover, R1CS
has demonstrated strong empirical value: it underlies real-world systems [1] and there
are compilers that reduce program executions to it (see [80] and references therein). This
has led to efforts to standardize R1CS formats across academia and industry [3].

1.3 Our contributions

In this work we study Interactive Oracle Proofs (IOPs) [21, 69], a notion of “multi-round
PCPs” that has recently received much attention [17, 15, 12, 14, 13, 25]. These types
of interactive proofs can be compiled into non-interactive arguments in the random
oracle model [21], and in particular can be used to construct transparent SNARGs.
Building on this approach, we present several contributions: (1) an IOP protocol for
R1CS with attractive efficiency features; (2) the design, implementation, and evaluation
of a transparent SNARG for R1CS, based on our IOP protocol; (3) a generic library for
writing IOP-based non-interactive arguments. We now describe each contribution.

(1) IOP for R1CS. We construct a zero knowledge IOP protocol for rank-1 constraint
satisfaction (R1CS) with linear proof length and logarithmic query complexity.

Given an R1CS instance C = (A,B,C) with A,B,C ∈ Fm×n, we denote by
N = Ω(m+ n) the total number of non-zero entries in the three matrices and by |C| the
number of bits required to represent these; note that |C| = Θ(N log |F|). One can view
N as the number of “arithmetic gates” in the R1CS instance.

Theorem 1 (informal). There is an O(logN)-round IOP protocol for R1CS with
proof length O(N) over alphabet F and query complexity O(logN). The prover uses
O(N logN) field operations, while the verifier uses O(N) field operations. The IOP
protocol is public coin and is a zero knowledge proof.
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The core of our result is a solution to a univariate analogue of the classical sumcheck
problem [61]. Our protocol (including zero knowledge and soundness error reduction) is
relatively simple: it is specified in a single page (see Fig. 12 in Section 6), given a low-
degree test as a subroutine. The low degree test that we use is a recent highly-efficient
IOP for testing proximity to the Reed–Solomon code [14].

(2) SNARG for R1CS. We design, implement, and evaluate Aurora, a zero knowledge
SNARG of knowledge (zkSNARK) for R1CS with several notable features: (a) it only
makes black-box use of fast symmetric cryptography (any cryptographic hash function
modeled as a random oracle); (b) it has a transparent setup (users merely need to “agree”
on which cryptographic hash function to use); (c) it is plausibly post-quantum secure
(there are no known efficient quantum attacks against this construction). These features
follow from the fact that Aurora is obtained by applying the transformation of [21] to
our IOP for R1CS. This transformation preserves both zero knowledge and proof of
knowledge of the underlying IOP.

In terms of asymptotics, given an R1CS instance C over F with N gates (and here
taking for simplicity F to have size 2O(λ) where λ is the security parameter), Aurora
provides proofs of length Oλ(log2N); these can be produced in time Oλ(N logN) and
checked in time Oλ(N).

For example, setting our implementation to a security level of 128 bits over a 192-bit
finite field, proofs range from 50 kB to 250 kB for instances of up to millions of gates;
producing proofs takes on the order of several minutes and checking proofs on the order
of several seconds. (See Section 4 for details.)

Overall, as indicated in Fig. 2, we achieve the smallest argument size among (plau-
sibly) post-quantum non-interactive arguments for circuits, by more than an order of
magnitude. Other approaches achieve smaller argument sizes by relying on (public-key)
cryptography that is insecure against quantum adversaries.

(3) libiop: a library for non-interactive arguments. We provide libiop, a code-
base that enables the design and implementation of non-interactive arguments based on
IOPs. The codebase uses the C++ language and has three main components: (1) a library
for writing IOP protocols; (2) a realization of [21]’s transformation, mapping any IOP
written with our library to a corresponding non-interactive argument; (3) a portfolio of
IOP protocols, including Ligero [4], Stark [13], and ours.

We plan to open-source libiop under a permissive software license for the com-
munity, so that others may benefit from its portfolio of IOP-based arguments, and may
even write new IOPs tailored to new applications. We believe that our library will serve
as a powerful tool in meeting the increasing demand by practitioners for transparent
non-interactive arguments.

1.4 Prior implementations of transparent SNARGs

We summarize prior work that has designed and implemented transparent SNARGs; see
Fig. 2.4

4 We omit a discussion of prior works without implementations, or that study non-transparent
SNARGs; we refer the reader to the survey of Walfish and Blumberg [80] for an overview of
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Based on asymmetric cryptography. Bulletproofs [31, 35] proves the satisfaction of
an N -gate arithmetic circuit via a recursive use of a low-communication protocol for
inner products, achieving a proof with O(logN) group elements. Hyrax [79] proves
the satisfaction of a layered arithmetic circuit of depth D and width W via proofs of
O(D logW ) group elements; the construction applies the Cramer–Damgård transforma-
tion [41] to doubly-efficient Interactive Proofs [48, 39]. Both approaches use Pedersen
commitments, and so are vulnerable to quantum attacks. Also, in both approaches the
verifier performs many expensive cryptographic operations: in the former, the verifier
uses O(N) group exponentiations; in the latter, the verifier’s group exponentiations are
linear in the circuit’s witness size. (Hyrax allows fewer group exponentiations but with
longer proofs; see [79].)

Based on symmetric cryptography. The “original” SNARG construction of Micali
[63, 55] has advantages beyond transparency. First, it is unconditionally secure given a
random oracle, which can be instantiated with extremely fast symmetric cryptography.5

Second, it is plausibly post-quantum secure, in that there are no known efficient quantum
attacks. But the construction relies on PCPs, which remain expensive.

IOPs are “multi-round PCPs” that can also be compiled into non-interactive argu-
ments in the random oracle model [21]. This compilation retains the foregoing advantages
(transparency, lightweight cryptography, and plausible post-quantum security) and, in
addition, facilitates greater efficiency, as IOPs have superior efficiency compared to
PCPs [17, 15, 12, 14, 13].

In this work we follow the above approach, by constructing a SNARG based on
a new IOP protocol. Two recent works have also taken the same approach, but with
different underlying IOP protocols, which have led to different features. We provide both
of these works as part of our library (Section 5), and experimentally compare them with
our protocol (Section 4). The discussion below is a qualitative comparison.

– Ligero [4] is a non-interactive argument that proves the satisfiability of an N -gate
circuit via proofs of size O(

√
N) that can be verified in O(N) cryptographic opera-

tions. As summarized in Fig. 1, the IOP underlying Ligero achieves the same oracle
proof length, prover time, and verifier time as our IOP. However, we reduce query
complexity from O(

√
N) to O(logN), which is an exponential improvement, at the

expense of increasing round complexity from 2 to O(logN). The arguments that we
obtain are still non-interactive, but our smaller query complexity translates into shorter
proofs (see Fig. 2).

