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Abstract. We construct a simulator for the simulating auxiliary input
problem with complexity better than all previous results and prove the
optimality up to logarithmic factors by establishing a black-box lower
bound. Specifically, let ` be the length of the auxiliary input and ε be
the indistinguishability parameter. Our simulator is Õ(2`ε−2) more com-
plicated than the distinguisher family. For the lower bound, we show the
relative complexity to the distinguisher of a simulator is at least Ω(2`ε−2)
assuming the simulator is restricted to use the distinguishers in a black-
box way and satisfy a mild restriction.

1 Introduction

In the simulating auxiliary inputs problem [JP14], a joint distribution (X,Z) over
{0, 1}n×{0, 1}` is given. the goal is to find a “low complexity” simulator function
h : {0, 1}n → {0, 1}` such that (X,Z) and (X,h(X)) are indistinguishable by
a family of distinguishers. The non-triviality comes from the “low complexity”
requirement. Otherwise, one can simply hardcode the distributions Z|X=x for
each x to approximate Z. We call the lemma that addresses this problem Leakage
Simulation Lemma.

Theorem 1 (Leakage Simulation Lemma, informal). Let F be a family of
deterministic distinguishers from {0, 1}n × {0, 1}`. For every joint distribution
(X,Z) over {0, 1}n × {0, 1}`, There exists a simulator function h : {0, 1}n →
{0, 1}` with complexity poly(2`, ε−1) relative to F such that for all f ∈ F ,∣∣∣Pr [f(X,Z) = 1]− Pr [f(X,h(X))] = 1

∣∣∣ ≤ ε.
The “relative complexity” means if we have oracle gates that compute func-

tions in F , then what is the circuit complexity of h when considering those oracle
gates [JP14]. A typical choice of a family of distinguishers is a set of all circuits
of size s. In that case, we can get a simulator of size s · poly(2`, ε−1).
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The Leakage Simulation Lemma implies many theorems in computational
complexity and cryptography. For instance, Jetchev and Pietrzak [JP14] used the
lemma to give a simpler and quantitatively better proof for the leakage-resilient
stream-cipher [DP08]. Also, Chung, Lui, and Pass [CLP15] apply the lemma3

to study connections between various notions of Zero-Knowledge. Moreover, the
leakage simulation lemma can be used to deduce the technical lemma of Gentry
and Wichs [GW11] (for establishing lower bounds for succinct arguments) and
the Leakage Chain Rule [JP14] for relaxed-HILL pseudoentropy [HILL99,GW11].

Before Jetchev and Pietrzak described the Leakage Simulation Lemma as in
Theorem 1, Trevisan Tulsiani and Vadhan proved a similar lemma called Reg-
ularity Lemma [TTV09], which can be viewed as a special case of the Leakage
Simulation Lemma by restricting the family of distinguishers in certain forms.
In [TTV09], they also showed that all Dense Model Theorem [RTTV08], Impagli-
azzo Hardcore Lemma [Imp95] and Weak Szemerédi Regularity Lemma [FK99]
can be derived from the Regularity Lemma. That means the Leakage Simulation
Lemma also implies all those theorems.

As the Leakage Simulation Lemma has many implications, achieving the bet-
ter complexity bound in poly(ε−1, 2`) is desirable. Notably, in certain parameter
settings, the provable security level of a leakage-resilient stream-cipher can be
improved significantly if we can prove the better bound for the Leakage Simula-
tion Lemma with better complexity bound. (See the next section for a concrete
example). Therefore, an interesting question is what is the optimal parameter
complexity bound we can get for the Leakage Simulation Lemma? In this pa-
per, we provide an improved upper bound and also show the bound is “almost”
optimal.

