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Abstract. We present “Ouroboros Praos”, a proof-of-stake blockchain
protocol that, for the first time, provides security against fully-adaptive
corruption in the semi-synchronous setting : Specifically, the adversary
can corrupt any participant of a dynamically evolving population of
stakeholders at any moment as long the stakeholder distribution main-
tains an honest majority of stake; furthermore, the protocol tolerates
an adversarially-controlled message delivery delay unknown to protocol
participants.
To achieve these guarantees we formalize and realize in the universal
composition setting a suitable form of forward secure digital signatures and
a new type of verifiable random function that maintains unpredictability
under malicious key generation. Our security proof develops a general
combinatorial framework for the analysis of semi-synchronous blockchains
that may be of independent interest. We prove our protocol secure under
standard cryptographic assumptions in the random oracle model.

1 Introduction

The design of proof-of-stake blockchain protocols was identified early on as an
important objective in blockchain design; a proof-of-stake blockchain substitutes
the costly proof-of-work component in Nakamoto’s blockchain protocol [20] while
still providing similar guarantees in terms of transaction processing in the presence
of a dishonest minority of users, where this “minority” is to be understood here
in the context of stake rather than computational power.

The basic stability and security properties of blockchain protocols were first
rigorously formulated in [12] and further studied in [15,21]; these include common
prefix, chain quality and chain growth and refer to resilient qualities of the
underlying data structure of the blockchain in the presence of an adversary that
attempts to subvert them.

Proof-of-stake protocols typically possess the following basic characteristics.
Based on her local view, a party is capable of deciding, in a publicly verifiable
way, whether she is permitted to produce the next block. Assuming the block is
valid, other parties update their local views by adopting the block, and proceed
in this way continuously. At any moment, the probability of being permitted to



issue a block is proportional to the relative stake a player has in the system, as
reported by the blockchain itself.

A particularly challenging design aspect is that the above probabilistic mecha-
nism should be designed so that the adversary cannot bias it to its advantage. As
the stake shifts, together with the evolving population of stakeholders, so does the
honest majority assumption, and hence the function that appoints stakeholders
should continuously take the ledger status into account. Preventing the biasing
of the election mechanism in a context of a blockchain protocol is a delicate task
that so far has eluded a practical solution that is secure against all attacks.

Our Results. We present “Ouroboros Praos”, a provably secure proof-of-stake
protocol that is the first to be secure against adaptive attackers and scalable
in a truly practical sense. Our protocol is based on a previous proof-of-stake
protocol, Ouroboros [16], as its analysis builds on some of the core combinatorial
arguments that were developed to analyze that scheme. Nevertheless, the protocol
construction has a number of novel elements that require a significant recasting
and generalization of the previous combinatorial analysis. In more detail, our
results are as follows.

In Ouroboros Praos, deciding whether a certain participant of the protocol
is eligible to issue a block is decided via a private test that is executed locally
using a special verifiable random function (VRF) on the current time-stamp
and a nonce that is determined for a period of time known as an “epoch”.
A special feature of this VRF primitive, novel to our approach, is that the
VRF must have strong security characteristics even in the setting of malicious
key generation: specifically, if provided with an input that has high entropy, the
output of the VRF is unpredictable even when an adversary has subverted the key
generation procedure. We call such VRF functions “VRF with unpredictability
under malicious key generation” and we present a strong embodiment of this
notion with a novel Universal Composable (UC) formulation. We also present a
very efficient realization of this primitive under the Computational Diffie Hellman
(CDH) assumption in the random oracle model. Beyond this VRF notion, we
also formalize in a UC fashion key evolving signatures that provide the forward
security that is necessary for handling the adaptive corruption setting.

In more detail, we analyze our protocol in the partial or semi-synchronous
model [11,21]. In this setting, we still divide the protocol execution in time units
which, as in [16], are called slots, but there is a maximum delay of ∆ slots that
is applied to message delivery and it is unknown to the protocol participants.5

In order to cope with the ∆-semisynchronous setting we introduce the concept
of “empty slots” which occur with sufficient frequency to enable short periods of
silence that facilitate synchronization. This feature of the protocol gives also its
moniker, “Praos”, meaning “mellow”, or “gentle”. Ensuring that the adversary
cannot exploit the stakeholder keys that it possesses to confuse or out-maneuver
the honest parties, we develop a combinatorial analysis to show that the simple

5 It is worth pointing out that the notion of slots we use in this work can be substantially
shorter in terms of real time elapsed compared to the slots of [16], where each slot
represented a full round of interaction between all participants.



rule of following the longest chain still enables the honest parties to converge to
a unique view with high probability. To accomplish this we revisit and expand
the forkable strings and divergence analysis of [16]. We remark that significant
alterations are indeed necessary: As we demonstrate in the full version of this
paper, the protocol of [16] and its analysis are critically tailored to synchronous
operation and is susceptible to a desynchronization attack that can completely
violate the common prefix property. Our new combinatorial analysis introduces
a new concept of characteristic strings and “forks” that reflects silent periods
in protocol execution and network delays. To bound the density of forkable
strings in this ∆-semisynchronous setting we establish a syntactic reduction
from ∆-semisynchronous characteristic strings to synchronous strings of [16] that
preserves the structure of the forks they support. This is followed by a probabilistic
analysis that controls the distortion caused by the reduction and concludes that ∆-
semisynchronous forkable strings are rare. Finally, we control the effective power
of adaptive adversaries in this setting with a stochastic dominance argument
that permits us to carry out the analysis of the underlying blockchain guarantees
(e.g., common prefix) with a single distribution that provably dominates all
distributions on characteristic strings generated by adaptive adversaries. We
remark that these arguments yield graceful degradation of the analysis as a
function of network delays (∆), in the sense that the effective stake of the
adversary is amplified by a function of ∆.

The above combinatorial analysis is nevertheless only sufficient to provide
a proof of the static stake case, i.e., the setting where the stake distribution
relevant to the honest majority assumption remains fixed at the onset of the
computation and prior to the selection of the random genesis data that are
incorporated in the genesis block. For a true proof-of-stake system, we must
permit the set of stakeholders to evolve over time and appropriately adapt our
honest stakeholder majority assumption. Achieving this requires a bootstrapping
argument that allows the protocol to continue unboundedly by revising its
stakeholder distribution as it evolves. We bootstrap our protocol in two conceptual
steps. First we show how bootstrapping is possible if a randomness beacon is
available to all participants. The beacon at regular intervals emits a new random
value and the participants can reseed the election process so the stakeholder
distribution used for sampling could be brought closer to the one that is current.
A key observation here is that our protocol is resilient even if the randomness
beacon is weakened in the following two ways: (i) it leaks its value to the adversary
ahead of time by a bounded number of time units, (ii) it allows the adversary to
reset its value if it wishes within a bounded time window. We call the resulting
primitive a “leaky resettable beacon” and show that our bootstrapping argument
still holds in this stronger adversarial setting.

In the final refinement of our protocol, we show how it is possible to implement
the leaky resettable beacon via a simple algorithm that concatenates the VRF
outputs that were contributed by the participants from the blockchain and
subjects them to a hash function that is modeled as a random oracle. This
implementation explains the reasons behind the beacon relaxation we introduced:



leakiness stems from the fact that the adversary can complete the blockchain
segment that determines the beacon value before revealing it to the honest
participants, while resettability stems from the fact that the adversary can try a
bounded number of different blockchain extensions that will stabilize the final
beacon value to a different preferred value.

Putting all the above together, we show how our protocol provides a “robust
transaction ledger” in the sense that an immutable record of transactions is built
that also guarantees that new transactions will be always included. Our security
definition is in the ∆-semisynchronous setting with full adaptive corruptions. As
mentioned above, security degrades gracefully as ∆ increases, and this parameter
is unknown to the protocol participants.

Note that implementing the beacon via hashing VRF values will make feasible
a type of “grinding attack” where the adversary can trade hashing power for a
slight bias of the protocol execution to its advantage. We show how this bias can
be controlled by suitably increasing the relevant parameters depending on the
hashing power that is available to the adversary.

Comparison to related work. The idea of proof-of-stake protocols has been
discussed extensively in the bitcoin forum.6 The manner that a stakeholder
determines eligibility to issue a block is always publicly verifiable and the proof
of eligibility is either computed publicly (via a calculation that is verifiable by
repeating it) or by using a cryptographic mechanism that involves a secret-key
computation and a public-key verification. The first example of the former ap-
proach appeared in PPCoin [17], and was followed by others including Ouroboros
and Snow White [2,16,8]; while the first example of the latter approach (that
we also employ in our work) appeared in NXT (cf. Section 2.4.1 of [7]) and was
then also used elsewhere, most notably in Algorand [19]. The virtue of the latter
approach is exactly in its potential to control adaptive corruptions: due to the fact
that the adversary cannot predict the eligibility of a stakeholder to issue a block
prior to corrupting it, she cannot gain an advantage by directing its corruption
quota to specific stakeholders. Nevertheless, none of these previous works isolated
explicitly the properties of the primitives that are required to provide a full
proof of security in the setting of adaptive corruptions. Injecting high quality
randomness in the PoS blockchain was proposed by Bentov et al. [4,3], though
their proposal does not have a full formal analysis. The Ouroboros proof-of-stake
protocol [16] is provably secure in a corruption model that excludes fully adap-
tive attacks by imposing a corruption delay on the corruption requests of the
adversary. The Snow White proof-of-stake [8] is the first to prove security in the
∆-semi-synchronous model but—as in the case of Ouroboros—adopts a weak
adaptive corruption model.

A recent work close to ours is Algorand [19] that also provides a proof-of-stake
ledger that is adaptively secure. It follows an entirely different construction
approach that runs a Byzantine agreement protocol for every block and achieves
adaptive-corruption security via a novel, appealing concept of player-replaceability.

6 Refer e.g., to the posts by QuantumMechanic and others from 2011 https://

bitcointalk.org/index.php?topic=27787.0 (Last Accessed 19/09/2017).

https://bitcointalk.org/index.php?topic=27787.0
https://bitcointalk.org/index.php?topic=27787.0


However, Algorand is only secure against a 1/3 adversary bound; and while the
protocol itself is very efficient, it yields an inherently slower block production
rate compared to an “eventual consensus” protocol (like Bitcoin, Snow White,
and Ouroboros). In principle, proof-of-stake blockchain protocols can advance at
the theoretical maximum speed (of one block per communication round), while
protocols relying on Byzantine agreement, like Algorand, would require a larger
number of rounds to settle each block.