– Stark [13] is a non-interactive argument for bounded halting problems on a random
access machine. Given a program P and a time bound T , it proves that P accepts
within T steps on a certain abstract computer (when given suitable nondeterministic
advice) via succinct proofs of size polylog(T ). Moreover, verification is also succinct:

sublinear argument systems. We also note that recent work [11] has used lattice cryptography
to achieve sublinear zero knowledge arguments that are plausibly post-quantum secure, which
raises the exciting question of whether these recent protocols can lead to efficient implementa-
tions.

5 Some cryptographic hash functions, such as BLAKE2, can process almost 1 gibibyte per second
[8].
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checking a proof takes time only |P |+polylog(T ), which is polynomial in the size of
the statement and much better than “naive verification” which takes time Ω(|P |+ T ).
The main difference between Stark and Aurora is the computational models that they
support. While Stark supports uniform computations specified by a program and a
time bound, Aurora supports non-uniform computations specified by an explicit circuit
(or constraint system). Despite this difference, we can compare the cost of Stark and
Aurora with respect to the explicit circuit model, since one can reduce a given N -gate
circuit (or N -constraint system) to a corresponding bounded halting problem with
|P |, T = Θ(N).
In this case, Stark’s verification time is the same as Aurora’s, O(N); this is best
possible because just reading an N -gate circuit takes time Ω(N). But Stark’s prover
is a logarithmic factor more expensive because it uses a switching network to verify
a program’s accesses to memory. Stark’s prover uses an IOP with oracles of size
O(N logN), leading to an arithmetic complexity ofO(N log2N). (See Figs. 1 and 2.)
Both Stark and Aurora have argument size O(log2N), but additional costs in Stark
(e.g., due to switching networks) result in Stark proofs being one order of magnitude
larger than Aurora proofs. That said, we view Stark and Aurora as complement-
ing each other: Stark offers savings in verification time for succinctly represented
programs, while Aurora offers savings in argument size for explicitly represented
circuits.

2 Techniques

Our main technical contribution is a linear-length logarithmic-query IOP for R1CS
(Theorem 1), which we use to design, implement, and evaluate a transparent SNARG
for R1CS. Below we summarize the main ideas behind our protocol, and postpone to
Sections 4 and 5 discussions of our system. In Section 2.1, we describe our approach
to obtain the IOP for R1CS; this approach leads us to solve the univariate sumcheck
problem, as discussed in Section 2.2; finally, in Section 2.3, we explain how we achieve
zero knowledge. In Section 2.4 we conclude with a wider perspective on the techniques
used in this paper.

2.1 Our interactive oracle proof for R1CS

The R1CS relation consists of instance-witness pairs ((A,B,C, v), w), where A,B,C
are matrices and v, w are vectors over a finite field F, such that (Az) ◦ (Bz) = Cz for
z := (1, v, w) and “◦” denotes the entry-wise product.6 For example, R1CS captures
arithmetic circuit satisfaction: A,B,C represent the circuit’s gates, v the circuit’s public
input, and w the circuit’s private input and wire values.7

6 Throughout, we assume that F is “friendly” to FFT algorithms, i.e., F is a binary field or its
multiplicative group is smooth.

7 The reader may be familiar with a standard arithmetization of circuit satisfaction (used, e.g.,
in the inner PCP of [5]). Given an arithmetic circuit with m gates and n wires, each addition
gate xi ← xj + xk is mapped to the linear constraint xi = xj + xk and each product gate

8



protocol round proof length query prover time verifier time
type complexity (field elts) complexity (field ops) (field ops)

Ligero IPCP † 2 O(N) O(
√
N) O(N logN) O(N)

Stark IOP O(logN) O(N logN) O(logN) O(N log2N) O(N)

Aurora IOP O(logN) O(N) O(logN) O(N logN) O(N)

Fig. 1: Asymptotic comparison of the information-theoretic proof systems underlying Ligero,
Stark, and Aurora, when applied to an N -gate arithmetic circuit.
† An IPCP [56] is a PCP oracle that is checked via an Interactive Proof; it is a special case of an
IOP.

post argument size verifier non-interactivity
name setup quantum? asymptotic N = 106 time technology

[50][45] [60][29]... various private no Oλ(1) 128 B Oλ(k) † linear PCP + linear encoding
[83] ZK-vSQL private no Oλ(d logN) N/A Oλ(N) apply [41]-transform to doubly-

efficient IP [48, 39]
[79] Hyrax public no Oλ(d logN) ‡ 50 kB Oλ(N) as above (but using a different

polynomial commitment)
[31] [35] Bulletproofs public no Oλ(logN) 1.5 kB Oλ(N) recursive inner product argument
[4] Ligero public yes Oλ(

√
N) 4.0 MB Oλ(N) apply [21]-transform to IPCP

[13] Stark public yes Oλ(log2N) 3.2 MB Oλ(N) apply [21]-transform to IOP
this work Aurora public yes Oλ(log2N) 220 kB Oλ(N) apply [21]-transform to IOP

Fig. 2: Comparison of some non-interactive zero knowledge arguments for proving statements
of the form “there exists a secret w such that C(x,w) = 1” for a given arithmetic circuit C of
N gates (and depth d) and public input x of size k. The table is grouped by “technology”, and
for simplicity assumes that the circuit’s underlying field has size 2O(λ) where λ is the security
parameter. Approximate argument sizes are given for N = 106 gates over a cryptographically-
large field, and a security level of 128 bits; some argument sizes may differ from those reported in
the cited works because size had to be re-computed for the security level and N used here; also,
[83] reports no implementation.
† Given a per-circuit preprocessing step.
‡ A tradeoff between argument size and verifier time is possible; see [79].
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We describe the high-level structure of our IOP protocol for R1CS, which has linear
proof length and logarithmic query complexity. The protocol tests satisfaction by relying
on two building blocks, one for testing the entry-wise vector product and the other for
testing the linear transformations induced by the matrices A,B,C. Informally, we thus
consider protocols for the following two problems.

– Rowcheck: given vectors x, y, z ∈ Fm, test whether x ◦ y = z, where “◦” denotes
entry-wise product.

– Lincheck: given vectors x ∈ Fm, y ∈ Fn and a matrix M ∈ Fm×n, test whether
x =My.

