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Abstract. We give an efficient decision procedure that, on input two
(acyclic) expressions making arbitrary use of common cryptographic
primitives (namely, encryption and pseudorandom generators), deter-
mines (in polynomial time) if the two expressions produce computation-
ally indistinguishable distributions for any cryptographic instantiation
satisfying the standard security notions of pseudorandomness and indis-
tinguishability under chosen plaintext attack. The procedure works by
mapping each expression to a symbolic pattern that captures, in a fully
abstract way, the information revealed by the expression to a computa-
tionally bounded observer. Our main result shows that if two expressions
are mapped to different symbolic patterns, then there are secure pseu-
dorandom generators and encryption schemes for which the two distri-
butions can be distinguished with overwhelming advantage. At the same
time if any two (acyclic) expressions are mapped to the same pattern,
then the associated distributions are indistinguishable.

Keywords: Symbolic security · greatest fixed points · computational
soundness · completeness · pseudorandom generators · information leak-
age.

1 Introduction

Formal methods for security analysis (e.g., [13,9,21,33,34,1]) typically adopt an
all-or-nothing approach to modeling adversarial knowledge. For example, the
adversary either knows a secret key or does not have any partial information
about it. Similarly, either the message underlying a given ciphertext can be
recovered, or it is completely hidden. In the computational setting, commonly
used in modern cryptography for its strong security guarantees, the situation is
much different: cryptographic primitives usually leak partial information about
their inputs, and in many cases this cannot be avoided. Moreover, it is well known
that computational cryptographic primitives, if not used properly, can easily
lead to situations where individually harmless pieces of partial information can
be combined to recover a secret in full. This is often the case when, for example,
the same key or randomness is used within different cryptographic primitives.
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Starting with the seminal work of Abadi and Rogaway [3], there has been
considerable progress in combining the symbolic and computational approaches
to security protocol design and analysis, with the goal of developing methods
that are both easy to apply (e.g., through the use of automatic verification tools)
and provide strong security guarantees, as offered by the computational secu-
rity definitions. Still, most work in this area applies to scenarios where the use
of cryptography is sufficiently restricted that the partial information leakage of
computational cryptographic primitives is inconsequential. For example, [3] stud-
ies expressions that use a single encryption scheme as their only cryptographic
primitive. In this setting, the partial information about a key k revealed by a
ciphertext {|m|}k is of no use to an adversary (except, possibly, for identifying
when two different ciphertexts are encrypted under the same, unknown, key),
so one can treat k as if it were completely hidden. Other works [28,4] combine
encryption with other cryptographic primitives (like pseudorandom generation
and secret sharing,) but bypass the problem of partial information leakage sim-
ply by assuming that all protocols satisfy sufficiently strong syntactic restrictions
to guarantee that different cryptographic primitives do not interfere with each
other.

1.1 Our results.

In this paper we consider cryptographic expressions that make arbitrary (nested)
use of encryption and pseudorandom generation, without imposing any syntactic
restrictions on the messages transmitted by the protocols. In particular, following
[3], we consider cryptographic expressions like ({|m|}k, {|{|k|}k′ |}k′′), representing
a pair of ciphertexts: the encryption of a message m under a session key k,
and a double (nested) encryption of the session key k under two other keys
k′, k′′. But, while in [3] key symbols represent independent randomly chosen keys,
here we allow for derived keys obtained using a length doubling pseudorandom
generator k 7→ G0(k);G1(k) that on input a single key k outputs a pair of
(statistically correlated, but computationally indistinguishable) keys G0(k) and
G1(k). The output of the pseudorandom generator can be used anywhere a
key is allowed. In particular, pseudorandom keys G0(k), G1(k) can be used to
encrypt messages, or as messages themselves (possibly encrypted under other
random or pseudorandom keys), or as input to the pseudorandom generator. So,
for example, one can iterate the application of the pseudorandom generator to
produce an arbitrary long sequence of keys G1(r),G1(G0(r)),G1(G0(G0(r))), . . ..

We remark that key expansion using pseudorandom generators occurs quite
often in real world cryptography. In fact, the usefulness of pseudorandom gen-
erators is not limited to reducing the amount of randomness needed by crypto-
graphic algorithms, and pseudorandom generators are often used as an essen-
tial tool in secure protocol design. For example, they are used in the design of
forward-secure cryptographic functions to refresh a user private key [7,25], they
are used in the best known (in fact, optimal [30]) multicast key distribution
protocols [10] to compactly communicate (using a seed) a long sequence of pseu-
dorandom keys, and they play an important role in Yao’s classic garbled circuit
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construction for secure two-party computation to mask and selectively open part
of a hidden circuit evaluation [35,24].

Pseudorandom generators (like any deterministic cryptographic primitive) in-
evitably leak partial information about their input key.1 Similarly, a ciphertext
{|e|}k may leak partial information about k if, for example, decryption succeeds
(with high probability) only when the right key is used for decryption. As we
consider the unrestricted use of encryption and pseudorandom generation, we
need to model the possibility that given different pieces of partial information
about a key, an adversary may be able to recover that key completely. Our main
result shows how to do all this within a fairly simple symbolic model of computa-
tion, and still obtain strong computational soundness guarantees. Our treatment
of partial information is extremely simple and in line with the spirit of formal
methods and symbolic security analysis: we postulate that, given any two dis-
tinct pieces of partial information about a key, an adversary can recover the key
in full. Perhaps not surprisingly, we demonstrate (Theorem 3) that the result-
ing symbolic semantics for cryptographic expressions is computationally sound,
in the sense that if two (acyclic2) expressions are symbolically equivalent, then
for any (length regular) semantically secure encryption scheme and (length dou-
bling) pseudorandom generator the probability distributions naturally associated
to the two expressions are computationally indistinguishable. More interestingly,
we justify our symbolic model by proving a corresponding completeness theo-
rem (Theorem 2), showing that if two cryptographic expressions are not sym-
bolically equivalent (according to our definition), then there is an instantiation
of the cryptographic primitives (satisfying the standard security notion of in-
distinguishability) such that the probability distributions corresponding to the
two expressions can be efficiently distinguished with almost perfect advantage. In
other words, if we want the symbolic semantics to be computationally sound with
respect to any standard implementation of the cryptographic primitives, then
our computationally sound symbolic semantics is essentially optimal. Moreover,
our completeness theorem concretely shows what could go wrong when encrypt-
ing messages under related keys, even under a simple eavesdropping (passive)
attack.

1.2 Techniques

A key technical contribution of our paper is a syntactic characterization of inde-
pendent keys that exactly matches its computational counterpart, and a corre-
sponding notion of computationally sound key renaming (Corollary 1). Our syn-
tactic definition of independence is simple and intuitive: a set of keys k1, . . . , kn

1 For example, G0(k) gives partial information about k because it allows to distinguish
k from any other key k′ chosen independently at random: all that the distinguisher
has to do is to compute G0(k′) and compare the result to G0(k).

2 For cyclic expressions, i.e., expressions containing encryption cycles, our soundness
theorem still holds, but with respect to a slightly stronger “co-inductive” adversarial
model based on greatest fixed point computations [26].
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is symbolically independent if no key ki can be obtained from another kj via
the syntactic application of the pseudorandom generator. We show that this
simple definition perfectly captures the intuition behind the computational no-
tion of pseudorandomness: we prove (Theorem 1) that our definition is both
computationally sound and complete, in the sense that the keys k1, . . . , kn are
symbolically independent if and only if the associated probability distribution is
indistinguishable from a sequence of truly independent uniformly random keys.
For example, although the probability distributions associated to pseudoran-
dom keys G0(k) and G1(k) are not independent in a strict information theoretic
sense, the dependency between these distributions cannot be efficiently recog-
nized when k is not known because the joint distribution associated to the pair
(G0(k),G1(k)) is indistinguishable from a pair of independent random values.

A key component of our completeness theorem is a technical construction of
a secure pseudorandom generator G and encryption scheme {|·|}k satisfying some
very special properties (Lemma 4) that may be of independent interest. The
properties are best described in terms of pseudorandom functions. Let fk be
the pseudorandom function obtained from the length-doubling pseudorandom
generator G using the classic construction of [17]. We give an algorithm that
on input any string w and two ciphertexts c0 = {|m0|}k0 and c1 = {|m1|}k1 (for
arbitrarily chosen, and unknown messages m0,m1) determines if k1 = fk0(w),
and, if so, completely recovers the value of the keys k0 and k1 with overwhelming
probability. Building on this lemma, we define the symbolic semantics by means
of an abstract adversary that is granted the ability to recover the keys k0, k1

whenever it observes two ciphertext encrypted under them. Our completeness
theorem offers a precise technical justification for such strong symbolic adversary.

1.3 Active attacks and other cryptographic primitives

Our work focuses on security definitions with respect to passive attacks for two
reasons. First, indistinguishability is essentially3 the only notion of security ap-
plicable to primitives as simple as pseudorandom generators. Second, using pas-
sive security definitions only makes our main result (Theorem 2) stronger: our
completeness theorem shows that if two expressions map to different symbolic
patterns, then security can be completely subverted even under a simple eaves-
dropping attack. Still, we remark that our definitions and techniques could be
useful also for the analysis of security under more realistic attacks in the pres-
ence of active adversaries, e.g., if combined together with other soundness re-
sults [5,32,6,11,19]. Also, our results immediately extend to other cryptographic
primitives (e.g., non-interactive commitment schemes) which can be modeled as
a weakening of public key encryption. Possible extension to other cryptographic
primitives, e.g., using the notion of deduction soundness [12,8] is also an inter-

3 Active attacks against pseudorandom generators may be considered in the context
of leakage resilient cryptography, fault injection analysis, and other side-channel
attacks, which are certainly interesting, but also much more specialized models than
those considered in this paper.
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esting possibility. However, such extensions are outside the scope of this paper,
and they are left to future work.

