Revisiting Non-Malleable Secret Sharing

Saikrishna Badrinarayanan' and Akshayaram Srinivasan?®

! UCLA saikrishna@cs.ucla.edu
2 UC Berkeley akshayaram@berkeley.edu

Abstract. A threshold secret sharing scheme (with threshold t) allows
a dealer to share a secret among a set of parties such that any group
of t or more parties can recover the secret and no group of at most
t — 1 parties learn any information about the secret. A non-malleable
threshold secret sharing scheme, introduced in the recent work of Goyal
and Kumar (STOC’18), additionally protects a threshold secret sharing
scheme when its shares are subject to tampering attacks. Specifically,
it guarantees that the reconstructed secret from the tampered shares is
either the original secret or something that is unrelated to the original
secret.
In this work, we continue the study of threshold non-malleable secret
sharing against the class of tampering functions that tamper each share
independently. We focus on achieving greater efficiency and guaranteeing
a stronger security property. We obtain the following results:
— Rate Improvement. We give the first construction of a thresh-
old non-malleable secret sharing scheme that has rate > 0. Specifi-
cally, for every n,t > 4, we give a construction of a t-out-of-n non-

malleable secret sharing scheme with rate @(@). In the prior

constructions, the rate was @(m) where m is the length of the

secret and thus, the rate tends to 0 as m — co. Furthermore, we also
optimize the parameters of our construction and give a concretely
efficient scheme.

— Multiple Tampering. We give the first construction of a threshold
non-malleable secret sharing scheme secure in the stronger setting
of bounded tampering wherein the shares are tampered by multiple
(but bounded in number) possibly different tampering functions. The
rate of such a scheme is Q(W) where k is an apriori bound
on the number of tamperings. We complement this positive result
by proving that it is impossible to have a threshold non-malleable
secret sharing scheme that is secure in the presence of an apriori
unbounded number of tamperings.

— General Access Structures. We extend our results beyond thresh-
old secret sharing and give constructions of rate-efficient, non-malleable
secret sharing schemes for more general monotone access structures
that are secure against multiple (bounded) tampering attacks.

1 Introduction

A t-out-of-n threshold secret sharing scheme [Sha79,Bla79] allows a dealer to
share a secret among n parties such that any subset of ¢ or more parties can

recover the secret but any subset of t — 1 parties learn no information about the
secret. Threshold secret sharing schemes are central tools in cryptography and
have several applications such as constructing secure multiparty computation
protocols [GMW87, BGWS88, CCD8&8], threshold cryptographic systems [DF90,
Fra90, DDFY94] and leakage resilient circuit compilers [[SW03, FRR 10, Rot12]
to name a few.

Most of the threshold secret sharing schemes in literature are linear. This
means that if we multiply each share by a constant ¢, we get a set of shares that
correspond to a new secret that is ¢ times the original secret. This property has
in fact, been crucially leveraged in most of the applications including designing
secure multiparty computation protocols and constructing threshold cryptosys-
tems. However, this highly desirable feature becomes undesirable if our primary
goal is to protect the shares against tampering attacks. More specifically, this
linearity property allows an adversary to tamper (or maul) each share indepen-
dently and output a new set of shares that reconstruct to a related secret (for
example, two times the original secret). Indeed, if the shares of the secret are
stored on a device such as a smart card, an adversary could potentially tamper
with the smart card and change the value of the share that is being stored by
overwriting it with a new value or maybe flipping a few bits. Notice that in the
above tampering attack, the adversary need not learn the actual secret. How-
ever, the adversary is guaranteed to produce a set of shares that reconstruct
to a related secret. Such an attack could be devastating when the shares, for
example, correspond to a cryptographic secret key (such as a signing key) as it
allows an adversary to mount related-key attacks (see [BDLO1]). In fact, most of
the known constructions of threshold signatures use Shamir’s secret sharing to
distribute the signing key among the parties and hence they are all susceptible
to such attacks.

Non-Malleable Secret Sharing. To protect a secret sharing scheme against such
share tampering attacks, Goyal and Kumar [GK18a,GK18b] introduced the no-
tion of Non-Malleable Secret Sharing. Roughly, a secret sharing scheme (Share,
Rec) is non-malleable against a tampering function class F if for every f € F
and every secret s, Rec(f(shares)) where shares <— Share(s) is either s or some-
thing that is unrelated to 5.3 Of course, we cannot hope to protect against all
possible tampering functions as a function can first reconstruct the secret from
the shares, multiply it by 2 and then share this value to obtain a valid sharing of
a related secret. Thus, the prior works placed restrictions on the set of functions
that can tamper the shares. A natural restricted family of tampering functions
that we will consider in this work is F;,,4 which consists of the set of all functions
that tamper each share independently.

Connection to Non-Malleable Codes. Non-malleable secret sharing is related to
another cryptographic primitive called as Non-Malleable Codes which was intro-

3 See Section 3 for a precise definition.

duced in an influential work by Dziembowski, Pietrzak and Wichs [DPW10].4
A non-malleable code relaxes the usual notion of error correction by requir-
ing that the decoding procedure outputs either the original message or some-
thing that is independent of the message when given a tampered codeword
as input. A beautiful line of work, starting from [DPW10], has given several
constructions of non-malleable codes with security against various tampering
function classes [L112,DKO13,FMNV14,FMVW14,ADL14,AGM ™15, FMNV 15,
JW15,CKR16,CGM*16,AAG'16,CGL16,BDKM16,Li17,KOS17,CL17,KOS18,
BDKM18, GMW17,0PVV18 KLT18,BDG'18].

We now elaborate on the connection between non-malleable codes and non-
malleable secret sharing. A tampering function family in the literature of non-
malleable codes that is somewhat similar to Fj,q is the k-split-state function
family. A k-split-state function compartmentalizes a codeword into k-parts and
applies a tampering function to each part, independent of the other parts. Seeing
the similarity between F;,q and k-split-state functions, it might be tempting
to conclude that a non-malleable code against a k-split-state function family
is in fact a k-out-of-k non-malleable secret sharing. However, as demonstrated
in [GK18a], this might not be true in general. In particular, [GK18a] showed that
even a 3-split-state non-malleable code need not be a 3-out-of-3 non-malleable
secret sharing as non-malleable codes may not always protect the secrecy of the
message. In particular, the first few bits of the codeword could reveal some bits of
the message and still, this coding scheme could be non-malleable. Nevertheless,
for the special case of 2, Aggarwal et al. [ADKO15] showed that any 2-split-state
non-malleable code is indeed a 2-out-of-2 non-malleable secret sharing scheme.
In the other direction, we note that any k-out-of-k£ non-malleable secret sharing
scheme against F;,q is in fact a k-split-state non-malleable code.

Rate of Non-Malleable Secret Sharing. One of the main efficiency parameters in
any secret sharing scheme is its rate which is defined as the ratio between the
length of the secret and the maximum size of a share. In the prior work, Goyal
and Kumar [GK18a] gave an elegant construction of t-out-of-n non-malleable
secret sharing from any 2-split-state non-malleable code. However, the rate of
this scheme is equal to O(nlolgm) where m is the length of the secret. The rate
tends to 0 as the length of the secret m tends to oo and hence, a natural question
to ask is:

Can we obtain a construction of threshold non-malleable secret sharing with
rate > 07

The problem of improving the rate was mentioned as an explicit open ques-
tion in [GK18al.

* We refer the reader to [GK18a, GK18b] for a thorough discussion on the connection
between non-malleable secret sharing and related notions such as verifiable secret
sharing [CGMAS85] and AMD codes [CDFT08].

Multiple Tamperings. In the real world, a tampering adversary could poten-
tially mount more than one tampering attack. In particular, if each share of a
cryptographic secret key is stored on a small device (such as smart cards), the
adversary could potentially clone these devices to obtain multiple copies of the
shares. The adversary could then apply a different tampering function on each
copy and obtain information about related secrets. Thus, a more realistic secu-
rity definition would be to consider multiple tampering functions f1,..., fr € F,
and require that for every secret s, the joint distribution (Rec(f;(shares)),...,
Rec(fx(shares))) where shares < Share(s) is independent of s.5 For the case
of non-malleable codes, security against multiple tamperings has already been
considered in [FMNV14,JW15,CGL16,0PVV18]. However, for the case of non-
malleable secret sharing, the prior work [GK18a] only considered a single tam-
pering function and a natural question would be:

Can we obtain a construction of threshold non-malleable secret sharing against
multiple tamperings?

1.1 Our Results

In this work, we obtain the following results.

Rate Improvement We give the first construction of a threshold non-malleable
secret sharing scheme that has rate > 0. Specifically, the rate of our construction
is O tloéZ —) where ¢ is the threshold and n is the number of parties. More
formally,

Theorem 1. For any n,t > 4 and any p > 0, there exists a construction of
t-out-of-n non-malleable secret sharing scheme against Finq for sharing m-bit
secrets for any m > log n with rate Q(m) and simulation error 2~ Gestom).
The running times of the sharing and reconstruction algorithms are polynomial
mn and m.

Local Leakage Resilient Secret Sharing. One of the main tools used in proving
Theorem 1 (which may be of independent interest) is an efficient construction of
local leakage-resilient threshold secret sharing scheme [GK18a,BDIR18]. A t-out-
of-n secret sharing scheme is said to be local leakage-resilient (parameterized by
a leakage bound p and set size s), if the secrecy holds against any adversary who
might obtain at most t—1 shares in the clear and additionally, for any set S C [n]
of size at most s, the adversary obtains p bits from each share belonging to a
party in the set S. Goyal and Kumar [GK18a] gave a construction of a 2-out-of-n
local leakage resilient secret sharing scheme. In this work, we give an efficient
construction of t-out-of-n local leakage resilient secret sharing scheme when ¢ is a

5 As in the case of single tampering, a tampering function could just output the same
shares and in which the reconstructed secret will be s. Our definition also captures
this property and we refer to Section 3 for a precise definition.

constant. This result must be contrasted with a recent result by Benhamouda et
al. [BDIR18] who showed that the Shamir’s secret sharing scheme is local leakage
resilient when the field size is sufficiently large and the threshold t = n—o(logn).
A more precise statement of our construction of local leakage resilient secret
sharing scheme appears below.