One can immediately obtain an IOP for R1CS when given IOPs for the rowcheck
and lincheck problems. The prover first sends four oracles to the verifier: the satisfying
assignment z and its linear transformations yA := Az, yB := Bz, yC := Cz. Then the
prover and verifier engage in four IOPs in parallel:
– An IOP for the lincheck problem to check that “yA = Az”. Likewise for yB and yC .
– An IOP for the rowcheck problem to check that “yA ◦ yB = yC”.
Finally, the verifier checks that z is consistent with the public input v. Clearly, there exist
z, yA, yB , yC that yield valid rowcheck and lincheck instances if and only if (A,B,C, v)
is a satisfiable R1CS instance.

The foregoing reduces the goal to designing IOPs for the rowcheck and lincheck
problems.

As stated, however, the rowcheck and lincheck problems only admit “trivial” proto-
cols in which the verifier queries all entries of the vectors in order to check the required
properties. In order to allow for sublinear query complexity, we need the vectors x, y, z
to be encoded via some error-correcting code. We use the Reed–Solomon (RS) code
because it ensures constant distance with constant rate while at the same time it enjoys
efficient IOPs of Proximity [14].

Given an evaluation domain L ⊆ F and rate parameter ρ ∈ [0, 1], RS [L, ρ] is the set
of all codewords f : L→ F that are evaluations of polynomials of degree less than ρ|L|.
Then, the encoding of a vector v ∈ FS with S ⊆ F and |S| < ρ|L| is v̂|L ∈ FL where v̂
is the unique polynomial of degree |S| − 1 such that v̂|S = v. Given this encoding, we
consider “encoded” variants of the rowcheck and lincheck problems.

– Univariate rowcheck: given a subset H ⊆ F and codewords f, g, h ∈ RS [L, ρ],
check that f̂(a) · ĝ(a) − ĥ(a) = 0 for all a ∈ H . (This is a special case of the
definition that we use later.)

– Univariate lincheck: given subsets H1, H2 ⊆ F, codewords f, g ∈ RS [L, ρ], and a
matrix M ∈ FH1×H2 , check that f̂(a) =

∑
b∈H2

Ma,b · ĝ(b) for all a ∈ H1.

Given IOPs for the above problems, we can now get an IOP protocol for R1CS
roughly as before. Rather than sending z,Az,Bz,Cz, the prover sends their encod-
ings fz, fAz, fBz, fCz . The prover and verifier then engage in rowcheck and lincheck
protocols as before, but with respect to these encodings.

xi ← xj · xk is mapped to the quadratic constraint xi = xj · xk. The resulting system of
equations can be written as A · ((1, x)⊗ (1, x)) = b for suitable A ∈ Fm×(n+1)2 and b ∈ Fm.
However, this reduction results in a quadratic blowup in the instance size. There is an alternative
reduction due to [62, 45] that avoids this.
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For these encoded variants, we achieve IOP protocols with linear proof length
and logarithmic query complexity, as required. We obtain a protocol for rowcheck via
standard techniques from the probabilistic checking literature [27]. As for lincheck, we
do not use any routing and instead use a technique (dating back at least to [9]) to reduce
the given testing problem to a sumcheck instance. However, since we are not working
with multivariate polynomials, we cannot rely on the usual (multivariate) sumcheck
protocol. Instead, we present a novel protocol that realizes a univariate analogue of the
classical sumcheck protocol, and use it as the testing “core” of our IOP protocol for
R1CS. We discuss univariate sumcheck next.

Remark 1. The verifier receives as input an explicit (non-uniform) description of the set
of constraints, namely, the matrices A,B,C. In particular, the verifier runs in time that
is at least linear in the number of non-zero entries in these matrices (if we consider a
sparse-matrix representation for example).

2.2 A sumcheck protocol for univariate polynomials

A key ingredient in our IOP protocol is a univariate analogue of the classical (mul-
tivariate) sumcheck protocol [61]. Recall that the classical sumcheck protocol is an
IP for claims of the form “

∑
a∈Hm f(a) = 0”, where f is a given polynomial in

F[X1, . . . , Xm] of individual degree d and H is a subset of F. In this protocol, the veri-
fier runs in time poly(m, d, log |F|) and accesses f at a single (random) location. The
sumcheck protocol plays a fundamental role in computational complexity (it underlies
celebrated results such as IP = PSPACE [72] and MIP = NEXP [10]) and in efficient
proof protocols [48, 39, 75, 73, 74, 76, 77, 82, 83, 79].

We work with univariate polynomials instead, and need a univariate analogue of the
sumcheck protocol (see previous subsection): how can a prover convince the verifier
that “

∑
a∈H f(a) = 0” for a given polynomial f ∈ F[X] of degree d and subset

H ⊆ F? Designing a “univariate sumcheck” is not straightforward because univariate
polynomials (the Reed–Solomon code) do not have the tensor structure used by the
sumcheck protocol for multivariate polynomials (the Reed–Muller code). In particular,
the sumcheck protocol has m rounds, each of which reduces a sumcheck problem to a
simpler sumcheck problem with one variable fewer. When there is only one variable,
however, it is not clear to what simpler problems one can reduce.

Using different ideas, we design a natural protocol for univariate sumcheck in the
cases where H is an additive or multiplicative coset in F (i.e., a coset of an additive or
multiplicative subgroup of F).

Theorem 2 (informal). The univariate sumcheck protocol over additive or multiplica-
tive cosets has a O(log d)-round IOP with proof complexity O(d) over alphabet F and
query complexity O(log d). The IOP prover uses O(d log |H|) field operations and the
IOP verifier uses O(log d+ log2 |H|) field operations.

We now provide the main ideas behind the protocol, when H is an additive coset in
F.

Suppose for a moment that the degree d of f is less than |H| (we remove this
restriction later). A theorem of Byott and Chapman [36] states that the sum of f over
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(an additive coset) H is zero if and only if the coefficient of X |H|−1 in f is zero. In
particular,

∑
a∈H f(a) is zero if and only if f has degree less than |H| − 1. Thus, the

univariate sumcheck problem over H when d < |H| is equivalent to low-degree testing.
The foregoing suggests a natural approach: test that f has degree less than |H| − 1.

Without any help from the prover, the verifier would need at least |H| queries to f to
conduct such a test, which is as expensive as querying all of H . However, the prover can
help by engaging with the verifier in an IOP of Proximity for the Reed–Solomon code.
For this we rely on the recent construction of Ben-Sasson et al. [14], which has proof
length O(d) and query complexity O(log d).