Sleepy consensus [22] puts forth a technique for handling adaptive corruptions
in a model that also encompasses fail-stop and recover corruptions; however,
the protocol can be applied directly only in a static stake (i.e., permissioned)
setting. We note that in fact our protocol can be also proven secure in such
mixed corruption setting, where both fail-stop and recover as well as Byzantine
corruptions are allowed (with the former occurring at an arbitrarily high rate);
nevertheless this is out of scope for the present exposition and we omit further
details.

Note that the possibility of adversarial grinding in Ouroboros Praos is also
present in previous work that derives randomness by hashing [19,8], as opposed
to a dedicated coin-tossing protocol as in [16]. Following the examples of [19,8],
we show that security can be guaranteed despite any adversarial bias resulting
from grinding. In fact, we show how to use the q-bounded model of [12] to derive
a bound that shows how to increase the relevant security parameters given the
hashing power that is available to the adversary.

Finally, in the present exposition we also put aside incentives; nevertheless, it
is straightforward to adapt the mechanism of input endorsers from the protocol
of [16] to our setting and its approximate Nash equilibrium analysis can be ported
directly.

2 Preliminaries

We say a function negl(x) is negligible if for every c > 0, there exists an n > 0
such that negl(x) < 1/xc for all x ≥ n. The length of a string w is denoted by
|w|; ε denotes the empty string. We let v ‖w denote concatenation of strings.

2.1 Transaction Ledger Properties

We adopt the same definitions for transaction ledger properties as [16]. A protocol
Π implements a robust transaction ledger provided that the ledger that Π
maintains is divided into “blocks” (assigned to time slots) that determine the
order with which transactions are incorporated in the ledger. It should also satisfy
the following two properties.

Persistence. Once a node of the system proclaims a certain transaction tx
in the stable part of its ledger, the remaining nodes, if queried, will either
report tx in the same position of that ledger or report a stable ledger which
is a prefix of that ledger. Here the notion of stability is a predicate that is



parameterized by a security parameter k; specifically, a transaction is declared
stable if and only if it is in a block that is more than k blocks deep in the
ledger.

Liveness. If all honest nodes in the system attempt to include a certain
transaction then, after the passing of time corresponding to u slots (called the
transaction confirmation time), all nodes, if queried and responding honestly,
will report the transaction as stable.

In [15,21] it was shown that persistence and liveness can be derived from the
following three elementary properties provided that protocol Π derives the ledger
from a data structure in the form of a blockchain.

Common Prefix (CP); with parameters k ∈ N. The chains C1, C2 possessed

by two honest parties at the onset of the slots sl1 < sl2 are such that Cdk1 � C2,

where Cdk1 denotes the chain obtained by removing the last k blocks from C1,
and � denotes the prefix relation.

Chain Quality (CQ); with parameters µ ∈ (0, 1] and k ∈ N. Consider any
portion of length at least k of the chain possessed by an honest party at the
onset of a round; the ratio of blocks originating from the adversary is at most
1− µ. We call µ the chain quality coefficient.

Chain Growth (CG); with parameters τ ∈ (0, 1], s ∈ N. Consider the
chains C1, C2 possessed by two honest parties at the onset of two slots sl1, sl2
with sl2 at least s slots ahead of sl1. Then it holds that len(C2)−len(C1) ≥ τ ·s.
We call τ the speed coefficient.

2.2 The Semi-Synchronous Model

On a high level, we consider the security model of [16] with simple modifications
to account for adversarially-controlled message delays and immediate adaptive
corruption. Namely, we allow the adversary A to selectively delay any messages
sent by honest parties for up to ∆ ∈ N slots; and corrupt parties without delay.

Time and slots. We consider a setting where time is divided into discrete units
called slots. A ledger, described in more detail above, associates with each time
slot (at most) one ledger block. Players are equipped with (roughly) synchronized
clocks that indicate the current slot: we assume that any clock drift is subsumed
in the slot length. This will permit them to carry out a distributed protocol
intending to collectively assign a block to this current slot. In general, each slot
slr is indexed by an integer r ∈ {1, 2, . . .}, and we assume that the real time
window that corresponds to each slot has the following two properties: (1) The
current slot is determined by a publicly-known and monotonically increasing
function of current time. (2) Each player has access to the current time. Any
discrepancies between parties’ local time are insignificant in comparison with the
length of time represented by a slot.



Security Model. We adopt the model introduced by [12] for analysing security
of blockchain protocols enhanced with an ideal functionality F . We note that
multiple different “functionalities” can be encompassed by F . In our model
we employ the “Delayed Diffuse” functionality, which allows for adversarially-
controlled delayed delivery of messages diffused among stakeholders.

The Diffuse Functionality. This functionality is parameterized by ∆ ∈ N and
denoted as DDiffuse∆. It keeps rounds, executing one round per slot. DDiffuse∆
interacts with the environment Z, stakeholders U1, . . . , Un and an adversary A,
working as follows for each round:

1. DDiffuse∆ maintains an incoming string for each party Ui that participates.
A party, if activated, is allowed at any moment to fetch the contents of its
incoming string, hence one may think of this as a mailbox. Furthermore,
parties can give an instruction to the functionality to diffuse a message.
Activated parties are allowed to diffuse once in a round.

2. When the adversary A is activated, it is allowed to: (a) Read all inboxes and
all diffuse requests and deliver messages to the inboxes in any order it prefers;
(b) For any message m obtained via a diffuse request and any party Ui, A
may move m into a special string delayedi instead of the inbox of Ui. A can
decide this individually for each message and each party; (c) For any party
Ui, A can move any message from the string delayedi to the inbox of Ui.

3. At the end of each round, the functionality also ensures that every message
that was either (a) diffused in this round and not put to the string delayedi
or (b) removed from the string delayedi in this round is delivered to the
inbox of party Ui. If any message currently present in delayedi was originally
diffused at least ∆ slots ago, then the functionality removes it from delayedi
and appends it to the inbox of party Ui.

4. Upon receiving (Create, U, C) from the environment, the functionality spawns
a new stakeholder with chain C as its initial local chain (as it was the case
in [16]).

Modelling Protocol Execution and Adaptive Corruptions. Given the above we
will assume that the execution of the protocol is with respect to a functionality
F that incorporates DDiffuse as well as possibly additional functionalities to be
explained in the following sections. The environment issues transactions on behalf
of any stakeholder Ui by requesting a signature on the transaction as described
in Protocol πSPoS of Figure 4 and handing the transaction to stakeholders to put
them into blocks. Beyond any restrictions imposed by F , the adversary can only
corrupt a stakeholder Ui if it is given permission by the environment Z running
the protocol execution. The permission is in the form of a message (Corrupt, Ui)
which is provided to the adversary by the environment. Upon receiving permission
from the environment, the adversary immediately corrupts Ui without any delay,
differently from [16,8], where corruptions only take place after a given delay.
Note that a corrupted stakeholder Ui will relinquish its entire state to A; from
this point on, the adversary will be activated in place of the stakeholder Ui.



The adversary is able to control transactions and blocks generated by corrupted
parties by interacting with FDSIG,FKES and FVRF, as described in Protocol πSPoS
of Section 3. In summary, regarding activations we have the following: (a) At each
slot slj , the environment Z activates all honest stakeholders.7 (b) The adversary
is activated at least as the last entity in each slj (as well as during all adversarial
party activations and invocations from the ideal functionalities as prescribed);
(c) If a stakeholder does not fetch in a certain slot the messages written to its
incoming string from the diffuse functionality they are flushed.

Restrictions imposed on the environment. It is easy to see that the model above
confers such sweeping power on the adversary that one cannot establish any
significant guarantees on protocols of interest. It is thus important to restrict the
environment suitably (taking into account the details of the protocol) so that we
may be able to argue security. We require that in every slot, the adversary does
not control more than 50% of the stake in the view of any honest stakeholder.
This transaction data, including the required signatures by each stakeholder, is
obtained by the environment as specified in the protocol. If this is violated, an

event Bad
1
2 becomes true for the given execution. When the environment spawns

a new stakeholder by sending message (Create, U, C) to the Key and Transaction
functionality, the initial local chain C can be the chain of any honest stakeholder
even in the case of “lazy honest” stakeholders. without requiring this stakeholder
to have been online in the past slot as in [16]. Finally, we note that in all our
proofs, whenever we say that a property Q holds with high probability over

all executions, we will in fact argue that Q ∨ Bad
1
2 holds with high probability

over all executions. This captures the fact that we exclude environments and

adversaries that trigger Bad
1
2 with non-negligible probability.

Random Oracle. We also assume the availability of a random oracle. As usually,
this is a function H : {0, 1}∗ → {0, 1}w available to all parties that answers every
fresh query with an independent, uniformly random string from {0, 1}w, while
any repeated queries are answered consistently.

Erasures. We assume that honest users can do secure erasures, which is argued to
be a reasonable assumption in protocols with security against adaptive adversaries,
see e.g., [18].

3 The Static Stake Protocol

We first consider the static stake case, where the stake distribution is fixed
throughout protocol execution. The general structure of the protocol in the

7 We assume this to simplify our formal treatment, a variant of our protocol can
actually accomodate “lazy honesty” as introduced in [19]. In this variant, honest
stakeholders only come online at the beginning of each epoch and at a few infrequent,
predictable moments, see the full version.



semi-synchronous model is similar to that of (synchronous) Ouroboros [16] but
introduces several fundamental modifications to the leader selection process:
not all slots will be attributed a slot leader, some slots might have multiple
slot leaders, and slot leaders’ identities remain unknown until they act. The
first modification is used to deal with delays in the semi-synchronous network
as the empty slots—where no block is generated—assist the honest parties to
synchronize. The last modification is used to deal with adaptive corruptions,
as it prevents the adversary from learning the slot leaders’ identity ahead of
time and using this knowledge to strategically corrupt coalitions of parties with
large (future) influence. Moreover, instead of using concrete instantiations of
the necessary building blocks, we describe the protocol with respect to ideal
functionalities, which we later realize with concrete constructions. This difference
allows us to reason about security in the ideal model through a combinatorial
argument without having to deal with the probability that the cryptographic
building blocks fail. Before describing the specifics of the new leader selection
process and the new protocol, we first formally define the static stake scenario
and introduce basic definitions as stated in [16] following the notation of [12].

In the static stake case, we assume that a fixed collection of n stakeholders
U1, . . . , Un interact throughout the protocol. Stakeholder Ui is attributed stake
si at the beginning of the protocol.