1.4 Related work.

Cryptographic expressions with pseudorandom keys, as those considered in this
paper, are used in the symbolic analysis of various cryptographic protocols, in-
cluding multicast key distribution [30,28,29], cryptographically controlled access
to XML documents [4], and (very recently) the symbolic analysis of Yao’s gar-
bled circuit construction for secure two party computation [24]. However, these
works (with the exception of [24], which builds on the results from a preliminary
version of our paper [27]) use ad-hoc methods to deal with pseudorandom keys by
imposing syntactic restrictions on the way the keys are used. Even more general
(so called “composed”) encryption keys are considered in [23], but only under
the random oracle heuristics. We remark that the use of such general composed
keys is unjustified in the standard model of computation, and the significance of
the results of [23] outside the random oracle model is unclear. In fact, our com-
pleteness results clearly show that modeling key expansion as new random keys
is not sound with respect to computationally secure pseudorandom generators
in the standard model.

The problem of defining a computationally sound and complete symbolic se-
mantics for cryptographic expressions has already been studied in several papers
before, e.g., [3,31,14]. However, to the best of our knowledge, our is the first pa-
per to prove soundness and completeness results with respect to the standard
notion of computationally secure encryption [18]. In the pioneering work [3],
Abadi and Rogaway proved the first soundness theorem for basic cryptographic
expressions. Although in their work they mention various notions of security,
they focus on a (somehow unrealistic) variant of the standard security defini-
tion that requires the encryption scheme to completely hide both the key and
the message being encrypted, including its length. This is the notion of security
used in many other works, including [22]. The issue of completeness was first
raised by Micciancio and Warinschi [31] who proved that the logic of Abadi and
Rogaway is both sound and complete if one assumes the encryption scheme satis-
fies a stronger security property called confusion freeness (independently defined
also in [2], and subsequently weakened in [14]). We remark that most symbolic
models are trivially complete for trace properties. However, the same is not true
for indistinguishability security properties.

The notion of completeness used in [31,2,14] is different from the one stud-
ied in this paper. The works [31,2,14] consider restricted classes of encryption
schemes (satisfying stronger security properties) such that the computational
equivalence relation induced on expressions is the same for all encryption schemes
in the class. In other words, if two expressions can be proved not equivalent
within the logic framework, then the probability distributions associated to the
two expressions by evaluating them according to any encryption scheme (from
the given class) are computationally distinguishable. It can be shown that no
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such notion of completeness can be achieved by the standard security defini-
tion of indistinguishability under chosen plaintext attack, as considered in this
paper, i.e., different encryption schemes (all satisfying this standard notion of
security) can define different equivalence relations. In this paper we use a dif-
ferent approach: instead of strengthening the computational security definitions
to match the symbolic model of [3], we relax the symbolic model in order to
match the standard computational security definition of [18]. Our relaxed sym-
bolic model is still complete, in the sense that if two expressions evaluate to
computationally equivalent distributions for any encryption scheme satisfying
the standard security definition, then the equality between the two expressions
can be proved within the logic. In other words, if two expressions are not equiva-
lent in our symbolic model, then the associated probability distributions are not
computationally equivalent for some (but not necessarily all) encryption scheme
satisfying the standard computational security notion.

1.5 Organization.

The rest of the paper is organized as follows. In Section 2 we review basic no-
tions from symbolic and computational cryptography as used in this paper. In
Section 3 we present our basic results on the computational soundness of pseu-
dorandom keys, and introduce an appropriate notion of key renaming. In Sec-
tion 4 we present our symbolic semantics for cryptographic expressions with
pseudorandom keys. In Section 5, we present our main result: a completeness
theorem which justifies the definitional choices made in Section 4. A correspond-
ing soundness theorem is given in Section 6. Section 7 concludes the paper with
some closing remarks.

2 Preliminaries

In this section we review standard notions and notation from symbolic and
computational cryptography used in the rest of the paper. The reader is referred
to [3,26] for more background on the symbolic model, and [15,16,20] (or any other
modern cryptography textbook) for more information about the computational
model, cryptographic primitives and their security definitions.

We write {0, 1}∗ to denote the set of all binary strings, {0, 1}n for the set
of all strings of length n, |x| for the bitlength of a string x, ε for the empty
string, and “;” (or simple juxtaposition) for the string concatenation operation
mapping x ∈ {0, 1}n and y ∈ {0, 1}m to x; y ∈ {0, 1}n+m. We also write x � y
if x is a suffix of y, i.e., y = zx for some z ∈ {0, 1}∗. As usual, x ≺ y is x � y
and x 6= y. The powerset of a set A is denoted ℘(A).

As a general convention, we use bold uppercase names (Exp,Pat, etc.) for
standard sets of symbolic expressions, bold lowercase names (keys,parts) for
functions that return sets of symbolic expressions, and regular (non-bold) names
(shape, norm) for functions returning a single symbolic expression. We also use
uppercase letters (e.g., A,S) for set-valued variables, and lowercase letters (x, y)
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for other variables. Calligraphic letters (A,G, E , etc.) are reserved for probability
distributions and algorithms in the computational setting.

2.1 Symbolic cryptography

In the symbolic setting, messages are described by abstract terms. For any given
sets of key and data terms Keys, Data, define Exp as the set of cryptographic
expressions generated by the grammar

Exp ::= Data | Keys | (Exp,Exp) | {|Exp|}Keys, (1)

where (e1, e2) denotes the ordered pair of subexpressions e1 and e2, and {|e|}k
denotes the encryption of e under k. We write Exp[Keys,Data] (and, simi-
larly, for patterns Pat[Keys,Data] later on) to emphasize that the definition
of Exp depends on the underlying sets Keys and Data. As a notational con-
vention, we assume that the pairing operation is right associative, and omit
unnecessary parentheses. E.g., we write {|d1, d2, d3|}k instead of {|(d1, (d2, d3))|}k.
All ciphertexts in our symbolic expressions represent independent encryptions
(each using fresh randomness in the computational setting), even when carrying
the same message. This is so that an adversary cannot distinguish between, say,
({|0|}k, {|0|}k) and ({|0|}k, {|1|}k). Sometimes (e.g., when adding an equality predi-
cate “Exp = Exp” to the language of expressions) it is desirable for equality of
symbolic terms to correspond to equality of their computational interpretations.
This can be easily achieved by decorating symbolic ciphertexts with a “random-
ness” tag, so that identical expressions {|m|}rk = {|m|}rk correspond to identical
ciphertexts, while independent encryptions (of possibly identical messages) are

represented by different symbolic expressions {|m|}rk 6= {|m|}
r′

k . An alternative (and
syntactically cleaner) method to represent identical ciphertexts is to extend the
symbolic syntax with a variable assignment operation, like

let c := {|Exp|}Keys in Exp′,

where the bound variable c may appear (multiple times) in the second expres-
sion Exp′. Here, each “let” expression implicitly encrypts using independent
randomness, and identical ciphertexts are represented using bound variables.
All our definitions and results are easily adapted to these extended expressions
with explicit randomness tags or bound variables.

In [3,26], Keys = {k1, . . . , kn} and Data = {d1, . . . , dn} are two flat sets
of atomic keys and data blocks. In this paper, we consider pseudorandom keys,
defined according to the grammar

Keys ::= Rand | G0(Keys) | G1(Keys), (2)

where Rand = {r1, r2, . . .} is a set of atomic key symbols (modeling truly ran-
dom and independent keys), and G0, G1 represent the left and right half of a
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length doubling pseudorandom generator k 7→ G0(k);G1(k). Notice that gram-
mar (2) allows for the iterated application of the pseudorandom generator, so
that from any key r ∈ Rand, one can obtain keys of the form

Gb1(Gb2(. . . (Gbn(r)) . . .))

for any n ≥ 0, which we abbreviate as Gb1b2...bn(r). (As a special case, for n = 0,
Gε(r) = r.) For any set of keys S ⊆ Keys, we write G∗(S) and G+(S) to denote
the sets

G∗(S) = {Gw(k) | k ∈ S,w ∈ {0, 1}∗}
G+(S) = {Gw(k) | k ∈ S,w ∈ {0, 1}∗, w 6= ε}

of keys which can be obtained from S through the repeated application of the
pseudorandom generator functions G0 and G1, zero, one or more times. Using
this notation, the set of keys generated by the grammar (2) can be written as
Keys = G∗(Rand). It is also convenient to define the set

G−(S) = {k | G+(k) ∩ S 6= ∅} =
⋃
k′∈S

{k | k′ ∈ G+(k)}.

Notice that, for any two keys k, k′, we have k ∈ G−(k′) if and only if k′ ∈ G+(k),
i.e., G− corresponds to the inverse relation of G+.

The shape of an expression is obtained by replacing elements from Data and
Keys with special symbols � and ◦. Formally, shapes are defined as expressions
over these dummy key/data symbols:

Shapes = Exp[{◦}, {�}].

For notational simplicity, we omit the encryption keys ◦ in shapes and write {|s|}
instead of {|s|}◦. Shapes are used to model partial information (e.g., message size)
that may be leaked by ciphertexts, even when the encrypting key is not known.
(See Lemma 5 for a computational justification.)