Theorem 2. For any e > 0, t,n € N, and parameters u € N, s < n, there exists
an efficient construction of t-out-of-n secret sharing scheme for sharing m-bit
secrets that is (u, s)-local leakage resilient with privacy error €. The size of each
share when t is a constant is O ((m + sp + log(logn/e))logn).

Concrete Efficiency. A major advantage of our result is its concrete efficiency. In
the prior work, the constant hidden inside the big-O notation was large and was
not explicitly estimated. We have optimized the parameters of our construction
and we illustrate the size of shares for various values of (n,t) in Table 1.

’(# of Parties, Threshold)‘Secret Length (in bits)‘Share Size (in KB)‘

(7,4) 812 273.73

(9,5) 812 399.85

(25,13) 812 1757.53

(100, 51) 812 12.34 x103

(7,4) 1024 345.19

(9,5) 1024 504.24

(25,13) 1024 2216.40

(100,51) 1024 15.56 x10%
Table 1. Share sizes for simulation error of at most 275°.

Comparison with [GK18a]. When compared to the result of [GK18a] which could
support thresholds ¢ > 2, our construction can only support threshold ¢ > 4.
However, getting a rate > 0 non-malleable secret sharing scheme for threshold
t = 2 would imply a 2-split-state non-malleable code with rate > 0 which is a
major open problem. For the case of t = 3, though we know constructions of
3-split-state non-malleable codes with rate > 0 [KOS18, GMW17], they do not
satisfy the privacy property of a 3-out-of-3 secret sharing scheme. In particular,
given two states of the codeword, some information about the message is leaked.
Thus, getting a 3-out-of-n non-malleable secret sharing scheme with rate > 0
seems out of reach of the current techniques and we leave this as an open problem.

Multiple Tampering We initiate the study of non-malleable secret sharing
under multiple tampering. Here, the shares can be subject to multiple (possibly
different) tampering functions and we require that the joint distribution of the

5 812 bits is the minimal message length that gives 80 bits of security.

reconstructed secrets to be independent of s. For this stronger security notion, we
first prove a negative result that states that a non-malleable secret sharing cannot
exist when the number of tamperings (also called as the tampering degree) is
apriori unbounded. This result generalizes a similar result for the case of a split-
state non-malleable codes. Formally,

Theorem 3. For any n,t € N, there does not exist a t-out-of-n non-malleable
secret sharing scheme against Finq that can support an apriori unbounded tam-
pering degree.

When the tampering degree is apriori bounded, we get constructions of
threshold non-malleable secret sharing scheme. Formally,

Theorem 4. For any n,t > 4, and K € N, there exists a t-out-of-n mon-
malleable secret sharing scheme with tampering degree K for sharing m-bit secrets

for a large enough” m against Fi,q with rate = @(m) and simulation er-

ror 27" The running time of the sharing and reconstruction algorithms are
polynomial in n and m.

General Access Structures We extend our techniques used in the proof of
Theorems 1,4 to give constructions of non-malleable secret sharing scheme for
more general monotone access structures rather than just threshold structures.
Before we state our result, we give some definitions.

Definition 1. An access structure A is said to be monotone if for any set S € A,
any superset of S is also in A. A monotone access structure A is said to be -
monotone if for any set S € A, |S| > 4.

We also give the definition of a minimal authorized set.

Definition 2. For a monotone access structure A, a set S € A is a minimal
authorized set if any strict subset of S is not in A. We denote t,,q. to be max|S|
where S is a minimal authorized set of A.

We now state our extension to general access structures.

Theorem 5. For any n,K € N and 4-monotone access structure A, if there
exists a statistically private (with privacy error €) secret sharing scheme for
A that can share m-bit secrets for a large enough m with rate R, there exists a
non-malleable secret sharing scheme for sharing m-bit secrets for the same access

structure A with tampering degree K against Finq with rate ©(and
2(1)

o)
K3tmax 10g2 n
stmulation error € +27™

Thus, starting with a secret sharing scheme for monotone span programs [KW93]
or for more general access structures [LV18], we get non-malleable secret sharing
schemes for the same access structures with comparable rate.

7 See the main body for the precise statement.

Comparison with [GK18b]. In the prior work [GK18b], the rate of the non-
malleable secret sharing for general access structures also depended on the length
of the message and thus, even when R is constant, their construction could
only achieve a rate of 0. However, unlike our construction, they could support
all monotone access structures (and not just 4-monotone) and they could even
start with a computational secret sharing scheme for an access structure A and
convert it to a non-malleable secret sharing scheme for A.

Concurrent Work. In a concurrent and independent work, Aggarwal et al.
[ADN*18] consider the multiple tampering model and give constructions of non-
malleable secret sharing for general access structures in this model. There are
three main differences between our work and their work. Firstly, the rate of their
construction asymptotically tends to 0 even for the threshold case. However, the
rate of our construction is greater than 0 when we instantiate the compiler with
a rate > 0 secret sharing scheme. Secondly, their work considers a stronger
model wherein each tampering function can choose a different reconstruction
set. We prove the security of our construction in a weaker model wherein the
reconstruction set is the same for each tampering function. We note that the
impossibility result for unbounded tampering holds even if the reconstruction
set is the same. Thirdly, their construction can give non-malleable secret sharing
scheme for any 3-monotone access structure whereas our construction can only
work for 4-monotone access structure. In another concurrent and independent
work, Kumar et al. [KMS18] gave a construction of non-malleable secret sharing
in a stronger model where the tampering functions might obtain bounded leakage
from the other shares.

2 Owur Techniques

In this section, we give a high level overview of the techniques used to obtain
our results.

2.1 Rate Improvement

Goyal and Kumar [GK18a] approach. We first give a brief overview of the con-
struction of threshold non-malleable secret sharing of Goyal and Kumar [GK18a]
and then explain why it could achieve only a rate of 0. At a high level, Goyal
and Kumar start with any 2-split-state non-malleable code and convert it into a
t-out-of-n non-malleable secret sharing scheme. We only explain their construc-
tion for the case when ¢ > 3, and for the case of ¢ = 2, they gave a slightly
different construction. For the case when ¢ > 3, the sharing procedure does the
following. The secret is first encoded using a 2-split-state non-malleable code
to obtain the two states L and R. L is now shared using any t-out-of-n secret
sharing scheme, say Shamir’s secret sharing to get the shares SLy,...,SL, and
R is shared using a 2-out-of-n local leakage resilient secret sharing scheme to get
the shares SRy, ...,SR,. The share corresponding to party 7 includes (SL;, SR;).

To recover the secret given at least ¢ shares, the parties first use the recovery
procedures of the threshold secret sharing scheme and local leakage resilient se-
cret sharing scheme to recover L and R respectively. Later, the secret is obtained
by decoding L and R using the decoding procedure of the non-malleable code.
The correctness of the construction is straightforward and to argue secrecy, it
can been seen that given any set of ¢ — 1 shares, L is perfectly hidden and this
follows from the security of Shamir’s secret sharing. Now, using the fact that
any 2-split-state non-malleable code is a 2-out-of-2 secret sharing scheme, it can
be shown that the right state R statistically hides the secret.

To argue the non-malleability of this construction, Goyal and Kumar showed
that any tampering attack on the secret sharing scheme can be reduced to a
tampering attack on the underlying 2-split-state non-malleable code. The main
challenge in designing such a reduction is that the tampering functions against
the underlying non-malleable code must be split-state, meaning that the tam-
pering function against L (denoted by f) must be independent of R and the
tampering function against R (denoted by g) must be independent of L. To
make the tampering function ¢ to be independent of L, [GK18a] made use of the
fact that there is an inherent difference in the parameters used for secret sharing
L and R. Specifically, since R is shared using a 2-out-of-n secret sharing scheme,
the tampered right state R can be recovered from any two tampered shares, say
SRy, SR,. Now, since L is shared using a t-out-of-n secret sharing scheme and
t > 3, the shares SL; and SLs information theoretically provides no information
about L. This, in particular means that we can fix the shares SL; and SLy inde-
pendent of L and the tampering function g could use these fixed shares to output
the tampered right state R. Now, when f is given the actual L, it can sample
SLs,...,SL, as a valid secret sharing of L that is consistent with the fixed SLj,
SLy. This allowed them to argue one-sided independence i.e., g is independent of
L. On the other hand, making the tampering function f to be independent of R
is a lot trickier. This is because any two shares information theoretically fixes R
and in order to recover L, we need at least ¢ (> 3) shares. Hence, we may not be
able to argue that f is independent of R. To argue this independence, Goyal and
Kumar used the fact that R is shared using a local leakage resilient secret sharing
scheme. In particular, they made the size of SR; to be much larger than the size
of SL; and showed that even when we leak |SL;| bits from each share SR;, R is
still statistically hidden. This allowed them to define leakage functions leaky, ...,
leak,, where leak; had SL; hardwired in its description, it applies the tampering
function on (SL;,SR;) and outputs the tampered SL;. Now, from the secrecy of
the local leakage resilient secret sharing scheme, the distribution SLy,...,SL,
(which completely determines L) is independent of R and thus L is independent
of R. This allowed them to obtain two-sided independence.

A drawback of this approach is that the rate of this scheme is at least as
bad as that of the underlying 2-split-state non-malleable code. As mentioned
before, obtaining a 2-split-state non-malleable code with rate > 0 is a major
open problem. Thus, this construction could only achieve a rate of 0.