1.1 Upper Bound Results

Previous Results. In [TTV09], they provided two different approaches for prov-
ing the Regularity Lemma. One is by the min-max theorem, and another one
is via boosting-type of proof. Although it is not known whether the Regularity
Lemma implies the Leakage Simulation Lemma directly, [JP14] adopted both
techniques and used them to show the Leakage Chain Rule with complexity
bound Õ(24`ε−4).4. On the other hand, Vadhan and Zheng derived the Leak-
age Simulation Lemma [VZ13, Lemma 6.8] using so-called “uniform min-max
theorem”, which is proved via multiplicative weight update (MWU) method in-
corporating with KL-projections. The circuit complexity of the simulator they
got is Õ(s · 2`ε−2 + 2`ε−4) where s is the size of the distinguisher circuits.
Recently, Skórski also used the boosting-type method to achieve the bound
Õ(25`ε−2) [Skó16a], then later improved it to Õ(23`ε−2) by incorporating the
subgradient method [Skó16b]. Note that the complexity bound in [VZ13] has an
additive term, so their result is incomparable to the others.

3 They also consider the interactive version.
4 In the original paper, they claimed to achieve the bound Õ(23`ε−2). However, Skórski

pointed out some analysis flaws [Skó16a].
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Our Results. In this paper, we achieve the bound Õ(2`ε−2) for relative com-
plexity, which contains the best components out of three complexity bounds
mentioned above. The algorithm we use is also of multiplicative weight update
(MWU) method as in [VZ13] but without going through the uniform min-max
theorem argument. The additive term 2`ε−4 in [VZ13] is due to the precision
issue when performing multiplication of “real numbers”. The saving of the addi-
tive term is based on the observation mentioned in [VZ13] – the KL-projection
step in their MWU algorithm is not needed when proving the Leakage Simula-
tion Lemma. Thus we can potentially simplify the circuit construction. Indeed,
we prove that certain level of truncation on weights does not effect the accuracy
too much but helps us reducing the circuit complexity. In table 1, we list out
and compare all previous results to ours.

Paper Techinque Complexity of Simulator

[JP14] Min-max / Boosting Õ(s · 24`ε−4)

[VZ13] Boosting with KL-projection Õ(s · 2`ε−2 + 2`ε−4)

[Skó16a] Boosting with self-defined projection Õ(s · 25`ε−2)

[Skó16b] Boosting with Subgradient Method Õ(s · 23`ε−2)

This work
Boosting O(s · `2`ε−2)

Black-box lower bound Ω(s · 2`ε−2)

Table 1. Summary of exisiting upper bound results and our results.

Implication of Our Results As mentioned before, our result yields a proof of
better security in leakage-resilient stream-cipher. All previous results suffer from
the term ε−4 [JP14,VZ13]5 or the 23` multiplicative factor [Skó16b] in the com-
plexity bound. In particular, Skórski’s gave legitimate examples [Skó16a] where
the bounds in [JP14] and [VZ13] only guarantee trivial security bounds when ε is
set to be 2−40. On the other hand, the factor 23` (or even 25`) is significant and
makes the guaranteed security bound trivial when the leakage is more than few
bits. Therefore, in some reasonable parameter settings, our bound is the only
one that can achieve a useful security. Here is a concrete example. If we cons-
dier the stream cipher in [JP14] and follow the settings in [Skó16a, Section 1.6]:
The underlying weak PRF has 256 bits security, the target cipher security is
ε′ = 2−40 and the round is 16. If the leakage is λ = 17 per rounds, then using
our bound, we can guarantee the security against 250-size circuit but all the
analyses in [JP14,VZ13,Skó16a] guarantee nothing.

5 It appears as an additive complexity in [VZ13] and/or a multiplicative term in [JP14].
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1.2 Lower Bound Results

Our Results. We show that the simulator must have a “relative complexity”
Ω(2`ε−2) to the distinguisher family by establishing a black-box lower bound,
where a simulator can only use the distinguishers in a black-box way. Our lower
bound requires an additional mild assumption that the simulator on a given
input x, does not make a query an x′ 6= x to distinguishers.6 Querying at points
different from the input seems not helpful, but that makes the behaviors on
different inputs not completely independent, which causes a problem in analysis.
Indeed, all the known upper bound algorithms (including the one in this work)
satisfy the assumptions we made. Still, we leave it as an open problem to close
this gap completely.