The symbolic semantics of cryptographic expressions is defined by mapping
them to patterns, which are expressions containing subterms of the form {|s|}k,
where s ∈ Shapes and k ∈ Keys, representing undecryptable ciphertexts. For-
mally, the set of patterns Pat[Keys,Data] is defined as

Pat ::= Data | Keys | (Pat,Pat) | {|Pat|}Keys | {|Shapes|}Keys. (3)

Since expressions are also patterns, and patterns can be regarded as expres-
sions over the extended sets Keys ∪ {◦}, Data ∪ {�}, we use the letter e
to denote expressions and patterns alike. We define a subterm relation v on
Pat[Keys,Data] as the smallest reflexive transitive binary relation such that

e1 v (e1, e2), e2 v (e1, e2), and e v {|e|}k (4)

for all e, e1, e2 ∈ Pat[Keys,Data] and k ∈ Keys. The parts of a pattern e ∈ Pat
are all of its subterms:

parts(e) = {e′ ∈ Pat | e′ v e}. (5)
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The keys and shape of a pattern are defined by structural induction according
to the obvious rules

keys(d) = ∅ shape(d) = �
keys(k) = {k} shape(k) = ◦

keys(e1, e2) = keys(e1) ∪ keys(e2) shape(e1, e2) = (shape(e1), shape(e2))
keys({|e|}k) = {k} ∪ keys(e) shape({|e|}k) = {|shape(e)|}

where d ∈ Data, k ∈ Keys, e, e1, e2 ∈ Pat[Keys,Data], and shape(s) = s
for all shapes s ∈ Shapes. Notice that, according to these definitions, keys(e)
includes both the keys appearing in e as a message, and those appearing as an
encryption key. On the other hand, parts(e) only includes the keys that are used
as a message. As an abbreviation, we write

pkeys(e) = parts(e) ∩ keys(e)

for the set of keys that appear in e as a message. So, for example, if e =
(k, {|0|}k′ , {|k′′|}k) then keys(e) = {k, k′, k′′}, but pkeys(e) = {k, k′′}. This is
an important distinction to model the fact that an expression e only provides
partial information about the keys in keys(e) \ parts(e) = {k′}.

2.2 Computational model

We assume that all algorithms and constructions take as an implicit input a (pos-
itive integer) security parameter `, which we may think as fixed at the outset.
We use calligraphic letters, A,B, etc., to denote randomized algorithms or the
probability distributions defined by their output. We write x← A for the oper-
ation of drawing x from a probability distribution A, or running a probabilistic
algorithm A with fresh randomness and output x. The uniform probability dis-
tribution over a finite set S is denoted by U(S), and we write x← S as an abbre-
viation for x← U(S). Technically, since algorithms are implicitly parameterized
by the security parameter `, each A represents a distribution ensemble, i.e., a
sequence of probability distributions {A(`)}`≥0 indexed by `. For brevity, we will
informally refer to probability ensembles A simply as probability distributions,
thinking of the security parameter ` as fixed. We use standard asymptotic nota-
tion O(f), ω(f), etc., and write f ≈ g if the function ε(`) = f(`)− g(`) = `−ω(1)

is negligible. Two probability distributions A0 and A1 are computationally in-
distinguishable (written A0 ≈ A1) if for any efficiently computable predicate D,
Pr{D(x):x← A0} ≈ Pr{D(x):x← A1}.

Cryptographic Primitives In the computational setting, cryptographic expres-
sions evaluate to probability distributions over binary strings, and two expres-
sions are equivalent if the associated distributions are computationally indistin-
guishable. We consider cryptographic expressions that make use of two standard
cryptographic primitives: pseudorandom generators, and (public or private key)
encryption schemes.
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A pseudorandom generator is an efficient algorithm G that on input a string
x ∈ {0, 1}` (the seed, of length equal to the security parameter `) outputs a string
G(x) of length bigger than `, e.g., 2`. We write G0(x) and G1(x) for the first and
second half of the output of a (length doubling) pseudorandom generator, i.e.,
G(x) = G0(x);G1(x) with |G0(x)| = |G1(x)| = |x| = `. A pseudorandom generator
G is computationally secure if the output distribution {G(x):x ← {0, 1}`} is
computationally indistinguishable from the uniform distribution U({0, 1}2`) =
{y: y ← {0, 1}2`}.

A (private key) encryption scheme is a pair of efficient (randomized) algo-
rithms E (for encryption) and D (for decryption) such that D(k, E(k,m)) = m
for any message m and key k ∈ {0, 1}`. The encryption scheme is secure if it
satisfies the following definition of indistinguishability under chosen plaintext at-
tack. More technically, for any probabilistic polynomial time adversary A, the
following must hold. Choose a bit b ∈ {0, 1} and a key k ∈ {0, 1}` uniformly at
random, and let Ob(m) be an encryption oracle that on input a message m out-
puts E(k,m) if b = 1, or E(k, 0|m|) if b = 0, where 0|m| is a sequence of 0s of the
same length as m. The adversary A is given oracle access to Ob(·), and attempts
to guess the bit b. The encryption scheme is secure if Pr{AOb(·) = b} ≈ 1/2. For
notational convenience, the encryption E(k,m) of a message m under a key k is
often written as Ek(m). Public key encryption is defined similarly. All our results
hold for private and public key encryption algorithms, with hardly any difference
in the proofs. So, for simplicity, we will focus the presentation on private key
encryption, but we observe that adapting the results to public key encryption is
straightforward.

In some of our proofs, it is convenient to use a seemingly stronger (but
equivalent) security definition for encryption, where the adversary is given access
to several encryption oracles, each encrypting under an independently chosen
random key. More formally, the adversary A in the security definition is given
access to a (stateful) oracle Ob(i,m) that takes as input both a message m
and a key index i. The first time A makes a query with a certain index i, the
encryption oracle chooses a key ki ← {0, 1}` uniformly at random. The query
Ob(i,m) is answered using key ki as in the previous definition: if b = 1 then
Ob(i,m) = E(ki,m), while if b = 0 then Ob(i,m) = E(ki, 0

|m|).

Computational evaluation. In order to map a cryptographic expression from Exp
to a probability distribution, we need to pick a length doubling pseudorandom
generator G, a (private key) encryption scheme E , a string representation γd for
every data block d ∈ Data, and a binary operation4 π used to encode pairs of
strings.

4 We do not assume any specific property about π, other than invertibility and effi-
ciency, i.e., π(w1, w2) should be computable in polynomial (typically linear) time,
and the substrings w1 and w2 can be uniquely recovered from π(w1, w2), also in
polynomial time. In particular, π(w1, w2) is not just the string concatenation oper-
ation w1;w2 (which is not invertible), and the strings π(w1, w2) and π(w2, w1) may
have different length. For example, π(w1, w2) could be the string concatenation of a
prefix-free encoding of w1, followed by w2.
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Since encryption schemes do not hide the length of the message being en-
crypted, it is natural to require that all functions operating on messages are
length-regular, i.e., the length of their output depends only on the length of
their input. For example, G is length regular by definition, as it always maps
strings of length ` to strings of length 2`. Throughout the paper we assume that
all keys have length ` equal to the security parameter, and the functions d 7→ γd,
π and E are length regular, i.e., |γd| is the same for all d ∈ Data, |π(x1, x2)|
depends only on |x1| and |x2|, and |E(k, x)| depends only on ` and |x|.

Definition 1. A computational interpretation is a tuple (G, E , γ, π) consisting of
a length-doubling pseudorandom generator G, a length regular encryption scheme
E, and length regular functions γd and π(x1, x2). If G is a secure pseudorandom
generator, and E is a secure encryption scheme (satisfying indistinguishability
under chosen plaintext attacks, as defined in the previous paragraphs), then we
say that (G, E , γ, π) is a secure computational interpretation.

Computational interpretations are used to map symbolic expressions in Exp
to probability distributions in the obvious way. We first define the evaluation σJeK
of an expression e ∈ Exp[Keys,Data] with respect to a fixed key assignment
σ: Keys→ {0, 1}`. The value σJeK is defined by induction on the structure of the
expression e by the rules σJdK = γd, σJkK = σ(k), σJ(e1, e2)K = π(σJe1K, σJe2K),
and σJ{|e|}kK = E(σ(k), σJeK). All ciphertexts in a symbolic expressions are eval-
uated using fresh independent encryption randomness. The computational eval-
uation JeK of an expression e is defined as the probability distribution obtained
by first choosing a random key assignment σ (as explained below) and then
computing σJeK. When Keys = G∗(Rand) is a set of pseudorandom keys, σ
is selected by first choosing the values σ(r) ∈ {0, 1}` (for r ∈ Rand) indepen-
dently and uniformly at random, and then extending σ to pseudorandom keys
in G+(Rand) using a length doubling pseudorandom generator G according to
the rule

G(σ(k)) = σ(G0(k));σ(G1(k)).

It is easy to see that any two expressions e, e′ ∈ Exp with the same shape
s = shape(e) = shape(e′) always map to strings of exactly the same length,
denoted |JsK| = |σJeK| = |σ′Je′K|. The computational evaluation function σJeK is
extended to patterns by defining σJsK = 0|JsK| for all shapes s ∈ Shapes. Again,
we have |σJeK| = |Jshape(e)K| for all patterns e ∈ Pat, i.e., all patterns with the
same shape evaluate to strings of the same length.

Notice that each expression e defines a probability ensemble JeK, indexed
by the security parameter ` defining the key length of G and E . Two symbolic
expressions (or patterns) e, e′ are computationally equivalent (with respect to
a given computational interpretation (G, E , γ, π)) if the corresponding probabil-
ity ensembles JeK and Je′K are computationally indistinguishable. An equivalence
relation R on symbolic expressions is computationally sound if for any two equiv-
alent expressions (e, e′) ∈ R and any secure computational interpretation, the
distributions JeK and Je′K are computationally indistinguishable. Conversely, we
say that a relation R is complete if for any two unrelated expressions (e, e′) /∈ R,
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there is a secure computational interpretation such that JeK and Je′K can be
efficiently distinguished.

3 Symbolic model for pseudorandom keys

In this section we develop a symbolic framework for the treatment of pseudoran-
dom keys, and prove that it is computationally sound and complete. Specifically,
we give a symbolic criterion for a set of keys which is satisfied if and only if the
joint distribution associated to the set of keys is computationally indistinguish-
able from the uniform distribution. Before getting into the technical details we
provide some intuition.

Symbolic keys are usually regarded as bound names, up to renaming. In the
computational setting, this corresponds to the fact that changing the names of
the keys does not alter the probability distribution associated to them. When
pseudorandom keys are present, some care has to be exercised in defining an
appropriate notion of key renaming. For example, swapping r and G0(r) should
not be considered a valid key renaming because the probability distributions as-
sociated to (r,G0(r)) and (G0(r), r) can be easily distinguished.5 A conservative
approach would require a key renaming µ to act simply as a permutation over
the set of atomic keys Rand. However, this is overly restrictive. For example,
renaming (G0(r),G1(r)) to (r0, r1) should be allowed because (G0(r),G1(r)) rep-
resents a pseudorandom string, which is computationally indistinguishable from
the truly random string given by (r0, r1). The goal of this section is to precisely
characterize which key renamings can be allowed, and which cannot, to preserve
computational indistinguishability.

