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Abstract. Public key quantum money can be seen as a version of the
quantum no-cloning theorem that holds even when the quantum states can
be verified by the adversary. In this work, we investigate quantum lightning
where no-cloning holds even when the adversary herself generates the
quantum state to be cloned. We then study quantum money and quantum
lightning, showing the following results:
– We demonstrate the usefulness of quantum lightning beyond quantum

money by showing several potential applications, such as generating
random strings with a proof of entropy, to completely decentralized
cryptocurrency without a block-chain, where transactions is instant
and local.

– We give Either/Or results for quantum money/lightning, showing
that either signatures/hash functions/commitment schemes meet very
strong recently proposed notions of security, or they yield quantum
money or lightning. Given the difficulty in constructing public key
quantum money, this suggests that natural schemes do attain strong
security guarantees.

– We show that instantiating the quantum money scheme of Aaronson
and Christiano [STOC’12] with indistinguishability obfuscation that
is secure against quantum computers yields a secure quantum money
scheme. This construction can be seen as an instance of our Either/Or
result for signatures, giving the first separation between two security
notions for signatures from the literature.

– Finally, we give a plausible construction for quantum lightning, which
we prove secure under an assumption related to the multi-collision
resistance of degree-2 hash functions. Our construction is inspired by
our Either/Or result for hash functions, and yields the first plausible
standard model instantiation of a non-collapsing collision resistant
hash function. This improves on a result of Unruh [Eurocrypt’16]
which is relative to a quantum oracle.

1 Introduction

Unlike classical bits, which can be copied ad nauseum, quantum bits — called
qubits — cannot in general be copied, as a result of the Quantum No-Cloning
Theorem. No-cloning has various negative implications to the handling of quantum
information; for example it implies that classical error correction cannot be applied
to quantum states, and that it is impossible to transmit a quantum state over



a classical channel. On the flip side, no-cloning has tremendous potential for
cryptographic purposes, where the adversary is prevented from various strategies
that involve copying. For example, Wiesner [37] shows that if a quantum state is
used as a banknote, no-cloning means that an adversary cannot duplicate the
note. This is clearly impossible with classical bits. Wiesner’s idea can also be
seen as the starting point for quantum key distribution [9], which can be used
to securely exchange keys over a public channel, even against computationally
unbounded eavesdropping adversaries.

In this work, we investigate no-cloning in the presence of computationally
bounded adversaries, and it’s implications to cryptography. To motivate this
discussion, consider the following two important applications:

– A public key quantum money scheme allows anyone to verify banknotes. This
remedies a key limitation of Wiesner’s scheme, which requires sending the
banknote back to the mint for verification. The mint has a secret classical
description of the banknote which it can use to verify; if this description is
made public, then the scheme is completely broken. Requiring the mint for
verification represents an obvious logistical hurdle. In contrast, a public key
quantum money scheme can be verified locally without the mint’s involvement.
Yet, even with the ability to verify a banknote, it is impossible for anyone
(save the mint) to create new notes.

– Many cryptographic settings such as multiparty computation require a ran-
dom string to be created by a trusted party during a set up phase. But what
if the randomness creator is not trusted? One would still hope for some way
to verify that the strings it produces are still random, or at least have some
amount of (min-)entropy. At a minimum, one would hope for a guarantee
that their string is different from any previous or future string that will
be generated for anyone else. Classically, these goals are impossible. But
quantumly, one may hope to create proofs that are unclonable, so that only
a single user can possibly ever receive a valid proof for a particular string.

The settings above are subtly different from those usually studied in quantum
cryptography. Notice that in both settings above, a computationally unbounded
adversary can always break the scheme. For public key quantum money, the
following attack produces a valid banknote from scratch in exponential-time:
generate a random candidate quantum money state and apply the verification
procedure. If it accepts, output the state; otherwise try again. Similarly, in the
verifiable randomness setting, an exponential-time adversary can always run the
randomness generating procedure until it gets two copies of the same random
string, along with two valid proofs for that string. Then it can give the same
string (but different valid proofs) to two different users. With the current state
of knowledge of complexity theory, achieving security against a computationally
bounded adversary means computational assumptions are required; in particular,
both scenarios imply at a minimum one-way functions.

Unfortunately, most of the techniques developed in quantum cryptography
are inherently information theoretic, and porting these techniques over to the



computational setting can be tricky task. For example, whereas information-
theoretic security can be often proved directly, computational security must
always be proved by a reduction to the underlying hard computational problem.

We stress that the underlying problem should still be a classical problem
(that is, the inputs and outputs of the problem are classical), rather than some
quantum problem that talks about manipulating quantum states. For one, we
want a violation of the assumption to lead to a mathematically interesting result,
and this seems much more likely for classical problems. Furthermore, it is much
harder for the research community to study and analyze a quantum assumption,
since it will be hard to isolate the features of the problem that make it hard. For
this work, we want to:

Combine no-cloning and computational assumptions about
classical problems to obtain no-cloning-with-verification.

In addition to the underlying assumption being classical, it would ideally also
be one that has been previously studied by cryptographers, and ideally used in
other cryptographic contexts. This would give the strongest possible evidence
that the assumption, and hence application, are secure.

For now, we focus on the setting of public key quantum money. Constructing
such quantum money from a classical hardness assumption is a surprisingly
difficult task. One barrier is the following. Security would be proved by reduction,
an algorithm that interacts with a supposed quantum money adversary and acts
as an adversary for the the underlying classical computational assumption. Note
that the adversary expects as input a valid banknote, which the reduction must
supply. Then it appears the reduction should somehow use the adversary’s forgery
to break the computational assumption. But if the reduction can generate a
single valid banknote, there is nothing preventing it from generating a second
— recall that the underlying assumption is classical, so we cannot rely on the
assumption to provide us with an un-clonable state. Therefore, if the reduction
works, it would appear that the reduction can create two banknotes for itself,
in which case it can break the underlying assumption without the aid of the
adversary. This would imply that the underlying assumption is in fact false.

The above difficulties become even more apparent when considering the known
public key quantum money schemes. The first proposed scheme by Aaronson [2]
had no security proof, and was subsequently broken by Lutomirski et al. [29].
The next proposed scheme by Farhi et al. [21] also has no security proof, though
this scheme still remains unbroken. However, the scheme is complicated, and it
is unclear which quantum states are accepted by the verification procedure; it
might be that there are dishonest banknotes that are both easy to construct, but
are still accepted by the verification procedure.

Finally, the third candidate by Aaronson and Christiano [3] actually does
prove security using a classical computational problem. However, in order to
circumvent the barrier discussed above, the classical problem has a highly non-
standard format. They observe that a polynomial-time algorithm can, by random
guessing, produce a valid banknote with some exponentially-small probability



p, while random guessing can only produce n valid banknotes with probability
pn. Therefore, their reduction first generates a valid banknote with probability p,
runs the adversary on the banknote, and then uses the adversary’s forgery to
increase its success probability for some task. This reduction strategy requires a
very carefully crafted assumption, where it is assumed hard to solve a particular
problem in polynomial time with exponentially-small probability p, even though
it can easily be solved with probability p2.

In contrast, typical assumptions in cryptography involve polynomial-time
algorithms and inverse-polynomial success probabilities, rather than exponential.
(Sub)exponential hardness assumptions are sometimes made, but even then the
assumptions are usually closed under polynomial changes in adversary running
times or success probabilities, and therefore make no distinction between p and
p2. In addition to the flavor of assumption being highly non-standard, Aaronson
and Christiano’s assumption — as well as their scheme — have been subsequently
broken [32, 1].

Turning to the verifiable randomness setting, things appear even more difficult.
Indeed, our requirements for verifiable randomness imply an even stronger version
of computational no-cloning: an adversary should not be able to copy a state,
even if it can verify the state, and moreover even if it devised the original state
itself. Indeed, without such a restriction, an adversary may be able to come up
with a dishonest proof of randomness, perhaps by deviating from the proper
proof generating procedure, that it can clone arbitrarily many times. Therefore,
a fascinating objective is to

Obtain a no-cloning theorem, even for settings where the adversary
controls the entire process for generating the original state.

1.1 This Work: Strong Variants of No-Cloning and Connections to
Post-Quantum Cryptography

In this work, we study strong computational variants of quantum no-cloning,
in particular public key quantum money, and uncover interesting relationships
between no-cloning and various cryptographic applications.

Quantum Lightning Never Strikes the Same State Twice The old adage
about lightning is of course false, but the idea nonetheless captures some of
the features we would like for the verified randomness setting discussed above.
Suppose a magical randomness generator could go out into a thunderstorm, and
“freeze” and “capture” lightning bolts as they strike. Every lightning bolt will
be different. The randomness generator then somehow extracts a fingerprint or
serial number from the frozen lightning bolt (say, hashing the image of the bolt
from a particular direction). The serial number will serve as the random string,
and the frozen lightning bolt will be the proof of randomness; since every bolt
is different, this ensures that the bolts, and hence serial numbers, have some
amount of entropy.



Of course, it may be that there are other ways to create lightning other than
walking out into a thunderstorm (Tesla coils come to mind). We therefore would
like that, no matter how the lightning is generated, be it from thunderstorms
or in a carefully controlled laboratory environment, every bolt has a unique
fingerprint/serial number.