Comparison to Related Results. In [JP14], they proved a Ω(2`) lower bound
for relative complexity under a hardness assumption for one-way functions. Be-
sides, there are also lower bound results on the theorems that implied by the
Leakage Simulation Lemma, including Regularity Lemma [TTV09], Hardcore
Lemma [LTW11], Dense Model Theorem [Zha11], Leakage Chain Rule [PS16]
and Hardness Amplification [SV10,AS11]. The best lower bound one can ob-
tain before this work is Ω(ε−2) (from [LTW11,SV10,Zha11]) or Ω(2`ε−1) (from
[PS16]). Thus our lower bound is the first tight lower bound Ω(2`ε−2) for Leakage
Simulation Lemma. See Section 4.2 for more detailed comparison.

Proof Overview We define an oracle and a joint distribution (X,Z) ∈ {0, 1}n ×
{0, 1}`. Considering a family of the distinguishers that each of them makes a
single query to the oracle, the simulator has to query the oracle at least Ω(2`ε−2)
times to fool all the distinguishers in the family. Therefore, if the only way to
access the oracle is through the distinguishers, the simulator must use at least
Ω(2`ε−2) distinguishers.

We can treat Z as a randomized function of X. That is, if can define g :
{0, 1}n → {0, 1}` such that Pr[g(x) = z] = Pr[Z = z|X = x], then (X,Z) =
(X, g(X)). The distribution we consider is that the function g is deterministic,
but the images are “hidden” from the simulator. Note that it is impossible for
a simulator to hardwire all 2n images. If the oracle receives a query (x, z) ∈
{0, 1}n × {0, 1}` with z = g(x), it returns an answer based on the distribution
Bern(1/2 + ε). Otherwise, use the distribution Bern(1/2). Intuitively, the goal
of the simulator is to find g(x) for a given input x. For each z, due to the anti-
concentration bound, it has to make Ω(ε−2) many queries to check if g(x) = z.
And if it has to check a constant fraction of all z ∈ {0, 1}n, then the total query
complexity is Ω(2`ε−2).

6 Many black-box lower bounds in related contexts [LTW11,Zha11,PS16] (implicitly)
make the same mild assumption. See Section 4.2 for more details.
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2 Preliminaries

2.1 Basic Definitions

Notations. For a natural number n, [n] denotes the set {1, 2, . . . , n} and Un
denotes the uniform distribution over {0, 1}n. For a finite set X , |X | denotes its
cardinality, and UX denotes the uniform distribution over X . For a distribution
X over X , x← X means x is a random sample drawn from X. Bern(p) denotes
the Bernoulli distribution with parameter 0 ≤ p ≤ 1. For any function f , Õ(f)
means O(f logk f) and Ω̃(f) means Ω(f/ logk f) for some constant k > 0.

Definition 1 (Statistical Distance). Let X and Y be two random variables.
The statistical distance (or total variation) between X and Y is denoted as

∆(X,Y ) =
∑
x

1

2

∣∣∣Pr [X = x]− Pr [Y = x]
∣∣∣ .

Also, we say X and Y are ε-close if ∆(X,Y ) ≤ ε.

Definition 2 (Indistinguishability). Let X,Y be distributions over {0, 1}n.
We say X and Y are (s, ε)-indistinguishable if for every circuit f : {0, 1}n →
{0, 1} of size s, ∣∣∣∣ E

x←X
[f(x)]− E

y←Y
[f(y)]

∣∣∣∣ ≤ ε.
2.2 Multiplicative Weight Update

Consider the following prediction game. In each round, a predictor makes a pre-
diction and receive a payoff. There are N experts that the predictor can refer to.
That is, the predictor can (randomly) choose an expert to follow. The goal of the
predictor is to minimize total payoff in many rounds. We called the difference
between the total payoff of predictor and of the best expert regret, which is the
criterion we use to measure the performance of the predictor. The Multiplica-
tive weight update (MWU) algorithm provides a good probabilistic strategy for
prediction. The overview of the algorithm is as follows. In the first round, the
predictor simply chooses an expert uniformly at random. In the following rounds,
the predictor updates the probabilities of choosing experts “multiplicatively” ac-
cording to their performances in the previous round. The formal algorithm and
the guarantees by the MWU algorithm is stated below.

