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Abstract. Non-malleable codes (NMCs), introduced by Dziembowski,
Pietrzak and Wichs [20], provide a useful message integrity guarantee in
situations where traditional error-correction (and even error-detection) is
impossible; for example, when the attacker can completely overwrite the
encoded message. NMCs have emerged as a fundamental object at the
intersection of coding theory and cryptography. In particular, progress in
the study of non-malleable codes and the related notion of non-malleable
extractors has led to new insights and progress on even more fundamental
problems like the construction of multi-source randomness extractors. A
large body of the recent work has focused on various constructions of
non-malleable codes in the split-state model. Many variants of NMCs
have been introduced in the literature, e.g., strong NMCs, super strong
NMCs and continuous NMCs. The most general, and hence also the most
useful notion among these is that of continuous non-malleable codes, that
allows for continuous tampering by the adversary. We present the first
efficient information-theoretically secure continuously non-malleable code
in the constant split-state model. We believe that our main technical
result could be of independent interest and some of the ideas could in
future be used to make progress on other related questions.

1 Introduction

Non-malleable codes, introduced by Dziembowski, Pietrzak and Wichs [20],
provide a useful message integrity guarantee in situations where traditional
error-correction (and even error-detection) is impossible; for example, when the
attacker can completely overwrite the encoded message. Non-malleable codes
have emerged as a fundamental object at the intersection of coding theory and
cryptography.

Informally, given a tampering family F , a non-malleable code (Enc,Dec)
against F encodes a given message m into a codeword c← Enc(m) in a way that,
if the adversary modifies c to c′ = f(c) for some f ∈ F , then the the message
m′ = Dec(c′) is either the original message m, or a completely “unrelated value”.
? This research was further partially funded by the Singapore Ministry of Education
and the National Research Foundation under grant R-710-000-012-135.



Formally, we require that if m′ 6= m, then m′ can be simulated using just
the tampering function f , but without knowing anything about the tampered
codeword c′.

As has been shown by the recent progress [20,27,19,5,23,21,13,14,12,1,6,4,3,11]
[8,9,2,7,26], non-malleable codes aim to handle a much larger class of tampering
functions F than traditional error-correcting or error-detecting codes, at the
expense of potentially allowing the attacker to replace a given message m by
an unrelated message m′. Non-malleable codes are useful in situations where
changing m to an unrelated m′ is not useful for the attacker (for example, when
m is the secret key for a signature scheme.)

Continuous Non-malleable Codes. It is clearly realistically possible that the
attacker repeatedly tampers with the device and observes the outputs. The
definition in [20] allows the adversary to tamper the codeword only once. We call
this one-shot tampering. Faust et al.[21] consider a stronger model where the
adversary can iteratively submit tampering functions fi and learnmi = Dec(fi(c)).
We call this the continuous tampering model. This stronger security notion is
needed in many settings, for instance when using non-malleable codes to make
tamper resilient computations on von Neumann architectures [22]. As mentioned
in [25], non-malleable codes can provide protection against these kind of attacks
if the device is allowed to freshly re-encode its state after each invocation to
make sure that the tampering is applied to a fresh codeword at each step. After
each execution the entire content of the memory is erased. While such perfect
erasures may be feasible in some settings, they are rather problematic in the
presence of tampering. Due to this reason, Faust et al. [21] introduced an even
stronger notion of non-malleable codes called continuous non-malleable codes
where security is achieved against continuous tampering of a single codeword
without re-encoding. Some additional restrictions are, however, necessary in the
continuous tampering model. If the adversary was given an unlimited budget of
tampering queries, then, given that the class of tampering functions is sufficiently
expressive (e.g. it allows to overwrite single bits of the codeword), the adversary
can efficiently learn the entire message just by observing whether tampering
queries leave the codeword unmodified or lead to decoding errors, see e.g. [24].

To overcome this general issue, [21] assume a self-destruct mechanism which
is triggered by decoding errors. In particular, once the decoder outputs a special
symbol ⊥ the device self-destructs and the adversary loses access to his tampering
oracle. This model still allows an adversary many tamper attempts, as long as his
attack remains covert. Jafargholi and Wichs [25] considered the additional aspect
of whether tampering is persistent in the sense that the tampering is always applied
to the current version of the tampered codeword, and all previous versions of the
codeword are lost. The alternative definition considers non-persistent tampering
where the device resets after each tampering, and the tampering always occurs
on the original codeword. In this work, we will exclusively focus on continuous
non-malleable codes in the non-persistent self-destruct model. We shorthand such
codes by sdCNMC. Note that in the split-state model discussed below, persistent
tampering can be simulated by non-persistent tampering by using the tampering

2



function which first reproduces previous tampering and then applies the new
tampering function. Hence non-persistent tampering is a strictly stronger model
in the split-state model.

Split-State Model. Although any kind of non-malleable codes do not exist if the
family of “tampering functions” F is completely unrestricted,4 they are known
to exist for many large classes of tampering families F .

In [20] the authors considered one such natural family of tampering functions.
They gave a construction of an efficient code which is non-malleable with respect
to independent, bit-wise tampering. Later works [27,19,5,21,13,12,14,6,4,1,3,26]
provided efficient constructions in a stronger model called the t-split state model
where the codeword is split into t parts called states, which can each be tampered
arbitrarily but independently of the other states. If the codeword has length n,
then the result of [20] can be seen as a result for the n-state model. The physical
motivation for this model is that one might place the different states on physically
separated memories and hope this makes it impossible to tamper with one part
in a way which depends on the value of the other part. Clearly, one would like t
to be as small as possible.

While some of the above-mentioned results achieve security only against
computationally bounded adversaries, we focus on security in the information-
theoretic setting, i.e., security against unbounded adversaries. The known results
in the information-theoretic setting can be summarized as follows. First, [20]
showed the existence of (strong) non-malleable codes, and this result was improved
by [13] who showed that the optimal rate of these codes is 1/2. Faust et al. [21]
showed the impossibility of continuous non-malleable codes against non-persistent
2-split-state tampering. Later [25] showed that continuous non-malleable codes
exist in the split-state model if the tampering is persistent, and [7] gave an
efficient construction of such codes.

There have been a series of recent results culminating in constructions of
efficient non-malleable codes in the split-state model [19,5,12,4,11,26].

Continuous Non-Malleable Codes in the Split-State Model and Our Result Faust
et al. [21] constructed an sdCNMC in the 2-state model which is secure against
computationally bounded adversaries. A recent result [7] gave a construction
of non-malleable codes secure against persistent continuous tampering. It was
shown in [21] that it is impossible to construct an information theoretic sdCNMC
for the much more interesting 2-state model with non-persistent tampering. This
leaves the following question open.

Question 1. Does there exist a code that is non-malleable in the t-split non-
persistent continuous tampering model for some constant t > 2?

4 In particular, F should not include “re-encoding functions” f(c) = Enc(f ′(Dec(c)))
for any non-trivial function f ′, as m′ = Dec(f(Enc(m))) = f ′(m) is obviously related
to m.
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In [16] an sdCNMC was constructed in the bit-wise tampering model, which
can be seen as an n-state model. However, very little progress has been made
towards resolving Question 1. The only result that achieves some sort of non-
malleable codes secure against persistent continuous tampering is the result by
Chattopadhyay, Goyal, and Li [11]. They achieve this by constructing a so-called
many-many non-malleable code in the 2-split state model. Their construction
achieves non-malleability as long as the number of rounds of tampering is at
most nγ for some constant γ < 1, where n is the length of the codeword. Their
result has a natural barrier and it is unlikely that their ideas can be used to
achieve a construction that allows more than O(n) rounds of tampering. This is
both because their construction does not allow self-destruct and is for the 2-split
state model, and it is known [21,7] that continuous non-malleable codes with
ω(n) rounds of tampering is impossible both for the two split-state model and
for the constant split-state model that does not allow self-destruct.

We construct an information-theoretic sdCNMC for the 8-state model.

Theorem 1 (Informal). Let k be the security parameter. There exists an
efficient, explicit construction of non-persistent self-destruct continuous non-
malleable codes which encodes messages of length k bits into 8 states, each of size
O(k log k). The code tolerates 2Ω(k) tampering attempts and is secure except with
probability 2−Ω(k).

Overview of the Construction and Techniques In this section, we will provide
an overview of our construction and the main ideas for its security proof. Our
construction combines two Hadamard extractors with a 3-source non-malleable
extractor. The construction is given as follows.

Our Construction Let K be a finite field of size 2n, which is an extension field
F of size 2n/` for an appropriately chosen divisor ` of n. Our construction uses
the following:

– A three source non-malleable extractor nmExt : K3 → {0, 1}3k with k =
Θ(n/ logn), where the min-entropy for each source is required to be at least
(1− δ)n, for some constant δ,

– A 2-source Hadamard extractor 〈·, ·〉 : (K3)× (K3)→ K, and
– A 2-source Hadamard extractor 〈·, ·〉 : (F3`)× (F3`)→ F.

Let ‖ denote concatenation of strings. We define

nmExt′ : ({0, 1}n)3 → {0, 1}3k ∪ {⊥}

as nmExt′(x1, x2, x3) = nmExt(x1, x2, x3) if nmExt(x1, x2, x3) = 02k‖y for some
y ∈ {0, 1}k, and ⊥, otherwise.

Encoding: Our encoding procedure takes as input a message m ∈ {0, 1}k, and
does the following.
– SampleX = (X1, X2, X3) from (K\{0})3 uniformly such that nmExt(X) =

02k‖m.
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– Sample S = (S1, S2, S3) from (K \ {0})3 uniformly such that nmExt(S) =
02k‖r for some r in {0, 1}k.