We seek a complexity-theoretic version of this magical frozen lightning object,
namely a phenomenon which guarantees different outcomes every time, no matter
how the phenomenon is generated. We will necessarily rely on quantum no-
cloning — since in principle a classical phenomenon can be replicated by starting
with the same initial conditions — and hence we call our notion quantum
lightning. Quantum lightning, roughly, is a strengthening of public key quantum
money where the procedure to generate new banknotes itself is public, allowing
anyone to generate banknotes. Nevertheless, it is impossible for an adversary
to construct two notes with the same serial number. This is a surprising and
counter-intuitive property, as the adversary knows how to generate banknotes,
and moreover has full control over how it does so; in particular it can deviate
from the generation procedure any way it wants, as long as it is computationally
efficient. Nonetheless, it cannot devise a malicious note generation procedure that
allows it to construct the same note twice. This concept of quantum money can
be seen as a formalization of the concept of “collision-free” public key quantum
money due to Lutomirski et al. [29].

Slightly more precisely, a quantum lightning protocol consists of two efficient
(quantum) algorithms. The first is a bolt generation procedure, or storm, ,
which generates a quantum state |E〉 on each invocation. The second algorithm,
Ver, meanwhile verifies bolts as valid and also extracts a fingerprint/serial number
of the bolt. For correctness, we require that (1) Ver always accepts bolts produced
by , (2) it does not perturb valid bolts, and (3) that it will always output the
same serial number on a given bolt.

For security, we require the following: it is computationally infeasible to
produce two bolts |E0〉 and |E1〉 such that Ver accepts both and outputs identical
serial numbers. This is true for even for adversarial storms — those that
depart from or produce entangled bolts — so long as is efficient.

Applications. Quantum lightning as described has several interesting applications:

– Quantum money. Quantum lightning easily gives quantum money. A ban-
knote is just a bolt, with the associated serial number signed by the bank
using an arbitrary classical signature scheme. Any banknote forgery must
either forge the bank’s signature, or must produce two bolts with the same
serial number, violating quantum lightning security.

– Verifiable min-entropy. Quantum lightning also gives a way to generate
random strings along with a proof that the string is random, or at least has
min-entropy. Indeed, consider an adversarial bolt generation procedure that
produces bolts such that the associated serial number has low min-entropy.
Then by running this procedure several times, one will eventually obtain in
polynomial time two bolts with the same serial number, violating security.



Therefore, to generate a verifiable random string, generate a new bolt using .
The string is the bolt’s serial number, and serves as a proof of min-entropy,
which is verified using Ver.

– Decentralized Currency. Finally, quantum lightning yields a simple new
construction of totally decentralized digital currency. Coins are just bolts,
except the serial number must hash to a string that begins with a certain
number of 0’s. Anyone can produce coins by generating bolts until the hash
begins with enough 0’s. Moreover, verification is just Ver, and does not require
any interaction or coordination with other users of the system. This is an
advantage over classical cryptocurrencies such as BitCoin, which require
a large public and dynamic ledger, and requires a pool of miners to verify
transactions. Our protocol does have significant limitations relative to classical
cryptocurrencies, which likely make it only a toy object. We hope that further
developments will yield a scheme that overcomes these limitations.

Connections to Post-quantum Security One simple folklore way to con-
struct a state that can only be constructed once but never a second time is to
use a collision-resistant hash function H. First, generate a uniform superposition
of inputs. Then apply the H in superposition, and measure the result y. The
state collapses to the superposition |ψy〉 of all pre-images x of y.

Notice that, while it is easy to sample states |ψy〉, it is impossible to sample
two copies of the same |ψy〉. Indeed, given two copies of |ψy〉, simply measure
both copies. Since these are superpositions over many inputs, each state will
likely yield a different x. The two x’s obtained are both pre-images of the same
y, and therefore constitute a collision for H.

The above idea does not yet yield quantum lightning. For verification, one
can hash the state to get the serial number y, but this alone is insufficient. For
example, an adversarial storm can simply choose a random string x, and output
|x〉 twice as its two copies of the same state. Of course, |x〉 is not equal to |ψy〉
for any y. However, the verification procedure just described does not distinguish
between these two states.

What one needs therefore is mechanism to distinguish a random |x〉 from a
random |ψy〉. Interestingly, as observed by Unruh [35], this is exactly the opposite
what one would normally want from a hash function. Consider the usual way of
building a computationally binding commitment from a collision resistant hash
function: to commit to a message m, choose a random r and output H(m, r).
Classically, this is computationally binding by the collision resistance of H: if an
adversary can open the commitment to two different values, this immediately
yields a collision for H. Unruh [35] shows in the quantum setting, collision
resistance — even against quantum adversaries — is not enough. Indeed, he
shows that for certain hash functions H it may be possible for the adversary
to produce a commitment, and only afterward decide on the committed value.
Essentially, the adversary constructs a superposition of pre-images |ψy〉 as above,
and then uses particular properties of H to perturb |ψy〉 so that it becomes a
different superposition of pre-images of y. Then one simply de-commits to any



message by first modifying the superposition and then measuring. This does not
violate the collision-resistance of H: since the adversary cannot copy |ψy〉, the
adversary can only ever perform this procedure once and obtain only a single
de-commitment.

To overcome this potential limitation, Unruh defines a notion of collapsing
hash functions. Roughly, these are hash functions for which |x〉 and |ψy〉 are
indistinguishable. Using such hash functions to build commitments, one obtains
collapse-binding commitments, for which the attack above is impossible. Finally,
he shows that a random oracle is collapse binding.

More generally, an implicit assumption in many classical settings is that,
if an adversary can modify one value into another, then it can produce both
the original and modified value simultaneously. For example, in a commitment
scheme, if a classical adversary can de-commit to both 0 or 1, it can then also
simultaneously de-commit to both 0 and 1 by first de-committing to 0, and then
re-winding and de-committing to 1. Thus it is natural classically to require that
it is impossible to simultaneously produce de-commitments to both 0 and 1.
Similarly, for signatures, if an adversary can modify a signed message m0 into
a signed message m1, then it can simultaneously produce two signed messages
m0,m1. This inspires the Boneh-Zhandry [10, 11] definition of security against
quantum adversaries, which says that after seeing a (superposition of) signed
messages, the adversary cannot produce two signed messages.

However, a true quantum adversary may be able, for some schemes, to set
things up so that it can modify a (superposition) of values into one of many
possibilities, but still only be able to ever produce a single value. For example, it
may be that an adversary sees a superposition of signed messages that always
begin with 0, but somehow modifies the superposition to obtain a signed message
that begins with a 1. This limitation for signatures was observed by Garg, Yuen,
and Zhandry [24], who then give a much stronger notion to fix this issue1.

Inspired by the above, we formulate a series Either/Or results for quantum
lightning and quantum money. In particular, in Section 4, we show, roughly,

Theorem 1 (informal). If H is a hash function that is collision resistant
against quantum adversaries, then either (1) H is collapsing or (2) it can be used
to build quantum lightning without any additional computational assumptions.2

The construction of quantum lightning is inspired by the outline above. One
difficulty is that above we needed a perfect distinguisher, whereas a collapsing
adversary may only have a non-negligible advantage. To obtain an actual quantum
lightning scheme, we need to repeat the scheme in parallel many times to boost
the distinguish advantage to essentially perfect. Still, defining verification so that
1 Garg et al. only actually discuss message authentication codes, but the same idea
applies to signatures

2 Technically, there is a slight gap due to the difference between non-negligible and
inverse polynomial. Essentially what we show is that the theorem holds for fixed
values of the security parameter, but whether (1) or (2) happens may vary across
different security parameters.



we can prove security is a non-trivial task. Indeed, it is much harder to analyze
what sorts of invalid bolts might be accepted by the verification procedure,
especially since we know virtually nothing about the types of states the given
adversary for collapsing accepts.

For example, in order to base security on collision resistance, we would like to
say that if a bolt passes verification, we can measure it and obtain a collision. But
then we need that the classical test (namely evaluating H(x)) and the quantum
test (namely, that it is superposition) both succeed simultaneously. Unfortunately,
these two tests are non-commuting operations, so it is impossible to test both
with certainty simultaneously. If we perform the classical test before the quantum
test, it could be that the second test perturbs the quantum state so that it is
in superposition, but no longer a superposition of pre-images. Similarly, if we
perform the quantum test first, it could be that running the classical test collapses
the state to a singleton. In this case, measuring two accepting bolts could give us
the same pre-image, so we do not get a collision.

Using a careful argument, we show nonetheless how to verify and prove security.
The intuition is to only perform a single test, and which test is performed is
chosen at random independent of the input. We demonstrate that if a state had
a reasonably high probability of passing, then it must have simultaneously had a
noticeable probability of passing each of the two tests. This is enough to get a
collision. Next, we just repeat the scheme many times in parallel; now if a bolt
even has a non-negligible chance of passing, one of the components must have a
high chance of passing, which in turn gives a collision.