The rest of the section is organized as follows. First, in Section 3.1, we in-
troduce a symbolic notion of independence for pseudorandom keys. Informally,
two (symbolic) keys are independent if neither of them can be derived from
the other through the application of the pseudorandom generator. We give a
computational justification for this notion by showing (see Theorem 1) that the
standard (joint) probability distribution associated to a sequence of symbolic
keys k1, . . . , kn ∈ Keys in the computational model is pseudorandom precisely
when the keys k1, . . . , kn are symbolically independent. Then, in Section 3.2,
we use this definition of symbolic independence to define a computationally
sound notion of key renaming. Intuitively, in order to be computationally sound
and achieve other desirable properties, key renamings should map independent
sets to independent sets. In Corollary 1 we prove that, under such restriction,
applying a renaming to cryptographic expressions yields computationally indis-
tinguishable distributions. This should be contrasted with the standard notion
of key renaming used in the absence of pseudorandom keys, where equivalent
expressions evaluate to identical probability distributions.

5 All that the distinguisher has to do, on input a pair of keys (σ0, σ1), is to compute
G0(σ1) and check if the result equals σ0.
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3.1 Independence

In this section we define a notion of independence for symbolic keys, and show
that it is closely related to the computational notion of pseudorandomness.

Definition 2. For any two keys k1, k2 ∈ Keys, we say that k1 yields k2 (written
k1 � k2) if k2 ∈ G∗(k1), i.e., k2 can be obtained by repeated application of G0 and
G1 to k1. Two keys k1, k2 are independent (written k1⊥k2) if neither k1 � k2

nor k2 � k1. We say that the keys k1, . . . , kn are independent if ki⊥kj for all
i 6= j.

Notice that any two keys satisfy Gw0(r0) � Gw1 if and only if r0 = r1 and
w0 � w1. As an example, they keys G0(r)⊥G01(r) are independent, but the
keys G0(r) � G10(r) are not. As usual, we write k1 ≺ k2 as an abbreviation for
(k1 � k2)∧(k1 6= k2). Notice that (Keys,�) is a partial order, i.e., the relation �
is reflexive, antisymmetric and transitive. Pictorially a set of keys S ⊆ Keys can
be represented by the Hasse diagram6 of the induced partial order (S,�). (See
Figure 1 for an example.) Notice that this diagram is always a forest, i.e., the
union of disjoint trees with roots roots(S) = S \G+(S). S is an independent set
if and only if S = roots(S), i.e., each tree in the forest associated to S consists
of a single node, namely its root.

r1

G10(r1) G1(r1)

G01(r1) G11(r1)

G0(r2)

G00(r2) G010(r2) G110(r2)

G01(r2)

Fig. 1. Hasse diagram associated to the set of keys S = {r1,G10(r1),G1(r1),G01(r1),
G11(r1), G0(r2),G00(r2),G010(r2),G110(r2), G01(r2)}. For any two keys, k1 � k2 if there
is a directed path from k1 to k2. The keys {G0(r2),G01(r2)} form an independent set
because neither G0(r2) � G01(r2), nor G01(r2) � G0(r2). The Hasse diagram of S is a
forest consisting of 3 trees with roots roots(S) = {r1,G0(r2),G01(r2)}.

We consider the question of determining, symbolically, when (the compu-
tational evaluation of) a sequence of pseudorandom keys k1, . . . , kn is pseudo-
random, i.e., it is computationally indistinguishable from n truly random inde-
pendently chosen keys. The following lemma shows that our symbolic notion
of independence corresponds exactly to the standard cryptographic notion of
computational pseudorandomness. We remark that the correspondence proved

6 The Hasse diagram of a partial order relation � is the graph associated to the
transitive reduction of �, i.e., the smallest relation R such that � is the symmetric
transitive closure of R.
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in the lemma is exact, in the sense that the symbolic condition is both necessary
and sufficient for symbolic equivalence. This should be contrasted with typical
computational soundness results [3], that only provide sufficient conditions for
computational equivalence, and require additional work/assumptions to estab-
lish the completeness of the symbolic criterion [31,14].

Theorem 1. Let k1, . . . , kn ∈ Keys = G∗(Rand) be a sequence of symbolic
keys. Then, for any secure (length doubling) pseudorandom generator G, the
probability distributions Jk1, . . . , knK and Jr1, . . . , rnK (where r1, . . . , rn ∈ Rand
are distinct atomic keys) are computationally indistinguishable if and only if the
keys k1, . . . , kn are (symbolically) independent, i.e., ki⊥kj for all i 6= j.

Proof. We first prove the “only if” direction of the equivalence, i.e., indepen-
dence is a necessary condition for the indistinguishability of Jr1, . . . , rnK and
Jk1, . . . , knK. Assume the keys in (k1, . . . , kn) are not independent, i.e., ki � kj
for some i 6= j. By definition, kj = Gw(ki) for some w ∈ {0, 1}∗. This allows
to deterministically compute JkjK = Gw(JkiK) from JkiK using the pseudoran-
dom generator. The distinguisher between Jr1, . . . , rnK and Jk1, . . . , knK works
in the obvious way: given a sample (σ1, . . . , σn), compute Gw(σi) and compare
the result to σj . If the sample comes from Jk1, . . . , knK, then the test is satis-
fied with probability 1. If the sample comes from Jr1, . . . , rnK, then the test is
satisfied with exponentially small probability because σi = JriK is chosen at ran-
dom independently from σj = JrjK. This concludes the proof for the “only if”
direction.

Let us now move to the “if” direction, i.e., prove that independence is a
sufficient condition for the indistinguishability of Jr1, . . . , rnK and Jk1, . . . , knK.
Assume the keys in (k1, . . . , kn) are independent, and let m be the number of
applications of G0 and G1 required to obtain (k1, . . . , kn) from the basic keys in
Rand. We define m+ 1 tuples Ki = (ki1, . . . , k

i
n) of independent keys such that

– K0 = (k1, . . . , kn)
– Km = (r1, . . . , rn), and
– for all i, the distributions JKiK and JKi+1K are computationally indistin-

guishable.

It follows by transitivity that JK0K = Jk1, . . . , knK is computationally indistin-
guishable from JKmK = Jr1, . . . , rnK. More precisely, any adversary that distin-
guishes Jk1, . . . , knK from Jr1, . . . , rnK with advantage δ, can be efficiently trans-
formed into an adversary that breaks the pseudorandom generator G with ad-
vantage at least δ/m. Each tuple Ki+1 is defined from the previous one Ki as
follows. If all the keys in Ki = {ki1, . . . , kin} are random (i.e., kij ∈ Rand for

all j = 1, . . . , n), then we are done and we can set Ki+1 = Ki. Otherwise, let
kij = Gw(r) ∈ Keys \Rand be a pseudorandom key in Ki, with r ∈ Rand and

w 6= ε. Since the keys in Ki are independent, we have r /∈ Ki. Let r′, r′′ ∈ Rand
be two new fresh key symbols, and define Ki+1 = {ki+1

1 , . . . , ki+1
n } as follows:

ki+1
h =

Gs(r′) if kih = Gs(G0(r)) for some s ∈ {0, 1}∗
Gs(r′′) if kih = Gs(G1(r)) for some s ∈ {0, 1}∗
kih otherwise
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It remains to prove that any distinguisher D between JKiK and JKi+1K can be
used to break (with the same success probability) the pseudorandom generator
G. The distinguisher D′ for the pseudorandom generator G is given as input a
pair of strings (σ′, σ′′) chosen either uniformly (and independently) at random or
running the pseudorandom generator (σ′, σ′′) = G(σ) on a randomly chosen seed
σ. D′(σ′, σ′′) computes n strings (σ1, . . . , σn) by evaluating (ki+1

1 , ki+1
2 , . . . , ki+1

n )
according to an assignment that maps r′ to σ′, r′′ to σ′′, and all other base keys
r ∈ Rand to independent uniformly chosen values. The output of D′(σ′, σ′′)
is D(σ1, . . . , σn). Notice that if σ′ and σ′′ are chosen uniformly and indepen-
dently at random, then (σ1, . . . , σn) is distributed according to JKi+1K, while if
(σ′, σ′′) = G(σ), then (σ1, . . . , σn) is distributed according to JKiK. Therefore
the success probability of D′ in breaking G is exactly the same as the success
probability of D in distinguishing JKiK from JKi+1K. ut

3.2 Renaming pseudorandom keys

We will show that key renamings are compatible with computational indistin-
guishability as long as they preserve the action of the pseudorandom generator,
in the sense specified by the following definition.

Definition 3 (pseudo-renaming). For any set of keys S ⊆ Keys, a renaming
µ:S → Keys is compatible with the pseudorandom generator G if for all k1, k2 ∈
S and w ∈ {0, 1}∗,

k1 = Gw(k2) if and only if µ(k1) = Gw(µ(k2)).

For brevity, we refer to renamings satisfying this property as pseudo-renamings.

Notice that the above definition does not require the domain of µ to be the
set of all keys Keys, or even include all keys in Rand. So, for example, the
function mapping (G0(r0),G1(r0)) to (r0,G001(r1)) is a valid pseudo-renaming,
and it does not act as a permutation over Rand. The following lemmas show
that Definition 3 is closely related to the notion of symbolic independence.

Lemma 1. Let µ be a pseudo-renaming with domain S ⊆ Keys. Then µ is a
bijection from S to µ(S). Moreover, S is an independent set if and only if µ(S)
is an independent set.