Definition 1 (Genesis Block). The genesis block B0 contains the list of stake-
holders identified by a label Ui, their respective public keys and respective stakes

S0 =
(

(U1, v
vrf
1 , vkes1 , vdsig1 , s1), . . . , (Un, v

vrf
n , vkesn , vdsign , sn)

)
,

and a nonce η.

We note that the nonce η will be used to seed the slot leader election process
and that vvrfi , vkesi , vdsigi will be determined by FVRF, FKES and FDSIG, respectively.

Definition 2 (Epoch, State, Block Proof, Block, Blockchain). An epoch
is a set of R adjacent slots S = {sl1, . . . , slR}. (The value R is a parameter of the
protocol we analyze in this section.) A state is a string st ∈ {0, 1}λ. A block proof
is a value (or set of values) Bπ containing information that allows stakeholders
to verify if a block is valid. A block B = (slj , st, d, Bπj , σj) generated at a slot
slj ∈ {sl1, . . . , slR} contains the current state st ∈ {0, 1}λ, data d ∈ {0, 1}∗, the
slot number slj, a block proof Bπj and σj, a signature on (st, d, slj , Bπj) under
the signing key for the time period of slot slj of the stakeholder Ui generating the
block.

A blockchain (or simply chain) relative to the genesis block B0 is a sequence of
blocks B1, . . . , Bn associated with a strictly increasing sequence of slots for which
the state sti of Bi is equal to H(Bi−1), where H is a prescribed collision-resistant
hash function. The length of a chain len(C) = n is its number of blocks. The
block Bn is the head of the chain, denoted head(C). We treat the empty string ε
as a legal chain and by convention set head(ε) = ε. Let C be a chain of length n
and k be any non-negative integer. We denote by Cdk the chain resulting from



removal of the k rightmost blocks of C. If k ≥ len(C) we define Cdk = ε. We let
C1 � C2 indicate that the chain C1 is a prefix of the chain C2.

We consider as valid blocks that are generated by a stakeholder in the slot
leader set of the slot to which the block is attributed. Later in Section 3.3 we
discuss slot leader sets and how they are selected.

Definition 3 (Absolute and Relative Stake). Let UP , UA and UH denote
the sets of all stakeholders, the set of stakeholders controlled by an adversary A,
and the remaining (honest) stakeholders, respectively. For any party (resp. set of
parties) X we denote by s+X (resp. s−X) the maximum (resp. minimum) absolute
stake controlled by X in the view of all honest stakeholders at a given slot, and
by α+

X , s+X/sP and α−X , s−X/sP its relative stake taken as maximum and
minimum respectively across the views of all honest stakeholders. For simplicity,
we use ssX , α

s
X instead of sUX , αUX for all X ∈ {P,A,H}, s ∈ {+,−}. We also

call αA , α+
A and αH , α−H the adversarial stake ratio and honest stake ratio,

respectively.

3.1 Forward Secure Signatures and FKES

In regular digital signature schemes, an adversary who compromises the signing
key of a user can generate signatures for any messages it wishes, including
messages that were (or should have been) generated in the past. Forward secure
signature schemes [1] prevent such an adversary from generating signatures for
messages that were issued in the past, or rather allows honest users to verify that
a given signature was generated at a certain point in time. Basically, such security
guarantees are achieved by “evolving” the signing key after each signature is
generated and erasing the previous key in such a way that the actual signing key
used for signing a message in the past cannot be recovered but a fresh signing
key can still be linked to the previous one. This notion is formalized through
key evolving signature schemes, which allow signing keys to be evolved into fresh
keys for a number of time periods. We remark that efficient constructions of key
evolving signature schemes with forward security exist [13] but no previous work
has fully specified them in the UC setting.

We present a UC definition of the type of key-evolving signatures that we will
take advantage of in our constructions. FKES allows us to achieve forward security
with erasures (i.e., assuming that parties securely delete old signing keys as
the protocol proceeds). This functionality embodies ideal key evolving signature
schemes allowing an adversary that corrupts the signer to forge signatures only
under the current and future signing keys, but not under a previous signing
key that has been updated. Our starting point for FKES is the standard digital
signature functionality defined in [5] with the difference that packs together with
the signing operation a key-evolving operation. During verification, FKES lets the
adversary set the response to a verification query (taking as input a given time
period) only if no key update has been performed since that time period and
no entry exists in its internal table for the specific message, signature and time



period specified in the query. We present FKES in Figure 1. In the full version, we
show that FKES can be realized by a construction based on key evolving signature
schemes.

Functionality FKES

FKES is parameterized by the total number of signature updates T , interacting with
a signer US and stakeholders Ui as follows:

– Key Generation. Upon receiving a message (KeyGen, sid, US) from a
stakeholder US , send (KeyGen, sid, US) to the adversary. Upon receiving
(VerificationKey, sid, US , v) from the adversary, send (VerificationKey, sid, v) to
US , record the triple (sid, US , v) and set counter kctr = 1.

– Sign and Update. Upon receiving a message (USign, sid, US ,m, j) from US ,
verify that (sid, US , v) is recorded for some sid and that kctr ≤ j ≤ T . If not,
then ignore the request. Else, set kctr = j+1 and send (Sign, sid, US ,m, j) to the
adversary. Upon receiving (Signature, sid, US ,m, j, σ) from the adversary, verify
that no entry (m, j, σ, v, 0) is recorded. If it is, then output an error message
to US and halt. Else, send (Signature, sid,m, j, σ) to US , and record the entry
(m, j, σ, v, 1).

– Signature Verification. Upon receiving a message (Verify, sid,m, j, σ, v′) from
some stakeholder Ui do:
1. If v′ = v and the entry (m, j, σ, v, 1) is recorded, then set f = 1. (This

condition guarantees completeness: If the verification key v′ is the registered
one and σ is a legitimately generated signature for m, then the verification
succeeds.)

2. Else, if v′ = v, the signer is not corrupted, and no entry (m, j, σ′, v, 1) for
any σ′ is recorded, then set f = 0 and record the entry (m, j, σ, v, 0). (This
condition guarantees unforgeability: If v′ is the registered one, the signer is
not corrupted, and never signed m, then the verification fails.)

3. Else, if there is an entry (m, j, σ, v′, f ′) recorded, then let f = f ′. (This
condition guarantees consistency: All verification requests with identical
parameters will result in the same answer.)

4. Else, if j < kctr, let f = 0 and record the entry (m, j, σ, v, 0). Otherwise,
if j = kctr, hand (Verify, sid,m, j, σ, v′) to the adversary. Upon receiving
(Verified, sid,m, j, φ) from the adversary let f = φ and record the entry
(m, j, σ, v′, φ). (This condition guarantees that the adversary is only able to
forge signatures under keys belonging to corrupted parties for time periods
corresponding to the current or future slots.)

Output (Verified, sid,m, j, f) to Ui.

Fig. 1: Functionality FKES.



3.2 UC-VRFs with Unpredictability Under Malicious Key
Generation

The usual pseudorandomness definition for VRFs captures the fact that an
attacker, seeing a number of VRF outputs and proofs for adversarially chosen
inputs under a key pair that is correctly generated by a challenger, cannot
distinguish the output of the VRF on a new (also adversarially chosen) input
from a truly random string. This definition is too weak for our purposes for two
reasons: first, we need a simulation-based definition so that the VRF can be
composed directly within our protocol; second, we need the primitive to provide
some level of unpredictability even under malicious key generation, i.e., against
adversaries who are allowed to generate the secret and pubic key pair.

Our UC formulation of VRFs cannot be implied by the standard VRF security
definition or even the simulatable VRF notion of [6]. For instance, the VRF
proofs in our setting have to be simulatable without knowlege of the VRF output
(which is critical as we would like to ensure that the VRF output is not leaked to
the adversary prematurely); it is easy to construct a VRF that is secure in the
standard definition, but it is impossible to simulate its proofs without knowledge
of the VRF output. Furthermore, if the adversary is allowed to generate its
own key pair it is easy to see that the distribution of the VRF outputs cannot
be guaranteed. Indeed, even for known constructions (e.g. [10]), an adversary
that maliciously generates keys can easily and significantly skew the output
distribution.

We call the latter property unpredictability under malicious key generation
and we present, in Figure 2, a UC definition for VRF’s that captures this
stronger security requirement.8 The functionality operates as follows. Given a
key generation request from one of the stakeholders, it returns a new verification
key v that is used to label a table. Two methods are provided for computing
VRF values. The first provides just the VRF output and does not interact
with the adversary. In the second, whenever invoked on an input m that is not
asked before by a stakeholder that is associated to a certain table labeled by
v, the functionality will query the adversary for the value of the proof π, and
subsequently sample a random element ρ to associate with m. Verification is
always consistent and will validate outputs that have already being inserted in a
table. Unpredictability against malicious key generation is captured by imposing
the same random selection of outputs even for the function tables that correspond
to keys of corrupted stakeholders. Finally, the adversary is allowed to query all
function tables maintained by the functionality for which either a proof has been
computed, or they correspond to adversarial keys. In the full version, we show

8 In fact our UC formulation captures a stronger notion: even for adversarial keys the
VRF function will act as a random oracle. We note that while we can achieve this
notion in the random oracle model, a weaker condition of mere unpredictability can
be sufficient for the security of our protocol. A UC version of the notion of verifiable
pseudorandom permutations, cf. [9], could potentially be used towards a standard
model instantiation of the primitive.



how to realize FVRF in the random oracle model under the CDH assumption
based on the 2-Hash-DH verifiable oblivious PRF construction of [14].

Functionality FVRF.

FVRF interacts with stakeholders U1, . . . , Un as follows:
– Key Generation. Upon receiving a message (KeyGen, sid) from a

stakeholder Ui, hand (KeyGen, sid, Ui) to the adversary. Upon receiving
(VerificationKey, sid, Ui, v) from the adversary, if Ui is honest, verify that v
is unique, record the pair (Ui, v) and return (VerificationKey, sid, v) to Ui. Ini-
tialize the table T (v, ·) to empty.

– Malicious Key Generation. Upon receiving a message (KeyGen, sid, v) from
S, verify that v has not being recorded before; in this case initialize table T (v, ·)
to empty and record the pair (S, v).

– VRF Evaluation. Upon receiving a message (Eval, sid,m) from Ui, verify
that some pair (Ui, v) is recorded. If not, then ignore the request. Then, if
the value T (v,m) is undefined, pick a random value y from {0, 1}`VRF and set
T (v,m) = (y, ∅). Then output (Evaluated, sid, y) to P , where y is such that
T (v,m) = (y, S) for some S.