Next, we move on to other Either/Or results. We show that:

Theorem 2 (informal). Any non-interactive commitment scheme that is com-
putationally binding against quantum adversaries is either collapse-binding, or
it can be used to build quantum lightning without any additional computational
assumptions.

The above theorem crucially relies on the commitment scheme being non-
interactive: the serial number of the bolt is the sender’s single message, along
with his private quantum state. If the commitment scheme is not collapse-
binding, the sender’s private state can be verified to be in superposition. If an
adversary produces two identical bolts, these bolts can be measured to obtain two
openings, violating computational binding. In contrast, in the case of interactive
commitments, the bolt should be expanded to the transcript of the interaction
between the sender and receiver. Unfortunately, for quantum lightning security,
the transcript is generated by an adversary, who can deviate from the honest
receiver’s protocol. Since the commitment scheme is only binding when the
receiver is run honestly, we cannot prove security in this setting.

Instead, we consider the weaker goal of constructing public key quantum
money. Here, since the mint produces bolts, the original bolt is honestly generated.
The mint then signs the transcript using a standard signature scheme (which
can be built from one-way functions, and hence implied by commitments). If
the adversary duplicates this banknote, it is duplicating an honest commitment



transcript, but the note can be measured to obtain two different openings,
breaking computational binding. This gives us the following:

Theorem 3 (informal). Any interactive commitment scheme that is computa-
tionally binding against quantum adversaries is either collapse-binding, or it can
be used to build public key quantum money without any additional computational
assumptions.

Finally, we extend these ideas to quantum money and digital signatures:

Theorem 4 (informal). Any one-time signature scheme that is Boneh-Zhandry
secure is either Garg-Yuen-Zhandry secure, or it can be used to build public key
quantum money without any additional computational assumptions.

Given the difficulty of constructing public key quantum money (let alone
quantum lightning), the above results suggest that most natural constructions
of collision resistant hash functions, including all of those used in practice, are
likely already collapsing, with analogous statements for commitment schemes
and signatures. If they surprisingly turn out to not meet the stronger quantum
notions, then we would immediately obtain a construction of public key quantum
money from simple tools.

Notice that using our Either/Or results give a potential route toward proving
the security of quantum money/lightning in a way that avoids the barrier discussed
above. Consider building quantum money from quantum lightning, and in turn
building quantum lightning from a collision-resistant non-collapsing hash function.
Recall that a banknote is a bolt, together with the mint’s signature on the bolt’s
serial number. A quantum money adversary either (1) duplicates a bolt to yield
two bolts with the same serial number (and hence same signature), or (2) produces
a second bolt with a different serial number, as well as a forged signature on
that serial number. Notice that (2) is impossible simply by the unforgeability of
the mint’s signature. Meanwhile, in proving that (1) is impossible, our reduction
actually can produce arbitrary quantum money states (for this step, we assume
the reduction is given the signing key). The key is that the reduction on its own
cannot produce the same quantum money state twice, but it can do so using the
adversary’s cloning abilities, allowing it to break the underlying hard problem.

Quantum Money From Obfuscation We now consider the task of con-
structing public key quantum money. One possibility is based on Aaronson and
Christiano’s broken scheme [3]. In their scheme, a quantum banknote |$〉 is a
uniform superposition over some subspace S, that is known only to the bank.
The quantum Fourier transform of such a state is the uniform superposition over
the dual subspace S⊥. This gives a simple way to check the banknote: test if |$〉
lies in S, and whether it’s Fourier transform lies in S⊥. Aaronson and Christiano
show that the only state which can pass verification is |$〉.

To make this scheme public key, one gives out a mechanism to test for mem-
bership in S and S⊥, without actually revealing S, S⊥. This essentially means



obfuscating the functions that decide membership. Aaronson and Christiano’s
scheme can be seen as a candidate obfuscator for subspaces. While unfortu-
nately their obfuscator has since been broken, one may hope to instantiate their
scheme using recent advances in general-purpose program obfuscation, specifically
indistinguishability obfuscation (iO) [7, 23].

On the positive side, Aaronson and Christiano show that their scheme is
secure if the subspaces are provided as quantum-accessible black boxes, giving
hope that some obfuscation of the subspaces will work. Unfortunately, proving
security relative to iO appears a difficult task. One limitation is the barrier
discussed above, that any reduction must be able to produce a valid banknote,
which means it can also produce two banknotes. Yet at the same time, it somehow
has to use the adversary’s forgery (a second banknote) to break the iO scheme.
Note that this situation is different from the quantum lightning setting, where
there were many valid states, and no process could generate the same state
twice. Here, there is a single valid state (the state |$〉), and it would appear the
reduction must be able to construct this precise state exactly once, but not twice.
Such a reduction would clearly be impossible. As discussed above Aaronson and
Christiano circumvent this issue by using a non-standard type of assumption;
their technique is not relevant for standard definitions of iO.

In Section 5, we prove the security of Aaronson and Christiano’s scheme using
iO. Our solution is to separate the proof into two phases. In the first, we change
the spaces obfuscated from S, S⊥ to T0, T1, where T0 is a random unknown
subspace containing S, and T1 is a unknown random subspace containing S⊥.
This modification can be proved undetectable using a weak form of obfuscation
we define, called subspace-hiding obfuscation, which in turn is implied by iO.
Note that in this step, we even allow the reduction to know S (but not T0, T1), so
it can produce as many copies of |$〉 as it would like to feed to the adversary. The
reduction does not care about the adversary’s forgery directly, only whether or not
the adversary successfully forges. If the adversary forges when given obfuscations
of S, S⊥, it must also forge under T0, T1, else it can distinguish the two cases and
hence break the obfuscation. By using the adversary in this way, we avoid the
apparent difficulties above.

In the next step, we notice that, conditioned on T0, T1, the space S is a
random subspace between T⊥1 and T0. Thus conditioned on T0, T1, the adversary
clones a state |$〉 defined by a random subspace S between T⊥1 and T0. The
number of possible S is much larger than the dimension of the state |$〉, so in
particular the states cannot be orthogonal. Thus, by no-cloning, duplication is
impossible. We need to be careful however, since we want to rule out adversaries
that forge with even very low success probabilities. To do so, we need to precisely
quantify the no-cloning theorem, which we do. We believe our new no-cloning
theorem may be of independent interest. We note that when applying no-cloning,
we do not rely on the secrecy of T0, T1, but only that S is hidden. Intuitively,
there are exponentially many more S’s between T0, T1 than the dimension of the
space |$〉 belongs to, so no-cloning implies that a forger has negligible success



probability. Thus we reach a contradiction, showing that the original adversary
could not exist.

We also show how to view Aaronson and Christiano’s scheme as a signature
scheme; we show that the signature scheme satisfies the Boneh-Zhandry definition,
but not the strong Garg-Yuen-Zhandry notion. Thus, we can view Aaronson
and Christiano’s scheme as an instance of our Either/Or results, and moreover
provide the first separation between the two security notions for signatures.

We note that our result potentially relies on a much weaker notion of obfusca-
tion that full iO, giving hope that security can be based on weaker assumptions.
For example, an intriguing open question is whether or not recent constructions
of obfuscation for certain evasive functions [36, 27] based on LWE can be used to
instantiate our notion of subspace hiding obfuscation. This gives another route
toward building quantum money from hard lattice problems. This is particularly
important at the present time, where the security of iO in the quantum setting
is somewhat uncertain (see below for a discussion).

Constructing Quantum Lightning In Section 6, we finally turn to actually
building quantum lightning, and hence giving another route to quantum money.
Following our Either/Or results, we would like a non-collapsing collision-resistant
hash function. Unfortunately, Unruh’s counterexample does not yield an explicit
construction. Instead, he builds on techniques of [5] to give a hash function
relative to a quantum oracle3. As it is currently unknown how to obfuscate
quantum oracles with a meaningful notion of security, this does not give even
a candidate construction of quantum lightning. Instead, we focus on specific
standard-model constructions of hash functions. Finding suitable hash functions
is surprisingly challenging; we were only able to find a single family of candidates,
and leave finding additional candidates as a challenging open problem.

To motivate our construction, we consider the following approach to building
quantum lightning from the short integer solution (SIS) problem. In SIS, an
underdetermined system of homogeneous linear equations is given, specified by a
wide matrix A, and the goal is to find a solution consisting of “small” entries;
that is, a “short” vector x such that A.x = 0. For random linear constraints, SIS
is conjectured to be computationally difficult, which is backed up by reductions
from the hardness of worst-case lattice problems [30]. SIS gives a simple collision
resistant hash function fA(x) = A · x, where the domain is constrained to be
small; given a collision x,x′, one obtains a SIS solution as x− x′.

One may hope that SIS is also non-collapsing, in which case we would obtain
quantum lightning. One (failed) attempt to obtaining a collapsing distinguisher is
the following. Start with superposition of “short” vectors x, weighted by a Gaus-
sian function. When fA is applied, the superposition collapses to a superposition
over short vectors x that all have the same value of A · x. This will be a bolt in
the scheme, and the serial number will be the common hash. To verify the bolt,
we first check the hash. Then, to verify the bolt is in superposition, we apply the
3 that is, the oracle itself performs quantum operations



quantum Fourier transform. Note that if x were a uniform superposition over
all vectors, the QFT would give a uniform superposition over all vectors in the
row-span of A (with some phase terms). Instead, since x is a superposition over
“short” vectors, using the rules of Fourier transforms is possible to show that the
QFT gives a superposition over vectors of the form r ·A + e, where r is a random
row vector, and e is a Gaussian-weighted random short row vector.