Proof. Let µ:S → Keys be a pseudo-renaming. Then µ is necessarily injective,
because for all k1, k2 ∈ S such that µ(k1) = µ(k2), we have µ(k1) = µ(k2) =
Gε(µ(k2)). By definition of pseudo-renaming, this implies k1 = Gε(k2) = k2.
This proves that µ is a bijection from S to µ(S).

Now assume S is not an independent set, i.e., k1 = Gw(k2) for some k1, k2 ∈ S
and w 6= ε. By definition of pseudo-renaming, we also have µ(k1) = Gw(µ(k2)).
So, µ(S) is not an independent set either. Similarly, if µ(S) is not an independent
set, then there exists keys µ(k1), µ(k2) ∈ µ(S) (with k1, k2 ∈ S) such that
µ(k1) = Gw(µ(k2)) for some w 6= ε. Again, by definition of pseudo-renaming,
k1 = Gw(k2), and S is not an independent set. ut
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In fact, pseudo-renamings can be equivalently defined as the natural exten-
sion of bijections between two independent sets of keys.

Lemma 2. Any pseudo-renaming µ with domain S can be uniquely extended to
a pseudo-renaming µ̄ with domain G∗(S). In particular, any pseudo-renaming
can be (uniquely) specified as the extension µ̄ of a bijection µ:A → B between
two independent sets A = roots(S) and B = µ(A).

Proof. Let µ:S → Keys be a pseudo-renaming. For any w ∈ {0, 1}∗ and k ∈
S, define µ̄(Gw(k)) = Gw(µ(k)). This definition is well given because µ is a
pseudo-renaming, and therefore for any two representations of the same key
Gw(k) = Gw′(k′) ∈ G∗(S) with k, k′ ∈ S, we have Gw(µ(k)) = µ(Gw(k)) =
µ(Genw′(k′)) = Gw′(µ(k′)). Moreover, it is easy to check that µ̄ is a pseudo-
renaming, and any pseudo-renaming that extends µ must agree with µ̄. We now
show that pseudo-renamings can be uniquely specified as bijections between two
independent sets of keys. Specifically, for any pseudo-renaming µ with domain S,
consider the restriction µ0 of µ to A = roots(S). By Lemma 1, µ0 is a bijection
between independent sets A and B = µ0(A). Consider the extensions of µ and µ0

to G∗(S) = G∗(roots(S)) = G∗(A). Since µ and µ0 agree on A = roots(S), both
µ̄ and µ̄0 are extensions of µ0. By uniqueness of this extension, we get µ̄0 = µ̄.
Restricting both functions to S, we get that the original pseudo-renaming µ can
be expressed as the restriction of µ̄0 to S. In other words, µ can be expressed
as the extension to S of a bijection µ0 between two independent sets of keys
A = roots(S) and B = µ(A). ut

We remark that a pseudo-renaming µ:S → Keys cannot, in general, be
extended to one over the set Keys = G∗(Rand) of all keys. For example,
µ:G0(r0) 7→ r1 is a valid pseudo-renaming, but it cannot be extended to in-
clude r0 in its domain.

The next lemma gives one more useful property of pseudo-renamings: they
preserve the root keys.

Lemma 3. For any pseudo-renaming µ:A → Keys, we have µ(roots(A)) =
roots(µ(A)).

Proof. By Lemma 1, µ is injective. Therefore, µ(roots(A)) equals µ(A\G+(A)) =
µ(A)\µ(G+(A)). From the defining property of pseudo-renamings we also easily
get that µ(G+(A)) = G+(µ(A)). Therefore, µ(roots(A)) = µ(A) \G+(µ(A)) =
roots(µ(A)). ut

Using Lemma 2, throughout the paper we specify pseudo-renamings as bi-
jections between two independent sets of keys. Of course, in order to apply
µ:S → µ(S) to an expression e, the key set keys(e) must be contained in
G∗(S). Whenever we apply a pseudo-renaming µ:S → Keys to an expres-
sion or pattern e, we implicitly assume that keys(e) ⊂ G∗(S). (Typically,
S = roots(keys(e)), so that keys(e) ⊂ G∗(roots(keys(e))) = G∗(S) is always
satisfied.) Formally, the result of applying a pseudo-renaming µ to an expression
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or pattern e ∈ Pat(Keys,Data) is defined as

µ(d) = d µ({|e|}k) = {|µ(e)|}µ̄(k)

µ(k) = µ̄(k) µ(s) = s
µ(e1, e2) = (µ(e1), µ(e2))

for all d ∈ Data, k ∈ Keys, e, e1, e2 ∈ Pat(Keys,Data) and s ∈ Shapes. We
can now define an appropriate notion of symbolic equivalence up to renaming.

Definition 4. Two expressions or patterns e1, e2 ∈ Pat(Keys,Data) are equiv-
alent up to pseudo-renaming (written e1

∼= e2), if there is a pseudo-renaming µ
such that µ̄(e1) = e2. Equivalently, by Lemma 2, e1

∼= e2 if there is a bijection
µ: roots(keys(e1))→ roots(keys(e2)) such that µ̄(e1) = e2.

It easily follows from the definitions and Theorem 1 that ∼= is an equiva-
lence relation, and expressions that are equivalent up to pseudo-renaming are
computationally equivalent.

Corollary 1. The equivalence relation ∼=) is computationally sound, i.e., for
any two patterns e1, e2 ∈ Pat(Keys,Data) such that e1

∼= e2, the distributions
Je1K and Je2K are computationally indistinguishable.

Proof. Assume e1
∼= e2, i.e., there exists a bijection µ : roots(keys(e1)) →

roots(keys(e2)) such that µ̄(e1) = e2. Let n be the size of A1 = roots(keys(e1))
and A2 = roots(keys(e2)) = µ(A1). We show that any distinguisher D between
Je1K and Je2K = Jµ̄(e1)K can be efficiently transformed into a distinguisher A
between JA1K and JA2K with the same advantage as D. Since A1 and A2 are
independent sets of size n, by Theorem 1 the probability distributions JA1K
and JA2K are indistinguishable from Jr1, . . . , rnK. So, JA1K and JA2K must be
indistinguishable from each other, and A’s advantage must be negligible. We
now show how to build A from D. The distinguisher A takes as input a sample σ
coming from either JA1K or JA2K. A evaluates e1 according to the key assignment
A1 7→ σ, and outputs D(σJe1K). By construction, σJe1K is distributed according
to Je1K when σ = JA1K, while it is distributed according to Je2K = Jµ̄(e1)K when
σ = JA2K = Jµ(A1)K. It follows that A has exactly the same advantage as D. ut

Based on the previous corollary, it is convenient to define a notion of “normal
pattern”, where the keys have been renamed in some standard way.

Definition 5. The normalization of e ∈ Pat is the pattern norm(e) = µ(e)
obtained by applying the pseudo-renaming µ(ki) = ri, where K = {k1, . . . , kn} =
roots(keys(e)) and r1, . . . , rn ∈ Rand.

It immediately follows from the definition that norm(e) ∼= e, and that any
two patterns e0, e1 are equivalent up to renaming (e0

∼= e1) if and only if their
normalizations norm(e0) = norm(e1) are identical.
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4 Symbolic Semantics

Following [3,26], the symbolic semantics of an expression e ∈ Exp is defined
by specifying the set of keys S ⊆ keys(e) recoverable from e by an adversary,
and a corresponding pattern proj(e, S), which, informally, represents the ad-
versary’s view of e when given the ability to decrypt only under the keys in S.
Informally, proj(e, S) can be thought as the projection of e onto the subset of
expressions that use only keys in S for encryption. More specifically, proj(e, S)
is obtained from e by replacing all undecryptable subexpression {|e′|}k v e (where
k /∈ S) with a pattern {|shape(e′)|}k that reveals only the shape of the encrypted
message. The formal definition of proj is given in Figure 2.

We remark that the definition of proj is identical to previous work [3,26],
as it treats pseudo-random keys Keys = G∗(Rand) just as regular keys, disre-
garding their internal structure. (Relations between pseudorandom keys will be
taken into account when defining the set of keys S known to the adversary.) In
particular, as shown in [3,26], this function satisfies the following properties7

proj(e,Keys) = e (6)

proj(proj(e, S), T ) = proj(e, S ∩ T ). (7)

In order to define S, we need to specify the set of keys rec(e) ⊆ keys(e)
that an adversary may (potentially) extract from all the parts of an expression
(or pattern) e. In the standard setting, where keys are atomic symbols, and
encryption is the only cryptographic primitive, rec(e) can be simply defined
as the set of keys appearing in e as a message. This is because the partial
information about a key k revealed by a ciphertext {|m|}k is of no use to an
adversary, except possibly for telling when two ciphertexts are encrypted under
the same key. When dealing with expressions that make use of possibly related
pseudorandom keys and multiple cryptographic primitives, one needs to take
into account the possibility that an adversary may combine different pieces of
partial information about the keys in mounting an attack. To this end, we define
rec(e) to include all keys k such that either

1. e contains k as a message (directly revealing the value of k), or
2. e contains both a message encrypted under k (providing partial information

about k) and some other related key k′ (providing an additional piece of
information about k).

In other words, our definition postulates that the symbolic adversary can fully
recover a key k whenever it is given two distinct pieces of partial information
about it. In addition, rec(e) contains all other keys that can be derived using
the pseudorandom generator G.

7 Notice that by (7), the functions proj(·, S) and proj(·, T ) commute, i.e.,
proj(proj(e, S), T ) = proj(proj(e, T ), S) for any expression e. Indeed, for
example, if S = {k1}, T = {k2} and e = {|{|m|}k1

|}
k2

, then proj(e, {k1}) =

{|{|�|}|}
k2

, proj(e, {k2}) = {|{|�|}k1
|}
k2

, and proj(proj(e, {k1}), {k2}) =

proj(proj(e, {k2}), {k1}) = proj(e, ∅) = {|{|�|}|}
k2

.
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Definition 6. For any pattern e, let rec(e) = keys(e) ∩G∗(K) where

K = keys(e) ∩ (parts(e) ∪G−(keys(e)))

= pkeys(e) ∪ (keys(e) ∩G−(keys(e))).