Our Approach. While constructing 2-split-state non-malleable code with rate
> (0 has been notoriously hard, significant progress has been made for the case
of 3-split-state non-malleable codes. Very recently, independent works of Gupta
et al. [GMW17] and Kanukurthi et al. [KOS18] gave constructions of 3-split-state
non-malleable codes with an explicit constant rate. The main idea behind our
rate-improved construction is to use a constant rate, 3-split-state non-malleable
code instead of a rate 0, 2-split-state non-malleable code. To be more precise,
we first encode the secret using a 3-split-state non-malleable code to get the
three states (L,C,R). We then share the first state L using a t-out-of-n secret
sharing scheme to get (SLy,...,SL,) as before. Then, we share C using a t;-
out-of-n secret sharing scheme to get (SCy,...,SC,) and R using a ts-out-of-n
secret sharing scheme to get (SRy,...,SR,,). Here, t1,ty are some parameters
that we will fix later. The share corresponding to party i includes (SL;,SC;,
SR;). While the underlying intuition behind this idea is natural, proving that
this construction is a non-malleable secret sharing scheme faces several barriers
which we elaborate below.

First Challenge. The first barrier that we encounter is, unlike a 2-split-state non-
malleable code which is always a 2-out-of-2 secret sharing scheme, a 3-split-state
non-malleable code may not be a 3-out-of-3 secret sharing scheme. In particular,
we will not be able use the [GK18a] trick of sharing the 3-states using secret
sharing schemes with different thresholds to gain one-sided independence. This
is because given t — 1 shares, complete information about two states will be
revealed, and we could use these two states to gain some information about the
underlying message. Thus, the privacy of the scheme breaks down. Indeed, as
mentioned in the introduction, the constructions of Kanukurthi et al. [KOS18]
and Gupta et al. [GMW17] are not 3-out-of-3 secret sharing schemes.

The main trick that we use to solve this challenge is that, while these con-
structions [KOS18, GMW17] are not 3-out-of-3 secret sharing schemes, we ob-
serve that there exist two states (let us call them C and R) such that these two
states statistically hide the message. This means that we can potentially share
these two states using secret sharing schemes with smaller thresholds and may
use it to argue one-sided independence.

Second Challenge. The second main challenge is in ensuring that the tampering
functions we design for the underlying 3-split-state non-malleable code are indeed
split-state. Let us call the tampering functions that tamper L,C, and R as f, g,
and h respectively. To argue that f,g and h are split-state, we must ensure f
is independent of C and R and similarly, g is independent of L and R and A is
independent of L and C. For the case of 2-split-state used in the prior work, this
independence was achieved by using secret sharing with different thresholds and
relying on the leakage resilience property. For the case of 3-split-state, we need
a more sophisticated approach of stratifying the three secret sharing schemes so
that we avoid circular dependence in the parameters. We now elaborate more
on this solution.

To make g and h to be independent of L, we choose the thresholds ¢; and t2 to
be less than . This allows us to fix a certain number of shares independent of L
and use these shares to extract C and R. Similarly, to make h to be independent
of C, we choose the threshold ¢ < ¢;. This again allows us to fix certain shares
C and use them to extract R. Thus, by choosing ¢ > t; > t3, we could achieve
something analogous to one-sided independence. Specifically, we achieved inde-
pendence of g from L and independence of h from (L, C). For complete split-state
property, we still need to make sure that f is independent of (C,R) and g is in-
dependent of R. To make the tampering function f to be independent of C,
we rely on the local leakage resilience property of the t1-out-of-n secret sharing
scheme. That is, we make the size of the shares SC; to be much larger than SL;
such that, in spite of leaking [SL;| bits from each share SC;, the secrecy of C is
maintained. We can use this to show that the joint distribution (SL1, .. SL)
(which completely determines L) is independent of C. Now, to argue that both
f and g are independent of R, we rely on the local leakage resilience property of
the t9-out-of-n secret sharing scheme. That is, we make the shares of SR; to be
much larger than (SL;, SC;) so that, in spite of leaking |SL;|+|SC;| bits from each
share SR;, the secrecy of R _is maintained. We then use this property to argue
that the joint distribution (SL;,SCy),...,(SL,,SC,) is independent of R. Thus,
the idea of stratifying the three threshold secret sharing schemes with different
parameters as described above allows to argue that f, g and h are split-state. As
we will later see, this technique of stratification is very powerful and it allows us
to easily extend this construction to more general monotone access structures.

Third Challenge. The third and the more subtle challenge is the following. To re-
duce the tampering attack on the secret sharing scheme to a tampering attack on
the underlying non-malleable code, we must additionally ensure consistency i.e.,
the tampered message output by the split-state functions must be statistically
close to the message output by the tampering experiment of the underlying secret
sharing scheme. To illustrate this issue in some more detail, let us consider the
tampering functions f and ¢ in the construction of Goyal and Kumar [GK18a]
for the simple case when n =t = 3. Recall that the tampering function g sam-
ples SRy, SRy such that it is a valid 2-out-of-n secret sharing of R and uses the
fixed SLy,SLy (independent of L) to extract the tampered R from (SRl,SRQ)
However, note that g cannot use any valid secret sharing of SRy, SRy of R. In
particular, it must also satisfy the property that the tampering function applied
on SLy, SRy gives the exact same SL; that f uses in the reconstruction (a similar
condition for position 2 must be satisfied). This is crucial, as otherwise there
might be a difference in the distributions of the tampered message output by
the split-state functions and the message output in the tampering experiment of
the secret sharing scheme. In case there is a difference, we cannot hope to use
the adversary against the non-malleable secret sharing to break the underlying
non-malleable code. This example illustrates this issue for a simple case when
t = n = 3. To ensure consistency for larger values of n and ¢, Goyal and Ku-
mar fixed (SLy,...,SL;—1) (instead of just fixing SL;,SLs) and the function g

10

ensures consistency of each of the tampered shares gT_l, ceey é\[t,l. However, this
approach completely fails when we move to 3 states. For the case of 3-states, the
tampering function, say h, must sample SRy,..., SR, such that it is consistent
with SLy,...,SL;_1 used by f. However, even to check this consistency, h would
need the shares SCq,...,5C;_1 which completely determines C. In this case, we
cannot argue that h is independent of C.

To tackle this challenge, we deviate from the approach of Goyal and Ku-
mar [GK18a] and have a new proof strategy that ensures consistency and at the
same time maintains the split-state property. In this strategy, we only fix the val-
ues (SLy,SLo, SL3) for the first secret sharing scheme, (SCy,SCy) for the second
secret sharing scheme and fix SR3 for the third secret sharing scheme. Note that
we consider t > 4, t; > 3 and t5 > 2 and thus, the fixed shares are independent
of L, C, and R respectively.® We design our split-state functions in such a way
that the tampering function f need not do any consistency checks, the tamper-
ing function g has to do the consistency check only on SL3 (which it can do
since SL3 and SRj3 are fixed) and the function h needs to do a consistency check
only on {éT_Z, éEi}ie[LQ] (which it can do since SL1,SCy, SLy, SCy are fixed). This
approach of reducing the number of checks to maintain consistency helps us in
arguing independence between the tampering functions. However, this approach
creates additional problems in extracting L as the tampering function f needs to
use the shares (SRy,...,SRy,,) and (SCy,...,SC,,) (which completely determines
C and R respectively). We solve this by letting f extract L using shares of some
arbitrary values of C and R and we then use the leakage resilience property to
ensure that the outputs in the split-state tampering experiment and the secret
sharing tampering experiment are statistically close.

Completing the Proof. This proof strategy helps us in getting a rate > 0 con-
struction of a t-out-of-n non-malleable secret sharing scheme for ¢ > 4. However,
there is one crucial block that is still missing. Goyal and Kumar [GK18a] only
gave a construction of 2-out-of-n local leakage resilient secret sharing scheme.
And, for this strategy to work we also need a construction of t;-out-of-n local
leakage resilient secret sharing scheme for some ¢; > 2. As mentioned in the
introduction, the recent work by Benhamouda et al. [BDIR18] only gives a con-
struction of local leakage resilient secret sharing when the threshold value is
large (in particular, n — o(logn)). To solve this, we give an efficient construction
of a t-out-of-n local leakage resilient secret sharing scheme when ¢ is a constant.
This is in fact sufficient to get a rate > 0 construction of non-malleable secret
sharing scheme. We now give details on the techniques used in this construction.

Local Leakage Resilient Secret Sharing Scheme. The starting point of our con-
struction is the 2-out-of-2 local leakage resilient secret sharing from the work
of Goyal and Kumar [GK18a] based on the inner product two-source extrac-
tor [CG88]. We first extend it to a k-out-of-k local leakage resilient secret sharing
scheme for any arbitrary k. Let us now illustrate this for the case when k is even

8 This is the reason why we could only achieve thresholds ¢ > 4.

11

i.e., k = 2p. To share a secret s, we first additively secret share s into sq,...,sp
and we encode each s; using the 2-out-of-2 leakage resilient secret sharing scheme
to obtain the shares (shareg;_1,sharey;). We then give share; to party i for each
i € [k]. Note that given ¢t — 1 shares, at most p — 1 additive secret shares can be
revealed. We now rely on the local leakage resilience property of the 2-out-of-2
secret sharing to argue that the final additive share is hidden even when given
bounded leakage from the last share. This helps us in arguing the k-out-k local
leakage resilience property. The next goal is to extend this to a k-out-of-n secret
sharing scheme. Since we are interested in getting good rate, we should not in-
crease the size of the shares substantially. A naive way of doing this would be
to share the secret (7) times (one for each possible set of k-parties) using the
k-out-of-k secret sharing scheme and give the respective shares to the parties.
The size of each share in this construction would blow up by a factor (kﬁl) when
compared to the k-out-of-k secret sharing scheme. Though, this is polynomial
in n when k is a constant, this is clearly sub-optimal when n is large and would
result in bad concrete parameters. We note that Goyal and Kumar [GK18a] used
a similar approach to obtain a 2-out-of-n local leakage resilient secret sharing.