– VRF Evaluation and Proof. Upon receiving a message (EvalProve, sid,m)
from Ui, verify that some pair (Ui, v) is recorded. If not, then ignore the
request. Else, send (EvalProve, sid, Ui,m) to the adversary. Upon receiving
(Eval, sid,m, π) from the adversary, if value T (v,m) is undefined, verify that
π is unique, pick a random value y from {0, 1}`VRF and set T (v,m) = (y, {π}).
Else, if T (v,m) = (y, S), set T (v,m) = (y, S ∪ {π}). In any case, output
(Evaluated, sid, y, π) to P .

– Malicious VRF Evaluation. Upon receiving a message (Eval, sid, v,m) from
S for some v, do the following. First, if (S, v) is recorded and T (v,m) is undefined,
then choose a random value y from {0, 1}`VRF and set T (v,m) = (y, ∅). Then, if
T (v,m) = (y, S) for some S 6= ∅, output (Evaluated, sid, y) to S, else ignore the
request.

– Verification. Upon receiving a message (Verify, sid,m, y, π, v′) from some
party P , send (Verify, sid,m, y, π, v′) to the adversary. Upon receiving
(Verified, sid,m, y, π, v′) from the adversary do:

1. If v′ = v for some (Ui, v) and the entry T (Ui,m) equals (y, S) with π ∈ S,
then set f = 1.

2. Else, if v′ = v for some (Ui, v), but no entry T (Ui,m) of the form
(y, {. . . , π, . . .}) is recorded, then set f = 0.

3. Else, initialize the table T (v′, ·) to empty, and set f = 0.
Output (Verified, sid,m, y, π, f) to P .

Fig. 2: Functionality FVRF.



3.3 Oblivious Leader Selection

As in (synchronous) Ouroboros, for each 0 < j ≤ R, a slot leader Ej is a
stakeholder who is elected to generate a block at slj . However, our leader selection
process differs from Ouroboros [16] in three points: (1) potentially, multiple slot
leaders may be elected for a particular slot (forming a slot leader set); (2)
frequently, slots will have no leaders assigned to them; and (3) a priori, only a
slot leader is aware that it is indeed a leader for a given slot; this assignment
is unknown to all the other stakeholders—including other slot leaders of the
same slot—until the other stakeholders receive a valid block from this slot
leader. The combinatorial analysis presented in Section 4 shows (with an honest
stake majority) that (i.) blockchains generated according to these dynamics
are well-behaved even if multiple slot leaders are selected for a slot and that
(ii.) sequences of slots with no leader provide sufficient stability for honest
stakeholders to effectively synchronize. As a matter of terminology, we call slots
with an associated nonempty slot leader set active slots and slots that are not
assigned a slot leader empty slots.

The idealized slot leader assignment and the active slots coefficient. The funda-
mental leader assignment process calls for a stakeholder Ui to be independently
selected as a leader for a particular slot slj with probability pi depending only on
its relative stake. (In this static-stake analysis, relative stake is simply determined
by the genesis block B0.) The exact relationship between pi and the relative
stake αi is determined by a parameter f of the protocol which we refer to as the
active slots coefficient. Specifically,

pi = φf (αi) , 1− (1− f)αi , (1)

where αi is the relative stake held by stakeholder Ui. We occasionally drop the
subscript f and write φ(αi) when f can be inferred from context. As the events
“Ui is a leader for slj” are independent, this process may indeed generate multiple
(or zero) leaders for a given slot.

Remarks about φf (·). Observe that φf (1) = f ; in particular, the parameter f is
the probability that a party holding all the stake will be selected to be a leader
for given slot. On the other hand, φf () is not linear, but slightly concave. To
motivate the choice of the function φf , we note that it satisfies the “independent
aggregation” property:

1− φ

(∑
i

αi

)
=
∏
i

(1− φ(αi)) . (2)

In particular, when leadership is determined according to φf , the probability of a
stakeholder becoming a slot leader in a particular slot is independent of whether
this stakeholder acts as a single party in the protocol, or splits its stake among
several “virtual” parties. In particular, consider a party U with relative stake
α who contrives to split its stake among two virtual subordinate parties with



stakes α1 and α2 (so that α1 + α2 = α). Then the probability that one of these
virtual parties is elected for a particular slot is 1 − (1 − φ(α1))(1 − φ(α2)), as
these events are independent. Property (2) guarantees that this is identical to
φ(α). Thus this selection rule is invariant under arbitrary reapportionment of a
party’s stake among virtual parties.

3.4 The Protocol in the FINIT-hybrid Model

We will construct our protocol for the static stake case in the FINIT-hybrid
model, where the genesis stake distribution S0 and the nonce η (to be written
in the genesis block B0) are determined by the ideal functionality FINIT defined
in Figure 3. Moreover, FINIT also incorporates the diffuse functionality from
Section 2.2, which is implicitly used by all parties to send messages and keep
synchronized with a global clock. FINIT also takes stakeholders’ public keys from
them and packages them into the genesis block at the outset of the protocol.
Note that FINIT halts if it is not possible to create a genesis block; all security
guarantees we provide later in the paper are conditioned on a successful creation
of the genesis block.

Functionality FINIT

FINIT incorporates the delayed diffuse functionality from Section 2.2 and is parame-
terized by the number of initial stakeholders n and their respective stakes s1, . . . , sn.
FINIT interacts with stakeholders U1, . . . , Un as follows:

– In the first round, upon a request from some stakeholder Ui of the
form (ver keys, sid, Ui, v

vrf
i , vkesi , vdsigi ), it stores the verification keys tuple

(Ui, v
vrf
i , vkesi , vdsigi ) and acknowledges its receipt. If any of the n stakehold-

ers does not send a request of this form to FINIT, or if two different stake-
holders provide two identical keys, it halts. Otherwise, it samples and stores

a random value η
$← {0, 1}λ and constructs a genesis block (S0, η), where

S0 =
(

(U1, v
vrf
1 , vkes1 , vdsig1 , s1), . . . , (Un, v

vrf
n , vkesn , vdsign , sn)

)
.

– In later rounds, upon a request of the form (genblock req, sid, Ui) from some
stakeholder Ui, FINIT sends (genblock, sid, S0, η) to Ui.

Fig. 3: Functionality FINIT.

Blocks are signed with a forward secure signature scheme modelled by FKES,
while transactions are signed with a regular EUF-CMA secure digital signature
modelled by a standard signature functionality FDSIG, deferred to the full version
due to space constraints. .

Notice that the implicit leader assignment process described in πSPoS calls
for a party Ui to act as a leader for a slot slj when y < Ti; this is an event that
occurs with probability (exponentially close to) φf (αi) as y is uniform according
to the functionality FVRF.



We are interested in applications where transactions are inserted in the
ledger. For simplicity, transactions are assumed to be simple assertions of the
form “Stakeholder Ui transfers stake s to Stakeholder (Uj , v

vrf
j , vkesj , vdsigj )” (In

an implementation the different public-keys can be hashed into a single value).
Protocol πSPoS ensures that the environment learns every stakeholder’s public
keys and provides an interface for the environment to request signatures on
arbitrary transactions. A transaction will consist of a transaction template tx
of this format accompanied by a signature of tx by stakeholder Ui. We define a
valid transaction as follows:

Definition 4 (Valid Transaction). A pair (tx, σ) is considered a valid trans-
action by a verifier V if the following holds:

– The transaction template tx is of the format “Stakeholder Ui transfers stake
s to Stakeholder (Uj , v

vrf
j , vkesj , vdsigj )” where Ui and Uj are stakeholders iden-

tified by tuples (Ui, v
vrf
i , vkesi , vdsigi ) and (Uj , v

vrf
j , vkesj , vdsigj ) contained in the

current stake distribution S and x ∈ Z.
– The verifier V obtains (Verified,m, 1) as answer upon sending (Verify, tx, σ, vdsigi )

to FDSIG.
– Stakeholder Ui possesses x coins at the moment the transaction is issued (or

registered in the blockchain) according to the view of the verifier V.

Given Definitions 2 and 4, we define a valid chain as a blockchain (according to
Definition 2) where all transactions contained in every block are valid (according
to Definition 4). The stakeholders U1, . . . , Un interact among themselves and
with FINIT through Protocol πSPoS described in Figure 4. The protocol relies on
a maxvalidS(C,C) function that chooses a chain given the current chain C and a
set of valid chains C that are available in the network. In the static stake case
we analyze the simple “longest chain” rule.

Function maxvalid(C,C): Returns the longest chain from C∪{C}. Ties are
broken in favor of C, if it has maximum length, or arbitrarily otherwise.

4 Combinatorial Analysis of the Static Stake Protocol

Throughout this section, we focus solely on analysis of the protocol πSPoS using
the idealized functionalities FVRF and FKES for VRFs and digital signatures,
respectively—we refer to it as the hybrid experiment. Any property of the pro-
tocol that we prove true in the hybrid experiment (such as achieving common
prefix, chain growth and chain quality) will remain true (with overwhelming
probability) in the setting where FVRF and FKES are replaced by their real-world
implementations—in the so-called real experiment.

The hybrid experiment yields a stochastic process for assigning slots to parties
which we now abstract and study in detail. Our analysis of the resulting blockchain
dynamics proceeds roughly as follows: We begin by generalizing the framework of



Protocol πSPoS

The protocol πSPoS is run by stakeholders U1, . . . , Un interacting among themselves
and with ideal functionalities FINIT,FVRF,FKES,FDSIG,H over a sequence of slots
S = {sl1, . . . , slR}. Define Ti , 2`VRFφf (αi) as the threshold for a stakeholder Ui,
where αi is the relative stake of Ui, `VRF denotes the output length of FVRF, f is
the active slots coefficient and φf is the mapping from equation (1). Then πSPoS

proceeds as follows:
1. Initialization. The stakeholder Ui sends (KeyGen, sid, Ui) to FVRF, FKES

and FDSIG; receiving (VerificationKey, sid, vvrfi ), (VerificationKey, sid, vkesi ) and
(VerificationKey, sid, vdsigi ), respectively. Then, in case it is the first round, it
sends (ver keys, sid, Ui, v

vrf
i , vkesi , vdsigi ) to FINIT (to claim stake from the genesis

block). In any case, it terminates the round by returning (Ui, v
vrf
i , vkesi , vdsigi )

to Z. In the next round, it sends (genblock req, sid, Ui) to FINIT, receiving
(genblock, sid, S0, η) as the answer. If Ui is initialized in the first round, it
sets the local blockchain C = B0 = (S0, η) and its initial internal state
st = H(B0). In case Ui is initialized after the first round, it sets its initial
state to st = H(head(C)) where C is the initial local chain provided by the
environment.