In our setting, however, we need to also handle the case where the degree d of f is
larger than |H|. For this case, we observe that we can split any polynomial f into two
polynomials g and h such that f(x) ≡ g(x) +

∏
α∈H(x− α) · h(x) with deg(g) < |H|

and deg(h) < d− |H|; in particular, f and g agree on H , and thus so do their sums on
H . This observation suggests the following extension to the prior approach: the prover
sends g (as an oracle) to the verifier, and then the verifier performs the prior protocol
with g in place of f . Of course, a cheating prover may send a polynomial g that has
nothing to do with f , and so the verifier must also ensure that g is consistent with f .
To facilitate this, we actually have the prover send h rather than g; the verifier can then
“query” g(x) as f(x)−

∏
α∈H(x− α) · h(x); the prover then shows that f, g, h are all

of the correct degrees.
A similar reasoning works when H is a multiplicative coset in F. It remains an

interesting open problem to establish whether the foregoing can be extended to any
subset H in F.

2.3 Efficient zero knowledge from algebraic techniques

The ideas discussed thus far yield an IOP protocol for R1CS with linear proof length
and logarithmic query complexity. However these by themselves do not provide zero
knowledge.

We achieve zero knowledge by leveraging recent algebraic techniques [17]. Infor-
mally, we adapt these techniques to achieve efficient zero knowledge variants of key
sub-protocols, including the univariate sumcheck protocol and low-degree testing, and
combine these to achieve a zero knowledge IOP protocol for R1CS.

We summarize the basic intuition for how we achieve zero knowledge in our proto-
cols.

First, we use bounded independence. Informally, rather than encoding a vector
z ∈ FH by the unique polynomial of degree |H| − 1 that matches z on H , we instead
sample uniformly at random a polynomial of degree, say, |H| + 9 conditioned on
matching z on H . Any set of 10 evaluations of such a polynomial are independently
and uniformly distributed in F (and thus reveal no information about z), provided these
evaluations are outside of H . To ensure this latter condition, we choose the evaluation
domain L of Reed–Solomon codewords to be disjoint from H . Thus, for example, if H
is a linear space (an additive subgroup of F) then we choose L to be an affine subspace (a
coset of some additive subgroup), since the underlying machinery for low-degree testing
(e.g., [14]) requires codewords to be evaluated over algebraically-structured domains.
All of our protocols are robust to these variations.
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Bounded independence alone does not suffice, though. For example, in the sumcheck
protocol, consider the case where the input vector z ∈ FH is all zeroes. The prover
samples a random polynomial f̂ of degree |H|+ 9, such that f̂(a) = 0 for all a ∈ H ,
and sends its evaluation f over L disjoint from H to the verifier. As discussed, any ten
queries to f result in ten independent and uniformly random elements in F. Observe,
however, that when we run the sumcheck protocol on f , the polynomial g (the remainder
of f̂ when divided by

∏
α∈H(x−α)) is the zero polynomial: all randomness is removed

by the division.
To remedy this, we use self-reducibility to reduce a sumcheck claim about the

polynomial f to a sumcheck claim about a random polynomial. The prover first sends a
random Reed–Solomon codeword r, along with the value β :=

∑
a∈H r(a). The verifier

sends a random challenge ρ ∈ F. Then the prover and verifier engage in the univariate
sumcheck protocol with respect to the new claim “

∑
a∈H ρf(a)+ r(a) = β”. Since r is

uniformly random, ρf+r is uniformly random for any ρ, and thus the sumcheck protocol
is performed on a random polynomial, which ensures zero knowledge. Soundness is
ensured by the fact that if f does not sum to 0 on H then the new claim is true with
probability 1/|F| over the choice of ρ.

2.4 Perspective on our techniques

A linear-length logarithmic-query IOP for a “circuit-like” NP-complete relation like
R1CS (Theorem 1) may come as a surprise. We wish to shed some light on our IOP
construction by connecting the ideas behind it to prior ideas in the probabilistic checking
literature, and use these connections to motivate our construction.

A significant cost in all known PCP constructions with good proof length is using
routing networks to reduce combinatorial objects (circuits, machines, and so on) to
structured algebraic ones;8 routing also plays a major role in many IOPs [17, 15, 12, 13].
While it is plausible that one could adapt routing techniques to route the constraints of an
R1CS instance (similarly to [68]), such an approach would likely incur logarithmic-factor
overheads, precluding linear-size IOPs.

A recent work [16] achieves linear-length constant-query IOPs for boolean circuit
satisfaction without routing the input circuit. Unfortunately, [16] relies on other expensive
tools, such as algebraic-geometry (AG) codes and quasilinear-size PCPs of proximity
[27]; moreover, it is not zero knowledge. Informally, [16] tests arbitrary (unstructured)
constraints by invoking a sumcheck protocol [61] on a O(1)-wise tensor product of AG
codes; this latter is then locally tested via tools in [26, 27].

One may conjecture that, to achieve an IOP for R1CS like ours, it would suffice to
merely replace the AG codes in [16] with the Reed–Solomon code, since both codes have
constant rate. But taking a tensor product exponentially deteriorates rate, and testing
proximity to that tensor product would be expensive.

8 Polishchuk and Spielman [68] reduce boolean circuit satisfaction to a trivariate algebraic
coloring problem with “low-degree” neighbor relations, by routing the circuit’s wires over an
arithmetized routing network. Ben-Sasson and Sudan [27] reduce nondeterministic machine
computations to a univariate algebraic satisfaction problem by routing the machine’s memory
accesses over another arithmetized routing network. Routing is again a crucial component in
the linear-size sublinear-query PCPs of [24].
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An alternative approach is to solve a sumcheck problem directly on the Reed–
Solomon code. Existing protocols are not of much use here: the multivariate sumcheck
protocol relies on a tensor structure that is not available in the Reed–Solomon code, and
recent IOP implementations either use routing [12, 13] or achieve only sublinear query
complexity [4].

Instead, we design a completely new IOP for a sumcheck problem on the Reed–
Solomon code. We then combine this solution with ideas from [16] (to avoid routing)
and from [17] (to achieve zero knowledge) to obtain our linear-length logarithmic-
query IOP for R1CS. Along the way, we rely on recent efficient proximity tests for the
Reed–Solomon code [14].

3 Roadmap

In Section 4 we evaluate Aurora, and compare it to other IOP-based SNARGs. In
Section 5 we describe the implementation. In Section 6 we present the underlying IOP
for R1CS. Fig. 3 summarizes the structure of this protocol. For details of this construction,
including proofs of theorems, we refer the reader to the full version.

Throughout, we focus on the case where all relevant domains are additive cosets
(affine subspaces) in F. The case where domains are multiplicative cosets is similar, with
only minor modifications. Moreover, while for convenience we limit our discussions to
establishing soundness, all protocols described in this paper are easily seen to satisfy the
stronger notion of proof of knowledge. Informally, this is because we prove soundness
by showing that oracles sent by convincing provers can be decoded to valid witnesses.