In this work, we use a very different approach to construct a k-out-of-n local
leakage resilient secret sharing from a k-out-of-k local leakage resilient secret
sharing. The main advantage of this transformation is that it is substantially
more rate efficient than the naive solution. Our transformation makes use of
combinatorial objects called as perfect hash functions [FK84].2 A family of func-
tions mapping {1,...,n} to {1,...,k} is said to be a perfect hash function family
if for every set S C [n] of size at most k, there exists at least one function in
the family that is injective on S. Let us now illustrate how this primitive is
helpful in extending a k-out-of-k secret sharing scheme to a k-out-of-n secret
sharing scheme. Given a perfect hash function family {h;};c[q of size £, we share
the secret s independently ¢ times using the k-out-of-k secret sharing scheme to
obtain (share!, ..., share}) for each i € [(]. We now set the shares corresponding
to party ¢ as (share,ln(i), o ,sharefu(i)). To recover the secret from some set of
k shares given by S = {s1,...,sr}, we use the following strategy. Given any
subset S of size k, perfect hash function family guarantees that there is at least
one index 4 € [¢] such that h; is injective on S. We can now use {shareﬁli(sl), cee
sharefli(Sk)} = {share!,..., share.} to recover the secret using the reconstruction
procedure of the k-out-of-k secret sharing.

We show that this transformation additionally preserves local leakage re-
silience. In particular, if we start with a k-out-of-k local leakage resilient secret
sharing scheme then we obtain a k-out-of-n local leakage resilient secret sharing.
The size of each share in our k-out-of-n leakage resilient secret sharing scheme
is £ times the share size of k-out-of-k secret sharing scheme. Thus, to minimize
rate we must minimize the size of the perfect hash function family. Construct-

9 We note that using perfect hash function families for constructing threshold secret
sharing scheme is not new (see [Bla99, SNWO01] for a comprehensive discussion).
However, to the best of our knowledge, this is the first application of this technique
to construct local leakage resilient secret sharing scheme.

12

ing perfect hash function family of minimal size for all k¥ € N is an interesting
and a well-known open problem in combinatorics. In this work, we give an ef-
ficient randomized construction (with good concrete parameters) of a perfect
hash function family for a constant k with size O(logn+1log(1/€)) where € is the
error probability. Alternatively, we can also use the explicit construction (which
is slightly less efficient when compared to the randomized construction) of size
O(logn) (when k is a constant) given by Alon et al. [AYZ95]. Combining either
the randomized /explicit construction of perfect hash function family with a con-
struction of k-out-of-k local leakage resilient secret sharing scheme, we get an
efficient construction of k-out-of-n local leakage resilient secret sharing scheme
when k is a constant.

2.2 Multiple Tampering

We also initiate the study of non-malleable secret sharing under multiple tam-
perings. As discussed in the introduction, this is a much stronger model when
compared to that of a single tampering.

Negative Result. We first show that when the number of tampering functions that
can maul the secret sharing scheme is apriori unbounded, there does not exist
any threshold non-malleable secret sharing scheme. This generalizes a similar
result for the case of split-state non-malleable code (see [GLM™04,FMNV14] for
details) and the main idea is inspired by these works. The underlying intuition
behind the negative result is simple: we come up with a set of tampering functions
such that each tampering experiment leaks one bit of a share. Now, given the
outcomes of ¢ - s such tampering experiments where s is the size of the share,
the distinguisher can clearly learn every bit of ¢ shares and thus, learn full
information about the underlying secret and break non-malleability.

For the tampering experiment to leak one bit of the share of party i, we
use the following simple strategy. Let us fix an authorized set of size t say, {1,
..., t}. We choose two sets of shares: {sharey, ... share;,... share;} and {share;,
...,share}, ... share;} such that they reconstruct to two different secrets. Note
that the privacy of a secret sharing scheme guarantees that such shares must
exist. Whenever the particular bit of the share of party ¢ is 1, the tampering
function f; outputs share; whereas the other tampering functions, say f; will
output share;. On the other hand, if the particular bit is 0 then the tampering
function f; outputs share; and the other tampering functions still output share;.
Observe that the reconstructed secret in the two cases reveals the particular bit
of the share of party 7. We can use a similar strategy to leak every bit of all the
t shares which completely determine the secret.

Positive Result. We complement the negative result by showing that when the
number of tamperings is apriori bounded, we can obtain an efficient construction
of a threshold non-malleable secret sharing scheme. A natural approach would
be to start with a split-state non-malleable code that is secure against bounded
tamperings and convert it into a non-malleable secret sharing scheme. To the

13

best of our knowledge, the only known construction of split-state non-malleable
code that is secure in the presence of bounded tampering is that of Chattopad-
hyay et al. [CGL16]. However, the rate of this code is 0 even when we restrict
ourselves to just two tamperings. In order to achieve a better rate, we modify
the constructions of Kanukurthi et al. [KOS18] and Gupta et al. [GMW17] such
that we obtain a 3-split-state non-malleable code that secure in the setting of
bounded tampering. The rate of this construction is O(3) where k is the apriori
bound on the number of tamperings. Fortunately, even in this construction, we
still maintain the property that there exists two states that statistically hide the
message. We then prove that the same construction described earlier is a secure
non-malleable secret sharing under bounded tampering when we instantiate the
underlying code with a bounded tampering secure 3-split-state non-malleable
codes.

2.3 General Access Structures

To obtain a secret sharing scheme for more general access structures, we start
with any statistically secure secret sharing scheme for that access structure, and
use it to share L instead of using a threshold secret sharing scheme. We require
that the underlying access structure to be 4-monotone so that we can argue
the privacy of our scheme. Recall that a 4-monotone access structure is one in
which the size of every set in the access structure is at least 4. Even in this more
general case, the technique of stratifying the secret sharing schemes allows us
to prove non-malleability in almost an identical fashion to the case of threshold
secret sharing. We remark that the work of [GK18b] which gave constructions
of non-malleable secret sharing scheme for general monotone access structures
additionally required their local leakage resilient secret sharing scheme to satisfy
a security property called as strong local leakage resilience. Our construction
does not require this property and we show that “plain” local leakage resilience
is sufficient for extending to more general monotone access structures.

Organization. We give the definitions of non-malleable secret sharing and non-
malleable codes in Section 3. In Section 4, we present the construction of the
k-out-of-n leakage resilient secret sharing scheme. In Section 5, we describe our
rate-efficient threshold non-malleable secret sharing scheme for the single tam-
pering. We give the impossibility result for unbounded many tamperings in the
full version. Finally, in Section 6, we describe our result on non-malleable se-
cret sharing for general access structures against multiple bounded tampering.
Note that the result in Section 6 implicitly captures the result for threshold
non-malleable secret sharing against bounded tampering. We present this more
general result for ease of exposition.

3 Preliminaries

Notation. We use capital letters to denote distributions and their support, and
corresponding lowercase letters to denote a sample from the same. Let [n] denote

14

the set {1,2,...,n}, and U, denote the uniform distribution over {0,1}". For
any i € [n], let ; denote the symbol at the i-th co-ordinate of z, and for any
T C [n)], let z7 € {0,1}7] denote the projection of x to the co-ordinates indexed
by T. We write o to denote concatenation. We give the standard definitions of
min-entropy, statistical distance and seeded extractors in the full version.

3.1 Threshold Non-Malleable Secret Sharing Scheme

We first give the definition of a sharing function, then define a threshold secret
sharing scheme and finally give the definition of a threshold non-malleable secret
sharing. These three definitions are taken verbatim from [GK18a]. We define non-
malleable secret sharing for more general access structures in the full version.

Definition 3 (Sharing Function). Let [n] = {1,2,...,n} be a set of identities
of n parties. Let M be the domain of secrets. A sharing function Share is a
randomized mapping from M to §; XxSaX...XS,,, where S; is called the domain of
shares of party with identity i. A dealer distributes a secret m € M by computing
the vector Share(m) = (S1,...,Sy), and privately communicating each share S;
to the party i. For a set T C [n], we denote Share(m)r to be a restriction of
Share(m) to its T entries.

Definition 4 ((t,n, €., €;)-Secret Sharing Scheme). Let M be a finite set of
secrets, where |M| > 2. Let [n] = {1,2,...,n} be a set of identities (indices) of
n parties. A sharing function Share with domain of secrets M is a (t,n, €c, €s)-
secret sharing scheme if the following two properties hold :
— Correctness: The secret can be reconstructed by any t-out-of-n parties. That
is, for any set T C [n] such that |T| > t, there exists a deterministic recon-
struction function Rec : ®;c1S; — M such that for every m € M,

Pr[Rec(Share(m)r) =m] =1 — ¢,

where the probability is over the randomness of the Share function. We will
slightly abuse the motation and denote Rec as the reconstruction procedure
that takes in T and Share(m)r where T is of size at least t and outputs the
secret.