– V = 〈X,S〉K.
– W = 〈X,S〉F.
– Output the eight parts (X1, X2, X3, S1, S2, S3, V,W ).

Decoding: The decoding procedure is canonical, i.e., on input (x, s, v, w), we
first check if x and s pass the two inner product checks and are in the correct
domains (i.e. all components non-zero), we try to decode x and s and if
neither reports an error we return the decoded value of x.

The adversary, in each round, will choose some functions, f1, f2, f3, g1, g2, g3, h1 :
K→ K, h2 : F→ F and will apply these functions to the eight respective parts.
Let f(X) denote (f1(X1), f2(X2), f3(X3)) and g(S) denote (g1(S1), g2(S2), g3(S3))
In order to prove (continuous) non-malleability of the construction, we need
to show that even if we collect all the messages obtained after decoding the
tampered codewords in multiple rounds excluding any round where all the chosen
functions are identity functions (in this case decoding the tampered codeword
yields the original message), this should not reveal any useful information about
the original message. To formalize this, we define the tampering experiment to
output a special symbol same whenever all functions are identity functions. Then,
it is required to prove that for any two messages, the output distributions of
the corresponding tampering experiments are statistically close to each other.
In fact, in this work, we consider a stronger notion of continuous non-malleable
codes called super-strong continuous non-malleable codes in which every time
the adversary tampers (c→ c′), c′ 6= c, and c′ decodes to a valid message, the
adversary will learn the whole tampered codeword c′.

Proof Ideas Before looking at the ideas behind the security of our construction,
it is instructive to revisit the reason behind the impossibility of constructions
for 2-state information-theoretic continuous non-malleable codes [21]. The main
idea behind the attack given in [21] was to find a triple `, r0, r1 such that
Dec(`, r0),Dec(`, r1) 6= ⊥. Given `, r0 and r1, the attack proceeds by overwriting
the first state with `, while the second state is overwritten by rb where b is the
first bit of the second state, thereby revealing one bit of information. Repeating
this idea for different bits of the codeword, after a linear number of rounds, the
adversary will recover the entire codeword.

In our construction, if the adversary decides to preserve a significant amount
of entropy of the original codeword when tampering, i.e., the tampering function
is close to being bijective, then the non-malleability of nmExt should be sufficient
to achieve not just non-malleability but error detection: nmExt(f(X)) is close to
being uniform and independent of nmExt(X) by the non-malleability of nmExt,
and hence the tampered codeword decodes to ⊥ with high probability. However,
if the adversary decides to carry only a very small amount of entropy into the
tampered codeword, there is nothing preventing him from learning some small
amount of information as in the attack by [21] described above. It is not possible
to reliably detect such low entropy tampering. But we can show that its probability
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of learning information is always associated with a probability of being detected.
Understanding this relation is at the core of the proof.

As mentioned above, the tampering experiment for our code is of the super-
strong type, i.e., every time the adversary tampers (C → C ′), C ′ 6= C, and C ′
decodes to a valid message, the adversary will learn the whole tampered codeword
C ′. Notice that given

C ′ = (f1(X1), f2(X2), f3(X3), g1(S1), g2(S2), g3(S3), h1(V ), h2(W ))

all the adversary learns is that

– Xi ∈ Xi for i = 1, 2, 3
– Si ∈ Si for i = 1, 2, 3
– V ∈ V
– W ∈ W,

where X×S×V×W is the preimage of c′ for the function (f1, f2, f3, g1, g2, g3, h1, h2).
In round r of the tampering experiment the adversary will learn that the code-
word belongs to some domain X (r) × S(r) × V(r) ×W(r), and will progressively
try to make these sets as small as possible. In the [21] attack described above,
the domain size is reduced by a factor of two each time, eventually revealing the
entire codeword. As long as we can make sure that the domain doesn’t become
too small, we will be able to argue that if the adversary wants to learn more
information (make the set smaller) there is a significant risk of getting detected.
We sketch below the idea for showing this for the first round r = 1. The argument
for the following rounds follows by a slightly tricky inductive argument.

Depending on the functions f1, f2, f3, g1, g2, g3, we partition each of X1,X2,X3,
S1,S2,S3 which induces a partition on the whole domain. For instance X1 is
partitioned into `+ 1 parts for some parameter ` = ω(1), as follows.

– X1,0 is the part where the function f1 is identity, i.e., {x ∈ X1 : f1(x) = x}.
– For i = 1, . . . , `, X1,i is defined such that f1 has between 2n(i−1)/` and 2n·i/`

preimages.

This implies that for each partition, the entropy of X1 conditioned on f1(X1) is
nearly fixed (upto an additive term n/` = o(n)). The other sets X2,X3,S1,S2,S3
are partitioned similarly. Each partition is of the form

X1,i1 ,X2,i2 ,X3,i3 ,S1,j1 ,S2,j2 ,S3,j3 ,V,W .

Type−1 corresponds to i1 = i2 = i3 = j1 = j2 = j3 = 0.
Type−2 contains all partitions for which the following is true: (f(X) 6= X or

g(S) 6= S) and (f(X), g(S)) contains almost full information about (X,S),
i.e., all tampering functions are close to bijective or identity, but at least one
tampering function is not the identity.

Type−3 contains all partitions which do not fall into any of above classes (in
particular it means that (f(X), g(S)) lost quite a bit information about the
original (X,S)), but (f(X), g(S)) still carries a substantial/medium amount
of information/entropy about (X,S).
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Type−4 contains all partitions which do not fall into any of above classes but
only at least one of the (fi(Xi), gj(Sj)) still carries some entropy.

Type−5 contains the partition where (f(X), g(S)) is close to constant, i.e.,
i1 = i2 = i3 = j1 = j2 = j3 = `.

Analysis of the tampering for each type of partition. In this section, we often
implicitly assume that X is independent of S in order to simplify the informal
argument, even though there is some limited dependence introduced by the fact
that 〈X,S〉K ∈ V, etc. The full proofs shows how to handle the dependence. We
show that when the codeword c falls into either class 2, 3 or 4, the tampering
will be detected with probability 1− ε for a negligible ε:

In Type−2: On this part of the domain the adversary will attempt to apply
close to bijective tampering functions. Either this part of the domain will
have negligible size, or the adversary will be detected by the check for nmExt′.

In Type−3: We will argue that the check 〈f(X), g(S)〉F = h2(W ) will fail. To
see this, notice that the adversary applied non-bijective tampering, and the
vectors f(X), g(S) have a substantial amount of entropy. The argument
below follows from the strong extraction properties of the inner-product
extractor: The vectors f(X) and g(S) do not carry enough information
about X,S, i.e., one of H̃∞(X|f(X)) or H̃∞(S|g(S)) is not too small. Thus
〈X,S〉F and 〈f(X), g(S)〉F are almost independent. However f(X), g(S) have
enough entropy to keep 〈f(X), g(S)〉F uniform. The adversary will not be
able to guess 〈f(X), g(S)〉F even given 〈X,S〉F. Thus he will fail at the check
h2(〈X,S〉F) = 〈f(X), g(S)〉F and this tampering will be detected.

In Type−4: The reasoning is quite similar to Type−3, but we use the check on
〈f(X), g(S)〉K = h1(V ). The adversary applied far-from-bijective tampering,
and the vectors f(X), g(S) still have some small amount of entropy. The
argument below follows from the strong extraction properties of the inner
product extractor: The vectors f(X) and g(S) only carry a very small
amount of information about X,S. Thus 〈X,S〉K and 〈f(X), g(S)〉K are
almost independent. However f(X), g(S) still have enough entropy to keep
〈f(X), g(S)〉K unpredictable (not uniform, but with substantial min-entropy).
The adversary will not be able to guess 〈f(X), g(S)〉K even given 〈X,S〉K,
thus he will fail at the check h1(〈X,S〉K) = 〈f(X), g(S)〉K and this tampering
will be detected.

This leads to the conclusion that the only way that the adversary can learn
something and survive (i.e. not get detected) is if the original codeword falls into
Type−1 or Type−5. If the codeword was in Type−1, the tampering experiment
will output same (unless one of the inner product checks fails and the tampered
codeword decodes to ⊥). If the codeword was in Type−5, then the output will be
some codeword c′, and the adversary will learn whether the codeword is Type−1
or Type−5 with respect to the choice of functions f and g. Moreover, on Type−5
there might be close-to-constant but non-constant functions (which, if he does
not get detected, potentially provide additional knowledge to the adversary).
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Even if the adversary is in a Type−1 or Type−5 partition and succeeds to
go to the next round without causing self-destruct, this is not a reason to worry
as long as the size of the domain remains large enough. On the other hand, if
the adversary can manage to land himself in a small enough domain, this means
that the adversary already obtained a lot of information about the codeword,
and might be able to recover the message. However, if such small domains are
few and scarce, then the probability that the adversary lands in such a domain is
quite small. The main cause of concern is if there are many such small domains
that cover a significant fraction of the ambient space. In the following, we show
that this is not possible.

Type−1 or Type−5: Notice that the adversary is in a Type−1 or a Type−5
partition if either each of i1, i2, i3, j1, j2, j3 is 0, or each is equal to `. Since the
indices i1, i2, i3, j1, j2, j3 are independently distributed random variables, a
simple application of the Cauchy-Schwarz inequality shows that √p1 +√p5 ≤
1 , where p1 is the probability of being in a Type−1 partition, and p5 is the
probability of being a Type−5 partition.