Lemma 1 (Multiplicative weight update [AHK12]). Consider a T -round
game such that in t-th round, the predictor chooses a distribution Dt over [N ],
and obtains a payoff according to the function ft : [N ]→ [0, 1]. Let 0 < η ≤ 1/2
be an update rate. If player 1 chooses Dt as in Algorithm 1, then for every
i ∈ [N ],

T∑
t=1

E
j←Dt

[ft(j)] ≤
T∑
t=1

ft(i) +
logN

η
+ Tη.
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In particular, if we set η =
√

logN/T , we have

T∑
t=1

E
j←Dt

[ft(j)] ≤
T∑
t=1

ft(i) +O
(√

T logN
)

Algorithm 1: Multiplicative weight update

1 For all i ∈ [N ] set wi := 1.
2 for t := 1 to T do
3 Choose Dt such that Dt(i) ∝ wi.
4 for i := 1 to N do

5 wi := wi · (1− η)ft(i);

As the regret grows sub-linearly to T , the predictor can achieve δ average
regret when T is large enough.

Corollary 1. There exists T = O
(
lnN
ε2

)
such that for all i ∈ [N ],

1

T

∑
t

E
j←Dt

[ft(j)] ≤
1

T

∑
t

ft(i) + ε.

Freund and Schapire discovered the connection between MWU algorithm and
zero sum game [FS96] by treating the best response of Player 2 as the payoff
function. MWU algorithm not only gives a new proof of von Neumanns Min-
Max Theorem, but also provides a way to “approximate” the universal strategy
obtained by the Min-Max Theorem7.

Lemma 2 ([FS96]). Consider a zero-sum game between Player 1 and Player 2
whose (pure) strategy spaces are P and Q, respectively, and |P| = N . The payoff
to Player 2 is defined by the function u : P × Q → [0, 1]. We apply the MWU
algorithm (Algorithm 1) in the following way to get the mixed strategy P ∗ and
Q∗.

1. Treat each pure strategy in |P| as an expert. Let Pt denote the mixed strategy
described by Dt (the i-th pure strategy is chosen with probability Dt(i)).

2. Let Qt denote the best response of Player 2 to Pt. Namely

Qt = min
Q

E
p←Pt,q←Q

f(p, q)

3. Set the payoff function in the MWU algorithm as ft(·) = M(·, Qt).
4. Let P ∗ = 1

T

∑
t Pt and Q∗ = 1

T

∑
tQt.

7 It is called Non-uniform Min-Max Theorem in [VZ13]
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If we conduct the above procedure for T = O(logN/ε2) rounds, the mixed strate-
gies P ∗, Q∗ are almost the equilibrium strategies. That is

max
q

E
p←P∗

[u(p, q)]− ε ≤ max
Q

min
P

E
p←P,q←Q

[u(p, q)]

= min
P

max
Q

E
p←P,q←Q

[u(p, q)] ≤ min
p

E
q←Q∗

[u(p, q)] + ε.

3 Simulating Auxiliary Inputs

The formal description of Leakage Simulation Lemma with our improved pa-
rameters is as follows.

Theorem 2 (Leakage Simulation Lemma). Let n, ` ∈ N, ε > 0 and F be
a collection of deterministic distinguishers f : {0, 1}n × {0, 1}` → {0, 1}. For
every distribution (X,Z) over {0, 1}n × {0, 1}`, there exists a simulator circuit
h : {0, 1}n → {0, 1}` such that

1. h has complexity Õ(2`ε−2) relative to F . i.e., h can be computed by an oracle-
aided circuit of size Õ(2`ε−2) with oracle gates are functions in F .