The expression keys(e) ∩G∗(K) simply extends the set of known keys K using
the pseudorandom generator. The interesting part of Definition 6 is the set K,
which captures the key recovery capabilities of the adversary: pkeys(e) are all
the keys that appear in e as a message, and keys(e)∩G−(keys(e)) are the keys
for which the adversary can obtain some additional partial information.8 Our
definition may seem overly conservative, as it postulates, for example, that a
key k can be completely recovered simply given two ciphertexts {|�|}k and {|�|}k′
where k′ = G101(k) is derived form k using the (one-way) functions G0,G1. In
Section 5 we justify our definition by showing that there are encryption schemes
and pseudorandom generators for which this is indeed possible, and proving
a completeness theorem for the symbolic sematics associated to Definition 6.
Specifically, if our definition enables a symbolic attacker to distinguish between
two expressions e and e′, then there is also an efficient computational adversary
that distinguishes between the corresponding probability distributions for some
valid computational interpretation of the cryptographic primitives.

The functions proj and rec are used to associate to each expression e a
corresponding key recovery map Fe, which, on input a set of keys S, outputs the
set of keys Fe(S) potentially recoverable from e when using the keys in S for
decryption.

Fe: keys(e)→ keys(e) where Fe(S) = rec(proj(e, S)). (8)

A symbolic adversary that intercepts the expression e, and whose initial knowl-
edge is the empty set of keys S0 = ∅, can obtain more and more keys S1 = Fe(S0),
S2 = Fe(S1),. . . , Si+1 = Fe(Si) = Fi+1

e (∅), and ultimately recover all the keys
in the set9

fix(Fe) =
⋃
n≥0

Sn =
⋃
n≥0

Fne (∅). (9)

In summary, the symbolic semantics of an expression e can be defined as follows.

Definition 7. The (least fixed point) symbolic semantics of a cryptographic ex-
pression e is the pattern

pattern(e) = norm(proj(e,fix(Fe)))

where fix(Fe) =
⋃
n≥0 Fne (∅).

8 By symmetry, and the final application of G in the definition of rec, keys recoverable
from partial information of type keys(e)∩G+(keys(e)) are also captured implicitly
by the this definition, simply by swapping the role of the two keys.

9 As we will see, the key recovery map Fe is monotone, i.e., if S ⊆ S′, then Fe(S) ⊆
Fe(S′), for any two sets of keys S, S′. Therefore, Fe defines a monotonically increasing
sequence of known sets of keys S0 ⊂ S1 ⊂ S2 ⊂ . . . Sn = Sn+1 and the set of keys
recoverable by the adversary Sn = fix(Fe) is precisely the least fixed point of Fe, i.e.,
the smallest set S such that Fe(S) = S.
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proj(d, S) = d proj((e1, e2), S) = (proj(e1, S), proj(e2, S))

proj(k, S) = k proj({|e|}k, S) =

{
{|shape(e)|}k if k /∈ S
{|proj(e, S)|}k if k ∈ S

Fig. 2. The the pattern function proj:Pat[Keys,Data] × ℘(Keys) →
Pat[Keys,Data] where k ∈ Keys, d ∈ Data, and (e1, e2), {|e|}k ∈ Pat[Keys,Data].
Intuitively, proj(e, S) is the observable pattern of e, when using the keys in S for
decryption.

In the above definition,S = fix(Fe) is the set of all keys recoverable by an
adversary that intercepts e, proj(e, S) is (the symbolic representation of) what
part of e can be decrypted by the adversary, and the final application of norm
takes care of key renamings.

We conclude this section by observing that the function rec satisfies the
fundamental property

rec(proj(e, S)) ⊆ rec(e) (10)

which, informally, says that projecting an expression (or pattern) e does not
increase the amount of information recoverable from it. In fact, for any pat-
tern e, the set rec(e) depends only on the sets keys(e) and pkeys(e). More-
over, this dependence is monotone. Since we have keys(proj(e, S)) ⊆ keys(e)
and pkeys(proj(e, S)) ⊆ pkeys(e), by monotonicity we get rec(proj(e, S)) ⊆
rec(e).

As an application, [26, Theorem 1] shows that for any functions proj, rec
satisfying properties (6), (7) and (10), the function Fe(S) = rec(proj(e, S)) is
monotone, i.e., if S ⊆ T , then Fe(S) ⊆ Fe(T ).

5 Completeness

In this section we prove that the symbolic semantics defined in Section 4 is com-
plete, i.e., if two cryptographic expressions map to different symbolic patterns
(as specified in Definition 7), then the corresponding probability distributions
can be efficiently distinguished. More specifically, we show that for any two such
symbolic expressions e0, e1, there is a secure computational interpretation J·K
(satisfying the standard computational notions of security for pseudorandom
generators and encryption schemes) and an efficiently computable predicate D
such that Pr{D(Je0K)} ≈ 0 and Pr{D(Je1K)} ≈ 1.

The core of our completeness theorem is the following lemma, which shows
that computationally secure encryption schemes and pseudorandom generators
can leak enough partial information about their keys, so to make the keys com-
pletely recoverable whenever two keys satisfying a nontrivial relation are used to
encrypt. The key recovery algorithm A described in Lemma 4 provides a tight
computational justification for the symbolic key recovery function rec described
in Definition 6.
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Lemma 4. If pseudorandom generators and encryption schemes exist at all,
then there is a secure computational interpretation (G, E , γ, π) and a determinis-
tic polynomial time key recovery algorithm A such that the following holds. For
any (symbolic) keys k0, k1 ∈ Keys, messages m0,m1, and binary string w 6= ε,

– if k1 = Gw(k0), then A(Eσ(k0)(m0), Eσ(k1)(m1), w) = σ(k0) for any key as-
signment σ; and

– if k1 6= Gw(k0), then A(Eσ(k0)(m0), Eσ(k1)(m1), w) = ⊥ outputs a special
symbol ⊥ denoting failure, except with negligible probability over the random
choice of the key assignment σ.

Proof. We show how to modify any (length doubling) pseudorandom generator
G′ and encryption scheme E ′ to satisfy the properties in the lemma. Before de-
scribing the actual construction, we provide some intuition. The idea is to use
an encryption scheme that splits the key k = (k[0]; k[1]), uses half of the key
(say, k[1]) and leaks the first half k[0] as part of the ciphertext. Notice that this
is already enough to tell if two ciphertexts are encrypted under the same key, as
exposed by patterns like ({|�|}k, {|�|}k′). But, still, this does not leak any infor-
mation about the messages, which are well protected by the undisclosed portion
of the keys. In order to prove the lemma, we need an appropriate pseudorandom
generator which, when combined with the encryption scheme, leads to a key re-
covery attack. Similarly to the encryption scheme, the pseudorandom generator
uses only k[0] (which is expanded by a factor 4, to obtain a string twice as long as
the original k), and uses the result to “mask” the second part k[1]. Specifically,
each half of the output Gb(k) equals (G′0b(k[0]),G′1b(k[0]) ⊕ k[1]). Now, given an
encryption under k (which leaks k[0]), and a one-way function Gb(k) (for any bit
b) of the key, one can recover k[1] as follows: expand k[0] to (G′0b(k[0]),G′1b(k[0]))
and use the result to unmask Gb(k), to reveal (0, k[1]). The same argument is
easily adapted to work for any one-way function Gw(k) corresponding to an ar-
bitrary sequence of applications w of the pseudorandom generator. The problem
with this intuitive construction is that it requires to see the full output of Gb(k).
If, instead, we are given only two ciphertests (encrypted under k and Gb(k)) one
gets to learn only the first half Gb(k), which is not enough to recover k[1]. An
easy fix to this specific problem is to let Gb(k) to mask (k[1], k[1]) instead of
(0, k[1]). But this would not allow the attack to carry over to longer applications
Gw(k) of the pseudorandom generator. So, the actual construction required to
prove the lemma is a bit more complex, and splits the key into three parts.

The new E and G use keys that are three times as long as those of E ′ and G′.
Specifically, each new key σ(k) consists of three equal length blocks which we
denote as σ(k)[0], σ(k)[1] and σ(k)[2], where each block can be used as a seed
or encryption key for the original G′ and E ′. Alternatively, we may think of k as
consisting of three atomic symbolic keys k = (k[0], k[1], k[2]), each corresponding
to ` bits of σ(k). For notational simplicity, in the rest of the proof, we fix a
random key assignment σ, and, with slight abuse of notation, we identify the
symbolic keys k[i] with the corresponding `-bit strings σ(k)[i]. So, for example,
we will write k and k[i] instead of σ(k) and σ(k)[i]. Whether each k[i] should be
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interpreted as a symbolic expression or as a bitstring will always be clear from
the context.

The new encryption scheme E(k,m) = k[0]; k[1]; E ′(k[2],m) simply leaks the
first two blocks of the key, and uses the third block to perform the actual encryp-
tion. It is easy to see that if E ′ is secure against chosen plaintext attacks, then
E ′ is also secure. Moreover, E can be made length regular simply by padding the
output of E ′ to its maximum length.