Type−5: Just like in the case of Type−4 partitions, we have that the vectors
f(X) and g(S) only carry a very small amount of information about X,S.
Thus 〈X,S〉K and 〈f(X), g(S)〉K are nearly independent. The Type−5 par-
tition corresponds to the domain where each of f1, f2, f3, g1, g2, g3 is close
to a constant and can be further subdivided such that for each of these
subpartitions, each of f1, f2, f3, g1, g2, g3 output a fixed value. Intuitively
speaking, if say, each of these functions takes two different values then there
are potentially 64 different values of 〈f(X), g(S)〉K (although some of these
64 values could be the same), and so the function h1 cannot guess this value
with sufficiently large probability, unless all the inner products magically
become equal. Formally, we show in this case that p7/8

5,1 + · · ·+ p
7/8
5,d ≤ p

7/8
5 ,

where p5,1, . . . , p5,d are the respective probabilities of being in various sub-
partitions of Type−5 such that h1(〈X,S〉K) = 〈f(X), g(S)〉K holds within
these subpartitions.

Together, these results imply that

q
7/8
1 + q

7/8
2 + · · ·+ q

7/8
d+1 ≤ 1 , (1)

where q1, . . . , qd+1 is a renaming of p1, p5,1, . . . , p5,d. A simple application of
Hölder’s inequality implies that for any ε ≥ 0,∑

qi≤ε

qi =
∑
qi≤ε

q
7/8
i · q1/8

i ≤
∑
qi≤ε

q
7/8
i · ε1/8 ≤ ε1/8 .

For an appropriately chosen ε, this implies that it is not possible that there are
many small domains on which the decoder does not self-destruct, and their union
is large. This concludes the intuitive overview of our proof.
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Conclusions and Open Questions We give a construction of a 2−Ω(k)-non-
malleable code from k bit messages to O(k log k) bit codewords in the 8-split
state model secure against continuous tampering. The main building block of our
construction is a non-malleable 3-source extractor construction from [26], and
the Hadamard 2-source extractor.

Prior results achieved continuous non-malleability only for a sublinear number
of rounds [11]. The main reason for difficulty in achieving non-malleable codes
against continuous tampering is that the adversary can potentially obtain useful
information in each round, and even if one bit of information about the codeword
is obtained in each round, this is already catastrophic and does not allow non-
malleability beyond a linear number of rounds.

Our idea of proving that our construction achieves non-malleability for a
large number of rounds is that we ensure that whenever the adversary tampers
to gain useful information about the codeword, there is a risk of a decoding error
resulting in self-destruct. Central to our proof strategy is what we believe a very
novel technique where we obtained and used an inequality of the form (1) to
bound the statistical distance between two random experiments. In particular,
our main technical result in Theorem 5 where we bound the statistical distance
between two random variables by (ρq )c + ε, where q is proportional to the size of
the domain, c is a constant, and ρ, ε are appropriately chosen parameters, might
seem very unusual, but appears naturally in our proof. This, we believe, might
be of independent interest.

The following are natural questions left open by our work.

1. Improve the rate of our code.
2. Improve the number of split states to a number smaller than 8.

The first of these questions can be resolved immediately by a non-malleable
extractor with parameters (output length) better than the one given in [26]. As
for the second question, our construction has a natural barrier and the number
of states can likely not be improved by any simple modification. However, we
hope that our techniques can lead to new insights that might help resolve this
question.

Lastly, in the recent years, progress related to non-malleable codes has led to
useful ideas for solving even more fundamental problems like constructing better
two-source or multi-source extractors. We hope that our construction and/or
techniques can find other similar applications.

2 Preliminaries

All logarithms are to the base 2. For any function h : X → Y, we define
h−1(y) := {x ∈ X : h(x) = y}. For a set S, we let US denote the uniform
distribution over S. For an integer m ∈ N, we let Um denote the uniform
distribution over {0, 1}m. We denote two independent bitstrings of length m by
Um, U

′
m. For a distribution or random variable X we write x ← X to denote

the operation of sampling a random x according to X. For a set S, we write
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s← S as shorthand for s← US . For a random variable Z, f(Z)|Z∈C denotes the
distribution f(Z) conditioned on the event that Z ∈ C.

2.1 Entropy and Statistical Distance

Themin-entropy of a random variableX is defined as H∞(X) def= − log(maxx Pr[X =
x]). We say that X is an (n, k)-source if X ∈ {0, 1}n and H∞(X) ≥ k. For
X ∈ {0, 1}n, we define the entropy rate of X to be H∞(X)/n. We also define
average (aka conditional) min-entropy of a random variable X conditioned on
another random variable Z as

H̃∞(X|Z) def= − log
(
Ez←Z

[
max
x

Pr[X = x|Z = z]
])

= − log
(
Ez←Z

[
2−H∞(X|Z=z)

])
where Ez←Z denotes the expected value over z ← Z. We have the following
lemma.

Lemma 1 ([18]). Let (X,W ) be some joint distribution. Then,

– For any s > 0, Prw←W [H∞(X|W = w) ≥ H̃∞(X|W )− s] ≥ 1− 2−s.
– If Z has at most 2` possible values, then H̃∞(X|(W,Z)) ≥ H̃∞(X|W )− `.

Lemma 2. Let Z be distributed over a set Z and let h be an arbitrary function.
If |h−1(h(z)) ∩ Z| ≤ m then H∞(h(Z)) ≥ log |Z|m .

Proof. Since for any h(z), for z ∈ Z, the number of z′ ∈ Z that maps to h(z)
is at most m, we get that the number of distinct h(z) is ≥ |Z|

|h−1(h(z))∩Z| ≥
|Z|
m .

Thus, H∞(h(Z)) ≥ log |Z|m . ut

The statistical distance between two random variables W and Z distributed over
some set S is

∆(W ;Z) := max
T⊆S

(|W (T )− Z(T )|) = 1
2
∑
s∈S
|W (s)− Z(s)|.

Note that ∆(W ;Z) = maxD(Pr[D(W ) = 1] − Pr[D(Z) = 1]), where D is a
probabilistic function. We sayW is ε-close to Z, denotedW ≈ε Z, if∆(W ;Z) ≤ ε.
We write ∆(W ;Z|Y ) as shorthand for ∆((W,Y ); (Z, Y )). The following is folklore,
and is easy to see.

Lemma 3. For any two random variables X,Y , and any randomized function
f , we have that ∆(f(X); f(Y )) ≤ ∆(X;Y ).
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2.2 Extractors

An extractor [28] can be used to extract uniform randomness out of a weakly-
random value which is only assumed to have sufficient min-entropy. Our definition
follows that of [18], which is defined in terms of conditional min-entropy.

Definition 1 (Extractors). An efficient function Ext : {0, 1}n × {0, 1}d →
{0, 1}m is an (average-case, strong) (k, ε)-extractor, if for all X,Z such that X
is distributed over {0, 1}n and H̃∞(X|Z) ≥ k, we get

∆( (Z, Y,Ext(X;Y )) ; (Z, Y, Um) ) ≤ ε

where Y ≡ Ud denotes the coins of Ext (called the seed). The value L = k −m is
called the entropy loss of Ext, and the value d is called the seed length of Ext.

Definition 2 (Two-Source Extractors). A function Ext : X1 × X2 → Z is
called a (k, ε)-two-source extractor, if it holds for all tuples ((X1, Y1), (X2, Y2))
for which (X1, Y1) is independent of (X2, Y2) and H̃∞(X1|Y1) + H̃∞(X2|Y2) ≥ k
that

∆(Ext(X1, X2) ; UZ | Y1, Y2) ≥ ε .

A well-known flexible two-source extractor is the Hadamard extractor or inner-
product extractor.

Lemma 4 ([15,5]). For any finite field Fq of cardinality q and any positive
integer n, the function Ext : Fnq × Fnq → Fq given by

Ext(X1, X2) := 〈X1, X2〉 = X1,1 ·X2,1 + · · ·+X1,n ·X2,n

is a (k, ε)-two-source extractor for any k ≥ (n+ 1) log q + 2 log
( 1
ε

)
.

We denote the above inner product by 〈X1, X2〉Fq . We will drop the subscript if
the field is clear from the context.
We will also use non-malleable t-source extractor.

Definition 3 (Non-Malleable t-Source Extractor). A function nmExt :
(X )t → Z is called a t-source (k, ε)-non-malleable extractor if the following prop-
erty holds. For all independently distributed tuples ((X1, Y1), (X2, Y2), . . . , (Xt, Yt))
such that H̃∞(Xi|Yi) ≥ k, and for any split-state tampering function f =
(f1, . . . , ft), fi : X → X such that there exists fi without fixed points, it holds
that

∆
(
nmExt(X) ; UZ | nmExt(f(X)), Y1, . . . , Yt

)
≤ ε ,

where X = (X1, . . . , Xt), and f(X) = (f1(X1), . . . , ft(Xt)).

The following result gives the best known 2-source non-malleable extractor.

Theorem 2 ([26]). For any finite field K of cardinality 2n, there exists a
constant δ? ∈ (0, 1/3), and a function nmExt2 : K2 → {0, 1}3k such that the
function nmExt2 is a 2-source ((1− δ?)n, 2−1000k) non-malleable extractor with
k = Θ(n/ logn). Moreover, it is efficiently pre-image sampleable.
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For this paper, we need a 3-source non-malleable extractor. The construction
from the above result can be easily modified to obtain a 3-source non-malleable
extractor.

Theorem 3. For any finite field K of cardinality 2n, there exists a constant
δ ∈ (0, 1/3), and a function nmExt : K3 → {0, 1}3k such that the function nmExt
is a 3-source ((1 − δ)n, 2−1000k) non-malleable extractor with k = Θ(n/ logn).
Moreover, it is efficiently pre-image sampleable.