R1CS

Rowcheck

Lincheck Sumcheck

IOP of Proximity for
Reed–Solomon code

(e.g. [14])

RS-encoded IOP for R1CS

IOP for R1CS (Section 6)

Fig. 3: Structure of our IOP for R1CS in terms of key sub-protocols.

4 Evaluation

In Section 4.1 we evaluate the performance of Aurora. Then, in Section 4.2 we compare
Aurora with Ligero [4] and Stark [13], two other IOP-based SNARGs. Our experiments
not only demonstrate that Aurora’s performance matches the theoretical predictions
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implied by the protocol but also that Aurora achieves the smallest argument size of any
IOP-based SNARG, by more than an order of magnitude.

That said, there is still a sizable gap between the argument sizes of IOP-based
SNARGs and other SNARGs that use public-key cryptographic assumptions vulnerable
to quantum adversaries; see Fig. 2 for how argument sizes vary across these. It remains
an exciting open problem to close this gap.

Experiments ran on a machine with an Intel Xeon W-2155 3.30GHz 10-core proces-
sor and 64GB of RAM.

4.1 Performance of Aurora

We consider Aurora at the standard security level of 128 bits, over the binary field F2192 .
We report data on key efficiency measures of a SNARG: the time to generate a proof
(running time of the prover), the length of a proof, and the time to check a proof (running
time of the verifier). We also indicate how much of each cost is due to the IOP protocol,
and how much is due to the BCS transformation [21].

In Aurora, all of these quantities depend on the number of constraints m in an R1CS
instance.9 Our experiments report how these quantities change as we vary m over the
range {210, 211, . . . , 220}.
Prover running time. In Fig. 4 we plot the running time of the prover, as absolute cost
(top graph) and as relative cost when compared to native execution (bottom graph). For
R1CS, native execution is the time that it takes to check that an assignment satisfies the
constraint system. The plot confirms the quasilinear complexity of the prover; proving
times range from fractions of a second to several minutes. Proving time is dominated by
the cost of running the underlying IOP prover.

Argument size. In Fig. 5 we plot argument size, as absolute cost (top graph) and as
relative cost when compared to native witness size (bottom graph). For R1CS, native
witness size is the number of bytes required to represent an assignment to the constraint
system. The plot shows that compression (argument size is smaller than native witness
size) occurs for m ≥ 4000. The plot also shows that argument size ranges from 50 kB
to 250 kB, and is dominated by the cryptographic digests to authenticate query answers.

Verifier running time. In Fig. 6 we plot the running time of the verifier, as absolute
cost (top graph) and as relative cost when compared to native execution (bottom graph).
The plot shows that verification times range from milliseconds to seconds, and confirms
that our implementation incurs a constant multiplicative overhead over native execution.

4.2 Comparison of Ligero, Stark, and Aurora

In Figs. 7 to 9 we compare costs (proving time, argument size, and verification time) on
R1CS instances for three IOP-based SNARGs: Ligero [4], Stark [13], and Aurora (this
work). As in Section 4.1, we plot costs as the number of constraints m increases (and

9 The number of variables n also affects performance, but it is usually close to m and so we take
n ≈ m in our experiments. The number of inputs k in an R1CS instance is at most n, and in
typical applications it is much smaller than n, so we do not focus on it.
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with n ≈ m variables as explained in Footnote 9); we also set security to the standard
level of 128 bits and use the binary field F2192 .
Comparison of Ligero and Aurora. Ligero natively supports R1CS so a comparison
with Aurora is straightforward. Fig. 8 shows that argument size in Aurora is much smaller
than in Ligero, even for a relatively small number of constraints. The gap between the
two grows bigger as the number of constraints increases, as Aurora’s argument size is
polylogarithmic while Ligero’s is only sublinear (an exponential gap).
Comparison of Stark and Aurora. Stark does not natively support the NP-complete
relation R1CS but instead natively supports an NEXP-complete relation known as
Algebraic Placement and Routing (APR). These two relations are quite different,and
so to achieve a meaningful comparison, we consider an APR instance that simulates a
given R1CS instance. We thus plot the costs of Stark on a hand-optimized APR instance
that simulates R1CS instances. Relying on the reductions described in [13], we wrote
an APR instance that realizes a simple abstract computer that checks that a variable
assignment satisfies each one of the rank-1 constraints in a given R1CS instance.

Fig. 8 shows that argument size in Aurora is much smaller than in Stark, even if
both share the same asymptotic growth. This is due to the fact that R1CS and APR
target different computation models (explicit circuits vs. uniform computations), so Stark
incurs significant overheads when used for R1CS. Fig. 9 shows that verification time in
Stark grows linearly with the number of constraints (like Ligero and Aurora); indeed,
the verifier must read the description of the statement being proved, which is the entire
constraint system.
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Fig. 4: Proving time in Aurora.

104

105

106

107

108

210 211 212 213 214 215 216 217 218 219 220

pr
oo

f s
iz

e 
(b

yt
es

)

number of constraints

native
Aurora

IOP
BCS

10-3

10-2

10-1

100

101

210 211 212 213 214 215 216 217 218 219 220

ra
tio

 o
f p

ro
of

 s
iz

e 
to

 w
itn

es
s 

si
ze

number of constraints

size(proof)/size(witness)

Fig. 5: Argument size in Au-
rora.

10-3

10-2

10-1

100

101

210 211 212 213 214 215 216 217 218 219 220

ve
ri

fi
er

 ti
m

e 
(s

)

number of constraints

Aurora
IOP

BCS

101

102

210 211 212 213 214 215 216 217 218 219 220

ra
tio

 o
f v

er
if

ie
r t

im
e 

ov
er

 n
at

iv
e 

ex
ec

ut
io

n

number of constraints

time(verifier)/time(native)

Fig. 6: Verification time in Au-
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5 libiop: a library for IOP-based non-interactive arguments

We provide libiop, a codebase that enables the design and implementation of IOP-
based non-interactive arguments. The codebase uses the C++ language and has three
main components: (1) a library for writing IOP protocols; (2) a realization of the [21]
transformation, mapping any IOP written with our library to a corresponding non-
interactive argument; (3) a portfolio of IOP protocols, including our new IOP protocol
for R1CS and IOP protocols from [4] and [13]. We discuss each of these components in
turn.

5.1 Library for IOP protocols

We provide a library that enables a programmer to write IOP protocols. Informally, the
programmer provides a blueprint of the IOP by specifying, for each round, the number
and sizes of oracle messages (and non-oracle messages) sent by the prover, as well as the
number of random bytes subsequently sent by the verifier. For the prover, the programmer
specifies how each message is to be computed. For the verifier, the programmer specifies
how oracle queries are generated and, also, how the verifier’s decision is computed based
on its random choices and information received from the prover. Notable features of our
library include:

– Support for writing new IOPs by using other IOPs as sub-protocols. This includes
juxtaposing or interleaving selected rounds of these sub-protocols. This latter feature
not only facilitates reducing round complexity in complex IOP constructions but
also makes it possible to take advantage of optimizations such as column hashing
(discussed in Section 5.2) when constructing a non-interactive argument.