2. Chain Extension. After initialization, for every slot slj ∈ S, every online
stakeholder Ui performs the following steps:
(a) Ui receives from the environment the transaction data d ∈ {0, 1}∗ to be

inserted into the blockchain.
(b) Ui collects all valid chains received via diffusion into a set C, prun-

ing blocks belonging to future slots and verifying that for every chain
C′ ∈ C and every block B′ = (st′, d′, sl′, Bπ

′, σj′) ∈ C′ it holds that
the stakeholder who created it is in the slot leader set of slot sl′ (by
parsing Bπ

′ as (Us, y
′, π′) for some s, verifying that FVRF responds to

(Verify, sid, η ‖ sl′, y′, π′, vvrfs ) by (Verified, sid, η ‖ sl′, y′, π′, 1), and that y′ <
Ts), and that FKES responds to (Verify, sid, (st′, d′, sl′, Bπ

′), sl′, σj′ , v
kes
s ) by

(Verified, sid, (st′, d′, sl′, Bπ
′), sl′, 1). Ui computes C′ = maxvalid(C,C), sets

C′ as the new local chain and sets state st = H(head(C′)).
(c) Ui sends (EvalProve, sid, η ‖ slj) to FVRF, receiving (Evaluated, sid, y, π). Ui

checks whether it is in the slot leader set of slot slj by checking that
y < Ti. If yes, it chooses the maximal sequence d′ of transactions in d such
that adding a block with d′ to C results into a valid chain, and attempts
to include d′ as follows: It generates a new block B = (st, d′, slj , Bπ, σ)
where st is its current state, Bπ = (Ui, y, π) and σ is a signature ob-
tained by sending (USign, sid, Ui, (st, d

′, slj , Bπ), slj) to FKES and receiving
(Signature, sid, (st, d′, slj , Bπ), slj , σ). Ui computes C′ = C ‖B, sets C′ as the
new local chain and sets state st = H(head(C′)). Finally, if Ui has generated
a block in this step, it diffuses C′.

3. Signing Transactions. Upon receiving (sign tx, sid′, tx) from the environment,
Ui sends (Sign, sid, Ui, tx) to FDSIG, receiving (Signature, sid, tx, σ). Then, Ui
sends (signed tx, sid′, tx, σ) back to the environment.

Fig. 4: Protocol πSPoS.



“forks” [16] to our semi-synchronous setting—forks are a natural bookkeeping tool
that reflect the chains possessed by honest players during an execution of the
protocol. We then establish a simulation rule that associates with each execution
of the semi-synchronous protocol an execution of a related “virtual” synchronous
protocol. Motivated by the special case of a static adversary—which simply
corrupts a family of parties at the outset of the protocol—we identify a natural
“generic” probability distribution for this simulation theorem which we prove
controls the behavior of adaptive adversaries by stochastic domination. Finally,
we prove that this simulation amplifies the effective power of the adversary in
a controlled fashion and, furthermore, permits forks of the semi-synchronous
protocol to be projected to forks of the virtual protocol in a way that preserves
their relevant combinatorial properties. This allows us to apply the density
theorems and divergence result of [16,23] to provide strong common prefix, chain
growth, and chain quality (4.4) guarantees for the semi-synchronous protocol
with respect to an adaptive adversary.

We begin in Section 4.1 with a discussion of characteristic strings, semi-
synchronous forks, and their relationship to executions of πSPoS in the hybrid
experiment. Section 4.2 then develops the combinatorial reduction from the semi-
synchronous to the synchronous setting. The “generic, dominant” distribution
on characteristic strings is then motivated and defined in Section 4.3, where
the effect of the reduction on this distribution is also described. Section 4.4, as
described above, establishes various guarantees on the resulting blockchain under
the dominant distribution. The full power of adaptive adversaries is considered in
Section 4.5. Finally, in preparation for applying the protocol in the dynamic stake
setting, we formulate a “resettable setting” which further enlarges the power of
the adversary by providing some control over the random nonce that seeds the
protocol.

4.1 Chains, Forks and Divergence

We begin by suitably generalizing the framework of characteristic strings, forks,
and divergence developed in [16] to our semi-synchronous setting.

The leader assignment process given by protocol πSPoS in the hybrid ex-
periment assigns leaders to slots with the following guarantees: (i.) a party
with relative stake α becomes a slot leader for a given slot with probability
φf (α) , 1− (1− f)α; (ii.) the event of becoming a slot leader is independent for
each party and for each slot (both points follow from the construction of πSPoS
and the independent random sampling of every new output in FVRF). Clearly,
these dynamics may lead to slots with multiple slot leaders and, likewise, slots
with no slot leader. For a given (adaptive) adversary A and environment Z,
we reflect the outcome of this process with a characteristic string, as described
below.

Definition 5 (Execution). For an (adaptive) adversary A and an environment
Z, an execution E of πSPoS is a transcript including the inputs provided by Z,
the random coins of the parties, the random coins of the adversary, the responses



of the ideal functionalities and the random oracle. This data determines the entire
dynamics of the protocol: messages sent and delivered, the internal states of the
parties at each step, the set of corrupt parties at each step, etc.

Definition 6 (Characteristic string). Let S = {sl1, . . . , slR} be a sequence
of slots of length R and E be an execution (with adversary A and environment Z).
For a slot slj , let P(j) denote the set of parties assigned to be slot leaders for slot
j by the protocol πSPoS (specifically, those parties Ui for which y < 2`VRFφf (αi),
where (y, π) ← ProveVRF.ski(η ‖ slj)). We define the characteristic string w ∈
{0, 1,⊥}R of S to be the random variable so that

wj =


⊥ if P(j) = ∅,
0 if |P(j)| = 1 and the assigned party is honest,

1 if |P(j)| > 1 or a party in P(i) is adversarial.

(3)

For such a characteristic string w ∈ {0, 1,⊥}∗ we say that the index j is uniquely
honest if wj = 0, tainted if wj = 1, and empty if wj = ⊥. We say that an
index is active if wj ∈ {0, 1}. Note that an index is “tainted” according to this
terminology in cases where multiple honest parties (and no adversarial party)
have been assigned to it.

We denote by DfZ,A the distribution of the random variable w = w1 . . . wR
in the hybrid experiment with the active slots coefficient f , adversary A, and
environment Z. For a fixed execution E, we denote by wE the (fixed) characteristic
string resulting from that execution.

We emphasize that in an execution of πSPoS, the resulting characteristic string is
determined by both the nonce (and the effective leader selection process), the
adaptive adversary A, and the environment Z (which, in particular, determines
the stake distribution).

From executions to forks. The notion of a “fork”, defined in [16], is a book-
keeping tool that indicates the chains broadcast by honest players during an
idealized execution of a blockchain protocol. We now adapt the synchronous
notion of [16] to reflect the effect of message delays.

An execution of Protocol πSPoS induces a collection of blocks broadcast by
the participants. As we now focus merely on the structural properties of the
resulting blockchain, for each broadcast block we now retain only two features:
the slot associated with the block and the previous block to which it is “attached”
by the idealized digital signature σj . (Of course, we only consider blocks with
legal structure that meet the verification criteria of πSPoS.) Note that multiple
blocks may be associated with a particular slot, either because multiple parties
are assigned to the slot or an adversarial party is assigned to a slot (who may
choose to deviate from the protocol by issuing multiple blocks). In any case,
these blocks induce a natural directed tree by treating the blocks as vertices
and introducing a directed edge between each pair of blocks (b, b′) for which b′

identifies b as the previous block. In the ∆-semisynchronous setting, the maxvalid



rule enforces a further critical property on this tree: the depth of any block
broadcast by an honest player during the protocol must exceed the depths of any
honestly-generated blocks from slots at least ∆ in the past. (This follows because
such previously broadcast blocks would have been available to the honest player,
who always builds on a chain of maximal length.) We call a directed tree with
these structural properties a ∆-fork, and define them precisely below.

We may thus associate with any execution of πSPoS a fork. While this fork
disregards many of the details of the execution, any violations of common prefix
are immediately manifested by certain diverging paths in the fork. A fundamental
element of our analysis relies on controlling the structure of the forks that can
be induced in this way for a given characteristic string (which determines which
slots have been assigned to uniquely honest parties). In particular, we prove
that common prefix violations are impossible for “typical” characteristic strings
generated by πSPoS with an adversary A by establishing that such diverging
paths cannot exist in their associated forks.

Definition 7 (∆-fork). Let w ∈ {0, 1,⊥}k and ∆ be a non-negative integer.
Let A = {i | wi 6= ⊥} denote the set of active indices, and let H = {i | wi = 0}
denote the set of uniquely honest indices. A ∆-fork for the string w is a directed,
rooted tree F = (V,E) with a labeling ` : V → {0} ∪A so that (i) the root r ∈ V
is given the label `(r) = 0; (ii) each edge of F is directed away from the root;
(iii) the labels along any directed path are strictly increasing; (iv) each uniquely
honest index i ∈ H is the label of exactly one vertex of F ; (v) the function
d : H → {1, . . . , k}, defined so that d(i) is the depth in F of the unique vertex v
for which `(v) = i, satisfies the following ∆-monotonicity property: if i, j ∈ H
and i+∆ < j, then d(i) < d(j).

As a matter of notation, we write F `∆ w to indicate that F is a ∆-fork for
the string w. We typically refer to a ∆-fork as simply a “fork”.

Also note that our notion of a fork deliberately models honest parties that do
not necessarily exploit all the information available to them thanks to the delivery
guarantees provided by the DDiffuse functionality. Nonetheless, it remains true
that any execution of the hybrid experiment leads to a fork as we defined it, a
relationship that we make fully formal in fhe full version. Given this relationship,
we can later focus on investigating the properties of the distribution DfZ,A.

Roughly speaking, if we prove that a characteristic string sampled from DfZ,A,
with overwhelming probability, does not allow for any “harmful” forks, then this
also implies that a random execution with overwhelming probability results in a
“harmless” outcome.

Now we continue with the adaptation of the framework from [16] to the
semi-synchronous setting.

Definition 8 (Tines, length, and viability). A path in a fork F originating
at the root is called a tine. For a tine t we let length(t) denote its length, equal
to the number of edges on the path. For a vertex v, we call the length of the tine
terminating at v the depth of v. For convenience, we overload the notation `(·)



so that it applies to tines by defining `(t) , `(v), where v is the terminal vertex
on the tine t. We say that a tine t is ∆-viable if length(t) ≥ maxh+∆≤`(t) d(h),
this maximum extended over all uniquely honest indices h (appearing ∆ or more
slots before `(t)). Note that any tine terminating in a uniquely honest vertex is
necessarily viable by the ∆-monotonicity property.