2. (X,Z) and (X,h(X)) are indistinguishable by F . That is, for every f ∈ F ,∣∣∣∣ E
(x,z)←(X,Z)

[f(x, z)]− E
h,x←X

[f(x, h(x))]

∣∣∣∣ ≤ ε.
Set F to be a set of Boolean circuits of size at most s, we immediate have

the following corollary.

Corollary 2. Let s, n, ` ∈ N and ε > 0. For every distribution (X,Z) over
{0, 1}n × {0, 1}`, there exists a simulator circuit of size s′ = Õ(s · 2`ε−2) such
that (X,Z) and (X,h(X)) are (s, ε)-indistinguishable.

3.1 Boosting

There are numbers of proof of Leakage Simulation Lemma as discussed in the
introduction. We focus on the “boosting” type of proof as it usually gives us
better circuit complexity. The boosting framework has the following structure:

1. Choose a proper initial simulator h.
2. If h satisfies the constraint above, return h. Otherwise, find f ∈ F ′ which

violates the constraint.
3. Update h with f and repeat.

Previous proofs in the framework are different in how they update h and
correspondingly how they prove the convergence. If the algorithm converges fast
and each update does not take too much time, we can get an efficient simulator.
Starting from [TTV09], then followed [JP14] and [Skó16a], they use additive up-
date on the probability mass function of each h(x). However, additive update
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may cause negative weights, so they need an extra efforts (Both algorithm-wise
and complexity-wise) to fix it. Vadhan and Zheng use multiplicative weight up-
date instead [VZ13], which not only avoids the issue above but also converges
faster. However, the number of bits to represent weights increases drastically
after multiplications, and that causes the O(2`ε−4) additive term in the com-
plexity. Since the backbone of our algorithm is same as in [VZ13], we review
their idea first in the next section, and then show how the additive term can be
eliminated in Section 3.3.

3.2 Simulate Leakage with MWU

In this section, we show how MWU algorithm helps in simulating auxiliary inputs
and why we can achieve the low round complexity. It is convenient to think Z
as a randomized function of X. That is, we can define g : {0, 1}n → {0, 1}` such
that Pr[g(x) = z] = Pr[Z = z|X = x], then (X,Z) = (X, g(X)). Essentially, the
goal is to find an “efficient function” h to simulate g.

Now we show that how the simulation problem problem is related to a zero-
sum game, thus can be solved via MWU algorithm. The first step is to remove the
one-sided error constraint. Let F ′ denote the closure of F under complement,
namely, F ′ = {f, 1 − f : f ∈ F}. Then the indistinguishability constraint is
equivalent to

∀f ∈ F ′ , E
h,x←X

[f(x, h(x))]− E
g,x←X

[f(x, g(x))] ≤ ε.

Then consider the following zero-sum game: Player 1 choose a simulator h, Player
2 choose a distinguisher f , and the payoff to Player 2 is

E
h,x←X

[f(x, h(x))]− E
g,x←X

[f(x, g(x))] .

One can get a bounded relative complexity of g by simply applying Lemma 2
with treating all functions from {0, 1}n to {0, 1}` as pure strategies of Player 1.
However, relative complexity is O(s · 2n`ε−2) and hence is inefficient. To solve
the above issue, Vadhan and Zheng observed that the marginal distribution of
X-part is fixed. Thus we can consider the MWU algorithm for every X = x,
where in each run of MWU, the Player 1 strategy space is simply a distribution
over {0, 1}`, hence the round complexity is merely O(`/ε2).

While the framework Vadhan and Zheng’s considered is more general, the
proof is also more complicated. Below we give a simpler proof which only uses
the no-regret property of MWU.8 Note that any no-regret algorithms for expert
learning will work for this proof. Indeed, by applying online gradient descent
instead of MWU we will get an additive boosting simulator. Nevertheless, multi-
plicative weight update is optimal in expert learning, which explains why MWU
converges faster than additive boosting proofs.