— Statistical Privacy: Any collusion of less than t parties should have almost
no information about the underlying secret. More formally, for any unautho-
rized set U C [n] such that |U| < t, and for every pair of secrets mg,m1 € M,
for any distinguisher D with output in {0,1}, the following holds :

| Pr[D(Share(mg)y) = 1] — Pr[D(Share(mq)y) = 1]| < €4

We define the rate of the secret sharing scheme as

[m|

[m|—c0 MaX;e] [Share(m)|

15

Definition 5 (Threshold Non-Malleable Secret Sharing [GK18a]). Let
(Share, Rec) be a (t, n, €., €5)-secret sharing scheme for message space M. Let F
be some family of tampering functions. For each f € F, m € M and authorized
set T C [n] containing t indices, define the tampered distribution TamperfﬁT as
Rec(f(Share(m))r) where the randomness is over the sharing function Share. We
say that the (t,n, e, es)-secret sharing scheme, (Share, Rec) is €'-non-malleable
w.r.t. F if for each f € F and any authorized set T' consisting of t indices, there
exists a distribution DT over M U {same*} such that:

|Tamper!:T — copy(D?T,m)| < €

' same*
where copy is defined by copy(x,y) = o fo 7 .
y if £ = same*

Many Tampering Extension. We now extend the above definition to capture
multiple tampering attacks. Informally, we say that a secret sharing scheme
is non-malleable w.r.t. family F with tampering degree K if for any set of K
functions fi,..., fk € F, the output of the following tampering experiment is
independent of the shared message m: (i) we first share a secret m to obtain the
corresponding shares, (ii) we tamper the shares using fi,..., fk, (iii) we finally,
output the K-reconstructed tampered secrets. Note that in the above experiment
the message m is secret shared only once but is subjected to K (possibly different)
tamperings. We refer to the full version for the formal definition.

3.2 Non-Malleable Codes

Dziembowski, Pietrzak and Wichs [DPW10] introduced the notion of non-malleable
codes which generalizes the usual notion of error correction. In particular, it guar-
antees that when a codeword is subject to tampering attack, the reconstructed
message is either the original one or something that is independent of the original
message.

Definition 6 (Non-Malleable Codes [DPW10]). Let Enc : {0,1}" — {0,
1}™ and Dec : {0,1}" — {0,1}™ U {L} be (possibly randomized) functions,
such that Dec(Enc(s)) = s with probability 1 for all s € {0,1}™. Let F be a
family of tampering functions and fiz ¢ > 0. We say that (Enc,Dec) is e—non-
malleable w.r.t. F if for every f € F, there exists a random variable Dy on
{0,1}™ U {same*}, such that for all s € {0,1}™,

|Dec(f(Xs)) — copy(Dy,s)| < e

x if x # same*
fz7 . We

where X < Enc(s) and copy is defined by copy(z,y) = ‘
y if £ = same*

call n the length of the code and m/n the rate.

Chattopadhyay, Goyal and Li [CGL16] defined a stronger notion of non-malleability
against multiple tampering. We recall this definition in the full version of the

paper.

16

Split-state Tampering Functions. We focus on the split-state tampering model
where the encoding scheme splits s into ¢ states: Enc(s) = (S1,...,S.) € & %
Sy ... x S, and the tampering family is Fgpir = {(fl, e fc)|fi : S — SZ-}. We
will call such a code as c-split-state non-malleable code.

Augmented Non-Malleable Codes. We recall the definition of augmented, 2-split-
state non-malleable codes [AAGT16].

Definition 7 (Augmented Non-Malleable Codes [AAG™16]). A coding
scheme (Enc, Dec) with code length 2n and message length m is an augmented
2-split-state non-malleable code with error € if for every function f,g: {0,1}" —
{0,1}™, there ewists a random variable Dy 4 on {0,1}™ x ({0,1}™ U {same*})
such that for all messages s € {0,1}™, it holds that

‘(La Dec(f(L), g(R))) - S(D(f,g)a 8)| <e

where (L,R) = Enc(s), (L,m) < D4 and S((L,m),s) outputs (L,s) if m =
same* and otherwise outputs (L, m).

Ezxplicit Constructions. We now recall the constructions of split-state non-malleable
codes.

Theorem 6 ([Lil7]). For any n € N, there exists an explicit construction of
2-split-state non-malleable code with efficient encoder/decoder, code length 2n,

rate O(loén) and error 27 °(wEw) |

Theorem 7 ([KOS18, GMW17]). For every n € N and p > 0, there ex-
ists an explicit construction of 3-split-state non-malleable code with efficient en-
coder/decoder, code length (3 + o(1))n, rate 3++(1) and error 2~ 2(n/1og! " (n))
Theorem 8 ([CGL16]). There exists a constant v > 0 such that for every
n € N and t < n?, there exists an explicit construction of 2-split-state non-
malleable code with an efficient encoder/decoder, tampering degree t, code length

_p 2
2n, rate ﬁ and error 27" .

Theorem 9 ([GKP'18]). There exists a constant v > 0 such that for every
n € N and t < n”, there exists an explicit construction of an augmented, split-
state non-malleable code with an efficient encoder/decoder, tampering degree t,
code length 2n, rate ﬁ and error 2=
Theorem 10. There exists a constant v > 0 such that for every n € N and
t < nY, there exists an explicit construction of 3-split-state non-malleable code
with an efficient encoder/decoder, tampering degree t, code length 3n, rate 8(%)

_ 2
and error 27" .

We give the proof of this theorem in the full version.

17

Additional Property. We show in the full version that the construction given
in [KOS18, GMW17] satisfies the property that given two particular states of
the codeword, the message remains statistically hidden.

4 k-out-of-n Leakage Resilient Secret Sharing Scheme

In this section, we give a new, rate-efficient construction of k-out-of-n leakage
resilient secret sharing scheme for a constant k. Later, in Section 5, we will use
this primitive along with a 3-split-state non-malleable code with explicit constant
rate (see Theorem 7) from the works of Kanukurthi et al. [KOS18] and Gupta
et al. [GMW17] to construct a t-out-of-n non-malleable secret sharing scheme
with the above mentioned rate.

We first recall the definition of a leakage resilient secret sharing scheme from
[GK18a).

Definition 8 (Leakage Resilient Secret Sharing [GK18a]). A (¢,n, €, €5)
(for t > 2) secret sharing scheme (Share, Rec) for message space M is said to be
e-leakage resilient against a leakage family F if for all functions f € F and for
any two messages mg, my € M:

|f(Share(myg)) — f(Share(m;))| < e

Leakage Function Family. We are interested in constructing leakage resilient
secret sharing schemes against the specific function family }—k,E,ﬁ ={f KR
K C[n],|K| =k, K C K, |K| <k} where fx 7 7 on input (sharey,...,share,)
outputs share; for each i € K in the clear and outputs f;(share;) for every
i € K\ K such that f; is an arbitrary function outputting p; bits. When we
just write g (without the vector sign), we mean that every function f; outputs
at most p bits.

Organization. The rest of this section is organized as follows: we first construct
a k-out-of-k leakage resilient secret sharing scheme against F 1, (in other
words, k — 1 shares are output in the clear and p bits are leaked from the k-th
share) in Section 4.1. In Section 4.2, we recall the definition of a combinatorial
object called as perfect hash function family and give a randomized construction
of such a family. Next, in section 4.3, we combine the construction of k-out-of-
k leakage resilient secret sharing scheme and a perfect hash function family to
give a construction of k-out-of-n leakage resilient secret sharing scheme (for a
constant k).

4.1 k-out-of-k Leakage Resilient Secret Sharing

In this subsection, we will construct a k-out-k leakage resilient secret sharing
scheme against Fj —1, for an arbitrary k& > 2 (and not just for a constant
k). As a building block, we will use a 2-out-of-2 leakage resilient secret sharing
which was constructed in [GK18a]. We first recall the lemma regarding this
construction.

18

Lemma 1 ([GK18a]). For any e > 0 and 1, m € N, there exists a construction
of (2,2,0,0) secret sharing scheme for sharing m-bit secrets that is e-leakage
resilient against Fa1, such that the size of each share is O(m + pu + log%).
The running time of the sharing and reconstruction procedures are poly(m, s,

log(1/€)).

Let us denote the secret sharing scheme guaranteed by Lemma 1 as (LRShares o),
LRReC(Q)Q)). We will use this to construct a k-out-of-k leakage resilient secret
sharing scheme for k& > 2.

Lemma 2. Foranye >0, k> 2 and pu,m € N, there exists a construction of (k,
k,0,0) secret sharing scheme for sharing m-bit secrets that is e-leakage resilient
against Fy x—1,, such that the size of each share is O(m+ p+log %) The running
time of the sharing and the reconstruction procedures are poly(m, u, k,log(1/¢€)).

We give the proof of this Lemma in the full version.

4.2 Perfect Hash Function Family

In this subsection, we recall the definition of the combinatorial objects called as
perfect hash function family and give an efficient randomized construction for
constant k.

Definition 9 (Perfect Hash Function Family [FK84]). For everyn,k € N,
a set of hash functions {h;}ic) where h; : [n] — [k] is said to be (n, k)-perfect
hash function family if for each subset S C [n] of size k there exists an i € [{]
such that h; is injective on S.

Before we give the randomized construction, we will state and prove the
following useful lemma.

Lemma 3. Foreverye >0, n,k € N, the set of functions {hi}ie[g] where each h;
is chosen randomly from the set of all functions mapping [n] — [k] is a perfectly
og (7)+log 1
hash function family with probability 1 — ¢ when ¢ = %. Specifically,
1 kU
Bk

when k is constant, we can set { = O(logn + log 1).

Proof. Let us first fix a subset S C [n] of size k. Let us choose a function h
uniformly at random from the set of all functions mapping [n] — [k].

k!
Pr[h is not injective over S] =1 — pae
Let us now choose hq, ...,y uniformly at random from the set of all functions

mapping [n] — [k].
Pr[V i € [€], h; is not injective over S] = (1 — k—k)[

19

By union bound,

|
Pr[3 S s.t.,¥ i € [€], h; is not injective over S| = (Z) (1- %)Z

We want (Z)(— %)e = €. We get the bound for ¢ by rearranging this equation.