Intuitively, we just need to distinguish these types of vectors from random
vectors. Unfortunately, distinguishing r ·A + e from random for a random matrix
A is an instance of the Learning With Errors (LWE) problem, which is widely
believed to be comptuationally intractable, as evidenced by quantum reductions
from worst-case lattice problems [33].

We therefore need to “break” LWE by given some trapdoor information. The
usual way to break LWE is to provide a short vector t in the kernel of A. Then,
to distinguish an input u, simply compute u · t, and check if the result is small.
In the case u = r ·A + e, then u · t = e · t, which will be small. In contrast, if u
is random, t · u will be large with overwhelming probability.

Unfortunately, the trapdoor t is a SIS solution! In particular, in order for the
distinguisher to work, one can show that t needs to be somewhat smaller than
the size bound on the domain of fA. With such a trapdoor, it is therefore easy to
manufacture collisions for fA, so fA is no longer collision-resistant. Worse yet, it
is straightforward to use the trapdoor to come up with a superposition of inputs
that fools the distinguisher.

We do not know how to make the above approach work, as all ways we are
aware of for breaking LWE involve handing out a SIS solution. One possible
approach would be to obfuscate an LWE distinguisher that has the trapdoor
hardcoded. This allows for distinguishing LWE samples without explicitly handing
out a SIS solution. However, it might be possible to construct a SIS solution from
any such distinguishing program.

We now turn to our actual construction. Our idea is to use linear equations
over restricted domains as in SIS, but will restrict the domain in different ways.
In particular, we will view vectors as specifying symmetric matrices (that is, an
(n+1)n/2-dimensional vector will correspond to an n×n symmetric matrix, with
the vector entries specifying the upper-triangular part of the matrix). Instead of
restricting the size of entries, will will instead restrict the rank of the symmetric
matrix. Our construction then follows the rough outline of the SIS-based approach
above, intuitively using rank as a stand-in for vector norm. By switching from
vector norm to matrix rank, we are able to arrive at a construction whose security
follows from a plausible computational assumption.

A bolt is then a superposition over rank-bounded matrices satisfying the
linear constraints. Analogous to the SIS approach, we are able to show that
applying the Quantum Fourier transform on such bolts results in a state whose
support consists of matrices A that can be written as A = B + C, where B is a
sum of a few known matrices (based on the precise linear functions), whereas
C is an arbitrary low-rank matrix. We show how to generate the constraints
along with a public “trapdoor” which allows for such matrices can be identified.



Our trapdoor is simply a row rank matrix in the kernel of the linear constraints,
analogous to how the LWE trapdoor is a short vector in the kernel.

One may be rightfully concerned at this point, as our trapdoor has the same
form as domain elements for our hash function. Indeed, if the rank of the trapdoor
was smaller than the rank of the domain, the trapdoor would completely break
the construction. Importantly for our construction, we show that this matrix can
have higher rank than the allowed inputs to the hash function; as such, it does
not appear useful for generating collisions.

Our scheme can easily be proved secure under the assumed collision-resistance
of our hash function. Unfortunately, this assumption is false. Indeed, the family
of matrices BTB for wide and short matrices A is low rank. By evaluating our
hash function on such matrices, we turn it into a degree-2 polynomial over the B
matrices. Unfortunately, Ding and Yang [20] and Applebaum et al. [6] show that
such hash functions are not collision resistant4.

However, we will apply a simple trick in order to get our scheme to work.
Namely, we show how to use the attacks above to actually generate superposi-
tions over k colliding inputs for some parameter k that depends on the various
parameters of the scheme. At the same time, the attacks do not seem capable of
generating collisions beyond k. We will therefore set our bolt to be this super-
position over several colliding inputs. Now, we can apply our testing procedure
to each of the inputs separately to verify the bolt. If an adversary creates two
bolts with the same serial number, we can measure to obtain 2k colliding inputs.
By assuming the plausible 2k-multi-collision resistance of our hash functions, we
obtain security.

Our construction requires a common reference string, namely the sequence of
linear constraints and the trapdoor. We show that we can convert our scheme
into the common random string (crs) model by using the common random string
to generate the trapdoor and linear constraints.

1.2 Related Works

Quantum Money. Lutomirski [28] shows another weakness of Wiesner’s scheme:
a merchant, who is allowed to interact with the mint for verification, can use
the verification oracle to break the scheme and forge new currency. Public key
quantum money is necessarily secure against adversaries with a verification
oracle, since the adversary can implement the verification oracle for itself. Several
alternative solutions to the limitations of Wiesner’s scheme have been proposed [31,
25], though the “ideal” solution still remains public key quantum money.

Randomness Expansion and Certifiable Randomness. Colbeck [16] proposed the
idea of a classical experimenter, interacting with several potentially untrustworthy
quantum devices, can expand a small random seed into a certifiably random longer
4 Technically, they only show this is true if the degree-2 polynomials are random,
whereas ours are more structured, but we show that their analysis extends to our
setting as well



seed. Subsequent to our work, Brakerski et al. [12] consider certifiable randomness
in the computational setting. Of of these results are related, but entirely different
from, our version of verifiable randomness. In particular, their protocols are
interactive and privately verifiable, but allows for a classical verifier. In contrast,
our protocol is non-interactive (in the crs model) and publicly verifiable, but
requires a quantum verifier.

Obfuscation and Multilinear Maps. There is a vast body of literature on strong
notions of obfuscation, starting with the definitional work of Barak et al. [7].
Garg et al. [23] propose the first obfuscator plausibly meeting the strong notion
of iO, based on cryptographic multilinear maps [22, 17, 26]. Unfortunately, there
have been numerous attacks on multilinear maps, which we do not fully elaborate
on here. There have been several quantum attacks [18, 4, 15, 14] on obfuscators,
but there are still schemes that remain unbroken. Moreover, there has been
some success in transforming applications of obfuscation to be secure under
assumptions on lattices [13, 36, 27], which are widely believed to be quantum
hard. We therefore think it plausible that subspace-hiding obfuscation, which is
all we need for this work, can be based on similar lattice problems. Nonetheless,
obfuscation is a very active area of research, and we believe that one of the
current obfuscators so some future variant will likely be secure quantum resistant.

Computational No-cloning. We note that computational assumptions and no-
cloning have been combined in other contexts, such as Unruh’s revocable time-
released encryption [34]. We note however, that these settings do not involve
verification, the central theme of this work.

2 Preliminaries

Throughout this paper, we will let λ be a security parameter. When inputted
into an algorithm, λ will be represented in unary. A function ε(λ) is negligible
if for any inverse polynomial 1/p(λ), ε(λ) < 1/p(λ) for sufficiently large λ. A
function is non-negligible if it is not negligible, that is there exists an inverse
polynomial 1/p(λ) such that ε(λ) ≥ 1/p(λ) infinitely often.

2.1 Quantum Computation

Here, we very briefly recall some basics of quantum computation. A quantum
system Q is defined over a finite set B of classical states. A pure state over Q
is an L2-normalized vector in C|B|, which assigns a (complex) weight to each
element in B. We will think of pure states as column vectors. The pure state
that assigns weight 1 to x and weight 0 to each y 6= x is denoted |x〉.

A pure state |φ〉 can be manipulated by performing a unitary transformation
U to the state |φ〉. We will denote the resulting state as |φ′〉 = U |φ〉. A unitary
is quantum polynomial time (QPT) if it can be represented as a polynomial-sized
circuit of gates from a finite gate set. |φ〉 can also be measured; the measurement



outputs the value x with probability |〈x|φ〉|2. The normalization of |φ〉 ensures that
the distribution over x is indeed a probability distribution. After measurement,
the state “collapses” to the state |x〉. Notice that subsequent measurements will
always output x, and the state will always stay |x〉.

We define the Euclidean distance ‖|φ〉 − |ψ〉‖ between two states as the value(∑
x |αx − βx|2

) 1
2 where |φ〉 =

∑
x αx|x〉 and |ψ〉 =

∑
x βx|x〉.

We will be using the following lemma:

Lemma 1 ([8]). Let |ϕ〉 and |ψ〉 be quantum states with Euclidean distance at
most ε. Then, performing the same measurement on |ϕ〉 and |ψ〉 yields distribu-
tions with statistical distance at most 4ε.

2.2 Public Key Quantum Money

Here, we define public key quantum money. We will slightly modify the usual def-
inition [2], though the definition will be equivalent under simple transformations.

– We only will consider what Aaronson and Christiano [3] call a quantum money
mini-scheme, where there is just a single valid banknote. It is straightforward
to extend to general quantum money using a signatures

– We will change the syntax to more closely resemble our eventual quantum
lightning definition, in order to clearly compare the two objects.

Quantum money consists of two quantum polynomial time algorithms Gen,Ver.

– Gen takes as input the security parameter, and samples a banknote |$〉
– Ver verifies a banknote, and if the verification is successful, produces a serial

number for the note.