8 We say an online decision-making algorithm is no-regret if the average regret tends
to zero as T approaches infinity. See, e.g., [Rou16].
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Algorithm 2: Construction of Simulator h

1 Input: x ∈ {0, 1}n
2 Parameter: ε > 0

3 Let T = O(n/ε2), η =
√

logN/T .

4 For all z ∈ {0, 1}`, set wx(z) = 1.
5 Let h0 be a randomized function such that Pr [h0(x) = z] ∝ wx(z).
6 for t = 1 → T do
7 Let ft ∈ F ′ = arg maxf∈F′ Eht−1,x←X [f(x, ht−1(x))]− Eg,x←X [f(x, g(x))].

8 if Eht−1,x←X [f(x, ht−1(x))]− Eg,x←X [f(x, g(x))] ≤ ε then
9 Return ht−1(x) as the output h(x)

10 For all z ∈ {0, 1}`, set wx(z) = wx(z) · (1− η)ft(x,z)

11 Let ht be a randomized function such that Pr [ht(x) = z] ∝ wx(z).

12 Return hT (x) as the output h(x)

Lemma 3. Let X be a distribution over {0, 1}n and g : {0, 1}n → {0, 1}` be a
randomized function. For a given error parameter ε, the function h defined by
Algorithm 2 satisfies

∀f ∈ F ′ , E
x←X

[f(x, h(x))]− E
x←X

[f(x, g(x))] ≤ ε.

Proof. For a fixed x, if there exists f ∈ F ′ such that

E
h

[f(x, h(x))]− E
g

[f(x, g(x))] > ε,

then the algorithm returns at the line 12. That means for all t ∈ [T ], we have

E
ht−1

[ft(x, ht−1(x))]− E
g

[ft(x, g(x))] > ε, (1)

and so

1

T

T∑
t=1

E
ht−1

[ft(x, ht−1(x))]− 1

T

T∑
t=1

E
g

[ft(x, g(x))] > ε, (2)

However, by Corollary 1, for every z ∈ {0, 1}`,

1

T

T∑
t=1

E
ht−1

[ft(x, ht−1(x))] ≤ 1

T

T∑
t=1

ft(x, z) + ε.

By taking z over g(x), we get a contradiction. Therefore, for all f ∈ F ,

E
h

[f(x, h(x))]− E
g

[f(x, g(x))] > ε.

Take the expectation of x over X, we conclude the lemma.
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3.3 Efficient Approximation

Algorithm 2 provides a simulator which fools all distinguishers in F by error
up to ε. However, we have only proved a bound for the number of iterations,
but not for the complexity of hT itself. Actually, the circuit complexity of a
naive implementation of Algorithm 2 is not better than using additive boosting.
Nevertheless, we will show that there exists an efficient way to implement hT
approximately, of which the complexity is not much larger than evaluating the
distinguishers T times.

In below, we assume all functions f ∈ F has circuit compleixty at most s.
From Algorithm 2, we can see hT (x) returns z with probability proportional to
(1−η)

∑
i fi(x,z). A natural way to approximate hT is to compute (1−η)

∑
i fi(x,z)

for each z and apply a rejection sampling. Without loss of generality, we can
assume that (1 − η) can be represented in O(log 1

η ) bits, and thus, it takes at

most O(k log 1
η ) to represent (1 − η)k for k ∈ N. Since

∑
i fi(x, z) is at most

T , it takes O(Ts + T 2 log2 1
η ) complexity to compute (1 − η)

∑
i fi(x,z) by naive

multiplication, or O(Ts+T 2 log T log 1
η ) via lookup table. Therefore there exists

an approximation of hT of size O((T 2 log2 1
η + Ts) · 2`), which is Õ(s · 2`ε−2 +

2`ε−4)) after expanding T and η. This is the complexity claimed in [VZ13]. As
mentioned in [Skó16a], the Õ(2`ε−4) term may dominate in some settings, so
the bound in [VZ13] is not always better.