Proof. Let (X1, Y1), (X2, Y2), (X3, Y3) be as in Definition 3. Consider the following
construction.

nmExt(X1, X2, X3) := nmExt2(X1, X2)⊕ nmExt2(X2, X3) ,

where by ⊕, we mean the bitwise XOR function. Let the functions applied to
the three parts be f1, f2, f3, one of which has no fixed points. Without loss
of generality, let f1 or f2 be the function with no fixed points. We have that
H̃∞(X1 | Y1) ≥ n(1− δ?) , and

H̃∞(X2|Y2, nmExt2(X2, X3), nmExt2(f2(X2), f3(X3))) ≥ n−n·δ−6k ≥ n(1−δ?) ,

where we assumed that δ = δ?/2, and δn ≥ 12k. Thus, the statistical distance
between nmExt2(X1, X2) and U3k conditioned on nmExt2(f1(X1), f2(X2)), Y1, Y2,
nmExt2(X2, X3), and nmExt2(f2(X2), f3(X3)) is at most 2−1000k, which implies
using Lemma 3 that

∆ (nmExt(X1, X2, X3) ; U3k | nmExt(f1(X1), f2(X2), f3(X3)) Y1, Y2, Y3) ≤ 2−1000k .

Note that we can sample the pre-image of nmExt efficiently using the sampling
procedure of [26]. In order to sample a preimage of µ ∈ {0, 1}3k, we first sample
X1, X2 uniformly at random from K, and then X3 is sampled conditioned on
the fact that nmExt2(X2, X3) = nmExt2(X1, X2)⊕ µ. In particular, by using the
randomness of the first sampling procedure in picking X2 as the first source on
the sampling procedure from [26], X3 is a randomized function of X2 and the
output of the non-malleable extractor. Furthermore, they still satisfy the linear
constraints and can be computed and sampled efficiently. ut

2.3 Trace function

We use the following standard fact about trace functions. For a finite fieldA = F2m ,
and for its extension field B = F2n , and the trace function trB→A : B → A
there is a group isomorphism from ψ : B` → An`/m such that 〈ψ(x), ψ(y)〉A =
trB→A(〈x, y〉B). We will need this result on many occasions. Using a slight abuse
of notation, we will denote 〈ψ(x), ψ(y)〉A by 〈x, y〉A. More details appears in the
full version.
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2.4 Definitions related to Non-Malleable Codes

Definition 4 (Coding Schemes). A coding scheme is a pair (Enc,Dec), where
Enc :M→ C is a randomized function and Dec : C →M∪{⊥} is a deterministic
function, such that it holds for all M ∈M that Dec(Enc(M)) = M .

We will now define the continuous super strong tampering experiment. In this
experiment the adversary is provided with the tampered codeword C ′ (instead of
the output of the decoder) whenever C ′ 6= C and the decoder does not output ⊥.

Definition 5 ((Continuous-) Super Strong Tampering Experiment).
We will define continuous non-persistent self-destruct non-malleable codes anal-
ogously to [25]. Fix a coding scheme (Enc,Dec) with message space M and
codeword space C. Also fix a family of functions F : C → C. We will first de-
fine the tampering oracle Tampstate

C (f), for which initially state = alive. For a
tampering function f ∈ F and a codeword c ∈ C define the tampering oracle by

Tampstate
c (f) :

If state = dead output ⊥
c′ ← f(c)
If c′ = c output same
m′ ← Dec(c′)
If m′ = ⊥ set state← dead and output ⊥
Otherwise output c′

Fix a codeword c ∈ C. We define the continuous tampering experiment CTrC
by

CTrC :
state← alive
For i = 1 to r

Choose functions f
v ← Tampstate

c (f)
Output v

Definition 6. Let (Enc,Dec) be a coding scheme and CT be its corresponding
continuous tampering experiment for a class F of tampering functions. We say
that (Enc,Dec) is an ε-secure r-round continuously non-malleable code against F ,
if it holds for all tampering adversaries A and all pairs of messages m0,m1 ∈M
that CTrC0

(A) ≈ε CTrC1
(A), where C0 ← Enc(m0) and C1 ← Enc(m1).

The only family of tampering functions we are concerned with in this work
are split state tampering functions.

Definition 7 (Split State Tampering). Let C = C1 × · · · × Cs. The class
of spit state tampering functions Fs consists of all functions f of the form
f = (f1, . . . , fs) where f(c1, . . . , cs) = (f1(c1), . . . , fs(cs)) for all (c1, . . . , cs) ∈
C1 × · · · × Cs. Here the fi are arbitrary functions Ci → Ci.
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2.5 Some Useful Results
Lemma 5 (Deathzone Generation Lemma [10]). Let F be a finite field.
Let A1, . . . , At, B1, . . . , Bt be independent, non-zero random variables. Denote
A = (A1, . . . , At) and B = (B1, . . . , Bt). Then

max
c∈F

∑
a,b∈Ft:〈a,b〉F=c

(
Pr
[
(A,B) = (a, b)

]) 2t−1
2t ≤ 1 .

Proof. Let us begin with Young’s inequality for convolution:

||f1 ∗ f2 ∗ · · · ∗ ft||r ≤
t∏
i=1
||fi||pi

whenever
∑t
i=1

1
pi

= 1
r + t − 1 and +∞ ≥ p1, . . . , pt, r ≥ 1. We will identify

random variable Ai with its distribution Ai(.) where Ai(x) = Pr[Ai = x]. We
define two convolutions:

(Ai ∗× Bi)(z) =
∑

x,y : xy=z
Ai(x)Bi(y) ,

(Ai ∗+ Bi)(z) =
∑

x,y : x+y=z
Ai(x)Bi(y) .

Notice that for every i, via Young’s inequality, we get

1 = ||Aαi (.)|| 1
α
· ||Bαi (.)|| 1

α
≥ ||Aαi (.) ∗× Bαi (.)|| 1

2α−1

for 1/2 ≤ α ≤ 1. Notice again via Young’s inequality, we get

1 ≥
t∏
i=1
||Aαi (.) ∗× Bαi (.)|| 1

2α−1

≥ ||[Aα1 (.) ∗× Bα1 (.)] ∗+ · · · ∗+ [Aαt (.) ∗× Bαt (.)]|| 1
2tα−(2t−1)

,

for 2t−1
2t ≤ α ≤ 1. Now we take α = 2t−1

2t and we get

1 ≥ ||[Aαi (.) ∗× Bαi (.)] ∗+ · · · ∗+ [Aαt (.) ∗× Bαt (.)]||∞ .

ut
Lemma 6. Suppose 2∆(P ;Q) =

∑m
i=1 |pi − qi| = ε, where pi = Pr[P = xi] and

qi = Pr[Q = xi]; and
∑m
i=1 p

r
i ≤ α , for r < 1. Then

∑m
i=1 q

r
i ≤ α + εr ·m1−r .

Proof.
m∑
i=1

q ri =
m∑
i=1

(pi + |pi − qi|) r ≤
m∑
i=1

(p ri + |pi − qi| r)

=
m∑
i=1

p ri +
m∑
i=1
|pi − qi| r ≤ α +

m∑
i=1
|pi − qi| r

≤ α +
(

m∑
i=1
|pi − qi|

) r

·

(
m∑
i=1

1
) 1−r

= α + εr ·m1−r ,
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where inequality 2 follows from Hölder’s inequality. ut

Lemma 7 ([14]). Let D and D′ be distributions over the same finite space Ω,
and suppose they are ε-close to each other. Let E ⊆ Ω be any event such that
D(E) = p. Then, the conditional distributions D|E and D′|E are (ε/p)-close.

3 The New Construction

Let K be a finite field of size 2n. By Theorem 3, we have that there exists a
constant c, such that for all n, and k ≤ c·n

logn , there is a function

nmExt : K3 → {0, 1}3k

that is a (1− δ, 2−1000k)-non-malleable 3-source extractor. We choose the largest
such k = Θ(n/ logn) such that ` = n

100k = O(logn) is an integer. Also, define

nmExt′ : K3 → {0, 1}3k ∪ {⊥}

as nmExt′(x1, x2, x3) = nmExt(x1, x2, x3) if nmExt(x1, x2, x3) = 02k‖y for some
y ∈ {0, 1}k, and ⊥, otherwise.

Let F be a finite field of size 250k. Notice that there is a natural bijection
between K and F`. We further assume that k ≤ min

(
δn

1000 ,
n

5000
)
.

Encoding: Our encoding procedure Enc takes as input a message m ∈ {0, 1}k,
and does the following.
– Sample X from (K \ {0})3 uniformly such that nmExt(X) = 02k‖m.
– Sample S from (K \ {0})3 uniformly such that nmExt(S) = 02k‖r for

some r in {0, 1}k.
– V = 〈X,S〉K.
– W = 〈X,S〉F.
– Output (X,S, V,W ).

Decoding: Our decoding procedure Dec takes as input some x, s, v, w and does
the following.
– If (x, s, v, w) /∈ (K \ {0})6 ×K× F, then output ⊥.
– If nmExt′(x) = ⊥, output ⊥.
– If nmExt′(s) = ⊥, output ⊥.
– If v 6= 〈x, s〉K, output ⊥.
– If w 6= 〈x, s〉F, output ⊥.
– Otherwise, output m∗, where nmExt(x) = 02k‖m∗.

Let f1, f2, f3, g1, g2, g3, h1 : K → K, h2 : F → F be arbitrary functions, and
let f = (f1, f2, f3) and g = (g1, g2, g3).