– A realization of the transformation described in the full version, which constructs
an IOP by combining an ‘encoded’ IOP and a low-degree test. This is a powerful
paradigm (it applies to essentially all published IOP protocols) that reduces the task of
writing an IOP to merely providing suitable choices of these two simpler ingredients.

5.2 BCS transformation

We realize the transformation of [21], by providing code that maps any IOP written in
our library into a corresponding non-interactive argument (which consists of a prover
algorithm and a verifier algorithm).

We use BLAKE2b [8] to instantiate the random oracle in the [21] transformation (our
code allows to conveniently specify alternative instantiations). This hash function is an
improvement to BLAKE (a finalist in the SHA-3 competition) [7], and its performance
on all recent x86 platforms is competitive with the most performant (and often hardware-
accelerated) hash functions [42]. Moreover, BLAKE2b can be configured to output
digests of any length between 1 and 64 bytes (between 8 and 512 bits in multiples of
8). When aiming for a security level of λ bits, we only need the hash function to output
digests of 2λ bits, and our code automatically sets this length.

Our code incorporates additional optimizations that, while simple, are generic and
effective.
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One is column hashing, which informally works as follows. In many IOP protocols
(essentially all published ones, including Ligero [4] and Stark [13]), the prover sends
multiple oracles over the same domain in the same round, and the verifier accesses all
of them at the same index in the domain. The prover can then build a Merkle tree over
columns consisting of corresponding entries of the oracles, rather than building separate
Merkle trees for each or a single Merkle tree over their concatenation. This reduces a non-
interactive proof’s length, because the proof only has to contain a single authentication
path for the desired column, rather than authentication paths corresponding to the indices
across all the oracles.

Another optimization is path pruning. When providing multiple authentication
paths relative to the same root (in the non-interactive argument), some digests become
redundant and can thus be omitted. For example, if one considers the authentication paths
for all leaves in a particular sub-tree, then one can simple provide the authentication
path for the root of the sub-tree. A simple way to view this optimization is to provide the
smallest number of digests to authenticate a set of leaves.

5.3 Portfolio of IOP protocols and sub-components

We use our library to realize several IOP protocols:

– Aurora: our IOP protocol for R1CS (specifically, the one provided in Fig. 12 in
Section 6).

– Ligero: an adaptation of the IOP protocol in [4] to R1CS. While the protocol(s)
in [4] are designed for (boolean or arithmetic) circuit satisfiability, the same ideas
can be adapted to support R1CS at no extra cost. This simplifies comparisons with
R1CS-based arguments, and confers additional expressivity.

– Stark: the IOP protocol in [13] for Algebraic Placement and Routing (APR), a
language that is a “succinct” analogue of algebraic satisfaction problems such as
R1CS. (See [13] for details.)

Each of the above IOPs is obtained by specifying an encoded IOP and a low-degree test.
As explained in Sections 5.1 and 5.2, our library compiles these into an IOP protocol, and
the latter into a non-interactive argument. This toolchain enables specifying protocols
with few lines of code (see Fig. 10), and also enhances code auditability.

The IOP protocols above benefit from several algebraic components that our library
also provides.

– Finite field arithmetic. We support prime and binary fields. Our prime field arithmetic
uses Montgomery representation [64]. Our binary field arithmetic uses the carryless
multiplication instructions [53]; these are ubiquitous in x86 CPUs and, being used in
AES-GCM computations, are highly optimized.

– FFT algorithms. The choice of FFT algorithm depends on whether the R1CS instance
(and thus the rest of the protocol) is defined over a prime or binary field. In the former
case, we use the radix-2 FFT (whose evaluation domain is a multiplicative coset of
order 2a for some a) [38]. In the latter case, we use an additive FFT (whose evaluation
domain is an affine subspace of the binary field) [37, 44, 28, 59, 58]. We also provide
the respective inverse FFTs, and variants for cosets of the base domains.
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Remark 2. Known techniques can be used to reduce given programs or general machine
computations to low-level representations such as R1CS and APR (see, e.g., [23, 78, 13]).
Such techniques have been compared in prior work, and our library does not focus on
these.

encoded IOP lines of low-degree lines of
protocol code test code

Stark 321 FRI 416
Ligero 1281 direct 212
Aurora 1165

Fig. 10: Lines of code to express various sub-components in our library.

6 Aurora: an IOP for rank-one constraint satisfaction (R1CS)

We describe the IOP for R1CS that comprises the main technical contribution of this
paper, and also underlies the SNARG for R1CS that we have designed and built (more
about this in Section 5).

For the discussions below, we introduce notation about the low-degree test in [14],
known as “Fast Reed–Solomon IOPP” (FRI): given a subspace L of a binary field F
and rate ρ ∈ (0, 1), we denote by εFRI

i (F, L) and εFRI
q (L, ρ, δ) the soundness error of

the interactive and query phases in FRI (respectively) when testing proximity of a δ-far
function to RS [L, ρ].

We first provide a “barebones” statement with constant soundness error and no zero
knowledge.

Theorem 3. There is an IOP for the R1CS relation over binary fields F that, given an
R1CS instance having n variables and m constraints, letting ρ ∈ (0, 1) be a constant
and L be any subspace of F such that 2max(m,n + 1) ≤ ρ|L|, has the following
parameters:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = F
number of rounds k = O(log |L|)
proof length p = (5 + 1

3
)|L|

query complexity qπ = O(log |L|)
randomness (ri, rq) = (O(log |L| · log |F|), O(log |L|))
soundness error (εi, εq) =

(
m+1
|F| + |L|

|F| + εFRI
i (F, L), εFRI

q (L, ρ, δ)
)

prover time tP = O(|L| · log(n+m) + ‖A‖+ ‖B‖+ ‖C‖) + 17 · FFT(F, |L|)
verifier time tV = O(‖A‖+ ‖B‖+ ‖C‖+ n+m+ log |L|)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where δ := min( 1−2(ρ/2)2 , 1−(ρ/2)3 , 1− ρ).

Next, we provide a statement that additionally has parameters for controlling the
soundness error, is zero knowledge, and includes other (whitebox) optimizations; the
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proof is analogous except that we use zero knowledge components. The resulting IOP
protocol, fully specified in Fig. 12, underlies our SNARG for R1CS (see Section 5).