Now we state the idea of approximating normalized weights efficiently. Ob-
serve that weights are of the form (1− η)

∑
i fi(x,z). If the total weight is guaran-

teed to be at least 1, then intuitively, truncating the weight at each z ∈ {0, 1}`
a little amount does not influence the result distribution too much. Hopefully, if
the truncated values can be stored with a small number of bits, a lookup table
which maps

∑
i fi(x, z) to the truncated value of (1 − η)

∑
i fi(x,z) is affordable.

In the lemma below we formalize the above intuition.

Lemma 4. Suppose there are two sequences of positive real numbers {γi}i∈[n],
{wi}i∈[n] such that ∀i ∈ [n], γi ≤ wi. Let r =

∑
i γi/

∑
i wi and X,X ′ be a

distribution over [n] such that Pr [X = i] ∝ wi and Pr [X ′ = i] ∝ (wi − γi),
respectively. Then ∆(X,X ′) ≤ r

1−r .

Proof.

∆(X,X ′) =
1

2

∑
z

∣∣∣∣ wz∑
i wi
− wz − γz∑

i(wi − γi)

∣∣∣∣
=

1

2

∑
z

∣∣∣∣γz∑i wi − wz
∑
i γi

(
∑
i wi)

2(1− r)

∣∣∣∣
≤ 1

2

∑
z

wz
∑
i γi + γz

∑
i wi

(
∑
i wi)

2(1− r)

=

∑
i wi

∑
i γi

(
∑
i wi)

2(1− r)
=

r

1− r

where the inequality follows from the triangle inequality.
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Corollary 3. Let h′ : {0, 1}n → {0, 1}` be a function which satisfies

Pr[h′(x) = z] =
(1− η)

∑
i fi(x,z) − γx,z∑

z′

(
(1− η)

∑
i fi(x,z

′) − γx,z′
)

where

γx,z ≤ min

{
(1− η)

∑
i fi(x,z) ,

η

2`(1 + η)
·
∑
z′

(1− η)
∑
i fi(x,z

′)

}
.

Then for any x ∈ X , h′(x) is η-close to hT (x).

By the above corollary, the following procedure gives a good approximation of
hT .

1. For every z ∈ {0, 1}`, compute Adv(x, z) =
∑
i fi(x, z)−minz′(

∑
i fi(x, z

′)).
This can be done by a circuit of size O(2` · (sT + T log T )).

2. Because there is z0 such that Adv(x, z0) = 0, we have
∑
z(1−η)Adv(x,z) ≥ 1.

Let k = O(` log(1/δ)) be the smallest integer which satisfies 2−k ≤ η
2`(1+η)

.

By Corollary 3, if we truncate (1− η)Adv(x,z) down to the closest multiple of
2−k, the corresponding distribution is still η-close to hT (x). Let h′(x) denote
the truncated distribution.

3. Observe that the truncated value is positive only if Adv(x, z) is less than
some threshold t = O(k/η). Therefore we can build a lookup table consists
of the truncated value of (1−η)j for j ∈ [t]. Such table is of size O(t log t ·k).
With this table we can query truncated value of (1− η)Adv(x,z) for each z.

4. By rejection sampling, we can sample a η-approximation of h′(x) in at most
O(2` log(1/δ)) rounds, and each round takes only O(k) time.

Let h∗ be the circuit which uses above steps to approximate hT . Since η = O(ε)
and h(x) is 2η-close to hT (x), we have

E
h,x←X

[f(x, h(x))]− E
g,x←X

[f(x, g(x))] ≤ ε+ 2η = O(ε)

for any f ∈ F ′. (Note that we can always rescale ε to make the final gap is at
most ε.) Since the complexity of the first step dominates all other steps, h is of
complexity O(2` · (sT + T log T )) = Õ(s · 2`ε−2).