Definition 8 (Continuous Tampering Experiment). We will first define
the tampering oracle Tampstate

c (f, g, h1, h2), for state ∈ {alive, dead} and for

c = (x1, x2, x3, s1, s2, s3, 〈x, s〉K, 〈x, s〉F) .
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For a tampering function (f, g, h1, h2) define the tampering oracle by

Tampstate
c (f, g, h1, h2) :

If state = dead output ⊥
If (x, s, 〈x, s〉K, 〈x, s〉F) = (f(x), g(s), h1(〈x, s〉K), h2(〈x, s〉F) output same
If (nmExt′(f(x)) = ⊥)
or (nmExt′(g(s)) = ⊥)
or (〈f(x), g(s)〉K 6= h1(〈x, s〉K))
or (〈f(x), g(s)〉F 6= h2(〈x, s〉F))
set state← dead and output ⊥

Otherwise output (f(x), g(s), h1(〈x, s〉K), h2(〈x, s〉F)

Fix some c = (x, s, v, w), with x, s ∈ K3, v ∈ K, and w ∈ F. We define the
continuous tampering experiment CTrc by
CTrc :

state← alive
For i = 1 to r

Choose functions f1, f2, f3, g1, g2, g3, h1, h2.
ψ ← Tampstate

c (f, g, h1, h2).
Output ψ

The following result which shows that continuously tampering a codeword
for 2 c k rounds, for any constant c < 1, does not reveal any useful information
about the codeword.

Theorem 4. Let X,S be uniform in (K \ {0})3 conditioned on the event that
nmExt′(X) 6= ⊥ and nmExt′(S) 6= ⊥. Let C be the random variable

(X,S, 〈X,S〉K, 〈X,S〉F) .

For any integer r ≥ 0, we have that

∆
(
(CTrC , nmExt(X)) ; (CTrC , 02k‖Uk)

)
≤ 2−2k · 10 · r ,

where Uk is a uniform k-bit string independent from X,S.

The main result of the paper is obtained as an easy corollary of Theorem 4,
as stated below.

Corollary 1. Let m0,m1 ∈ {0, 1}k, and let C(0) ← Enc(m0), and let C(1) ←
Enc(m1). For any integer r ≥ 0, we have that

∆ (CTrC(0) ; CTrC(1)) ≤ 2−k · 20 · r .

In particular, for r = 2 c k, for any c < 1, we have that

∆ (CTrC(0) ; CTrC(1)) ≤ 2−Ω(k) .
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Proof. By Theorem 4, for any r ≥ 0, and the random variable

C = (X,S, 〈X,S〉K, 〈X,S〉F)

we have that

∆
(
(CTrC , nmExt(X)) ; (CTrC , 02k‖Uk)

)
≤ 2−2k · 10 · r ,

where X,S are distributed as in Theorem 4. Thus conditioning on the event that
Dec(C) = mi for i = 0, 1, which is the same as the event that nmExt(X) = 02k‖mi

and using Lemma 7, we get that

∆
(
(CTrC , nmExt(X))|nmExt(X)=02k‖m0 ; (CTrC , 02k‖Uk)|Uk=m0

)
= ∆

(
CTrC(0) ; CTrC

)
≤ 2−k · 10 · r ,

and

∆
(
(CTrC , nmExt(X))|nmExt(X)=02k‖m1 ; (CTrC , 02k‖Uk)|Uk=m1

)
= ∆

(
CTrC(1) ; CTrC

)
≤ 2−k · 10 · r ,

The result then follows by the triangle inequality. ut

To prove Theorem 4, we will show the more general Theorem 5 which imme-
diately implies Theorem 4. We introduce the following parameters: ρ = 2−40k.
Also, for any sets X ,S ⊆ K3, V ⊆ K and W ⊆ F, we shorthand

p[X ,S,V,W] := Pr[(X̃, S̃, 〈X̃, S̃〉K, 〈X̃, S̃〉F) ∈ X × S × V ×W]

and

q[X ,S,V,W] := Pr[(X̃, S̃, 〈X̃, S̃〉K, 〈X̃, S̃〉F) ∈ X × S × V ×W |

nmExt′(X̃) 6= ⊥, nmExt′(S̃) 6= ⊥]

where X̃, S̃ are uniform in (K \ {0})3.

Remark 1. Our proof will proceed by partitioning the space in a way that the
eight parts of our codeword remain independent. We introduced above the
definition of the probability of landing in a particular partition. The reason we
needed two different definitions depending on whether the codeword is a valid
codeword or not is because we want to prove a statement for valid codewords but
the proof technique crucially requires us to prove statements assuming that the
eight parts of the codeword are independent. The following result shows that as
long as q[X ,S,V,W ] is not too small, p[X ,S,V,W ] and q[X ,S,V,W ] are nearly
equal. This statement is required only to overcome the above mentioned technical
annoyance and the proof appears in the full version.
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Lemma 8. Let X1,X2,X3,S1,S2,S3 ⊆ K \ {0}, V ⊆ K, and let W ⊆ F. We
denote X = (X1,X2,X3) and S = (S1,S2,S3). If q[X ,S,V,W] ≥ 2−800k, then

p[X ,S,V,W]
q[X ,S,V,W] = 1± 2−180k ,

and
Pr[X̃ ∈ X , S̃ ∈ S, Un ∈ V, trK→F(Un) ∈ W]

q[X ,S,V,W] = 1± 2−180k ,

where X̃, S̃ are uniform in (K \ {0})3, and Un is uniform in K.

Theorem 5. Let X1,X2,X3,S1,S2,S3 ⊆ K \ {0}, V ⊆ K, and let W ⊆ F. We
denote X = (X1,X2,X3) and S = (S1,S2,S3). Let (X,S) be random variables
uniform in K6 conditioned on the event that Xi ∈ Xi, Si ∈ Si for i = 1, 2, 3,
nmExt′(X) 6= ⊥, nmExt′(S) 6= ⊥, 〈X,S〉K ∈ V, and 〈X,S〉F ∈ W. Let C be the
random variable

(X,S, 〈X,S〉K, 〈X,S〉F) .

For any integer r ≥ 0, we have that

∆
(
(CTrC , nmExt(X)) ; (CTrC , 02k‖Uk)

)
≤
(

ρ

q[X ,S,V,W]

) 1
8

+ 9 · r · 2−2k , (2)

where Uk is a uniform k-bit string independent from X,S.

We will prove Theorem 5 by partitioning the ambient space into appropriate
subsets such that Equation 2 holds for each of these partitions. Theorem 5 can
then be shown by the following lemma.

Lemma 9. Let X1,X2,X3,S1,S2,S3 ⊆ K \ {0}, V ⊆ K, and let W ⊆ F. We
denote X = (X1,X2,X3) and S = S1,S2,S3. Let (X,S) be random variables
uniform in K6 conditioned on the event that Xi ∈ Xi, Si ∈ Si for i = 1, 2, 3,
nmExt′(X) 6= ⊥, nmExt′(S) 6= ⊥, 〈X,S〉K ∈ V, and 〈X,S〉F ∈ W. Let C be the
random variable

(X,S, 〈X,S〉K, 〈X,S〉F) .

Let P1,P2, . . . ,Pt be a partitioning of X × S × V ×W. Then we have that for
any integer r ≥ 0, if

∆
(
(CTrC , nmExt(X))|C∈Pj ; (CTrC , 02k‖Uk)|C∈Pj

)
≤ εj

then

∆
(
(CTrC , nmExt(X)) ; (CTrC , 02k‖Uk)

)
≤

t∑
j=1

q[Pj ]
q[X ,S,V,W] · εj ,

where Uk is a uniform k-bit string independent from X,S.
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Proof. Let A be the sample space of (CTrC , nmExt(X)). Then, by definition,

∆ = ∆
(
(CTrC , nmExt(X)) ; (CTrC , 02k‖Uk)

)
is given by

∆ = 1
2 ·
∑
a∈A

∣∣∣Pr[(CTrC , nmExt(X)) = a]− Pr[(CTrC , 02k‖Uk) = a]
∣∣∣

= 1
2 ·
∑
a∈A

∣∣∣ t∑
j=1

Pr[(CTrC , nmExt(X)) = a, C ∈ Pj ]−

Pr[(CTrC , 02k‖Uk) = a, C ∈ Pj ]
∣∣∣

≤ 1
2 ·
∑
a∈A

t∑
j=1

Pr[C ∈ Pj ] ·
∣∣∣Pr[(CTrC , nmExt(X)) = a | C ∈ Pj ]−

Pr[(CTrC , 02k‖Uk) = a | C ∈ Pj ]
∣∣∣

= 1
2 ·

t∑
j=1

Pr[C ∈ Pj ] ·
∑
a∈A

∣∣∣Pr[(CTrC , nmExt(X)) = a | C ∈ Pj ]−

Pr[(CTrC , 02k‖Uk) = a | C ∈ Pj ]
∣∣∣

=
t∑

j=1

q[Pj ]
q[X ,S,V,W] · εj .

ut

We will now partition each of X1,X2,X3,S1,S2,S3 which will induce a parti-
tioning of the whole space. The partitions are chosen in a way that if, say, Xi

(respectively, Si) for i ∈ {1, 2, 3} is uniformly distributed over a particular parti-
tion of Xi (respectively, Si), then this gives a precise estimate of H̃∞(Xi|fi(Xi))
(respectively, H̃∞(Si|gi(Si))).
Definition 9 (Partition). We partition the set X1 ⊆ {0, 1}n based on the
function f1 as follows.
1. X1,0 = {x ∈ X1 : f1(x) = x}.
2. X1 = X1 \ X1,0.
3. For i = 1, . . . , `−1, X1,i = {x ∈ X1 : |f−1

1 (f1(x))∩X1| ∈ [2100k·(i−1), 2100k·i)}.
4. X1,` = {x ∈ X1 : |f−1

1 (f1(x)) ∩ X1| ≥ 2100k·(`−1)}
X2,X3,S1,S2,S3 are partitioned similarly as above.