Remarks on viability and divergence. The notion of viability, defined above,
demands that the length of a tine t be no less than that of all tines broadcast by
uniquely honest slot leaders prior to slot `(t)−∆. Observe that such a tine could,
in principle, be selected according to the maxvalid() rule by an honest player
online at time `(t): in particular, if all blocks broadcast by honest parties in slots
`(t) −∆, . . . , `(t) are maximally delayed, the tine can favorably compete with
all other tines that the adversary is obligated to deliver by slot `(t). The major
analytic challenge, both in the synchronous case and in our semisynchronous
setting, is to control the possibility of a common prefix violation, which occurs
when the adversary can manipulate the protocol to produce a fork with two
viable tines with a relatively short common prefix. We define this precisely by
introducing the notion of divergence.

Definition 9 (Divergence). Let F be a ∆-fork for a string w ∈ {0, 1,⊥}∗. For
two ∆-viable tines t1 and t2 of F , define their divergence to be the quantity

div(t1, t2) , min{length(t1), length(t2)} − length(t1 ∩ t2) ,

where t1 ∩ t2 denotes the common prefix of t1 and t2. We extend this notation
to the fork F by maximizing over viable tines: div∆(F ) , maxt1,t2 div(t1, t2),
taken over all pairs of ∆-viable tines of F . Finally, we define the ∆-divergence
of a characteristic string w to be the maximum over all ∆-forks: div∆(w) ,
maxF `∆w div∆(F ).

Our primary goal in this section is to prove that, with high probability, the
characteristic strings induced by protocol πSPoS have small divergence and hence
provide strong guarantees on common prefix.

The Synchronous Case. The original development of [16] assumed a strictly
synchronous environment. Their definitions of characteristic string, fork, and
divergence correspond to the case ∆ = 0, where characteristic strings are elements
of {0, 1}∗. As this setting will play an important role in our analysis—fulfilling
the role of the “virtual protocol” described at the beginning of this section—we
set down some further terminology for this synchronous case and establish a
relevant combinatorial statement based on a result in [16] that we will need for
our analysis.

Definition 10 (Synchronous characteristic strings and forks). A synchro-
nous characteristic string is an element of {0, 1}∗. A synchronous fork F for a
(synchronous) characteristic string w is a 0-fork F `0 w.



An immediate conclusion of the results obtained in [16,23] is the following
bound on the probability that a synchronous characteristic string drawn from
the binomial distribution has large divergence.

Theorem 1. Let `, k ∈ N and ε ∈ (0, 1). Let w ∈ {0, 1}` be drawn according to
the binomial distribution, so that Pr[wi = 1] = (1 − ε)/2. Then Pr[div0(w) ≥
k] ≤ exp(ln `−Ω(k)).

4.2 The Semisynchronous to Synchronous Reduction

We will make use of the following mapping, that maps characteristic strings to
synchronous characteristic strings.

Definition 11 (Reduction mapping). For ∆ ∈ N, we define the function
ρ∆ : {0, 1,⊥}∗ → {0, 1}∗ inductively as follows: ρ∆(ε) = ε, ρ∆(⊥‖w′) = ρ∆(w′),

ρ∆(1 ‖w′) = 1 ‖ ρ∆(w′),

ρ∆(0 ‖w′) =

{
0 ‖ ρ∆(w′) if w′ ∈ ⊥∆−1 ‖ {0, 1,⊥}∗,
1 ‖ ρ∆(w′) otherwise.

(4)

We call ρ∆ the reduction mapping for delay ∆.

A critical feature of the map ρ∆ is that it monotonically transforms ∆-
divergence to synchronous divergence. We state this in the following lemma,
proven in the full version.

Lemma 1. Let w ∈ {0, 1,⊥}∗. Then div∆(w) ≤ div0(ρ∆(w)).

4.3 The Dominant Characteristic Distribution

The high-probability results for our desired chain properties depend on detailed
information about the distribution on characteristic strings DfZ,A determined
by the adversary A, the environment Z, and the parameters f and R. In this
section we define a distinguished distribution on characteristic strings which we
will see “dominates” the distributions produced by any static adversary. Later in
Section 4.5 we show that the same is true also for adaptive adversaries. We then
study the effect of ρ∆ on this distribution in preparation for studying common
prefix, chain growth, and chain quality.

Motivating the Dominant Distribution: Static Adversaries. To motivate
the dominant distribution, consider the distribution induced by a static adversary
who corrupts—at the outset of the protocol—a set UA of parties with total
relative stake αA. (Formally, one can model this by restricting to environments
that only allow static corruption.) Recalling Definition 1, a party with relative
stake αi is independently assigned to be a leader for a slot with probability

φf (αi) , φ(αi) , 1− (1− f)αi .



The function φf is concave since

∂2φf
∂α2

(α) = −(ln(1− f))2(1− f)α < 0 .

Considering that φf (0) = 0 and φf (1) = f , concavity implies that φf (α) ≥ fα
for α ∈ [0, 1]. As φf (0) ≥ 0 and φf is concave, the function φf is subadditive.
This immediately implies the following proposition that will be useful during the
analysis.

Proposition 1. The function φf (α) satisfies the following properties.

φf

(∑
i

αi

)
= 1−

∏
i

(1− φf (αi)) ≤
∑
i

φf (αi) , αi ≥ 0 , (5)

φf (α)

φf (1)
=
φf (α)

f
≥ α , α ∈ [0, 1] . (6)

Recalling Definition 6, this (static) adversary A determines a distribution

DfZ,A on strings w ∈ {0, 1,⊥}R by independently assigning each wi so that

pA⊥ , Pr[wi = ⊥] =
∏
i∈P

(1− φ(αi)) =
∏
i∈P

(1− f)αi = (1− f) ,

pA0 , Pr[wi = 0] =
∑
h∈H

(1− (1− f)αh) · (1− f)1−αi ,

pA1 , Pr[wi = 1] = 1− pA⊥ − pA0 .

(7)

Here H denotes the set of all honest parties in the stake distribution S determined
by Z. As before, P denotes the set of all parties.

It is convenient to work with some bounds on the above quantities that
depend only on “macroscopic” features of S and A: namely, the relative stake
of the honest and adversarial parties, and the parameter f . For this purpose we
note that

pA0 ≥
∑
h∈H

φ(αh) ·
∏
i∈P

(1− φ(αi)) ≥ φ(αH) · pA⊥ = φ(αH) · (1− f) , (8)

where αH denotes the total relative stake of the honest parties. Note that this
bound applies to all static adversaries A that corrupt no more than a 1 − αH
fraction of all stake. With this in mind, we define the dominant distribution as
follows.

Definition 12 (The dominant distribution Dfα). For two parameters f and
α, define Dfα to be the distribution on strings w ∈ {0, 1,⊥}R that independently
assigns each wi so that p⊥ , Pr[wi = ⊥] = 1−f , p0 , Pr[wi = 0] = φ(α) ·(1−f),
and p1 , Pr[wi = 1] = 1− p⊥ − p0.



The distribution Dfα “dominates” DfZ,A for any static adversary A that corrupts
no more than a relative 1−α share of the total stake, in the sense that nonempty
slots are more likely to be tainted under Dfα than they are under DfZ,A.

To make this relationship precise, we introduce the partial order � on the set
{⊥, 0, 1} so that x � y if and only if x = y or y = 1. We extend this partial order
to {⊥, 0, 1}R by declaring x1 . . . xR � y1 . . . yR if and only if xi � yi for each i.
Intuitively, the relationship x ≺ y asserts that y is “more adversarial than” x;
concretely, any legal fork for x is also a legal fork for y. We record this in the
lemma below, which follows directly from the definition of ∆-fork and div∆.

Lemma 2. Let x and y be characteristic strings in {0, 1,⊥}R for which x � y.
Then 1.) for every fork F , F `∆ x =⇒ F `∆ y; 2.) for every ∆, div∆(x) ≤ div∆(y).

Finally, we define a notion of stochastic dominance for distributions on
characteristic strings, and α-dominated adversaries.

Definition 13 (Stochastic dominance). We say that a subset E ⊆ {⊥, 0, 1}R
is monotone if x ∈ E and x � y implies that y ∈ E. Let D and D′ be two
distributions on the set of characteristic strings {⊥, 0, 1}R. Then we say that D′
dominates D, written D � D′, if PrD[E] ≤ PrD′ [E] for every monotone set E.

An adversary A is called α-dominated if the distribution DfZ,A that it induces on

the set of characteristic strings satisfies DfZ,A � Dfα.

In our application, the events of interest are D∆ = {x | div∆(x) ≥ k} which
are monotone by Lemma 2. We note that any static adversary that corrupts
no more than a 1 − α fraction of stake is α-dominated, and it follows that
PrDfZ,A

[div∆(w) ≥ k] ≤ PrDfα [div∆(w) ≥ k]. This motivates a particular study

of the “dominant” distribution Dfα.

The Induced Distribution ρ∆(Df
α). The dominant distributionDfα on {0, 1,⊥}R

in conjunction with the definition of ρ∆ of (4) above implicitly defines a family of
random variables ρ∆(w) = x1 . . . x` ∈ {0, 1}∗, where w ∈ {0, 1,⊥}R is distributed
according to Dfα. Observe that ` = R−#⊥(w) is precisely the number of active
indices of w. We now note a few properties of this resulting distribution that will
be useful to us later (their proofs are presented in the full version). In particular,
we will see that the xi random variables are roughly binomially distributed, but
subject to an exotic stochastic “stopping time” condition in tandem with some
distortion of the last ∆ variables.

Lemma 3 (Structure of the induced distribution). Let x1 . . . x` = ρ∆(w)
where w ∈ {0, 1,⊥}R is distributed according to Dfα. There is a sequence of
independent random variables z1, z2, . . . with each zi ∈ {0, 1} so that

Pr[zi = 0] =

(
p0

p0 + p1

)
p∆−1⊥ ≥ α · (1− f)∆ , (9)

and x1 . . . x`−∆ = ρ∆(w1 . . . , wR)d∆ is a prefix of z1z2 . . . . (10)

(Note that while the zi are independent with each other, they are not independent
with w.)



Divergence for the Dominant Distribution. Our goal is to apply the reduc-
tion ρ∆, Lemma 1, and Theorem 1 to establish an upper bound on the probability
that a string drawn from the dominant distribution Dfα has large ∆-divergence.
The difficulty is that the distribution resulting from applying ρ∆ to a string
drawn from Dfα is no longer a simple binomial distribution, so we cannot apply
Theorem 1 directly. We resolve this obstacle in the proof of the following theorem,
also given in the full version.