For correctness, we require that verification always accepts money produced
by Gen. We also require that verification does not perturb the money. Finally,
since Ver is a quantum algorithm, we must ensure that multiple runs of Ver on
the same money will always produce the same serial number. This is captured by
the following two of requirements:

– For a money state |$〉, let H∞(|$〉) = − log2 mins Pr[Ver(|$〉) = s] be the
min-entropy of s produced by applying Ver to |$〉, were we do not count
the rejecting output ⊥ as contributing to the min-entropy. We insist that
E[H∞(|$〉)] is negligible, the expectation over |$〉 ← Gen(1λ). This ensures
the serial number is essentially a deterministic function of the money.

– For a money state |$〉, let |ψ〉 be the state left over after running Ver(|$〉).
We insist that E[|〈ψ|$〉|2] ≥ 1− negl(λ), where the expectation is over |$〉 ←
Gen(1λ), and any affect Ver has on |ψ〉. This ensures that verification does
not perturb the money.

For security, consider the following game between an adversary A and a challenger

– The challenger runs Gen(1λ) to get a banknote |$〉. It runs Ver on the banknote
to extract a serial number s.



– The challenger sends |$〉 to A.
– A produces two candidate quantum money states |$0〉, |$1〉, which are poten-

tially entangled.
– The challenger runs Ver on both states, to get two serial numbers s0, s1.
– The challenger accepts if and only if both runs of Ver pass, and the serial

numbers satisfy s0 = s1 = s.

Definition 1. A quantum money scheme (Gen,Ver) is secure if, for all QPT
adversaries A, the probability the challenger accepts in the above experiment is
negligible.

3 Quantum Lightning

3.1 Definitions

The central object in a quantum lightning system is a lightning bolt, a quantum
state that we will denote as |E〉. Bolts are produced by a storm, , a polynomial
time quantum algorithm which takes as input a security parameter λ and samples
new bolts. Additionally, there is a quantum polynomial-time bolt verification
procedure, Ver, which serves two purposes. First, it verifies that a supposed bolt
is actually a valid bolt; if not it rejects and outputs ⊥. Second, if the bolt is valid,
it extracts a fingerprint/serial number of the bolt, denoted s.

Rather than having a single storm and single verifier Ver, we will actu-
ally have a family Fλ of ( ,Ver) pairs for each security parameter. We will
have a setup procedure SetupQL(1λ) which samples a ( ,Ver) pair from some
distribution over Fλ.

For correctness, we have essentially the same requirements as quantum money.
We require that verification always accepts bolts produced by . We also require
that verification does not perturb the bolt. Finally, since Ver is a quantum
algorithm, we must ensure that multiple runs of Ver on the same bolt will
always produce the same fingerprint. This is captured by the following two of
requirements:

– For a bolt |E〉, let

H∞(|E〉,Ver) = − log2 min
s

Pr[Ver(|E〉) = s]

be the min-entropy of s produced by applying Ver to |E〉, were we do not
count the rejecting output ⊥ as contributing to the min-entropy. We insist
that E[H∞(|E〉,Ver)] is negligible, where the expectation is over ( ,Ver)←
SetupQL(λ) and |E〉 ← . This ensures the serial number is essentially a
deterministic function of the bolt.

– For a bolt |E〉, let |ψ〉 be the state left over after running Ver(|E〉). We insist
that E[|〈ψ|E〉|2] ≥ 1 − negl(λ), where the expectation is over ( ,Ver) ←
SetupQL(λ), |E〉 ← , and any affect Ver has on |ψ〉. This ensures that
verification does not perturb the bolt.



Remark 1. We note that it suffices to only consider the first requirement, since
the serial number is essentially a deterministic function of the bolt. Indeed,
by un-computing the Ver computation after obtaining the serial number, a
straightforward calculation shows the result will be negligibly close to the original
state.

For security, informally, we ask that no adversarial storm can produce two bolts
with the same serial number. More precisely, consider the following experiment
between a challenger and a malicious bolt generation procedure :

– The challenger runs ( ,Ver)← SetupQL(1λ), and sends ( ,Ver) to .
– produces two (potentially entangled) quantum states |E0〉, |E1〉, which it

sends to the challenger
– The challenger runs Ver on each state, obtaining two fingerprints s0, s1. The

challenger accepts if and only if s0 = s1 6= ⊥.

Definition 2. A quantum lightning scheme has uniqueness if, for all QPT
adversarial storms , the probability the challenger accepts in the game above is
negligible in λ.

4 Either/Or Results

4.1 Infinity-Often Security

Before describing our Either/Or results, we need to introduce a non-standard
notion of security. Typically, a security statement says that no polynomial-time
adversary can win some game, except with negligible probability. A violation
of the security statement is a polynomial-time adversary that can win with
non-negligible probability; that is, some probability ε that is lower bounded by an
inverse-polynomial infinitely often. In our proofs below, we use such an adversary
to devise a scheme for another problem. But to actually get an efficient scheme,
we need the adversary’s success probability to actually be inverse-polynomial, not
non-negligible. This motivates the notion of infinitely often security. A scheme
has infinitely-often security if security holds for an infinite number of security
parameters, but not necessarily all security parameters. It is straightforward to
modify all security notions in this work to infinitely-often variants.

4.2 Collision Resistant Hashing

A hash function is a function H that maps large inputs to small inputs. We will
considered keyed functions, meaning it takes two inputs: a key k ∈ {0, 1}λ, and
the actual input to be compressed, x ∈ {0, 1}m(λ). The output of H is n(λ) bits.
For the hash function to be useful, we will require m(λ)� n(λ).

The usual security property for a hash function is collision resistance, meaning
it is computationally infeasible to find two inputs that map to the same output.



Definition 3. H is collision resistant if, for any QPT adversary A, Pr[H(x0) =
H(x1) ∧ x0 6= x1 : (x0, x1)← A(k), k ← {0, 1}λ] < negl(λ)

Unruh [35] points out weaknesses in the usual collision resistance definition,
and instead defines a stronger notion called collapsing. Intuitively, it is easy for an
adversary to obtain a superposition of pre-images of some output, by running H
on a uniform superposition and then measuring the output. Collapsing requires,
however, that this state is computationally indisitnguishable from a random
input x. More precisely, for an adversary A, consider the following experiment
between A and a challenger

– The challenger has an input bit b.
– The challenger chooses a random key k, which it gives to A.
– A creates a superposition |ψ〉 =

∑
x αx|x〉 of elements in {0, 1}m(λ).

– In superposition, the challenger evaluates H(k, ·) to get the state |ψ′〉 =∑
x αx|x,H(k, x)〉

– Then, the challenger either:
• If b = 0, measures the H(k, x) register, to get a string y. The state |ψ′〉
collapses to |ψy〉 ∝

∑
x:H(k,x)=y αx|x, y〉

• If b = 1, measures the entire state, to get a string x,H(k, x). The state
|ψ′〉 collapses to |x,H(k, x)〉

– The challenger returns whatever state remains of |ψ′〉 (namely |ψy〉 or
|x,H(k, x)〉) to A.

– A outputs a guess b′ for b. Define Collapse-Expb(A, λ) as b′.

Definition 4. H is collapsing if, for all QPT adversaries A,
|Pr[Collapse-Exp0(A, λ) = 1]− Pr[Collapse-Exp1(A, λ) = 1]| < negl(λ)

Theorem 5. Suppose H is collision resistant. Then both of the following are
true:

– Either H is collapsing, or H can be used to build a quantum lightning scheme
that is infinitely often secure.

– Either H is infinitely often collapsing, or H can be used to build a quantum
lightning scheme that is secure.

Proof. Let A be a collapsing adversary; the only difference between the two cases
above are whether A’s advantage is non-negligible or actually inverse polynomial.
The two cases are nearly identical, but the inverse polynomial case will simplify
notation. We therefore assume that H is not infinitely-often collapsing, and will
design a quantum lightning scheme that is secure.

Let A0 be the first phase of A: it receives a hash key k as input, and produces
a superposition of pre-images, as well as it’s own internal state. Let A1 be the
second phase of A: it receives the internal state from A0, plus the superposition
of input/output pairs returned by the challenger. It outputs 0 or 1.

Define qb(λ) = Pr[Collapse-Expb(A, λ) = 1]. By assumption, we have that
|q0(λ) − q1(λ)| ≥ 1/p(λ) for some polynomial p. We will assume q0 < q1, the
other case handled analogously.



For an integer r, consider the function H⊗r(k, ·) which takes as input a string
x ∈ ({0, 1}m(λ))r, and outputs the vector (H(k, x1), . . . ,H(k, xr)). The collision
resistance of H easily implies the collision resistance of H⊗r, for any polynomial
r. Moreover, we will use A to derive a collapsing adversary A⊗r for H⊗r which
has near-perfect distinguishing advantage. A⊗r works as follows.

– First, it runs A0 in parallel r times to get r independent states |ψi〉, where
each |ψi〉 contains a superposition of internal state values, as well as inputs
to the hash function.

– It assembles the r superpositions of inputs into a superposition of inputs for
H⊗r, which it then sends to the challenger.