Randomized Construction for constant k. For any k,n and some error parameter
€, set £ as in Lemma 3. Choose a function h; : [n] — [k] uniformly at random
for each i € [f]. From Lemma 3, we infer that {h;};c[¢ is a perfect hash function
family except with probability e. The construction is efficient since the number
of random bits needed for choosing each h; is nlogk which is polynomial in n
when k is a constant.

Ezplicit Construction. Building on the work of Schmidt and Siegal [SS90], Alon
et al. [AYZ95] gave an explicit construction of (n, k)-perfect hash function family
of size 20(*) log n. We now recall the lemma from [AYZ95].

Lemma 4 ([AYZ95,SS90]). For every n,k € N, there exists an explicit and
efficiently computable construction of (n, k)-perfect hash function family {h;}cy
where £ = 2°0) logn.

The explicit construction is obtained by brute forcing over a small bias proba-
bility space [NN93] and finding such a family is not as efficient as our randomized
construction. On the positive side, the explicit construction is error-free unlike
our randomized construction.

4.3 Construction of k-out-n Leakage Resilient Secret Sharing

In this subsection, we will use a k-out-of-k leakage resilient secret sharing scheme
from Section 4.1 and a perfect hash function family from Section 4.2 to construct
a k-out-of-n leakage resilient secret sharing scheme against F, ;_; for an ar-
bitrary ¢t < n (recall the definition of F; 7 - from Definition 8). We give the
description in Figure 1.

Theorem 11. For every e.,es > 0, n,k,m € N and ﬁ € N, the construction
given in Figure 1 is a (k,n,e.,0) secret sharing scheme for sharing m-bit secrets
that is es-leakage resilient against leakage functions Fy_q 3 for any t < n.
The running times of the sharing and reconstruction algorithms are poly(n,m,
> iz log(1/eces)) when k is a constant. In particular, when e, = €. = 27™, the
running times are poly(n,m, Y. p1;). The size of each share when k is a constant
is O((m + maxr 3 eq pc),)=t Mi + log(logn/es)) logn).
We give the proof of this theorem in the full version.

Remark 1. In Figure 1, we cannot directly set the size £ = O(logn + log }) and
perform a single sampling to find a perfect hash function family. This is because
when we want €, = 27" the size of the function family grows with m and this
affects the rate significantly. That is why, it is important to set e = 1/2 and do
log é independent repetitions in the LRShare) function to reduce the error
to €.

20

Let (LRShare(i, ry, LRRec(x 1)) be a k-out-of-k leakage resilient secret sharing
scheme.

LRShare(j,) : To share a secret s:
1. For each trial € [1,log(1/e.)] do:
(a) Set ¢ = 1/2 and ¢ = O(logn). Sample a (candidate) (n, k)-perfect
hash function family {h;};cq as described in Section 4.2
(b) Check if {hi};c[q is a family of (n, k)-perfect hash functions. That is,
for each set S C [n] and |S| = k, check if there exists an i € [¢] such
that h; is injective on S.
(c) If yes, exit the loop. Otherwise, go to the beginning.
2. If the above loop fails to find a perfect hash function family then abort.
3. For each i € [{], sample share; 1,...,share; , <— LRShare 1) (s).
4. For each j € [n], set share; = (h1(j),share s, (;)) © (h2(j),shares j,(j)) ©
... 0 (he(g),shareg p,j))-

LRRec() : Given the shares share;,, sharej,, ..., share;, do:
1. Choose an i € [¢], such that {h;(j1), hi(j2),. .., hi(Jr)} = {1,..., k}.
2. Recover s as LRRec(k) (share; 1, . . ., share;).

Fig.1. (k,n,e.,0) Leakage Resilient Secret Sharing Scheme

5 Non-Malleable Secret Sharing for Threshold Access
Structures

In this section, we give a construction of t-out-of-n (for any ¢ > 4) Non-Malleable
Secret Sharing scheme with rate @(m) against tampering function family
Find that tampers each share independently. We first give the formal description

of the tampering function family.

Individual Tampering Family Fing. Let Share be the sharing function of the secret
sharing scheme that outputs n-shares in §; X Sy... X §,,. The function family
Find is composed of functions (f1,..., f,) where each f; : S; — ;.

5.1 Construction

Building Blocks. The construction uses the following building blocks. We instan-
tiate them with concrete schemes later:

— A 3-split-state non-malleable code (Enc,Dec) where Enc: M — L xC xR
and the simulation error of the scheme is €;. Furthermore, we assume that for
any two messages m,m’ € M, (C,R) =, (C',R") where (L,C,R) < Enc(m)
and (L', C',R’) « Enc(m/).

— A (t,n,0,0) secret sharing scheme (SecShare(;), SecRec; ,)) with perfect
privacy for message space £. We will assume that the size of each share is
mi.

21

— A (3,n,€3,0) secret sharing scheme (LRShare(s), LRRec(s) that is e3-
leakage resilient against leakage functions Fy 2, '° for message space C.
We assume that the size of each share is mo.

— A (2,n,€},0) secret sharing scheme (LRShare(s ,,), LRRec(; ,,)) for message
space R that is e;-leakage resilient against leakage functions JF, ; 7 where
maxrp EieT,Tg[n],\T\:t ;i = O(mg + tmy). We assume that the size of each
share is mg.

Construction. We give the formal description of the construction in Figure 2
and give an informal overview below. To share a secret s, we first encode s to
(L, C,R) using the 3-split-state non-malleable code. We first encode L to (SLy,
...,SL,) using the t-out-of-n threshold secret sharing scheme. We then encode C
into (SCy,...,SC,) using the 3-out-of-n leakage resilience secret sharing scheme
LRShare(s ,y. We finally encode R into (SR, ...,SR,) using the 2-out-of-n leak-
age resilient secret sharing scheme LRShare(;). We set the i-th share share;
to be the concatenation of SL;,SC; and SR;. In order to reconstruct, we using
the corresponding reconstruction procedures SecRec, LRRec(s) and LRRec(s)
to compute L, C and R respectively. We finally use the decoding procedure of
3-split-state non-malleable code to reconstruct the secret s from L, C and R.

Theorem 12. For any arbitrary n € N and threshold t > 4, the construction
given in Figure 2 is a (t,n, €5 + €}, €2) secret sharing scheme. Furthermore, it is
(€1 + €3 + €4)-non-malleable against Fing.

We give the proof of this theorem in the full version.

5.2 Rate Analysis

We now instantiate the primitives and provide the rate analysis.

1. We instantiate the three split state non-malleable code from the works
of [KOS18, GMW17] (see Theorem 7). Using their construction, the [L| =
|C| = |R| = O(m) bits and the error ¢; = 2~2(m/ log" ™ (m)) for any p > 0.

2. We use Shamir’s secret sharing [Sha79] as the t-out-of-n secret sharing
scheme. We get m; = O(m) whenever m > logn.

3. We instantiate (LRShare(s), LRRec(s ,,)) and (LRShare(s), LRRec(s) from
Theorem 11. We get my = O(mtlogn) and ms = O(mtlog® n) by setting es
and €, to be 2—(m/logm)

Thus the rate of our construction is 8(@) and the error is 2~ 2(m/ 108" (m))

We defer the concrete optimization of the rate of our construction to the full
version of the paper.

10 Recall that this denotes that the function can choose to leak at most m; bits from
each share in a set of size ¢ — 2 apart from the two that are completely leaked.

22

Share(m) : To share a secret s € M do:
1. Encode the secret s as (L, C,R) < Enc(s).
2. Compute the shares

(SLi,...,SL,) < SecShare; (L)
C
(SRl, ceey SR,) « LRShare(Q,n)(R)
3. For each i € [n], set share; as (SL;,SC;,SR;) and output (sharei,...,
share,,) as the shares.
Rec(Share(m)r) : To reconstruct the secret from the shares in an authorized set
T of size t do:
1. Let the shares corresponding to the set T be (share;,, ..., share;,).
2. For each j € {i1,...,4}, parse share; as (SL;,SC;,SR;).
3. Reconstruct

)

(SCi,...,SCy) < LRShare(s ,,)(C)
)
(

L := SecRec(;,n)(SLiy,...,SLs,)
C := LRRec(3,1)(5Ci;, SCi,, SCiy)
R := LRRec(2.)(SRi, , SRy,)
4. Output the secret s as Dec(L, C,R).

Fig.2. Construction of t-out-of-n Non-Malleable Secret Sharing Scheme

6 NMSS for General Access Structures with Multiple
Tampering

We first define non-malleable secret sharing for general access structures in the
next subsection and then give the construction in the subsequent subsection.

6.1 Definitions

First, we recall the definition of a secret sharing scheme for a general monotone
access structure A - a generalization of the one defined for threshold access
structures in Definition 4.

Definition 10 ((A,n, €., €s)-Secret Sharing Scheme). Let M be a finite set
of secrets, where |M| > 2. Let [n] = {1,2,...,n} be a set of identities (indices)
of n parties. A sharing function Share with domain of secrets M is a (A,n,
€c, €5)-secret sharing scheme with respect to monotone access structure A if the
following two properties hold :
— Correctness: The secret can be reconstructed by any set of parties that are
part of the access structure A. That is, for any set T € A, there exists a
deterministic reconstruction function Rec : ®;c1S; — M such that for every

23

m e M,
Pr[Rec(Share(m)r) =m] =1 — €,

where the probability is over the randomness of the Share function. We will
slightly abuse the notation and denote Rec as the reconstruction procedure
that takes in T € A and Share(m)r as input and outputs the secret.