Theorem 2. Let f ∈ (0, 1], ∆ ≥ 1, and α be such that α(1− f)∆ = (1 + ε)/2
for some ε > 0. Let w be a string drawn from {0, 1,⊥}R according to Dfα. Then
we have Pr[div∆(w) ≥ k +∆] = 2−Ω(k)+logR.

Remark. Intuitively, the theorem asserts that sampling the characteristic string
in the ∆-semisynchronous setting with protocol parameter f according to Dfα is,
for the purpose of analyzing divergence, comparable to the synchronous setting
in which the honest stake has been reduced from α to α(1 − f)∆. Note that
this can be made arbitrarily close to α by adjusting f to be small; however, this
happens at the expense of longer periods of silence in the protocol.

4.4 Common Prefix, Chain Growth, and Chain Quality

Our results on ∆-divergence from the previous section allow us to easily establish
the following three statements, their proofs are again postponed to the full
version.

Theorem 3 (Common prefix). Let k,R,∆ ∈ N and ε ∈ (0, 1). Let A be an α-
dominated adversary against the protocol πSPoS for some α satisfying α(1−f)∆ ≥
(1 + ε)/2. Then the probability that A, when executed in a ∆-semisynchronous
environment, makes πSPoS violate the common prefix property with parameter
k throughout a period of R slots is no more than exp(lnR + ∆ − Ω(k)). The
constant hidden by the Ω(·)-notation depends on ε.

To obtain a bound on the probability of a violation of the chain growth
property, we again consider the ∆-right-isolated uniquely honest slots introduced
in Section 4.2. Intuitively, we argue that the leader of such a slot has already
received all blocks that were created in all previous such slots and therefore the
block it creates will be having depth larger than all these blocks. It then follows
that the length of the chain grows by at least the number of such slots.

Theorem 4 (Chain growth). Let k,R,∆ ∈ N and ε ∈ (0, 1). Let A be an
α-dominated adversary against the protocol πSPoS for some α > 0. Then the prob-
ability that A, when executed in a ∆-semisynchronous environment, makes πSPoS
violate the chain growth property with parameters s ≥ 4∆ and τ = cα/4 through-
out a period of R slots, is no more than exp (−cαs/(20∆) + lnR∆+O(1)), where
c denotes the constant c := c(f,∆) = f(1− f)∆.



Our chain quality statement of Theorem 5 is a direct consequence of Lemma 4,
which observes that a sufficiently long sequence of consecutive blocks in an honest
party’s chain will most likely contain a block created in a ∆-right-isolated uniquely
honest slot.

Lemma 4. Let k,∆ ∈ N and ε ∈ (0, 1). Let A be an α-dominated adversary
against the protocol πSPoS for some α > 0 satisfying α(1 − f)∆ = (1 + ε)/2.
Let B1, . . . , Bk be a sequence of consecutive blocks in a chain C possessed by
an honest party. Then at least one block Bi was created in a ∆-right-isolated
uniquely honest slot, except with probability exp(−Ω(k)).

Theorem 5 (Chain quality). Let k,R,∆ ∈ N and ε ∈ (0, 1). Let A be an
α-dominated adversary against the protocol πSPoS for some α > 0 satisfying
α(1 − f)∆ ≥ (1 + ε)/2. Then the probability that A, when executed in a ∆-
semisynchronous environment, makes πSPoS violate the chain quality property
with parameters k and µ = 1/k throughout a period of R slots, is no more than
exp(lnR−Ω(k)).

4.5 Adaptive Adversaries

The statements in the previous sections give us guarantees on the common
prefix, chain growth, and chain quality properties as long as the adversary is
α-dominated for some suitable value of α. In Section 4.3 we argued that any
static adversary that corrupts at most (1− α)-fraction of stake is α-dominated.
In this section we extend this claim also to adaptive adversaries, showing that as
long as they corrupt no more than (1−α)-fraction of stake adaptively throughout
the whole execution, they are still α-dominated. The proof is deferred to the full
version.

Theorem 6. Every adaptive adversary A that corrupts at most (1− α)-fraction
of stake throughout the whole execution is α-dominated.

Theorems 3, 4, 5 and 6 together give us the following corollary.

Corollary 1. Let A be an adaptive adversary against the protocol ΠSPoS that
corrupts at most (1− α)-fraction of stake. Then the bounds on common prefix,
chain growth and chain quality given in Theorems 3, 4, 5 are satisfied for A.

4.6 The Resettable Protocol

With the analysis of these basic structural events behind us, we remark that
the same arguments apply to a modest generalization of the protocol which
permits the adversary some control over the nonce. Specifically, we introduce
a “resettable” initialization functionality FrINIT, which permits the adversary to
select the random nonce from a family of r independent and uniformly random
nonces. Specifically, FrINIT is identical to FINIT, with the following exception:



– Upon receiving the first request of the form (genblock req, Ui) from some

stakeholder Ui, FrINIT samples a nonce η
$← {0, 1}λ, defines a “nonce candidate”

set H = {η}, and permits the adversary to carry out up to r− 1 reset events :
each reset event draws an independent element from {0, 1}λ, adds the element
to the set H, and permits the adversary to replace the current nonce η with
any element of H. Finally, (genblock,S0, η) is sent to Ui. Later requests from
any stakeholder are answered using the same value η.

Looking ahead, our reason to introduce the resettable functionality FrINIT is to
capture the limited grinding capabilities of the adversary. A simple application
of the union bound shows that this selection of η from among a set of size r
uniformly random candidate nonces can inflate the probability of events during
the run of πSPoS by a factor no more than r. We record this as a corollary below.

Corollary 2 (Corollary to Theorems 3, 4, 5). The protocol ΠSPoS, with
initialization functionality FrINIT, satisfies the bounds of Theorems 3, 4, 5 with all
probabilities scaled by r.

5 The Full Protocol

In this section, we construct a protocol that handles the dynamic case, where
the stake distribution changes as the protocol is executed. As in Ouroboros [16],
we divide protocol execution in a number of independent epochs during which
the stake distribution used for sampling slot leaders remains unchanged. The
strategy we use to bootstrap the static protocol is, at a high level, similar: we
first show how the protocol can accommodate dynamic stake utilizing an ideal
“leaky beacon” functionality and then we show this beacon functionality can be
simulated via an algorithm that collects randomness from the blockchain.

In order to facilitate the implementation of our beacon, we need to allow the
leaky beacon functionality to be adversarially manipulated by allowing a number
of “resets” to be performed by the adversary. Specifically, the functionality is
parameterized by values τ and r. First, it leaks to the adversary, up to τ slots
prior to the end of an epoch, the beacon value for the next epoch. (Looking
ahead, we remark that it is essential that the stake distribution used for sampling
slot leaders in the next epoch is determined prior to this leakage.) Second, the
adversary can reset the value returned by the functionality as many as r times.
As expected for a beacon, it reports to honest parties the beacon value only once
the next epoch starts. After the epoch is started no more resets are allowed for the
beacon value. This mimics the functionality FINIT and its resettable version FrINIT.
Note that the ability of the adversary to reset the beacon can be quite influential
in the protocol execution: for instance, any event that depends deterministically
on the nonce of an epoch and happens with probability 1/2 can be easily forced
to happen almost always by the adversary using a small number of resets.

Naturally, we do not want to assume the availability of a randomness beacon
in the final protocol, even if it is leaky and resettable. In our final iteration of
the protocol we show how it is possible to simulate such beacon using a hash



function that is modeled as a random oracle. This hash function is applied to
the concatenation of VRF values that are inserted into each block, using values
from all blocks up to and including the middle ≈ 8k slots of an epoch that lasts
approximately 24k slots in entirety. (The “quiet” periods before and after this
central block of slots that sets the nonce will ensure that the stake distribution,
determined at the beginning of the epoch, is stable, and likewise that the nonce
is stable before the next epoch begins.) The verifiability of those values is a key
property that we exploit in the proof.

Our proof strategy is to reduce any adversary against the basic properties of
the blockchain to a resettable-beacon adversary that will simulate the random
oracle. The key point of this reduction is that whenever the random oracle
adversary makes a query with a sequence of values that is a candidate sequence
for determining the nonce for the next epoch, the resettable attacker detects this
as a possible reset opportunity and resets the beacon; it obtains the response
from the beacon and sets this as the answer to the random oracle query.

The final issue is to bound the number of resets: towards this, note that the
adversary potentially controls a constant fraction of the ≈ 8k slots associated
with nonce selection, and this allows him to explore an a priori large space of
independent random potential nonces (and, ultimately, select one as the next
epoch nonce). The size of this space is however upper-bounded by the number
of random oracle queries that the adversary can afford during the sequence of
≈ 8k slots. To formalize this bound we utilize the q-bounded model of [12] that
bounds the number of queries the adversary can pose per round: in that model,
the adversary is allowed q queries per adversarial party per round (“slot” in our
setting).9 Assuming that the adversary controls t parties, we obtain a bound
equal to ≈ 8qtk.

5.1 The Dynamic Stake Case with a Resettable Leaky Beacon

First we construct a protocol for the dynamic stake case assuming access to a
resettable leaky beacon that provides a fresh nonce for each epoch. This beacon
is leaky in the sense that it allows the adversary to obtain the nonce for the
next epoch before the epoch starts, and resettable in the sense that it allows the
adversary to reset the nonce a number of times. We model the resettable leaky
randomness beacon in functionality Fτ,rRLB presented in Figure 5.

We now describe protocol πDPoS, which is a modified version of πSPoS that
updates its genesis block B0 (and thus the assignment of slot leader sets) for
every new epoch. The protocol also adopts an adaptation of the static maxvalidS
function, defined so that it narrows selection to those chains which share common
prefix. Specifically, it adopts the following rule, parametrized by a prefix length
k:

9 Note that we utilize the q-bounded model only to provide a more refined analysis;
given that the total length of the execution is polynomial in λ one may also use the
total execution length as a bound.



Functionality Fτ,rRLB

Fτ,rRLB incorporates the diffuse functionality from Section 2.2 and is parameterized
by the number of initial stakeholders n and their respective stakes s1, . . . , sn, a
nonce leakage parameter τ and a number of allowed resets r. Fτ,rRLB interacts with
stakeholders U1, . . . , Un and an adversary A as follows:

– In the first round, Fτ,rRLB operates exactly as FINIT.
– Upon receiving (genblock req, sid, Ui) from stakeholder Ui it operates as func-

tionality FINIT on that message.
– Upon receiving (epochrnd req, sid, Ui, ej) from stakeholder Ui, if ej ≥ 2 is the

current epoch, Fτ,rRLB sends (epochrnd, sid, ηj) to Ui.