We classify the partitions obtained according to the following types.
Definition 10 (Classification of Partitions). Let i1, i2, i3, j1, j2, j3 be one
of {0, 1, . . . , `}. We then classify the partition

P := X1,i1 ×X2,i2 ×X3,i3 × S1,j1 × S2,j2 × S3,j3 × V ×W

of X × S × V ×W as follows.
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Type−1: P is a Type−1 partition if i1 = i2 = i3 = j1 = j2 = j3 = 0.
Type−2: P is a Type−2 partition if

1. P is not a Type−1 partition, i.e., at least one of i1, i2, i3, j1, j2, j3 > 0.
2. Each of i1, i2, i3, j1, j2, j3 is at most δn

100k − 1.
Type−3: P is a Type−3 partition if the following hold

1. P is not a Type−1 or Type−2 partition, i.e., at least one of i1, i2, i3, j1, j2,
j3 >

δn
100k − 1.

2. i1 + i2 + i3 + j1 + j2 + j3 ≤ n
40k .

Type−4: P is a Type−4 partition if
1. P is not a Type−1, 2, or 3 partition, , i.e., i1 + i2 + i3 +j1 +j2 +j3 >

n
40k .

2. At least one of i1, i2, i3, j1, j2, j3 is not `.
Type−5: P is a Type−5 partition if i1 = i2 = i3 = j1 = j2 = j3 = `.

In the following we classify partitions of Type−1 and Type−5 further into
subpartitions, but before this, we introduce the following definition.

Definition 11. We define the following subsets of V.

– Vsame = {v ∈ V : h1(v) = v}.
– Vsame = V \ Vsame.
– For all y ∈ {0, 1}n, Vy = {v ∈ V : h1(v) = y}.
– For all y ∈ {0, 1}n, Vy = V \ Vy.

We similarly define Wsame,Wsame,Wz,Wz for all z ∈ F via the function h2.

Using this classification, we now further partition Type−1 and Type−5 partitions.

Definition 12. Let Xsame = X1,0×X2,0×X3,0 and let Ssame = S1,0×S2,0×S3,0

Type−1a: We say that Xsame × Ssame × Vsame ×Wsame is a Type−1a partition.
Type−1b: We say that the following are Type−1b partitions:

– Xsame × Ssame × V ×Wsame.
– Xsame × Ssame × Vsame ×Wsame.

Definition 13. For a = (a1, a2, a3) ∈ K3, let

Xa = {(x1, x2, x3) ∈ X1,`×X2,`×X3,` : f1(x1) = a1, f2(x2) = a2, f3(x3) = a3} .

Similarly, define Sb for b = (b1, b2, b3) ∈ K3.

Type−5a: We say that Xa × Sb × V〈a,b〉K ×W〈a,b〉F is a Type−5a partition.
Type−5b: We say that the following are Type−5b partitions:

– Xa × Sb × V ×W〈a,b〉F .
– Xa × Sb × V〈a,b〉K ×W〈a,b〉F .

If a partition P is of Type−T , then we denote it as Type(P) = T , where
T ∈ {1a, 1b, 2, 3, 4, 5a, 5b}.

Before bounding the required statistical distance for each partition, we will
prove a few general results.
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Lemma 10. Let X1,X2,X3,S1,S2,S3 ⊆ K \ {0}, V ⊆ K, and let W ⊆ F. We
denote X = (X1,X2,X3) and S = (S1,S2,S3). Let |Xi| ≥ 2n−100k, |Si| ≥ 2n−100k

for i = 1, 2, 3, and let q[X ,S,V,W] ≥ 2−800k. Let (X,S) be random variables
uniform in K6 conditioned on the event that Xi ∈ Xi, Si ∈ Si for i = 1, 2, 3,
nmExt′(X) 6= ⊥, nmExt′(S) 6= ⊥, 〈X,S〉K ∈ V, and 〈X,S〉F ∈ W. Then

∆
(
nmExt(X) ; 02k‖Uk

)
≤ 2−990k ,

where Uk is a uniform k-bit string independent from X,S.

Proof. Notice that if X and S were independent and uniform then this would
follow trivially from the fact that nmExt is a 3-source extractor (Notice that we
don’t need the non-malleability property of nmExt for this part of the proof).
Thus, in order to show this, it is sufficient to establish that X and S are nearly
independent given partial knowledge about 〈X,S〉K, and 〈X,S〉F. We show this
as follows.

Let X ′, S′ be distributed independently and uniform in X ,S, respectively.
Notice that H∞(X ′) ≥ 3n − 300k, and H∞(S′) ≥ 3n − 300k, and hence
H̃∞(X ′|nmExt(X ′)) ≥ 3n− 303k. By Lemma 4, we get that

(〈X ′, S′〉K, nmExt(X ′), nmExt(S′)) ≈2−2000k (Un, nmExt(X ′), nmExt(S′)) ,

where we assumed that n ≥ 5000k. Since 〈X ′, S′〉F = trK→F(〈X ′, S′〉K), where
trK→F is the field trace function, we have that

(〈X ′, S′〉K, 〈X ′, S′〉F, nmExt(X ′), nmExt(S′)) ≈2−2000k (Un, trK→F(Un),
nmExt(X ′), nmExt(S′)) .

Let (X̂, Ŝ) be jointly distributed as (X ′, S′) conditioned on 〈X ′, S′〉K ∈
V, 〈X ′, S′〉F ∈ W. Thus, by Lemma 7, we get that

(nmExt(X̂), nmExt(Ŝ)) ≈2−1000k (nmExt(X ′), nmExt(S′)) .

Also, since H∞(X ′i) ≥ n− 100k ≥ n(1− δ), H∞(S′i) ≥ n− 100k ≥ n(1− δ) for
i = 1, 2, 3. Thus, by Theorem 3, we have that

(nmExt(X ′), nmExt(S′)) ≈2·2−1000k (U3k, U
′
3k) .

By triangle inequality, we get that

(nmExt(X̂), nmExt(Ŝ)) ≈3·2−1000k (U3k, U
′
3k) .

Conditioning on nmExt′(X̂) 6= ⊥, and nmExt′(Ŝ) 6= ⊥, and applying Lemma 7,
we obtain the desired result. ut

We now show that for any given partition, if the tampering oracle outputs
⊥ with high probability, then the desired statistical distance for that particular
partition is small.
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Lemma 11. Let X1,X2,X3,S1,S2,S3 ⊆ K \ {0}, V ⊆ K, and let W ⊆ F. We
denote X = (X1,X2,X3) and S = (S1,S2,S3). Let (X,S) be random variables
uniform in K6 conditioned on the event that Xi ∈ Xi, Si ∈ Si for i = 1, 2, 3,
nmExt′(X) 6= ⊥, nmExt′(S) 6= ⊥, 〈X,S〉K ∈ V, and 〈X,S〉F ∈ W. Let C be the
random variable

(X,S, 〈X,S〉K, 〈X,S〉F) .

If
Pr
C

[Tampstate
C (f, g, h1, h2) = ⊥] ≥ 1− ε

then for any integer r ≥ 0

∆
(
(CTrC , nmExt(X)) ; (CTrC , 02k‖Uk)

)
≤ ∆

(
nmExt(X) ; 02k‖Uk

)
+ 2ε ,

where Uk is a uniform k-bit string independent from X,S.

Proof. Let TC denote Tampstate
C (f, g, h1, h2). Notice that for any m ∈ {0, 1}3k,

we have that

Pr[TC = ⊥, nmExt(X) = m] ≤ Pr[nmExt(X) = m] .

Since we know that the statistical distance between two random variables A and
B is ∑

a:Pr[A=a]>Pr[B=a]

(Pr[A = a]− Pr[B = a]) ,

we have that

∆ ((TC , nmExt(X)) ; (⊥, nmExt(X))) = Pr[TC 6= ⊥] ≤ ε .

This implies that

∆ ((CTrC , nmExt(X)) ; (⊥r, nmExt(X))) ≤ ε , (3)

where by ⊥r we mean the tampering oracle outputs ⊥ in the first and hence in
each of the subsequent rounds. By equation 3 and Lemma 3, we have that

∆
(
(CTrC , 02k‖Uk) ; (⊥r, 02k‖Uk)

)
= ∆ (CTrC ; ⊥r) ≤ ε , (4)

By equation 3 and equation 4, and the triangle inequality, we get the desired
result. ut

It is easy to see that when X,S are restricted to belong to a partition of
Type−1b or 5b, the tampering oracle outputs ⊥ with probability 1, so for
partitions of this type, the corresponding statistical distance can be bounded
using Lemma 11 and 10. We now prove a similar result holds for Type 2, 3, and
4.
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Lemma 12. [Type−2 partition] Let X1,i1 ,X2,i2 ,X3,i3 ,S1,j1 ,S2,j2 ,S3,j3 ⊆ K \
{0}, V ⊆ K, and let W ⊆ F. We denote X ? = (X1,i1 ,X2,i2 ,X3,i3) and S? =
S1,j1 ,S2,j2 ,S3,j3 . Let (X ?,S?,V,W) be a partition of Type−2, and let q[X ?,S?,V,
W] ≥ 2−45k. Let (X,S) be random variables uniform in K6 conditioned on the
event that Xt ∈ Xt,it , St ∈ St,jt for t = 1, 2, 3, nmExt′(X) 6= ⊥, nmExt′(S) 6= ⊥,
〈X,S〉K ∈ V, and 〈X,S〉F ∈ W. Let C be the random variable

(X,S, 〈X,S〉K, 〈X,S〉F) .