— Statistical Privacy: Any collusion of parties not part of the access struc-
ture should have almost no information about the underlying secret. More
formally, for any unauthorized set U C [n] such that U ¢ A, and for every
pair of secrets mo,m1 € M, for any distinguisher D with output in {0,1},
the following holds :

| Pr[D(Share(mo)y) = 1] — Pr[D(Share(mq)y) = 1]| < s

[m|

We define the rate of the secret sharing scheme as e [Share ()]

We now define the notion of a non-malleable secret sharing scheme for general
access structures which is a generalization of the definition for threshold access
structures given in Definition 5.

Definition 11 (Non-Malleable Secret Sharing for General Access Struc-
tures [GK18b]). Let (Share,Rec) be a (A, n, €., ¢€s)-secret sharing scheme for
message space M and access structure A. Let F be a family of tampering func-
tions. For each f € F, m € M and authorized set T € A, define the tam-
pered distribution Tamper!T as Rec(f(Share(mn))r) where the randomness is over
the sharing function Share. We say that the (A, n, €., €5)-secret sharing scheme,
(Share, Rec) is € -non-malleable w.r.t. F if for each f € F and any authorized
set T € A, there exists a distribution DT over M U {same*} such that:

|Tamper?:T — copy(DFT,m)| < €

' same*
where copy is defined by copy(x,y) = o fo 7 sam .
y if x = same*

Many Tampering Extension. Similar to the threshold case, in the full version,
we extend the above definition to capture multiple tampering attacks.

6.2 Construction

In this section, we show how to build a one-many non-malleable secret sharing
scheme for general access structures.

First, let (SecShare(4), SecRec(4 ,)) be any statistically private secret shar-
ing scheme with rate R for a 4-monotone access structure A over n parties. We
refer the reader to [KW93,LV18] for explicit constructions.

Let tmax denote the maximum size of a minimal authorized set of A.1' We give
a construction of a Non-Malleable Secret Sharing scheme with tampering degree

11 We refer the reader to Definition 1, Definition 2 for definitions of 4-monotone access
structures and minimal authorized set.

24

K for a 4-monotone access structure .4 with rate O(with respect to

R
K3tmax log? n)
a individual tampering function family F;,q4.

Building Blocks. The construction uses the following building blocks. We instan-
tiate them with concrete schemes later:

— A one-many 3-split-state non-malleable code (Enc, Dec) where Enc : M —
L x C x R, the simulation error of the scheme is €; and the scheme is secure
against K tamperings. Furthermore, we assume that for any two messages
m,m’ € M, (C,R) =, (C’,R") where (L,C,R) < Enc(m) and (L',C’,R") +
Enc(m’).

— A (A,n,0,0) (where A is 4-monotone) secret sharing scheme (SecShare(4),
SecRec(4,,,)) with perfect privacy for message space L£.1? We will assume
that the size of each share is mq.

— A (3,n,€3,0) secret sharing scheme (LRShare(s), LRRec(s) that is es-
leakage resilient against leakage functions Fi _ 2 km, for message space C.
We assume that the size of each share is mo.

— A (2,n,¢€4,0) secret sharing scheme (LRShare(s ,,), LRRec(y ,)) for message
space R that is es-leakage resilient against leakage functions 7, ;5 where
maxyp ZieT,TGA,‘T‘:tm i = O(Kmg + Ktmaxmi). We assume that the size
of each share is m3.

Construction. The construction is very similar to the construction of non-malleable
secret sharing for threshold access structures given in Section 5 with the only
difference being that we now use the (A, n, 0, 0) secret sharing scheme. Note that
in the construction we additionally need a procedure to find a minimal autho-
rized set from any authorized set. This procedure is efficient if we can efficiently
test the membership in A. We point the reader to [GK18b] for details of this
procedure. We give the formal description of the construction in Figure 3 for
completeness.

Theorem 13. There exists a constant v > 0 such that, for any arbitrary n,
K € N and 4-monotone access structure A, the construction given in Figure 8 is
a (A, n,es+€), e2) secret sharing scheme for messages of length m where m > K7.
Furthermore, it is (€1 + €3 + €4) one-many non-malleable with tampering degree
K with respect to tampering function family Fipq.

We give the proof of this theorem and the rate analysis in the full version.

Acknowledgements. The first author’s research supported in part by the
IBM PhD Fellowship. The first author’s research also supported in part from
a DARPA /ARL SAFEWARE award, NSF Frontier Award 1413955, and NSF
grant1619348, BSF grant 2012378, a Xerox Faculty Research Award, a Google
Faculty Research Award, an equipment grant from Intel, an Okawa Foundation

12 We note that our proof of security goes through even if this secret sharing scheme
only has statistical privacy.

25

Share(m) : To share a secret s € M do:
1. Encode the secret s as (L, C,R) < Enc(s).
2. Compute the shares

(SLi,...,SLy) + SecShare(a (L)

(SCi,...,SC,) < LRShare(s ,)(C)
(SRi,...,SRy) ¢ LRShare(s) (R)

3. For each i € [n], set share; as (SL;,SC;,SR;) and output (sharei,...,
share,,) as the set of shares.

Rec(Share(m)r) : Given a set of shares in an authorized set T" € A, let T C T’
denote a minimal authorized set. To reconstruct the secret from the shares in
set T, (of size at most tmax) do:

1. Let the shares corresponding to the set T be (share;,,...,share;__).
2. For each j € {i1,..., 4., |, parse share; as (SL;,SC;, SR;).
3. Reconstruct

L:= SecRec<A,n)(SL¢1 gy SLitmax)

C:= LRRec<37n) (SC” 5 SC7;2, Sclg)
R:= LRRec(g,n) (SR“ s SR,Z)
4. Output the secret s as Dec(L, C,R).

Fig.3. Construction of Non-Malleable Secret Sharing Scheme for General Access
Structures against Multiple Tampering

Research Grant, NSF-BSF grant 1619348, DARPA SafeWare subcontract to Ga-
lois Inc., DARPA SPAWAR contract N66001-15-1C-4065, US-Israel BSF grant
2012366, OKAWA Foundation Research Award, IBM Faculty Research Award,
Xerox Faculty Research Award, B. John Garrick Foundation Award,Teradata
Research Award, and Lockheed-Martin Corporation Research Award. This ma-
terial is based upon work supported by the Defense Advanced Research Projects
Agency through the ARL under Contract W911NF-15-C- 0205. The second
author’s research supported in part from DARPA/ARL SAFEWARE Award
WI11NF15C0210, AFOSR Award FA9550-15-1-0274, AFOSR YIP Award, DARPA
and SPAWAR under contract N66001-15-C-4065, a Hellman Award and research
grants by the Okawa Foundation, Visa Inc., and Center for Long-Term Cyber-
security (CLTC, UC Berkeley) of Sanjam Garg. The views expressed are those
of the authors and do not reflect the official policy or position of the funding
agencies.

The authors thank Pasin Manurangsi for pointing to the work of Alon et al. [AYZ95]
for the explicit construction of perfect hash function family. The authors also
thank Sanjam Garg, Peihan Miao and Prashant Vasudevan for useful comments
on the write-up.

26

References

AAGT16.

ADKO15.
ADL14.

ADNT18.

AGMT15.

AYZ95.

BDGT18.

BDIR18.

BDKM16.

BDKM18.

BDLO1.

BGWSS.

BlaT79.

Bla99.

CCDSS.

CDF108.

Divesh Aggarwal, Shashank Agrawal, Divya Gupta, Hemanta Maji,
Omkant Pandey, and Manoj Prabhakaran. Optimal computational split-
state non-malleable codes. In T'C'C, 2016.

Divesh Aggarwal, Yevgeniy Dodis, Tomasz Kazana, and Maciej Obremski.
Non-malleable reductions and applications. In STOC, pages 459-468, 2015.
Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable
codes from additive combinatorics. In STOC, pages 774-783, 2014.
Divesh Aggarwal, Ivan Damgard, Jesper Buus Nielsen, Maciej Obrem-
ski, Erick Purwanto, Jo ao Ribeiro, and Mark Simkin. Stronger leakage-
resilient and non-malleable secret-sharing schemes for general access struc-
tures. Cryptology ePrint Archive, Report 2018/1147, 2018. https:
//eprint.iacr.org/2018/1147.

Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and
Manoj Prabhakaran. Explicit non-malleable codes against bit-wise tam-
pering and permutations. In CRYPTO, pages 538-557, 2015.

Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM,
42(4):844-856, 1995.

Marshall Ball, Dana Dachman-Soled, Siyao Guo, Tal Malkin, and Li-Yang
Tan. Non-malleable codes for small-depth circuits. To appear in FOCS,
2018.

Fabrice Benhamouda, Akshay Degwekar, Yuval Ishai, and Tal Rabin. On
the local leakage resilience of linear secret sharing schemes. In Hovav
Shacham and Alexandra Boldyreva, editors, Advances in Cryptology —
CRYPTO 2018, Part I, volume 10991 of Lecture Notes in Computer Sci-
ence, pages 531-561. Springer, Heidelberg, August 2018.

Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin.
Non-malleable codes for bounded depth, bounded fan-in circuits. In EU-
ROCRYPT, 2016.

Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin.
Non-malleable codes from average-case hardness: Ac0O, decision trees, and
streaming space-bounded tampering. In EUROCRYPT, 2018.

Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance
of eliminating errors in cryptographic computations. Journal of Cryptology,
14(2):101-119, 2001.

Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation (ex-
tended abstract). In STOC, pages 1-10, 1988.

GR Blakley. Safeguarding cryptographic keys. In Proc. AFIPS 1979 Na-
tional Computer Conf., volume 48, pages 313-317, 1979.

Simon R Blackburn. Combinatorics and threshold cryptography. CHAP-
MAN AND HALL CRC RESEARCH NOTES IN MATHEMATICS, pages
49-70, 1999.

David Chaum, Claude Crepeau, and Ivan Damgaard. Multiparty uncon-
ditionally secure protocols (extended abstract). In STOC, pages 11-19.
ACM, 1988.

Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles Padr4, and Daniel
Wichs. Detection of algebraic manipulation with applications to robust
secret sharing and fuzzy extractors. In Nigel P. Smart, editor, Advances in

27

https://eprint.iacr.org/2018/1147
https://eprint.iacr.org/2018/1147

CG8s.

CGL16.

CGMt16.

CGMAS5.

CKR16.

CL17.

DDFY94.

DF90.

DKO13.

DPW10.

FK84.

FMNV14.

FMNV15.

Cryptology — EUROCRYPT 2008, volume 4965 of Lecture Notes in Com-
puter Science, pages 471-488. Springer, Heidelberg, April 2008.

Benny Chor and Oded Goldreich. Unbiased bits from sources of weak ran-
domness and probabilistic communication complexity. SIAM J. Comput.,
17(2):230-261, 1988.

Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors
and codes, with their many tampered extensions. In Proceedings of the
48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016, pages 285298, 2016.
Nishanth Chandran, Vipul Goyal, Pratyay Mukherjee, Omkant Pandey,
and Jalaj Upadhyay. Block-wise non-malleable codes. In ICALP, 2016.
Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Ver-
ifiable secret sharing and achieving simultaneity in the presence of faults
(extended abstract). In 26th Annual Symposium on Foundations of Com-
puter Science, pages 383-395. IEEE Computer Society Press, October 1985.
Nishanth Chandran, Bhavana Kanukurthi, and Srinivasan Raghuraman.
Information-theoretic local non-malleable codes and their applications. In
Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A: 13th Theory of
Cryptography Conference, Part II, volume 9563 of Lecture Notes in Com-
puter Science, pages 367-392. Springer, Heidelberg, January 2016.

Eshan Chattopadhyay and Xin Li. Non-malleable codes and extractors
for small-depth circuits, and affine functions. In Hamed Hatami, Pierre
McKenzie, and Valerie King, editors, 49th Annual ACM Symposium on
Theory of Computing, pages 1171-1184. ACM Press, June 2017.

Alfredo De Santis, Yvo Desmedt, Yair Frankel, and Moti Yung. How to
share a function securely. In 26th Annual ACM Symposium on Theory of
Computing, pages 522-533. ACM Press, May 1994.

Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Bras-
sard, editor, Advances in Cryptology — CRYPTO’89, volume 435 of Lecture
Notes in Computer Science, pages 307-315. Springer, Heidelberg, August
1990.

Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-
malleable codes from two-source extractors. In Ran Canetti and Juan A.
Garay, editors, Advances in Cryptology — CRYPTO 2018, Part II, volume
8043 of Lecture Notes in Computer Science, pages 239-257. Springer, Hei-
delberg, August 2013.

Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable
codes. In Innovations in Computer Science - ICS 2010, Tsinghua Univer-
sity, Beijing, China, January 5-7, 2010. Proceedings, pages 434-452, 2010.
Michael L. Fredman and Janos Komlds. On the size of separating systems
and families of perfect hash functions. SIAM Journal on Algebraic Discrete
Methods, 5(1):61-68, 1984.

Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele
Venturi. Continuous non-malleable codes. In Yehuda Lindell, editor,
TCC, volume 8349 of Lecture Notes in Computer Science, pages 465—488.
Springer, 2014.

Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele
Venturi. A tamper and leakage resilient von neumann architecture. In
Jonathan Katz, editor, PKC 2015: 18th International Conference on The-
ory and Practice of Public Key Cryptography, volume 9020 of Lecture Notes

28

FMVW14.

Fra90.

FRR*10.

GK18a.

GK18b.

GKP*18.

GLM™104.

GMWS8r.

GMW17.

ISWO03.

JW15.

KLT18.

in Computer Science, pages 579-603. Springer, Heidelberg, March / April
2015.

Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs.
Efficient non-malleable codes and key-derivation for poly-size tampering
circuits. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in
Cryptology — EUROCRYPT 2014, volume 8441 of Lecture Notes in Com-
puter Science, pages 111-128. Springer, Heidelberg, May 2014.

Yair Frankel. A practical protocol for large group oriented networks. In
Jean-Jacques Quisquater and Joos Vandewalle, editors, Advances in Cryp-
tology — EUROCRYPT’89, volume 434 of Lecture Notes in Computer Sci-
ence, pages 56-61. Springer, Heidelberg, April 1990.

Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod
Vaikuntanathan. Protecting circuits from leakage: the computationally-
bounded and noisy cases. In Henri Gilbert, editor, Advances in Cryptology
—~ EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science,
pages 135-156. Springer, Heidelberg, May / June 2010.

Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing. In STOC,
pages 685698, 2018.

Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing for general
access structures. In Hovav Shacham and Alexandra Boldyreva, editors,
Advances in Cryptology — CRYPTO 2018, Part I, volume 10991 of Lecture
Notes in Computer Science, pages 501-530. Springer, Heidelberg, August
2018.

Vipul Goyal, Ashutosh Kumar, Sunoo Park, Silas Richelson, and Aksha-
yaram Srinivasan. Non-malleable commitments from non-malleable extrac-
tors. Manuscript, accessed via personal communication, 2018.

Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal
Rabin. Algorithmic tamper-proof (atp) security: Theoretical foundations
for security against hardware tampering. In Theory of Cryptography Con-
ference, pages 258-277. Springer, 2004.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Alfred Aho, editor, 19th Annual ACM Symposium on Theory of Computing,
pages 218-229. ACM Press, May 1987.

Divya Gupta, Hemanta K. Maji, and Mingyuan Wang. Constant-rate non-
malleable codes in the split-state model. Cryptology ePrint Archive, Report
2017/1048, 2017. https://eprint.iacr.org/2017/1048.

Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, Advances in
Cryptology — CRYPTO 2003, volume 2729 of Lecture Notes in Computer
Science, pages 463—-481. Springer, Heidelberg, August 2003.

Zahra Jafargholi and Daniel Wichs. Tamper detection and continuous
non-malleable codes. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,
TCC 2015: 12th Theory of Cryptography Conference, Part I, volume 9014
of Lecture Notes in Computer Science, pages 451-480. Springer, Heidelberg,
March 2015.

Aggelos Kiayias, Feng-Hao Liu, and Yiannis Tselekounis. Non-malleable
codes for partial functions with manipulation detection. In Hovav
Shacham and Alexandra Boldyreva, editors, Advances in Cryptology —
CRYPTO 2018, Part III, volume 10993 of Lecture Notes in Computer Sci-
ence, pages 577-607. Springer, Heidelberg, August 2018.

29

https://eprint.iacr.org/2017/1048

KMS18.

KOS17.

KOS18.

KW93.

Li17.

LL12.

LV1s.

NN93.

OPVV18.

Rot12.

Sha79.
SNWO1.

S590.

Ashutosh Kumar, Raghu Meka, and Amit Sahai. Leakage-resilient secret
sharing. Cryptology ePrint Archive, Report 2018/1138, 2018. https://
eprint.iacr.org/2018/1138.

Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar.
Four-state non-malleable codes with explicit constant rate. In Yael Kalai
and Leonid Reyzin, editors, TCC 2017: 15th Theory of Cryptography Con-
ference, Part II, volume 10678 of Lecture Notes in Computer Science, pages
344-375. Springer, Heidelberg, November 2017.

Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar.
Non-malleable randomness encoders and their applications. In EURO-
CRYPT, pages 589-617, 2018.

Mauricio Karchmer and Avi Wigderson. On span programs. In Proceed-
ings of the Eigth Annual Structure in Complexity Theory Conference, San
Diego, CA, USA, May 18-21, 1993, pages 102-111, 1993.

Xin Li. Improved non-malleable extractors, non-malleable codes and inde-
pendent source extractors. STOC, 2017.

Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in
the split-state model. In Reihaneh Safavi-Naini and Ran Canetti, editors,
Advances in Cryptology — CRYPTO 2012, volume 7417 of Lecture Notes in
Computer Science, pages 517-532. Springer, Heidelberg, August 2012.
Tianren Liu and Vinod Vaikuntanathan. Breaking the circuit-size barrier in
secret sharing. In Ilias Diakonikolas, David Kempe, and Monika Henzinger,
editors, 50th Annual ACM Symposium on Theory of Computing, pages 699—
708. ACM Press, June 2018.

Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient con-
structions and applications. SIAM J. Comput., 22(4):838-856, 1993.
Rafail Ostrovsky, Giuseppe Persiano, Daniele Venturi, and Ivan Visconti.
Continuously non-malleable codes in the split-state model from minimal
assumptions. In Hovav Shacham and Alexandra Boldyreva, editors, Ad-
vances in Cryptology — CRYPTO 2018, Part III, volume 10993 of Lecture
Notes in Computer Science, pages 608-639. Springer, Heidelberg, August
2018.

Guy N. Rothblum. How to compute under AC° leakage without secure
hardware. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology — CRYPTO 2012, volume 7417 of Lecture Notes in Computer
Science, pages 552-569. Springer, Heidelberg, August 2012.

Adi Shamir. How to share a secret. Commaun. ACM, 22(11):612-613, 1979.
Rei Safavi-Naini and Huaxiong Wang. Robust additive secret sharing
schemes over zm. In Kwok-Yan Lam, Igor Shparlinski, Huaxiong Wang, and
Chaoping Xing, editors, Cryptography and Computational Number Theory,
pages 357-368, Basel, 2001. Birkhauser Basel.

Jeanette P. Schmidt and Alan Siegel. The spatial complexity of oblivious
k-probe hash functions. SIAM J. Comput., 19(5):775-786, 1990.

30

https://eprint.iacr.org/2018/1138
https://eprint.iacr.org/2018/1138

	Revisiting Non-Malleable Secret Sharing