For the pseudo-random generator, assume without loss of generality that G′
is length doubling, mapping strings of length ` to strings of length 2`. We need
to define a new G mapping strings of length 3` to strings of length 6`. On input
k = k[0]; k[1]; k[2], the new G stretches k[0] to a string of length 6` corresponding
to the symbolic expression

(G00(k[0]),G010(k[0]),G110(k[0]),G01(k[0]),G011(k[0]),G111(k[0])) (11)

and outputs the exclusive-or of this string with (0; k[2]; k[2]; 0; k[2]; k[2]). The
expression (11) is evaluated using G′. Since G′ is a secure length doubling pseu-
dorandom generator, and the keys in (11) are symbolically independent, by The-
orem 1 expression (11) is mapped to a pseudorandom string of length 6`. Finally,
since taking the exclusive-or with any fixed string (0; k[2]; k[2]; 0; k[2]; k[2]) maps
the uniform distribution to itself, the output of G is also computationally indis-
tinguishable from a uniformly random string of length 6`. This proves that G
is a secure length doubling pseudorandom generator as required. It will be con-
venient to refer to the first and second halves of this pseudorandom generator
G(k) = G0(k);G1(k). Using the definition of G, we see that for any bit b ∈ {0, 1},
the corresponding half of the output consists of the following three blocks:

Gb(k)[0] = JG0b(k[0])K (12)

Gb(k)[1] = JG01b(k[0])K⊕ k[2] (13)

Gb(k)[2] = JG11b(k[0])K⊕ k[2]. (14)

Next, we describe the key recovery algorithmA. This algorithm takes as input
two ciphertexts Ek0(m0), Ek1(m1) and a binary string w. The two ciphertexts
are only used for the purpose of recovering the partial information about the
keys k0[0], k0[1], k1[0], k1[1] leaked by E . So, we assume A is given k0[0], k0[1]
and k1[0], k1[1] to start with. Let w = wn . . . w1 be any bitstring of length n, and
define the sequence of keys ki = (ki[0], ki[1], ki[2]) by induction as

k0 = k0, ki+1 = Gwi+1
(ki)

for i = 0, . . . , n − 1. Notice that, if k0 and k1 are symbolically related by k1 =
Gw(k0), then the last key in this sequence equals kn = k1 as a string in {0, 1}3`.

Using (12), the first block of these keys can be expressed symbolically as

ki[0] = JGui
(k0[0])K where ui = 0wi0wi−1 . . . 0w1.

So, Algorithm A(k0[0], k0[1], k1[0], k1[1], w) begins by computing the value of all
ki[0] = JGui(k0[0])K (for i = 0, . . . , n) starting from the input value k0[0] and
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applying the pseudorandom generator G′ as directed by ui. At this point, A may
compare kn[0] with its input k1[0], and expect these two values to be equal.
If the values differ, A immediately terminates with output ⊥. We will prove
later on that if k1 6= Gw(k0), then kn[0] 6= k1[0] with high probability, and
A correctly outputs ⊥. But for now, let us assume that k1 = Gw(k0), so that
k1 = JGw(k0)K = kn and the condition kn[0] = k1[0] is satisfied. In this case, A
needs to recover and output the key k0. Since algorithm A is already given k0[0]
and k0[1] as part of its input, all we need to do is to recover the last block k0[2]
of the key. To this end, A first uses (13) to compute kn−1[2] as

k1[1]⊕ G0(G1(Gwn
(kn−1[0]))) = kn[1]⊕ JG01wn

(kn−1[0])K
= kn[1]⊕ (Gwn

(kn−1)[1]⊕ kn−1[2])

= kn[1]⊕ (kn[1]⊕ kn−1[2]) = kn−1[2].

Similarly, starting from kn−1[2], A uses (14) to compute ki[2] for i = n− 2, n−
3, . . . , 0 as

ki+1[2]⊕ G1(G1(Gwi+1
(ki[0]))) = ki+1[2]⊕ JG11wi+1

(ki[0])K

= ki+1[2]⊕ (Gwi+1
(ki)[2]⊕ ki[2])

= ki+1[2]⊕ (ki+1[2]⊕ ki[2]) = ki[2].

At this point, A can output (k0[0], k0[1], k0[2]) = (k0[0], k0[1], k0[2]) = k2. This
completes the analysis for the case k1 = Gw(k0).

We need to show that if k1 6= Gw(k0), then the probability that kn[0] = k1[0]
is negligible, so that A correctly outputs ⊥. Since we are interested only in the
first blocks kn[0], k1[0] of the keys, we introduce some notation. For any bitstring
v = v1 . . . vm, let 0|v = 0v10v2 . . . 0vm be the result of shuffling v with a string of
zeros of equal length. If we express kn[0] = G0|w(k0[0]) in terms of k0[0], the goal
becomes to prove that G0|w(k0[0]) and k1[0] evaluate to different strings with
overwhelming probability. The proof proceeds by cases, depending on whether
k0⊥k1, k0 ≺ k1, or k1 � k0, and makes use of the symbolic characterization of
computational independence from Section 3.

Case 1. If k0⊥k1, then k0 = Gv0(r0) and k1 = Gv1(r1) for some r0, r1, v0, v1

such that either r0 6= r1, or v0, v1 are not one a suffix of the other. It follows that
k0[0] = G0|v0(r0) and k1[0] = G0|v1(r1) are also symbolically independent be-
cause either r0 6= r1, or (0|v0), (0|v1) are not one a suffix of the other. In this case,
also kn[0] = G0|w(k0[0]) and k1[0] are symbolically independent. It follows, from
Theorem 1, that the distribution JG0|w(k0[0]), k1[0]K is computationally indis-
tinguishable from the evaluation Jr0, r1K of two independent uniformly random
keys. In particular, since r0 and r1 evaluate to the same bitstring with exponen-
tially small probability 2−`, the probability that kn[0] = G0|w(k0[0]) and k1[0]
evaluate to the same string is also negligible.

Case 2. If k1 ≺ k0, then k0 = Gv(k1) for some string v 6= ε, and k0[0] =
G0|v(k1[0]). Then, the pair of keys (kn[0], k1[0]) where

kn[0] = G0|w(k0[0]) = G0|w(G0|v(k1[0])) = G0|wv(k1[0])
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is symbolically equivalent to (Gu(r), r) for some u = (0|wv) 6= ε. So, by Theo-
rem 1, we can equivalently bound the probability δ (over the random choice of
σ) that JGu(r)Kσ evaluates to JrKσ. The trivial (identity) algorithm I(y) = y
inverts the function defined by Gu with probability at least δ. Since u 6= ε, Gu
defines a one-way function, and δ must be negligible.

Case 3. Finally, if k0 � k1, then k1 = Gv(k0) for some string v 6= w, and
k1[0] = G0|v(k0[0]). This time, we are given a pair of keys

(kn[0], k1[0]) = (G0|w(k0[0]),G0|v(k0[0]))

which are symbolically equivalent to (G0|w(r),G0|v(r)). As before, by Theorem 1,
it is enough to evaluate the probability δ that G0|w(r) and G0|v(r) evaluate to
the same bitstring. If v is a (strict) suffix of w or w is a (strict) suffix of v,
then δ must be negligible by the same argument used in Case 2. Finally, if v
and w are not one a suffix of the other, then G0|w(r) and G0|v(r) are symboli-
cally independent, and δ must be negligible by the same argument used in Case 1.

We have shown that in all three cases, the probability δ that Gun
(k0[0]) and

k1[0] evaluate to the same bitstring is negligible. So, the test performed by A
fails (expect with negligible probability) and A outputs ⊥ as required by the
lemma. ut

We use Lemma 4 to distinguish between expressions that have the same
shape. Expressions with different shapes can be distinguished more easily simply
by looking at their bitsize. Recall that for any (length regular) instantiation
of the cryptographic primitives, the length of all strings in the computational
interpretation of a pattern JeK (denoted |JeK|) depends only on shape(e). In other
words, for any two patterns e0, e1, if shape(e0) = shape(e1), then |Je0K| = |Je1K|.
The next lemma provides a converse of this property, showing that whenever two
patterns have different shape, they may evaluate to strings of different length.
So, secure computational interpretations are not guaranteed to protect any piece
of partial information about the shape of symbolic expressions.

Lemma 5. If pseudorandom generators and encryption schemes exist at all,
then for any two expressions e0 and e1 with shape(e0) 6= shape(e1), there exists
a secure computational interpretation (G, E , γ, π) such that |Je0K| 6= |Je1K|.

Proof. We show how to modify any secure computational interpretation simply
by padding the output length, so that the lemma is satisfied. More specifically,
we provide a computational interpretation such that the length of Je0K is different
from the length of any expression with different shape. Let S = {shape(e) | e ∈
parts(e0)} be the set of all shapes of subexpressions of e0, and let n = |S|+ 1.
Associate to each shape s ∈ S a unique number ϕ(s) ∈ {1, . . . , n − 1}, and
define ϕ(s) = 0 for all shapes s /∈ S. Data blocks and keys are padded to
bit-strings of length congruent to ϕ(�) and ϕ(◦) modulo n, respectively. The
encryption function first applies an arbitrary encryption scheme, and then pads
the ciphertext E(m) so that its length modulo n equals ϕ({|s|}), for some shape
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s such that |m| = ϕ(s). The pairing function π is defined similarly: if the two
strings being combined in a pair have length |m0| = ϕ(s0) (mod n) and |m1| =
ϕ(s1) (mod n), then the string encoding the pair (m0,m1) is padded so that
its length equals ϕ(s0, s1) modulo n. It is easy to check that all patterns e are
evaluated to strings of length |JeK| = ϕ(shape(e)) (mod n). Since shape(e0) ∈
S and shape(e1) /∈ S, we get |Je0K| 6= 0 (mod n) and |Je1K| = 0 (mod n). In
particular, |Je0K| 6= |Je1K|. ut

We are now ready to prove our completeness theorem, and establish the
optimality of our symbolic semantics.

Theorem 2. For any two expressions e0 and e1, if pattern(e0) 6= pattern(e1),
then there exists a secure computational interpretation (G, E , γ, π) and a polyno-
mial time computable predicate D such that Pr{D(Je0K)} ≈ 0 and Pr{D(Je1K)} ≈
1, i.e., the distributions Je0K and Je1K can be distinguished with negligible proba-
bility of error.

Proof. We consider two cases, depending on the shapes of the expressions. If
shape(e0) 6= shape(e1), then let J·K be the computational interpretation defined
in Lemma 5. Given a sample α from one of the two distributions, the distinguisher
D simply checks if |α| = |Jshape(e1)K|. If they are equal, it accepts. Otherwise
it rejects. It immediately follows from Lemma 5 that this distinguisher is always
correct, accepting all samples α from Je1K, and rejecting all samples α from Je0K.