Then,
Pr
C

[Tampstate
C (f, g, h1, h2) = ⊥] ≥ 1− 2 · 2−2k .

Proof. In this lemma, the given partition is of Type−2, which means that at
least one of i1, i2, i3, j1, j2, j3 6= 0, and so without loss of generality, let i1 > 0.
If X1, X2, X3 were independent random variables then, by the non-malleability
property of the non-malleable extractor, and the fact that f, g are nearly bi-
jective functions, nmExt(X) and nmExt(f(X)) are close to being uniform and
independent. However the constraint that 〈X,S〉K ∈ V and 〈X,S〉F ∈ W might
introduce dependence between X1, X2, X3.

To overcome this hurdle, it is sufficient to establish that X1, X2, X3, S1, S2, S3
are nearly independent given partial knowledge about 〈X,S〉K, and 〈X,S〉F. The
full proof appears in the full version.

ut

Lemma 13. [Type−3 partition] Let X1,i1 ,X2,i2 ,X3,i3 ,S1,j1 ,S2,j2 ,S3,j3 ⊆ K \
{0}, V ⊆ K, and let W ⊆ F. We denote X ? = (X1,i1 ,X2,i2 ,X3,i3) and S? =
(S1,j1 ,S2,j2 ,S3,j3). Let (X ?,S?,V,W) be a partition of Type−3, and let q[X ?,S?,V,
W] ≥ 2−45k. Let (X,S) be random variables uniform in K6 conditioned on the
event that Xt ∈ Xt,it , St ∈ St,jt for t = 1, 2, 3, nmExt′(X) 6= ⊥, nmExt′(S) 6= ⊥,
〈X,S〉K ∈ V, and 〈X,S〉F ∈ W. Let C be the random variable

(X,S, 〈X,S〉K, 〈X,S〉F) .

Then,
Pr
C

[Tampstate
C (f, g, h1, h2) = ⊥] ≥ 1− 2−4k .

Proof. Since the partition is of Type−3, at least one of i1, i2, i3, j1, j2, j3 >
δn

100k−1
and

i1 + i2 + i3 + j1 + j2 + j3 ≤
n

40k .

Without loss of generality, let i1 > δn
100k − 1.

The intuition behind the proof is that since i1 is not too small, X has enough
entropy given f(X) to ensure that 〈X,S〉F is close to uniform given f(X), S by
using the strong extractor property of the inner product. Hence 〈X,S〉F and
〈f(X), g(S)〉F are close to being independent and so the adversary, in order to not
decode to ⊥, should be able to guess 〈f(X), g(S)〉F in the eighth state without
having any useful information. Also, since i1 + i2 + i3 +j1 +j2 +j3 is not too small,
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f(X), g(S) together should have enough entropy to ensure that 〈f(X), g(S)〉F is
close to being uniform again because the inner product is a strong two-source
extractor. This implies that the probability that the decoder does not decode to
⊥ after tampering is close to 0. For this argument, we implicitly assumed that X
and S are independent and formally we need to take into account the condition
that 〈X,S〉K ∈ V, and 〈X,S〉F ∈ W which introduces a limited dependence
between X and S. Working out the exact constant is fairly easy. The full proof
appears in the full version. ut

Lemma 14. [Type−4 partition] Let X1,i1 ,X2,i2 ,X3,i3 ,S1,j1 ,S2,j2 ,S3,j3 ⊆ K \
{0}, V ⊆ K and let W ⊆ F. We denote X ? = (X1,i1 ,X2,i2 ,X3,i3) and S? =
(S1,j1 ,S2,j2 ,S3,j3). Let (X ?,S?,V,W) be a partition of Type−4, and let q[X ?,S?,V,
W] ≥ 2−45k. Let (X,S) be random variables uniform in {0, 1}6n conditioned
on the event that Xt ∈ Xt,it , St ∈ St,jt for t = 1, 2, 3, nmExt′(X) 6= ⊥,
nmExt′(S) 6= ⊥, 〈X,S〉K ∈ V, and 〈X,S〉F ∈ W. Let C be the random vari-
able

(X,S, 〈X,S〉K, 〈X,S〉F) .

Then,
Pr
C

[Tampstate
C (f, g, h1, h2) = ⊥] ≥ 1− 2−4k .

Proof. Since the partition is of Type−4, at least one of i1, i2, i3, j1, j2, j3 6= ` and

i1 + i2 + i3 + j1 + j2 + j3 >
n

40k .

Without loss of generality, let i1 ≤ ` − 1. Also, without loss of generality, let
i1 + i2 + i3 >

n
80k .

The intuition behind the proof is that i1 + i2 + i3 is large enough to ensure
that X has enough entropy given f(X) to ensure that 〈X,S〉K is close to uniform
given f(X), S by using the strong extractor property of the inner product. Hence
〈X,S〉K and 〈f(X), g(S)〉K are close to being independent and so the adversary,
in order to decode to a valid message, can only be able to guess 〈f(X), g(S)〉K in
the seventh state without having any useful information. Also, since i1 ≤ `− 1 is
not too small, f1(X1) has a large amount of entropy which in turn implies that
〈f(X), g(S)〉K has a large amount of entropy since g1(S1) 6= 0. This implies that
the probability that the decoder does not decode to ⊥ after tampering is close to
0. Of course, for this argument to go through, we implicitly assumed that X and
S are independent and formally we need to take into account the condition that
〈X,S〉K ∈ V, and 〈X,S〉F ∈ W which introduces a limited dependence between
X and S. Working out the exact constant is fairly easy. The full proof appears
in the full version. ut

In the above results, we established that the tampering oracle will output ⊥
with probability very close to 1 for all partitions of Type−2, 3, 4 that are not too
small. If the size of the partition is extremely small then Lemma 9 guarantees
that such a partition does not contribute much to the statistical distance. Also,
for a partition of Type−1b and 5b, the tampering oracle always outputs ⊥. The
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following corollary states the bound on the statistical distance conditioned on
X,S in a partition of Type−1b, 2, 3, 4, 5b. The proof appears in the full version.

Corollary 2. Let X1,X2,X3,S1,S2,S3 ⊆ K \ {0}, V ⊆ K, and let W ⊆ F. We
denote X = (X1,X2,X3) and S = (S1,S2,S3). Let q[X ,S,V,W] ≥ 2−40k. Let
(X,S) be random variables uniform in K6 conditioned on the event that Xi ∈ Xi,
Si ∈ Si for i = 1, 2, 3, nmExt′(X) 6= ⊥, nmExt′(S) 6= ⊥, 〈X,S〉K ∈ V, and
〈X,S〉F ∈ W. Let C be the random variable

(X,S, 〈X,S〉K, 〈X,S〉F) .

Then for any integer r ≥ 0, if∑
P:Type(P)∈{1b, 2, 3, 4, 5b}

q[P]
q[X ,S,V,W] ·∆

(
(CTrC , nmExt(X))|C∈P ;

(CTrC , 02k‖Uk)|C∈P
)
≤ 5 · 2−2k ,

where Uk is a uniform k-bit string independent from X,S.

Lemma 15. [Type−5 partition] Let X1,`,X2,`,X3,`,S1,`,S2,`,S3,` ⊆ K\{0}, V ⊆
K, and let W ⊆ F. We denote X ? = (X1,`,X2,`,X3,`) and S? = (S1,`,S2,`,S3,`).
Let (X ?,S?,V,W) be a partition of Type−5, and let q[X ?,S?,V,W ] ≥ 2−45k. Let
(X,S) be random variables uniform in K6 conditioned on the event that Xi ∈ X1,`,
Si ∈ Si,` for i = 1, 2, 3, nmExt′(X) 6= ⊥, nmExt′(S) 6= ⊥, 〈X,S〉K ∈ V, and
〈X,S〉F ∈ W. Then,

∑
a,b

(
q[Xa,Sb,V〈a,b〉K ,W〈a,b〉F ]

q[X1,`,S1,`,V,W]

)7/8

≤
∑
a,b

Pr[h1(〈X,S〉K) = 〈a,b〉K, f(X) = a,

g(S) = b] 7
8

≤ 1 + 2−50k .

Proof. Since the partition is of Type−5, we have

i1 = i2 = i3 = j1 = j2 = j3 = ` .

By Lemma 8, we have that

p[X ?,S?,V,W] ≥ 2−45k−1 ,

and
Pr[X̃ ∈ X ?, S̃ ∈ S?, Un ∈ V, trK→F(Un) ∈ W] ≥ 2−45k−1 .

Let X ′, S′ be distributed independently and uniform in X ?,S?, respectively. We
have that

H̃∞(X ′|f(X ′), nmExt(X ′)) ≥ 100k(3`− 3)− 3k = 3n− 303k , and

H∞(S′) ≥ 3n− 45k − 1 .
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Thus, by Lemma 4,

∆ (〈X ′, S′〉K ; Un | f(X ′), nmExt(X ′), S′) ≤ 2−1000k ,

where we have used that n ≥ 5000k. This implies using Lemma 3 that

∆ (〈X ′, S′〉K ; Un | 〈f(X ′), g(S′)〉K, nmExt(X ′), nmExt(S′)) ≤ 2−1000k .

Also, H̃∞(X ′i|fi(X ′i)) ≥ 100k(`− 1) ≥ n(1− δ), and H̃∞(S′i|gi(S′i)) ≥ 100k(`−
1) ≥ n(1− δ) for i = 1, 2, 3. Thus, by Theorem 3,

∆ ((nmExt(X ′), nmExt(S′)) ; (U3k, U
′
3k) | 〈f(X ′), g(S′)〉K) ≤ 2 · 2−1000k .