– The challenger responds with a potential superposition over input/output
pairs (through the output value in ({0, 1}n(λ))r is fixed).

– A⊗r disassembles the input/output pairs into r input/output pairs for H.
– It then runs A1 in parallel r times, on each of the corresponding state/input/

output superpositions, to get bits b′1, . . . , b′r.
– A⊗r then computes f = (

∑
i b
′
i)/r, the fraction of b′i that are 1.

– If f > (q0 +q1)/2 (in other words, f is closer to q1 than it is to q0), A outputs
1; otherwise it outputs 0.

Notice that if A⊗r’s challenger uses b = 0 (so it only measures the output
registers), this corresponds to each A seeing a challenger with b = 0. In this case,
each b′i with be 1 with probability q0. This means that f will be a (normalized)
Binomial distribution with expected value q0. Analogously, if b = 1, each b′i will
be 1 with probability q1, so f will be a normalized Binomial distribution with
expected value q1. Since q1 − q0 ≥ 1/p(λ), we can use Hoeffding’s inequality to
choose r large enough so that in the b = 0 case, f < (q0 + q1)/2 = q0 + 1/2p(λ)
except with probability 2−λ. Similarly, in the b = 1 case, f > (q0 + q1)/2 =
q1 − 1/2p(λ) except with probably 2−λ. This means A⊗r outputs the correct
answer except with probability 2−λ.

We now describe a first attempt at a quantum lightning scheme:

– SetupQL0 simply samples and outputs a random hash key k. This key will
determine 0,Ver0 as defined below.

– 0 runs A⊗r0 (k), where r is as chosen above and A⊗r0 represents the first
phase of A⊗r.
When A⊗r0 produces a superposition |ψ〉 over inputs x ∈ {0, 1}rm forH⊗r(k, ·)
as well as some private state, 0 applies H⊗r in superposition, and measures
the result to get y ∈ {0, 1}rn.
Finally, 0 outputs the resulting state |E〉 = |ψy〉.

– Ver0 on input a supposed bolt |E〉, first applies H⊗r(k, ·) in superposition to
the input registers to obtain y, which it measures. It saves y, which will be
the serial number for the bolt.
Next, consider two possible tests Test0 and Test1. In Test0, run A⊗r1 — the
second phase of A⊗r — on the |E〉 and measure the result. If the result is 1
(meaning A⊗r guesses that the challenger measured the entire input/output
registers), then abort and reject. Otherwise if the result is 0 (meaning A⊗r



guess that the challenger only measured the output), then it un-computes
A⊗r1 . Note that since we measured the output of A⊗r1 , un-computing does
not necessarily return the bolt to its original state.
Test1 is similar to Test0, except that the input registers x are measured before
running A⊗r1 . This measurement is not a true measurement, but is instead
performed by copying x into some private registers. Moreover, the abort
condition is flipped: if the result of applying A⊗r1 is 0, then abort and reject.
Otherwise un-compute A⊗r1 , and similarly “un-measure” x by un-computing
x from the private registers.
Ver0 chooses a random c, and applies Testc. If the test accepts, then it outputs
the serial number y, indicated that it accepts the bolt.

Correctness. For a valid bolt, Test0 corresponds to the b = 0 challenger, in which
case we know A⊗r1 outputs 0 with near certainty. This means Ver continues,
and when it un-computes, the result will be negligibly close to the original bolt.
Similarly, Test1 corresponds to the b = 1 challenger, in which case A⊗r1 outputs 1
with near certainty. Un-computing returns the bolt to (negligibly close to) its
original state. For a valid bolt, the serial number is always the same. Thus, ,Ver
satisfy the necessary correctness requirements.

Security. Security is more tricky. Suppose instead of applying a random Testc,
Ver0 applied both tests. The intuition is that if Ver accepts, it means that the
two possible runs of A⊗r1 would output different results, which in turn means
that A⊗r1 detected whether or not the input registers were measured. For such
detection to even be possible, it must be the case that the input registers are
in superposition. Then suppose an adversarial storm generates two bolts
|E0〉, |E1〉 that are potentially entangled such that both pass verification with the
same serial number. Then we can measure both states, and the result will (with
reasonable probability) be two distinct pre-images of the same y, representing
a collision. By the assumed collision-resistance of H (and hence H⊗r), this will
means a contradiction.

The problem with the above informal argument is that we do not know how
A⊗r1 will behave on non-valid bolts that did not come from A⊗r0 . In particular,
maybe it passes verification with some small, but non-negligible success probability.
It could be that after passing Test0, the superposition has changed significantly,
and maybe is no longer a superposition over pre-images of y, but instead a single
pre-image. Nonetheless, if the auxiliary state registers are not those generated by
A⊗r0 , it may be that the second test still accepts — for example, it may be that
if A⊗r’s private state contains a particular string, it will always accept; normally
this string would not be present, but the bolt that remains after performing one
of Testc may contain this string. We have to be careful to show that this case
cannot happen, or if it does there is still nonetheless a way to extract a collision.

Toward that end, we only choose a single test at random. We will first show a
weaker form of security, namely that an adversary cannot produce two bolts that
are both accepted with probability close to 1 and have the same serial number.



Then we will show how to modify the scheme so that it is impossible to produce
bolts that are even accepted with small probability.

Consider a bolt where, after measuring H(k, ·), the inputs registers are not
in superposition at all. In this case, the measurement in Test1 is redundant, and
we therefore know that both runs of Testc are the same, except the acceptance
conditions are flipped. Since the choice of test is random, this means that such a
bolt can only pass verification with probability at most 1/2.

More generally, suppose the bolt was in superposition, but most of the weight
was on a single input x0. Precisely, suppose that when measuring the x registers,
x0 is obtained with probability 1− α for some relatively small α. We prove:

Claim. Consider a quantum state |φ〉 and a projective partial measurement on
some of the registers. Let |φx〉 be the state left after performing the measurement
and obtaining x. Suppose that some outcome of the measurement x0 occurs with
probability 1− α. Then ‖|φx0〉 − |φ〉‖ <

√
2α

Proof. First, the |φx〉 are all orthogonal since the measurement was projective.
Let Pr[x] be the probability that the partial measurement obtains x. It is straight-
forward to show that |φ〉 =

∑
y

√
Pr[x]βx|φx〉 for some βx of unit norm. The

overall phase can be taken to be arbitrary, so we can set βx0 = 1. Then we have
〈φx0 |φ〉 =

√
1− α. This means ‖|φx0〉−|φ〉‖2 = 2−2(〈φx0 |φ〉) = 2−2

√
1− α ≤ 2α

for α ∈ [0, 1]. ut

Now, suppose for the bolt that Test0 passes with probability t. Suppose
α ≤ 1/200. Then Test1 can only pass with probability at most 3/2− t. This is
because with probability at least 199/200, the measurement in Test1 yields x0.
Applying Claim 4.2, the result in this case is at most a distance

√
2/200 = 1

10 from
the original bolt. In this case, since the acceptance criteria for Test1 is the opposite
of Test0, the probability Test1 passes is at most 1−t+ 4

10 by Lemma 1. Over all then,
Test1 passes with probability at most (199/200)

(
1− t+ 4

10
)

+ (1/200) ≤ 3
2 − t.

Therefore, since the test is chosen at random, the probability of passing the
test is the average of the two cases, which is at most 3

4 regardless of t. Therefore,
for any candidate pair of bolts |E0〉|E1〉, either:

(1) If the bolts are measured, two different pre-images of the same y, and hence
a collision for H⊗r, will be obtained with probability at least 1/200

(2) The probability that both bolts accept and have the same serial number is
at most 3

4 .

Notice that if |E0〉, |E1〉 are produced by an adversarial storm , then event
(1) can only happen with negligible probability, else we obtain a collision-finding
adversary. Therefore, we have that for any efficient , except with negligible
probability, the probability that both bolts produced by accept and have the
same serial number is at most 3

4 .
In the full scheme, a bolt is simply a tuple of λ bolts produced by 0, and the

serial number is the concatenation of the serial numbers from each constituent
bolt. The above analysis show that for any efficient adversarial storm that



produces two bolt sequences |Eb〉 = (|Eb,1〉, . . . , |Eb,λ〉), the probability that both
sequences completely accept and agree on the serial numbers is, except with
negligible probability, at most

( 3
4
)λ, which is negligible. Thus we obtain a valid

quantum lightning scheme. ut

5 Quantum Money from Obfuscation

In this section, we show that, assuming injective one-way functions exist, applying
indisitnguishability obfuscation to Aaronson and Christiano’s abstract scheme [3]
yields a secure quantum money scheme.

5.1 Obfuscation

Definition 5. A subspace hiding obfuscator (shO) for a field F and dimensions
d0, d1 is a PPT algorithm shO such that:

– Input. shO takes as input the description of a linear subspace S ⊆ Fn of
dimension d ∈ {d0, d1}. For concreteness, we will assume S is given as a
matrix whose rows form a basis for S.