The more interesting case is when shape(e0) = shape(e1). This time the
difference between the two expressions is not in their shape, but in the value
of the keys and data. This time we use the computational interpretation J·K
defined in Lemma 4, and show how to distinguish between samples from Je0K
and samples from Je1K, provided pattern(e0) 6= pattern(e1).

Let Sib = Fieb(∅) be the sequence of sets of keys defined by eb. We know
that ∅ = S0

b ⊆ S1
b ⊆ S2

b ⊆ · · · ⊆ Snb = fix(Feb) for some integer n. Let
eib = Pat(eb, S

i
b) be the sequence of patterns defined by the sets Sib. Since

pattern(e0) 6= pattern(e1), we have en0 6∼= en1 . Let i the smallest index such
that ei0 6∼= ei1. We will give a procedure that iteratively recovers all the keys in
the sets S0

b , S
1
b , . . . , S

i−1
b , and then distinguishes between samples coming from

the two distributions associated to e0 and e1.

The simplest case is when i = 0, i.e., e0
0 6∼= e0

1. In this case S0
0 = ∅ = S0

1 ,
and we do not need to recover any keys. Since e0 and e1 have the same shape,
D can unambiguously parse α as a concatenation of data blocks d, keys k and
ciphertexts of type {|s|}k, without knowing if α comes from Je0K or Je1K. If the
two patterns e0

0, e
0
1 differ in one of the data blocks, then D can immediately tell

if α comes from e0
0 or e0

1 by looking at the value of that piece of data. So, assume
all data blocks are identical, and e0

0 and e0
1 differ only in the values of the keys.

Consider the set P of all key positions in e0
0 (or, equivalently, in e0

1), and for
every position p ∈ P , let kpb be the key in e0

b at position p. (Positions incude
both plain keys kpb and ciphertexts {|sp|}keb .) For any two positions p, p′, define
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the relation rb(p, p
′) between the keys kpb and kp

′

b to be

rb(p, p
′) =


+w if kp

′

b = Gw(kpb ) for some w ∈ {0, 1}+

−w if kpb = Gw(kp
′

b ) for some w ∈ {0, 1}+

0 if kpb = kp
′

b

⊥ otherwise.

Notice that if r0(p, p′) = r1(p, p′) for all positions p, p′ ∈ P , then the map µ(kp0) =
kp1 is a valid pseudorenaming. Since µ(e0

0) = e0
1, this would show that e0

0
∼= e0

1, a
contradiction. So, there must be two positions p, p′ such that r0(p, p′) 6= r1(p, p′),
i.e., the keys at positions p and p′ in the two expressions e0

0 and e0
1 satisfy different

relations. At this point we distinguish two cases:

– If two keys are identical (rb(p, p
′) = 0) and the other two keys are unrelated

(r1−b(p, p
′) = ⊥), then we can determine the value of b simply by checking

if the corresponding keys recovered from the sample α are identical or not.
Notice that even if the subexpression at position p (or p′) is a ciphertext, the
encryption scheme defined in Lemma 4 still allows to recover the first 2` bits
of the keys, and this is enough to tell if two keys are identical or independent
with overwhelming probability.

– Otherwise, it must be the case that one of the two relations is rb(p, p
′) = ±w

for some string w. By possibly swapping p and p′, and e0 and e1, we may

assume that r0(p, p′) = +w while r1(p, p′) 6= +w. In other words, kp
′

0 =

Gw(kp0), while kp
′

1 6= Gw(kp0). We may also assume that the subexpressions
at position p and p′ are ciphertexts. (If the subexpression at one of these po-
sitions is a key, we can simply use it to encrypt a fixed message m, and obtain
a corresponding ciphertext.) Let α0, α

′
0 be the ciphertexts extracted from α

corresponding to positions p and p′. We invoke the algorithm A(α0, α
′
0, w)

from Lemma 4 and check if it outputs a key or the special failure symbol ⊥.
The distinguisher accepts if and only if A(α0, α

′
0, w) = ⊥. By Lemma 4, if α

was sampled from Je0K, then A(α0, α
′
0, w) will recover the corresponding key

with probability 1, and D rejects the sample α. On the other hand, if α was
sampled from Je1K, then A(α0, α

′
0, w) = ⊥ with overwhelming probability,

and D accepts the sample α.

This completes the description of the decision procedure D when i = 0. When
i > 1, we first use Lemma 4 to recover the keys in S1

b . Then we use these keys
to decrypt the corresponding subexpressions in α, and use Lemma 4 again to
recover all the keys in S2

b . We proceed in a similar fashion all the way up to

Si−1
b . Notice that since all the corresponding patterns ej0

∼= ej1 (for j ≤ i) are
equivalent up to renaming, all the keys at similar positions p, p′ satisfy the same
relations r0(p, p′) = r1(p, p′), and we can apply Lemma 4 identically, whether
the sample α comes from Je0K or Je1K. This allows to recover the keys in Sib, at
which point we can parse (and decrypt) α to recover all the data blocks, keys
and ciphertexts appearing in eib. Finally, using the fact that ei0 6∼= ei1, we proceed
as in the case i = 0 to determine the value of b. ut
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6 Computational soundness

Computational soundness results for symbolic cryptography usually forbid en-
cryption cycles, e.g., collections of ciphertexts where ki is encrypted under ki+1

for i = 1, . . . , n− 1, and kn is encrypted under k1. Here we follow an alternative
approach, put forward in [26], which defines the adversarial knowledge as the
greatest fixed point of Fe, i.e., the largest set S such that Fe(S) = S. Interest-
ingly, [26] shows that under this “co-inductive” definition of the set of known
keys, soundness can be proved in the presence of encryption cycles, offering a
tight connection between symbolic and computational semantics. At the same
time, [26, Theorem 2] also shows that if e has no encryption cycles, then Fe
has a unique fixed point, and therefore fix(Fe) = FIX(Fe). So, computational
soundness under the standard “least fixed point” semantics for acyclic expres-
sions follows as a corollary. We remark that Fe may have a unique fixed point
even if e contains encryption cycles. So, based on [26, Theorem 2], we generalize
the definition of acyclic expressions to include all expressions e such that Fe has
a unique fixed point fix(Fe) = FIXe(Fe).

In this section we extend the results of [26] to expressions with pseudorandom
keys. But, before doing that, we explain the intuition behind the co-inductive
(greatest fixed point) semantics. Informally, using the greatest fixed point cor-
responds to working by induction on the set of keys that are hidden from the
adversary, starting from the empty set (i.e., assuming that no key is hidden a-
priori), and showing that more and more keys are provably secure. Formulating
this process in terms of the complementary set of potentially known keys, one
starts from the set of all keys K = keys(e), and repeatedly applies Fe to it. By
monotonicity of Fe the result is a sequence of smaller and smaller sets

K ⊃ Fe(K) ⊃ F2
e(K) ⊃ F3

e(K) ⊃ · · ·

of potentially known keys, which converges to the greatest fixed point

FIX(Fe) =
⋂
n

Fne (keys(e)).

We emphasize FIX(Fe) should be interpreted as the set of keys that are only
potentially recoverable by an adversary. Depending on the details of the encryp-
tion scheme (e.g., if it provides some form of key dependent message security),
an adversary may or may not be able to recover all the keys in FIX(Fe). On the
other hand, all keys in the complementary set Keys(e) \ FIX(Fe) are provably
secret, for any encryption scheme providing the minimal security level of indis-
tinguishability under chosen message attack. Using the greatest fixed point, one
can define an alternative symbolic semantics for cryptographic expressions,

PATTERN(e) = norm(proj(e,FIX(Fe))). (15)

In general, fix(Fe) can be a strict subset of FIX(Fe), so (15) may be different
from the patterns defined in Section 4. However, if e is acyclic, then FIX(Fe) =
fixe(Fe), and therefore PATTERN(e) = pattern(e).
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Theorem 3. For any secure computational interpretation (G, E , γ, π) and any
expression e, the distributions JeK and JPATTERN(e)K are computationally indis-
tinguishable. In particular, if PATTERN(e0) = PATTERN(e1), then Je0K ≈ Je1K, i.e.,
the equivalence relation induced by PATTERN is computationally sound.

Corollary 2. If e0, e1 are acyclic expressions, and pattern(e0) = pattern(e1),
then Je0K and Je1K are computationally indistinguishable.

The proof of the soundness theorem is pretty standard, and similar to pre-
vious work, and can be found in the full version of the paper [27].

7 Conclusion

We presented a generalization of the computational soundness result of Abadi
and Rogaway [3] (or, more precisely, its co-inductive variant put forward in [26])
to expressions that mix encryption with a pseudo-random generator. Differently
from previous work in the area of multicast key distribution protocols [28,30,29],
we considered unrestricted use of both cryptographic primitives, which raises
new issues related partial information leakage that had so far been dealt with
using ad-hoc methods. We showed that partial information can be adequately
taken into account in a simple symbolic adversarial model where the attacker
can fully recover a key from any two pieces of partial information. While, at
first, this attack model may seem unrealistically strong, we proved, as our main
result, a completeness theorem showing that the model is essentially optimal.

A slight extension of our results (to include the random permutation of ci-
phertexts) has recently been used in [24], which provides a computationally
sound symbolic analysis of Yao’s garbled circtuit construction for secure two
party computation. The work of [24] illustrates the usefulness of the methods
developed in this paper to the analysis of moderately complex protocols, and
also provides an implementation showing that our symbolic semantics can be
evaluated extremely fast even on fairly large expressions, e.g., those describing
garbled circuits with thousands of gates. Our results can be usefully generalized
even further, to include richer collections of cryptographic primitives, e.g., dif-
ferent types of (private and public key) encryption, secret sharing schemes (as
used in [4]), and more. Extensions to settings involving active attacks are also
possible [32,19], but probably more challenging.

Acknowledgments The author thanks the anonymous Eurocrypt 2019 referees
for their useful comments.
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