Using triangle inequality, we get that

∆ ((〈X ′, S′〉K, nmExt(X ′), nmExt(S′)); (Un, U3k, U
′
3k)|〈f(X ′), g(S′)〉K) ≤ 3·2−1000k.

Conditioning on nmExt′(X ′) 6= ⊥, nmExt′(S′) 6= ⊥, 〈X ′, S′〉K ∈ V, and trK→F
(〈X ′, S′〉K) ∈ W, by Lemma 7, we get that

∆ ((〈f(X), g(S)〉K, 〈X,S〉K) ; (〈f(X ′), g(S′)〉K, V )) ≤ 2−950k , (5)

where V is distributed as Un conditioned on Un ∈ V, and trK→F(Un) ∈ W.
Now using lemma 5 on vector pair (f1(X ′1), f2(X ′2), f3(X ′3),−1) and (g1(S′1),

g2(S′2), g3(S′3), h1(V )), and t = 4, we obtain∑
(a1,a2,a3,b1,b2,b3,c) :

〈(a1,a2,a3,−1) , (b1,b2,b3,c)〉K=0

Pr[(f(X ′), g(S′), h1(V )) = (a,b, c)] 7
8 ≤ 1 .

Notice that the number of different possible values of the tuple (a1, a2, a3, b1, b2, b3, c)
such that Pr[(f(X ′), g(S′), h1(V )) = (a,b, c)] 6= 0 is at most 2600k. Thus, using
Lemma 6 and the inequality 5, we get that∑
a,b

Pr[h1(〈X,S〉K) = 〈a,b〉K, f(X) = a, g(S) = b] 7
8 ≤ 1 + 2600k· 18 · 2−950k· 78

≤ 1 + 2−50k .

Finally,

∑
a,b

(
q[Xa,Sb,V〈a,b〉K ,W〈a,b〉F ]

q[X1,`,S1,`,V,W]

)7/8

=
∑
a,b

Pr[h1(〈X,S〉K) = 〈a,b〉K, h2(〈X,S〉F) = 〈a,b〉F, f(X) = a, g(S) = b] 7
8

≤
∑
a,b

Pr[h1(〈X,S〉K) = 〈a,b〉K, f(X) = a, g(S) = b] 7
8 ≤ 1 + 2−50k .

ut
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Lemma 16. [Type−1 or Type−5 partition] Let X1,X2,X3,S1,S2,S3 ⊆ K \ {0},
V ⊆ K, and let W ⊆ F. We denote X = (X1,X2,X3) and S = (S1,S2,S3). Let
q[X ,S,V,W ] ≥ 2−40k. Let (X,S) be random variables uniform in K6 conditioned
on the event that Xt ∈ Xt, St ∈ St for t = 1, 2, 3, nmExt′(X) 6= ⊥, nmExt′(S) 6= ⊥,
〈X,S〉K ∈ V, and 〈X,S〉F ∈ W. Then,

Pr[Xt ∈ Xt,0, St ∈ St,0 for t = 1, 2, 3]1/2+Pr[Xt ∈ Xt,`, St ∈ St,` for t = 1, 2, 3]1/2

≤ 1 + 2−90k ,
and hence,

Pr[Xt ∈ Xt,0, St ∈ St,0 for t = 1, 2, 3]7/8+Pr[Xt ∈ Xt,`, St ∈ St,` for t = 1, 2, 3]7/8

≤ 1 + 2−90k .

Proof. By Lemma 8, we have that

p[X ,S,V,W] ≥ 2−40k−1 ,

and
Pr[X̃ ∈ X , S̃ ∈ S, Un ∈ V, trK→F(Un) ∈ W] ≥ 2−40k−1 .

Let X ′, S′ be distributed independently and uniform in X ,S, respectively. Let
i1, i2, i3, j1, j2, j3 : K→ {0, 1, . . . , `} be as defined in the partitioning procedure,
i.e., i1 is a function of X ′1 that indicates the partition in which X ′1 belongs
depending on the function f1, etc.

Since H̃∞(X ′|nmExt(X ′), i1, i2, i3) ≥ 3n− 40k − 1− 3 log(`+ 1) ≥ 3n− 41k,
using Lemma 4, we have that

∆ (〈X ′, S′〉K ; Un | nmExt(X ′), nmExt(S′), i1, i2, i3, j1, j2, j3) ≤ 2−250k .

Additionally, since H̃∞(X ′t|it) ≥ n − 40k − 1 − log(` + 1) ≥ n(1 − δ) and
H∞(S′t|jt) ≥ n− 40k − 1− log(`+ 1) ≥ n(1− δ), for t = 1, 2, 3, by Theorem 3,
we have that

∆ ((nmExt(X ′), nmExt(S′)) ; (U3k, U
′
3k) | i1, i2, i3, j1, j2, j3) ≤ 2 · 2−1000k .

Thus, the triangle inequality implies that

∆ ((〈X ′, S′〉K, nmExt(X ′), nmExt(S′)) ; (Un, U3k, U
′
3k) | i1, i2, i3, j1, j2, j3)

≤ 3 · 2−250k .
Conditioning on nmExt′(X ′) 6= ⊥, nmExt′(S′) 6= ⊥, 〈X ′, S′〉K ∈ V, and trK→F
(〈X ′, S′〉K) ∈ W and using Lemma 7, we get that

∆((i1(X ′1), i2(X ′2), i3(X ′3), j1(S′1), j2(S′2), j3(S′3)) ;
(i1(X1), i2(X2), i3(X3), j1(S1), j2(S2), j3(S3))) ≤ 3·2−200k .

(6)
We introduce the following notation. For r ∈ {0, `}, let

pr := Pr[X ′t ∈ Xt,r for t = 1, 2, 3] = Pr[i1(X ′1) = i2(X ′2) = i3(X ′3) = r] ,
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and

qr := Pr[S′t ∈ St,r for t = 1, 2, 3] = Pr[i1(S′1) = i2(S′2) = i3(S′3) = r] .

Then clearly, p0 + p` ≤ 1, and q0 + q` ≤ 1. This implies

Pr[X ′t ∈ Xt,0, S′t ∈ St,0 for t = 1, 2, 3]1/2 + Pr[X ′t ∈ Xt,`, S′t ∈ St,` for t = 1, 2, 3]1/2

= √p0 · q0 +√p` · q`
≤ √p0 · q0 +

√
(1− p0) · (1− q0)

≤ 1 ,

using the Cauchy-Schwarz inequality. Thus, using Lemma 6 and the inequality 6,
we get that

Pr[Xt ∈ Xt,0, St ∈ St,0 for t = 1, 2, 3]1/2 + Pr[Xt ∈ Xt,`, St ∈ St,` for t = 1, 2, 3]1/2

≤ 1 + 2 1
2 · (3 · 2−200k) 1

2 ≤ 1 + 2−90k .

ut

3.1 Proof of Theorem 5

Proof. Now, we prove Theorem 5 by induction on the number of rounds r. For
r = 0, i.e., when there is no tampering, we need to show that nmExt(X) is
statistically close to 02k‖Uk, which follows by Lemma 10. Using Corollary 2, we
have that∑
P:Type(P)∈{1b,2,3,4,5b}

q[P]
q[X ,S,V,W] ·∆

(
(CTrC , nmExt(X))|C∈P ; (CTrC , 02k‖Uk)|C∈P

)
≤ 5 · 2−2k .

Let Q1 be a partition of Type−1a (note that there is only one such partition),
and let Q2, . . . ,Qm be partitions of Type−5a. Let X ? = (X1,`,X2,`,X3,`), and
S? = (S1,`,S2,`,S3,`). We consider two cases.

CASE 1: q[X ?,S?,V,W ] < 2−45k. In this case, the total probability of falling in
a partition of Type−5 is small, and so intuitively the only useful information
that can be learnt is by landing in a partition of Type−1a. In this case, by
Lemma 9 and the induction hypothesis we have that the statistical distance
∆
(
(CTrC , nmExt(X)) ; (CTrC , 02k‖Uk)

)
is upper bounded by

≤ 5 · 2−2k + q[X ?,S?,V,W]
q[X ,S,V,W] 1 + q[Q1]

q[X ,S,V,W]

((
ρ

q[Q1]

) 1
8

+ 9 · (r − 1) · 2−2k

)

≤ 5 · 2−2k + 2−5k +
(

q[Q1]
q[X ,S,V,W]

) 7
8

·
(

ρ

q[X ,S,V,W]

) 1
8

+ 9 · (r − 1) · 2−2k

≤
(

ρ

q[X ,S,V,W]

) 1
8

+ 9 · r · 2−2k .
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CASE 2: q[X ?,S?,V,W] ≥ 2−45k. In this case, by Lemma 9, and the induc-
tion hypothesis we have that the statistical distance ∆((CTrC , nmExt(X)) ;
(CTrC , 02k‖Uk)) is upper bounded by

≤ 5 · 2−2k +
m∑
i=1

q[Qi]
q[X ,S,V,W] ·

((
ρ

q[Qi]

) 1
8

+ 9 · (r − 1) · 2−2k

)

≤ 5 · 2−2k +
m∑
i=1

(
q[Qi]

q[X ,S,V,W]

) 7
8

·
(

ρ

q[X ,S,V,W]

) 1
8

+ 9 · (r − 1) · 2−2k

≤ 5 · 2−2k +
(

ρ

q[X ,S,V,W]

) 1
8

(1 + 2−2k) + 9 · (r − 1) · 2−2k

≤
(

ρ

q[X ,S,V,W]

) 1
8

+ 9 · r · 2−2k ,

where the second to last inequality uses Lemma 15 and Lemma 16.
ut
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