– For every epoch ej , at slot jR−τ , Fτ,rRLB samples the next epoch’s nonce ηj+1
$←

{0, 1}λ and leaks it by sending (epochrnd leak, sid, ej , ηj+1) to the adversary
A. Additionally, Fτ,rRLB sets an internal reset request counter Resets = 0 and
sets P = ∅.

– Upon receiving (epochrnd reset, sid,A) from A at epoch ej , if Resets < r and
if the current slot is past slot jR− τ , Fτ,rRLB samples a fresh nonce for the next

epoch ηj+1
$← {0, 1}λ and leaks it by sending (epochrnd leak, sid, ηj+1) to A.

Finally, Fτ,rRLB increments Resets and adds ηj+1 to P.
– Upon receiving (epochrnd set, sid,A, η) from A at epoch ej , if the current

slot is past slot jR − τ and if η ∈ P, Fτ,rRLB sets ηj+1 = η and sends
(epochrnd leak, sid, ηj+1) to A.

Fig. 5: Functionality Fτ,rRLB .



Function maxvalid(C,C). Returns the longest chain from C ∪ {C} that
does not fork from C more than k blocks (i.e., not more than k blocks of
C are discarded). If multiple exist it returns C, if this is one of them, or
it returns the one that is listed first in C.

The protocol πDPoS is described in Figure 6 and functions in the Fτ,rRLB-hybrid
model.

Lazy players. Note that while the protocol πDPoS in Figure 6 is stated for a
stakeholder that is permanently online, this requirement can be easily relaxed.
Namely, it is sufficient for an honest stakeholder to join at the beginning of each
epoch, determine whether she belongs to the slot leader set for any slots within
this epoch (using the Eval interface of FVRF), and then come online and act on
those slots while maintaining online presence at least every k slots. We sketch
this variant of the protocol in the full version.

We proceed to the security analysis of the full protocol in the hybrid world
where the functionality Fτ,rRLB is available to the protocol participants. A key
challenge is that in the dynamic stake setting, the honest majority assumption
that we have in place refers to the stakeholder view of the honest stakeholders in
each slot. Already in the first few slots this assumption may diverge rapidly from
the stakeholder distribution that is built-in the genesis block.

To accommodate the issues that will arise from the movement of stake
throughout protocol execution, we recall the notion of stake shift defined in [16].

Definition 14. Consider two slots sl1, sl2 and an execution E. The stake shift
between sl1, sl2 is the maximum possible statistical distance of the two weighted-
by-stake distributions that are defined using the stake reflected in the chain C1 of
some honest stakeholder active at sl1 and the chain C2 of some honest stakeholder
active at sl2.

Finally, the security of πDPoS is stated below and proven in the full version.
We slightly abuse the notation from previous sections and denote by αH a lower
bound on the honest stake ratio throughout the whole execution.

Theorem 7 (Security of πDPoS with access to Fτ,rRLB). Fix parameters
k,R,∆,L ∈ N, ε, σ ∈ (0, 1) and r. Let R ≥ 16k/f be the epoch length, L the total
lifetime of the system, and

(αH − σ)(1− f)∆ ≥ (1 + ε)/2 . (11)

The protocol πDPoS, with access to Fτ,rRLB, with τ ≤ 8k/f satisfies persistence with
parameters k and liveness with parameters u = 8k/f throughout a period of L slots
of ∆-semisynchronous execution with probability 1−exp(lnL+∆+log(r)−Ω(k))
assuming that σ is the maximum stake shift over 2R slots.

Note that while Theorem 7 (and also Corollary 3 below) formulates the
bound (11) in terms of the overall upper bound on honest stake ratio αH and



Protocol πDPoS

The protocol πDPoS is run by stakeholders, initially equal to U1, . . . , Un interacting
among themselves and with ideal functionalities Fτ,rRLB (or FINIT), FVRF,FKES,FDSIG,H
over a sequence of L = ER slots S = {sl1, . . . , slL} consisting of E epochs with R
slots each. Define T ji , 2`VRFφf (αji ) as the threshold for a stakeholder Ui for epoch
ej , where αji is the relative stake of stakeholder Ui at epoch ej , `VRF denotes the
output length of FVRF, f is the active slots coefficient and φf is the mapping from
equation (1). Then πDPoS proceeds as follows:
1. Initialization. This step is the same as Step 1 in πSPoS except that any messages

for FINIT are sent to Fτ,rRLB if it is available instead.
2. Chain Extension. After initialization, for every slot sl ∈ S, every online

stakeholder Ui performs the following steps:
(a) This step is the same as Step 2a in πSPoS.
(b) If a new epoch ej , with j ≥ 2, has started, Ui defines Sj to be the stakeholder

distribution drawn from the most recent block with time stamp up to (j−2)R
as reflected in C and sends (epochrnd req, sid, Ui, ej) to Fτ,rRLB, receiving
(epochrnd, sid, ηj) as answer.

(c) Ui collects all valid chains received via diffusion into a set C, pruning blocks
belonging to future slots and verifying that for every chain C′ ∈ C and every
block B′ = (st′, d′, sl′, Bπ

′, ρ′, σj′) ∈ C′ it holds that the stakeholder who
created it is in the slot leader set of slot sl′ (by parsing Bπ

′ as (Us, y
′, π′) for

some s, verifying that FVRF responds to (Verify, sid, ηj ‖ sl′ ‖ TEST, y′, π′, vvrfs )
by (Verified, sid, ηj ‖ sl′ ‖ TEST, y′, π′, 1), and that y′ < T js where T js
is the threshold of stakeholder Us for the epoch ej to which sl′

belongs), that FVRF responds to (Verify, sid, ηj ‖ sl′ ‖ NONCE, ρ′y, ρ′π, vvrfs )
(where ρ′ = (ρ′y, ρ

′
π)) by (Verified, sid, ηj ‖ sl′ ‖ NONCE, ρ′y, ρ′π, 1), and

that FKES responds to (Verify, sid, (st′, d′, sl′, Bπ
′, ρ′), sl′, σj′ , v

kes
s ) by

(Verified, sid, (st′, d′, sl′, Bπ
′, ρ′), sl′, 1). Ui computes C′ = maxvalid(C,C),

sets C′ as the new local chain and sets state st = H(head(C′)).
(d) Ui sends (EvalProve, sid, ηj ‖ sl ‖ NONCE) to FVRF, obtaining

(Evaluated, sid, ρy, ρπ), Afterwards, Ui sends (EvalProve, sid, ηj ‖ sl ‖ TEST)
to FVRF, receiving (Evaluated, sid, y, π). Ui checks whether it is in the slot
leader set of slot sl with respect to the current epoch ej by checking that
y < T ji . If yes, it chooses the maximal sequence d′ of transactions in d such
that adding a block with d′ to C results into a valid chain, and attempts
to include d′ as follows: It generates a new block B = (st, d′, sl, Bπ, ρ, σ)
where st is its current state, Bπ = (Ui, y, π), ρ = (ρy, ρπ) and σ is
a signature obtained by sending (USign, sid, Ui, (st, d

′, sl, Bπ, ρ), sl) to
FKES and receiving (Signature, sid, (st, d′, sl, Bπ, ρ), sl, σ). Ui computes
C′ = C ‖B, sets C′ as the new local chain and sets state st = H(head(C′)).
Finally, if Ui has generated a block in this step, it diffuses C′.

3. Signing Transactions. This step is the same as Step 3 in πSPoS.

Fig. 6: Protocol πDPoS



maximum stake shift σ over any 2R-slots interval, one could easily prove more
fine-grained statements that would only require inequality (11) to hold for each
epoch (with respect to the honest stake ratio in that epoch, and the stake shift
occurring for that epoch’s stake distribution).

5.2 Instantiating Fτ,r
RLB

In this section, we show how to substitute the oracle Fτ,rRLB of protocol πDPoS

with a subprotocol πRLB that simulates Fτ,rRLB . The resulting protocol can then
operate directly in the FINIT-hybrid model as in Section 3 (without resets) while
utilizing a random oracle H(·). The sub-protocol πRLB is described in Figure 7.

Protocol πRLB

Let H(·) be a random oracle. πRLB is a sub-protocol of πDPoS proceeding as follows:
– Upon receiving (epochrnd req, sid, Ui, ej) from stakeholder Ui, if ej ≥ 2

is the current epoch, it performs the following: for every block B′ =
(st′, d′, sl′, Bπ

′, ρ′, σj′) ∈ C (where C is the callee’s Ui’s internal chain) be-
longing to epoch ej−1 up to the slot with timestamp up to (j − 2)R+ 16k/f ,
concatenate the values ρ′ into a value v. Compute ηj = H(ηj−1||j||v) and return
(epochrnd, sid, ηj).

Fig. 7: Protocol πRLB .

We will show next that the sub-protocol πRLB can safely substitute Fτ,rRLB
when called from protocol πDPoS. We will perform our analysis in the q-bounded
model of [12] assuming that the adversary is capable of issuing q queries per
each round of protocol execution per corrupted party and there are t corrupted
parties. The proof is deferred to the full version.

Lemma 5. Consider the event of violating one of common prefix, chain quality,
chain growth in an execution of πDPoS using sub-protocol πRLB in the FINIT-hybrid
model with adversary A and environment Z with the same parameter choices
as Theorem 7. We construct an adversary A′ so that the corresponding event
happens with the same probability in an execution of πDPoS in the Fτ,rRLB-hybrid
world with adversary A′ and environment Z assuming that r = 8tqk/f .

Based on the above lemma, it is now easy to revisit Theorem 7, and show
that the same result holds for r in the q-bounded model assuming r = 8tkq/f
and τ ≤ 8k/f which permits to set our epoch length R to 24k/f .

Corollary 3 (Security of πDPoS with subprotocol πRLB). Fix parameters
k,R,∆,L ∈ N, ε, σ ∈ (0, 1). Let R = 24k/f be the epoch length, L the total
lifetime of the system, and (αH−σ)(1−f)∆ ≥ (1+ε)/2. The protocol πDPoS using



subprotocol πRLB in the FINIT-hybrid model satisfies persistence with parameters
k and liveness with parameters u = 8k/f throughout a period of L slots of ∆-
semisynchronous execution with probability 1 − exp(lnL + ∆ − Ω(k − log tkq))
assuming that σ is the maximum stake shift over 2R slots.
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