– Output. shO outputs a circuit Ŝ that computes membership in S. Precisely,
let S(x) be the function that decides membership in S. Then

Pr[Ŝ(x) = S(x)∀x : Ŝ ← shO(S)] ≥ 1− negl(n)

– Security. For security, consider the following game between an adversary
and a challenger, indexed by a bit b.
• The adversary submits to the challenger a subspace S0 of dimension d0
• The challenger chooses a random subspace S1 ⊆ Fn of dimension d1 such
that S0 ⊆ S1. It then runs Ŝ ← shO(Sb), and gives Ŝ to the adversary
• The adversary makes a guess b′ for b.

The adversary’s advantage is the the probability b′ = b, minus 1/2. shO is
secure if, all PPT adversaries have negligible advantage.

In the full version [38], we show the following theorem, which demonstrates that
indistinguishability obfuscation can be used to build subspace-hiding obfuscation:

Theorem 6. If injective one-way functions exist, then any indistinguishability
obfuscator, appropriately padded, is also a subspace hiding obfuscator for field F
and dimensions d0, d1, as long as |F|n−d1 is exponential.

5.2 Quantum Money from Obfuscation

Here, we recall Aaronson and Christiano’s [3] construction, when instantiated
with a subspace-hiding obfuscator.



Generating Banknotes. Let F = Zq for some prime q. Let λ be the security
parameter. To generate a banknote, choose n a random even integer that is
sufficiently large; we will choose n later, but it will depend on q and λ. Choose a
random subspace S ⊆ Fn of dimension n/2. Let S⊥ = {x : x · y = 0∀y ∈ S} be
the dual space to S.

Let |$S〉 = 1
|F|n/4

∑
x∈S |x〉. Let P0 = shO(S) and P1 = shO(S⊥). Output

|$S〉, P0, P1 as the quantum money state.

Verifying banknotes. Given a banknote state, first measure the program registers,
obtaining P0, P1. These will be the serial number. Let |$〉 be the remaining
registers. First run P0 in superposition, and measure the output. If P0 outputs 0,
reject. Otherwise continue. Notice that if |$〉 is the honest banknote state |$S〉
and P0 is the obfuscation of S, then P0 will output 1 with certainty.

Next, perform the quantum Fourier transform (QFT) to |$〉. Notice that if
|$〉 = |$S〉, now the state is |$S⊥〉. Next, apply P1 in superposition and measure
the result. In the case of an honest banknote, the result is 1 with certainty. Finally,
perform the inverse QFT to return the state. In the case of an honest banknote,
the state goes back to being exactly |$S〉. The above shows that the scheme is
correct. Next, we argue security:

Theorem 7. If shO is a secure subspace-hiding obfuscator for d0 = n/2 and
some d1 such that both |F|n−d1 and |F|d1−n/2 are exponentially-large, then the
construction above is a secure quantum money scheme.

Corollary 1. If injective one-way functions and iO exist, then quantum money
exists

Proof. We now prove Theorem 7 through a sequence of hybrids

– H0 is the normal security experiment for quantum money. Suppose the
adversary, given a valid banknote, is able to produce two banknotes that pass
verification with probability ε.

– H1: here, we recall that Aaronson and Christiano’s scheme is projective, so
verification is equivalent to projecting onto the valid banknote state. Verifying
two states is equivalent to projecting onto the product of two banknote states.
Therefore, in H1, instead of running verification, the challenger measures
in the basis containing |$S〉 × |$S〉, and accepts if and only if the output is
|$S〉 × |$S〉. The adversary’s success probability is still ε.

– H2: Here we invoke the security of shO to move P0 to a higher-dimensional
space. P0 is moved to a random d1 dimensional space containing S0.
We prove that the adversary’s success probability in H2 is negligibly close to
ε. Suppose not. Then we construct an adversary B that does the following.
B chooses a random d0 = n/2-dimensional space S0. It queries the challenger
on S0, to obtain a program P0. It then obfuscates S⊥0 to obtain P1. B
constructs the quantum state |$S0〉, and gives P0, P1, |$S0〉 to A. A produces
two (potentially entangled) quantum states |$0〉|$1〉. B measures in a basis
containing |$S0〉 ⊗ |$S0〉, and outputs 1 if and only if |$S0〉 ⊗ |$S0〉.



If B is given P0 which obfuscates S0, then A outputs 1 with probability ε,
since it perfectly simulates A’s view in H1. If P0 obfuscates a random space
containing S0, then B simulates H2. By the security of shO, we must have
that B outputs 1 with probability at least ε − negl. Therefore, in H2, A
succeeds with probability ε− negl.

– H3: Here we invoke security of shO to move P1 to a random d1-dimensional
space containing S⊥0 . By an almost identical analysis to he above, we have
that A still succeeds with probability at least ε− negl.

– H4. Here, we change how the subspaces are constructed. First, a random
space T0 of dimension d1 is constructed. Then a random space T1 of dimension
d1 is constructed, subject to T⊥0 ⊆ T1. These spaces are obfuscated using shO
to get programs P0, P1. Aa random n/2-dimensional space S0 is chosen such
that T⊥1 ⊆ S0 ⊆ T0. S0 is used to construct the state |$S0〉, which is given to
A along with P0, P1. Then during verification, the space S0 is used again.
The distribution on spaces is identical to that in H3, to A succeeds in H4
with probability ε− negl.

Since on average over T0, T1, A succeeds with probability ε− negl, there exist
fixed T0, T1, T

⊥
0 ⊆ T1, such that the adversary succeeds for these T0, T1 with

probability at least ε− negl.
We now construct a no-cloning adversary C. C is given a state |$S0〉 for a

random S0 such that T⊥1 ⊆ S0 ⊆ T0, and it tries to clone |$S0〉. To do so, it
constructs obfuscations P0, P1 of T0, T1 using shO, and gives them along with
|$S0〉 to A. C then outputs whatever A outputs. C’s probability of cloning is
exactly the probability A succeeds in H4, which is ε−negl. This gives an instance
of the no-cloning problem. In the full version [38], we prove that the probability of
cloning in this instance is at most 2|F|−n′/2 = 2|F|d1−n/2, which is exponentially
small by the assumptions of the theorem. ut

6 Constructing Quantum Lightning

6.1 Background

Degree-2 Polynomials over Zq. Consider a set A of n degree-2 polynomials over
m variables in Zq for some large prime q. Let fA : Zmq → Znq be the function that
evaluates each of the polynomials in A on its input. We will be interested in the
compressing case, where n < m

As shown by [20, 6], the function fA is not collision resistant when the
coefficients of the polynomials are random. Here, we recreate the proof, and also
discuss the multi-collision resistance of the function.

To find a collision for fA, choose a random∆ ∈ {0, 1}m. We will find a collision
of the form x,x+∆. The condition that x,x+∆ collide means P (x+∆)−P (x) = 0
for all polynomials in A. Now, since P has degree 2, all the order-2 terms in x
in this difference will cancel out, leaving only terms that are linear in x (and
potentially quadratic in ∆). This gives us a system of linear equations over x,



which we can solve provided the equations are consistent. As shown in [6], these
equations are consistent with overwhelming probability provided n ≤ m.

This attack can be generalized to find k + 1 colliding inputs. Choose random
∆1, . . . ,∆k. We will compute an x such that x,x +∆1, . . . ,x +∆k form k + 1
colliding points. Each ∆j generates a system of n equations for x as described
above. Let B = B∆1,...,∆k

be the matrix consisting of all the rows of B∆j
as

j varies. As long as B is full rank, a solution for x is guaranteed. Again, B
will be full rank with overwhelming probability, provided m ≥ kn. However, if
m� kn, this procedure will fail, and it therefore appears reasonable to assume
the multi-collision resistance of such functions.

Using the above, we can even generate superpositions over k + 1 inputs such
that all the inputs map to the same output. Consider the following procedure:

– Generate the uniform superposition |φ0〉 ∝
∑
∆1,...,∆k

|∆1, . . . ,∆k〉
– Write ∆ = (∆1, . . . ,∆k) In superposition, run the computation above that

maps ∆ to the affine space S∆ such that, for all x ∈ S, fA(x) = fA(x +∆j)
for all j. This will be an affine space of dimension m−nk with overwhelming
probability. Then construct a uniform superposition of elements in S∆. The
resulting state is then: |φ1〉 ∝

∑
∆

1√
|S∆|

∑
x∈S∆

|∆,x〉
– Next, in superposition, compute fA(x), and measure the result to get a string

y. The resulting state is |φy〉 ∝
∑

∆,x∈S∆:fA(x)=y
1√
|S∆|
|x,∆〉

– Finally, in superposition, map (x, ∆1, . . . ,∆k) to (x,x + ∆1, . . . ,x + ∆k).
The resulting state is |ψy〉 ∝

∑
∆,x∈S∆:fA(x)=y

1
|S∆| |x,x +∆1, . . . 〉

We note that the support of this state is all vectors (x0, . . . ,xk) such that
fA(xi) = y for all i ∈ [0, k]. Moreover, for all but a negligible fraction, the
weight |S∆| is the same, and so the weights for these components are the same.
Even more, the total weight of the other points is negligible. Therefore, the
this state is negligibly close to the state

∑
x0,...,xk:fA(xi)=y∀i |x0, . . . ,xk〉 =(∑

x:fA(x)=y |x〉
)⊗(k+1)

∝ |ψ′y〉⊗(k+1), where |ψ′y〉 ∝
∑

x:fA(x)=y |x〉.