Theorem 4. There is an IOP for the R1CS relation over binary fields F that, given an
R1CS instance having n variables and m constraints, letting ρ ∈ (0, 1) be a constant
and L be any subspace of F such that 2max(m,n+ 1) + 2b ≤ ρ|L|, is zero knowledge
against b queries and has the following parameters:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = F
number of rounds k = O(log |L|)
proof length p = (4 + 2λi + λ′iλ

FRI
i /3)|L|

query complexity qπ = O(λiλ
FRI
i λFRI

q log |L|)
randomness (ri, rq) =

(
O((λiλ

′
i + λFRI

i log |L|) log |F|), O(λFRI
q log |L|)

)
soundness error (εi, εq) =

(
(m+1
|F| )λi + ( |L||F| )

λ′i + εFRI
i (F, L)λ

FRI
i , εFRI

q (L, ρ, δ)λ
FRI
q

)
prover time tP = λi · (O(|L| · (log(n+m) + ‖A‖+ ‖B‖+ ‖C‖) + 18 · FFT(F, |L|)) +O(λ′iλ

FRI
i |L|)

verifier time tV = λi ·O(‖A‖+ ‖B‖+ ‖C‖+ n+m+ log |L|) +O(λ′iλ
FRI
i λFRI

q log |L|)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where δ := min( 1−2ρ2 , 1−ρ3 , 1− ρ). Setting b ≥ qπ ensures honest-verifier zero knowl-
edge.

Given an R1CS instance (F, k, n,m,A,B,C, v), we fix subspaces H1, H2 ⊆ F
such that |H1| = m and |H2| = n+ 1 (padding to the nearest power of 2 if necessary)
with H1 ⊆ H2 or H2 ⊆ H1, and a sufficiently large affine subspace L ⊆ F such that
L ∩ (H1 ∪H2) = ∅. We let t := |H1 ∪H2| = max(m,n + 1). Fig. 11 below gives
polynomials and codewords used in Fig. 12. We also define ξ :=

∑
a∈H1∪H2

at−1.

polynomial degree values that define the polynomial

pα t− 1 p̂α(a) =

{
αγ(a) for a ∈ H1

0 for a ∈ (H1 ∪H2) \H1

p
(M)
α t− 1 p̂

(M)
α (b) =

{∑
a∈H1

Ma,b · αγ(a) for b ∈ H2

0 for b ∈ (H1 ∪H2) \H2

codeword code polynomial that defines the codeword

fw RS
[
L, n−k+b

|L|

]
random polynomial f̄w of degree less than n− k + b such that,

for all b ∈ H2 with k < γ(b) ≤ n, f̄w(b) =
wγ(b)−k − f̂(1,v)(b)

Z
H
≤k
2

(b)

fMz RS
[
L, m+b
|L|

]
random polynomial f̄Az of degree less than m+ b such that,
for all a ∈ H1, f̄Az(a) =

∑
b∈H2

Ma,b · zγ(b) = (Mz)a

Fig. 11: Polynomials and codewords used in the IOP protocol given in Fig. 12.
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P ((F, k, n,m,A,B,C, v), w) V (F, k, n,m,A,B,C, v)

Sample (as in Fig. 11):
– fw ∈ RS

[
L, n−k+b

|L|

]
– fAz, fBz, fCz ∈ RS

[
L, m+b
|L|

]

Sample ri ← RS
[
L, 2t+b−1

|L|

]
for univariate sumcheck below,
and compute
µi :=

∑
a∈H1∪H2

ri(a)

repeat for i = 1, . . . , λi in parallel:

fz := fw · ZH≤k
2

+ f(1,v)

αi ← F, si ← F3

qi,1 := fAz · pαi − fz · p
(A)
αi

virtual oracles
for lincheck

qi,2 := fBz · pαi − fz · p
(B)
αi

qi,3 := fCz · pαi − fz · p
(C)
αi

reduction from R1CS to sumcheck

lincheck

amortized zero knowledge univariate sumcheck

low-degree test

Compute:

gi ∈ RS

[
L,
t− 1

|L|

]
, hi ∈ RS

[
L,
t+ b

|L|

]
s.t. r̂i(X) +

3∑
j=1

si,j q̂i,j(X)

= ĝi(X) + ξ−1µi ·Xt−1

+ ZH1∪H2(X) · ĥi(X)

r
(1)
LDT, . . . , r

(λ′i )
LDT ← RS

[
L, 2t+2b

|L|

]

Π :=



fw
fAz
fBz
fCz

(fAz · fBz − fCz)/ZH1

r1; . . . ; rλi

h1; . . . ;hλi

g1; . . . ; gλi

(X(2t+2b)−(t−1)gi)
λi
i=1



y1, . . . ,yλ′i ← F5+4λi

RS proximity test:
FRI(y>i Π + r

(i)
LDT)

For all a ∈ L, gi(a) :=

ri(a) +

3∑
j=1

si,jqi,j(a)

− ξ−1µi · at−1

− ZH1∪H2(a) · hi(a)

fw, fAz, fBz, fCz

ri, µi

αi, si

hi

r
(1)
LDT, . . . , r

(λ′i )
LDT

y1, . . . ,yλ′i

i = 1, . . . , λ′i

Fig. 12: Diagram of the zero knowledge IOP for R1CS that proves Theorem 4.
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47. Goldreich, O., Håstad, J.: On the complexity of interactive proofs with bounded communica-
tion. Information Processing Letters 67(4), 205–214 (1998)

48. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: Interactive proofs for
muggles. Journal of the ACM 62(4), 27:1–27:64 (2015)

49. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof
systems. SIAM Journal on Computing 18(1), 186–208 (1989), preliminary version appeared
in STOC ’85.

50. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Proceedings
of the 16th International Conference on the Theory and Application of Cryptology and
Information Security. pp. 321–340. ASIACRYPT ’10 (2010)

51. Groth, J.: On the size of pairing-based non-interactive arguments. In: Proceedings of the 35th
Annual International Conference on Theory and Applications of Cryptographic Techniques.
pp. 305–326. EUROCRYPT ’16 (2016)

52. Groth, J., Maller, M.: Snarky signatures: Minimal signatures of knowledge from simulation-
extractable SNARKs. In: Proceedings of the 37th Annual International Cryptology Conference.
pp. 581–612. CRYPTO ’17 (2017)

53. Gueron, S.: Intel carry-less multiplication instruction and its usage for computing
the GCM mode (2011), https://software.intel.com/en-us/articles/
intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode

54. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs. In: Pro-
ceedings of the Twenty-Second Annual IEEE Conference on Computational Complexity. pp.
278–291. CCC ’07 (2007)

55. Ishai, Y., Mahmoody, M., Sahai, A., Xiao, D.: On zero-knowledge PCPs: Limitations, sim-
plifications, and applications (2015), available at http://www.cs.virginia.edu/
˜mohammad/files/papers/ZKPCPs-Full.pdf

25

https://bench.cr.yp.to/results-hash.html
https://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode
https://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf


56. Kalai, Y., Raz, R.: Interactive PCP. In: Proceedings of the 35th International Colloquium on
Automata, Languages and Programming. pp. 536–547. ICALP ’08 (2008)

57. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings of the
24th Annual ACM Symposium on Theory of Computing. pp. 723–732. STOC ’92 (1992)

58. Lin, S., Al-Naffouri, T.Y., Han, Y.S.: FFT algorithm for binary extension finite fields and
its application to Reed–Solomon codes. IEEE Transactions on Information Theory 62(10),
5343–5358 (2016)

59. Lin, S., Chung, W.H., Han, Y.S.: Novel polynomial basis and its application to Reed–Solomon
erasure codes. In: Proceedings of the 55th Annual IEEE Symposium on Foundations of
Computer Science. pp. 316–325. FOCS ’14 (2014)

60. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span programs and
linear error-correcting codes. In: Proceedings of the 19th International Conference on the
Theory and Application of Cryptology and Information Security. pp. 41–60. ASIACRYPT ’13
(2013)

61. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive proof
systems. Journal of the ACM 39(4), 859–868 (1992)

62. Meir, O.: Combinatorial PCPs with short proofs. In: Proceedings of the 26th Annual IEEE
Conference on Computational Complexity. CCC ’12 (2012)

63. Micali, S.: Computationally sound proofs. SIAM Journal on Computing 30(4), 1253–1298
(2000), preliminary version appeared in FOCS ’94.

64. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of Computation
44(170), 519–521 (1985)

65. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009), http://www.
bitcoin.org/bitcoin.pdf

66. NIST: Post-quantum cryptography (2016), https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography

67. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: Nearly practical verifiable compu-
tation. In: Proceedings of the 34th IEEE Symposium on Security and Privacy. pp. 238–252.
Oakland ’13 (2013)

68. Polishchuk, A., Spielman, D.A.: Nearly-linear size holographic proofs. In: Proceedings of the
26th Annual ACM Symposium on Theory of Computing. pp. 194–203. STOC ’94 (1994)

69. Reingold, O., Rothblum, R., Rothblum, G.: Constant-round interactive proofs for delegating
computation. In: Proceedings of the 48th ACM Symposium on the Theory of Computing. pp.
49–62. STOC ’16 (2016)

70. SCIPR Lab: libsnark: a C++ library for zkSNARK proofs, https://github.com/
scipr-lab/libsnark

71. Setty, S., Braun, B., Vu, V., Blumberg, A.J., Parno, B., Walfish, M.: Resolving the conflict be-
tween generality and plausibility in verified computation. In: Proceedings of the 8th EuoroSys
Conference. pp. 71–84. EuroSys ’13 (2013)

72. Shamir, A.: IP = PSPACE. Journal of the ACM 39(4), 869–877 (1992)
73. Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Proceedings of the 33rd

Annual International Cryptology Conference. pp. 71–89. CRYPTO ’13 (2013)
74. Thaler, J.: A note on the GKR protocol. http://people.cs.georgetown.edu/

jthaler/GKRNote.pdf (2015)
75. Thaler, J., Roberts, M., Mitzenmacher, M., Pfister, H.: Verifiable computation with massively

parallel interactive proofs. CoRR abs/1202.1350 (2012)
76. Wahby, R.S., Howald, M., Garg, S.J., Shelat, A., Walfish, M.: Verifiable ASICs. In: Pro-

ceedings of the 37th IEEE Symposium on Security and Privacy. pp. 759–778. S&P ’16
(2016)

26

http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
http://people.cs.georgetown.edu/jthaler/GKRNote.pdf
http://people.cs.georgetown.edu/jthaler/GKRNote.pdf


77. Wahby, R.S., Ji, Y., Blumberg, A.J., Shelat, A., Thaler, J., Walfish, M., Wies, T.: Full account-
ing for verifiable outsourcing. In: Proceedings of the 24th ACM Conference on Computer and
Communications Security. pp. 2071–2086. CCS ’17 (2017)

78. Wahby, R.S., Setty, S., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM and control
flow in verifiable outsourced computation. In: Proceedings of the 22nd Annual Network and
Distributed System Security Symposium. NDSS ’15 (2015)

79. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zksnarks without
trusted setup. Cryptology ePrint Archive, Report 2017/1132 (2017)

80. Walfish, M., Blumberg, A.J.: Verifying computations without reexecuting them. Communica-
tions of the ACM 58(2), 74–84 (Jan 2015)

81. Wee, H.: On round-efficient argument systems. In: Proceedings of the 32nd International
Colloquium on Automata, Languages and Programming. pp. 140–152. ICALP ’05 (2005)

82. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: Verifying
arbitrary SQL queries over dynamic outsourced databases. In: Proceedings of the 38th IEEE
Symposium on Security and Privacy. pp. 863–880. S&P ’17 (2017)

83. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: A zero-knowledge
version of vsql. Cryptology ePrint Archive, Report 2017/1146 (2017)

27



Acknowledgments

We thank Alexander Chernyakhovsky and Tom Gur for helpful discussions, and Aleksejs
Popovs for help in implementing parts of libiop. This work was supported in part by:
the Ethics and Governance of Artificial Intelligence Fund; a Google Faculty Award; the
Israel Science Foundation (grant 1501/14); the UC Berkeley Center for Long-Term Cy-
bersecurity; the US-Israel Binational Science Foundation (grant 2015780); and donations
from the Interchain Foundation and Qtum.

28


	Abstract
	1 Introduction
	1.1 The need for a transparent setup
	1.2 Our goal
	1.3 Our contributions
	1.4 Prior implementations of transparent SNARGs

	2 Techniques
	2.1 Our interactive oracle proof for R1CS
	2.2 A sumcheck protocol for univariate polynomials
	2.3 Efficient zero knowledge from algebraic techniques
	2.4 Perspective on our techniques

	3 Roadmap
	4 Evaluation
	4.1 Performance of Aurora
	4.2 Comparison of Ligero, Stark, and Aurora

	5 libiop: a library for IOP-based non-interactive arguments
	5.1 Library for IOP protocols
	5.2 BCS transformation
	5.3 Portfolio of IOP protocols and sub-components

	6 Aurora: an IOP for rank-one constraint satisfaction (R1CS)
	References
	Acknowledgments