Linear Functions over Rank-Constrained Matrices. Here, we consider a related
problem. Consider a set of n linear functions A over rank-d matrices in Zm×mq .
Since q is large, a random rank-d matrix in Zm×mq will have it’s first d columns
span the entire column space. Therefore, most rank constrained matrices can be
written as (A A ·B) for a m× d matrix A and a d× (m− d) matrix B.

Let fA : Zm2

q → Znq be the function that evaluates each of the functions in A
on its input. We can therefore think of fA as a degree-2 polynomial over A,B.
Note, however, that in this case, the function is bipartite: it can be divided into
two sets of variables (A and B) such that it is linear in each set. This means we
can easily invert the function by choosing an arbitrary selection for one of the
sets of variables, and then solving for the other.

Linear Functions over Rank-Constrained Symmetric Matrices. By instead con-
sidering only symmetric matrices, we essentially become equivalent to degree-2



polynomials. In particular, A · AT for A ∈ Zm×dq is a symmetric rank-d ma-
trix. Moreover, any degree-2 polynomial over Zmq can be represented as a linear
polynomial over rank-1 symmetric matrices by tensoring the input with itself.

Note, however, that since Zq is not a closed field, in general we cannot
decompose any symmetric rank-d matrix into A ·AT (though we can over the
closure). Therefore, linear functions over rank-constrained symmetric matrices
can be seen as a slightly relaxed version of the degree-2 polynomials discussed
above. In particular it is straightforward to generalize the algorithm for generating
superpositions of colliding inputs to generate uniform superpositions of low-rank
matrices that collide.

6.2 Hardness Assumption
Our assumption will have parameters n,m, q, d, e, k, to be described in the
following discussion. Let D be the set of symmetric m × m matrices over Zq
whose rank is at most d. We will alternately think of D as matrices, as well as
vectors by writing out all of the

(
m+1

2
)
entries on and above the diagonal.

Let A be a set of n linear functions over D, which we will think of as being n
linear functions over

(
m+1

2
)
variables. Consider the function fA : D → Znq given

by evaluating each linear function in A.
As discussed above, we could imagine assuming that fA is multi-collision

resistant for a random set of linear functions A. However, in order for our ultimate
bolt verification procedure to work, we will need A to have a special form.
A is sampled as follows. Let R ∈ Ze×mq be chosen at random. Consider the

set of symmetric matrices A ∈ Zm×mq such that R ·A ·RT = 0. This is a linear
subspace of dimension

(
m+1

2
)
−
(
e+1

2
)
(note that since B is symmetric, R ·A ·RT

is guaranteed to be symmetric, so we only get
(
e+1

2
)
equations). We can think

of each A as represented by its
(
m+1

2
)
upper-triangular entries, which gives

us an equation over
(
m+1

2
)
variables. Let A be a basis for this space of linear

functions. Thus, we set n =
(
m+1

2
)
−
(
e+1

2
)
. Note that we will not keep R secret.

Rank d symmetric matrices in Zm×mq have
(
d+1

2
)

+ d× (m− d) = d×m−
(
d
2
)

degrees of freedom. Therefore, the function fA will be compressing provided that
d×m−

(
d
2
)
> n =

(
m+1

2
)
−
(
e+1

2
)
.

By choosing fA in this way, we provide a “trapdoor” R that will be used for
verifying bolts. This trapdoor is a rank-e matrix in the kernel of fA. If e < d,
this would allow us to compute many colliding inputs, as, for any rank-1 S, the
whole affine space S + αR has rank at most e + 1 ≤ d and maps to the same
value. However, if we choose e > d, R does not appear to let us find collisions.

Our Assumption. We now make the following hardness assumption. We say a
hash function f is k-multi-collision resistant (k-MCR) if it is computationally
infeasible to find k colliding inputs.

Assumption 8 There exists some functions n, d, e, k inm such that n =
(
m+1

2
)
−(

e+1
2
)
< d×m−

(
d
2
)
, kn ≤ d×m−

(
d
2
)
< (2k + 1)n, and e > d, such that fA as

sampled above is (2k + 2)-MCR, even if R is given to the adversary.



For example, we can choose e, d such that m = e + d − 1, in which case
n = d×m−

(
d
2
)
− e. By choosing e ≈ d, we have d×m−

(
d
2
)
� 3n, so we can

set k to be 1. We therefore assume that it is computationally infeasible to find 4
colliding inputs to fA.

We stress that this assumption is highly speculative and untested. In the full
version [38], we discuss in more depth possible attacks on the assumption, as well
as weakened versions that are still sufficient for our purposes.

6.3 Quantum Lightning

We now describe our quantum lightning construction.
Parameters. Our scheme will be parameterized by integers n,m, q, d, e, k.
Setup. To set up the quantum lightning scheme, simply sample A,R as above,
and output A,R.
Bolt Generation. We generate a bolt |Ey〉 as a superposition of k + 1 colliding
inputs, following the procedure described above. The result is statistically close to
|E′y〉

⊗(k+1) where |E′y〉 is the equally-weighted superposition over rank-d symmetric
matrices such that applying fA gives y. We will call |E′y〉 a mini-bolt
Verifying a bolt. Full verification of a bolt will run a mini verification on each
of the k+ 1 mini-bolts. Each mini verification will output an element in Znq ∪{⊥}.
Full verification will accept and output y only if each mini verification accepts
and outputs the same string y. We now describe the mini verification.

Roughly, our goal is to be able to distinguish |E′y〉 for some y from any
singleton state. We will output y in this case, and for any other state, reject.

Mini verification on a state |φ〉 will proceed in two steps. Recall that superpo-
sition is over the upper triangular portion of m×m matrices. We first apply, in
superposition, the procedure that flips some external bit if the input does not
correspond to a matrix of rank at most d. The bit is initially set to 0. Then we
measure this bit, and abort if it is 1. Notice that for the honest |E′y〉 state, this
will pass with certainty and not affect the state.

In the next step, we apply the procedure that evaluates fA in superposition,
and flips some external bit if the result is not y. The bit is initially set to 0. Then
we measure this bit, and abort if it is 1. Notice that for the honest |E′y〉 state,
this will pass with certainty and not affect the state.

At this point, if we have not aborted, our state is a superposition of pre-images
of fA which correspond to symmetric rank-d matrices. If our input was |E′y〉, the
state is the uniform superposition over such pre-images.

Next, we verify that the state is in superposition and not a singleton state.
To do so, we perform the quantum Fourier transform (QFT) to the state. We
now analyze what the QFT does to |Ey〉.

The support of |E′y〉 is the intersection of sets S, T where S is the set of all
pre-images of y (not necessarily rank constrained) and T is the set of all rank-d
matrices. We analyze the Fourier transform applied to each set separately.

Recall that the Fourier transform takes the uniform superposition over the
kernel of a matrix to the uniform superposition over its row-span. Therefore, the



superposition over pre-images of 0 is just the uniform superposition of symmetric
matrices A such that R·A·RT = 0 (or technically, just the upper triangular part).
The fact that the superposition lies in a coset of the kernel simply introduces a
phase term to each element in the superposition.

In the full version [38], we prove the following claim:

Claim. The Fourier transform of the uniform superposition over upper-triangular
parts of rank d symmetric matrices is negligibly close to the uniform superposition
over upper triangular parts of rank m− d symmetric matrices

Putting this together, since multiplication in the primal domain becomes
convolution in the Fourier domain, after we apply the Fourier transform to our
mini bolt state, the result is the the superposition of upper triangular parts of
matrices A + B where B is symmetric and rank m− d and A is symmetric such
that R ·A ·RT = 0. The superposition is uniform, though there will be a phase
factor associated with each element

We therefore compute R · (A + B) ·RT = R ·B ·RT and compute the rank.
Notice that the rank is at most m− d for honest bolt states. Therefore, if the
rank is indeed at most m− d we will accept, otherwise we will reject. Next, we
un-compute R · (A + B) ·RT , and undo the Fourier transform. The analysis
above shows that for an honest state |Ey〉, we will accept with overwhelming
probability, and the final both state will be negligibly close to the original bolt.

Note that, in contrast, if the bolt state is a singleton state, then the Fourier
transform will result in a uniform superposition over all symmetric matrices; when
we applyR · (·) ·RT , the result will have rank e with overwhelming probability.
So we set m− d < e to have an almost perfect distinguishing advantage.

Security. We now prove security. Consider a quantum adversary A that is given
A and tries to construct two (possibly entangled) bolts |E0〉, |E1〉. Assume toward
contradiction that with non-negligible probability, verification accepts on both
bolts, and outputs the same serial number y.

Conditioned on acceptance, by the above arguments the resulting mini bolts
must all be far from singletons when we trace out the other bolts. This means
that if we measure the mini-bolts, the resulting superpositions will have high
min-entropy. Therefore, we measure all 2k + 2 mini bolts, and we obtain 2k + 2
colliding inputs that are distinct except with negligible probability. This violates
our hardness assumption.

Theorem 9. If Assumption 8 holds, then the scheme above is a secure quantum
lightning scheme.

In the full version [38], we show how to modify our construction to get a
collapse-non-binding hash function.
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