4 Lower Bound for Leakage Simulation

We have seen that there exists an MWU algorithm which combines only O(`ε−2)
distinguishers to make a good simulator h. Besides, for every chosen distin-
guisher f the algorithm queries f(x, z) for every z ∈ {0, 1}` when computing
h(x). Therefore the algorithm makes O(`2`ε−2) queries in total. In the previous
section, we also showed that evaluating the O(`ε−2) chosen distinguishers is the
bottleneck of the simulation. Then a natural question arises: can we construct

11



a simulator which makes fewer queries? It might be possible to find a boosting
procedure using fewer distinguishers, or maybe we can skip some z ∈ {0, 1}`
when querying f(x, z) for some f . However, in this section we will show that
the MWU approach is almost optimal: any black-box simulator which satisfies an
independence restriction has to make Ω(2`ε−2) queries to fool the distinguishers.

4.1 Black-Box Model

To show the optimality of the MWU approach, we consider black-box simulation,
which means we only use only the distinguishers as black-box and does not rely
on how they are implemented. Note that all known results of leakage simulation
([JP14,Skó16a,VZ13]) are black-box. Indeed, all the leakage simulation results
are in the following form: first learn a set of distinguishers {f1, . . . , fq′} which
is common for each x, then query fi(x, z) for each z ∈ {0, 1}` and i ∈ [q′], and
finally combine them to obtain the distribution of h(x). The model we consider
is more general than this form, so it also rules out some other possible black-box
approaches.

Definition 3 (Simulator). Given a function g : {0, 1}n → {0, 1}`, a distribu-
tion X over {0, 1}n and a set F of functions {0, 1}n+` → {0, 1}, we say function
h : {0, 1}n → {0, 1}` is an (ε,X,F)-simulator of g if

∀f ∈ F ,

∣∣∣∣ E
g,x←X

[f(x, g(x))]− E
h,x←X

[f(x, h(x))]

∣∣∣∣ ≤ ε.
Definition 4 (Black-Box Simulator). Let `,m, a ∈ N and ε > 0. We say
an oracle-aid simulation circuit D(·) which takes two inputs x ∈ {0, 1}n and
α ∈ {0, 1}a is a black-box (ε, `,m, a)-simulator with query complexity q if it
satisfies the follows. For every function g : {0, 1} → {0, 1}`, distribution X over
{0, 1}n and a set of distinguishers F with |F| ≤ m, there exists α ∈ {0, 1}a
(which we call “advice string”) such that DF (·, α) is an (ε,X,F)-simulator for
g and D uses at most q oracle gates.

We say a black-box simulator is a same-input black-box simulator if for every
f ∈ F , D only queries f(x, ·) when computing on input x. We say a black-box
simulator is non-adaptive if the choice of the oracle queries (including the choice
of f and query input) does not depend on any response of the oracle.

Remark 1. A reasonable range of parameters are ε−1, 2`, log |F| < 2o(n) since
all the simulations we know is of complexity poly(ε−1, 2`, log |F|). Note that
when we consider F to be the set of every distinguisher of size at most s,
log |F| = O(s log s). Besides, we also assume a = 2o(n) so that the simulator
cannot trivially take α as an expression of g.

The lower bound we prove in this paper is for same-input black-box simulator.
The same-input assumption is also made in related works including
[LTW11,Zha11,PS16]. See the next section for more discussions about the black-
box models in related results.
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It is not hard to see that all the boosting approaches we mentioned above
are in this model: the advice α is of length O(q log |F|) and stands for “which
distinguishers should be chosen”, and D queries every chosen distinguisher f
with input (x, z) for every z ∈ {0, 1}` when computing DF,α(x). Moreover,
these simulation algorithms are non-adaptive. We can write the MWU approach
as the following corollary:

Corollary 4. For every 0 < ε < 1
2 , `,m ∈ N, there exists an non-adaptive

same-input black-box (ε, `,m, a)-simulator with query complexity q = O(`2`ε−2)
and a = Õ(q log |F|).

Besides capturing all known simulators, our lower bound also rules out the adap-
tive approaches. Whether there exists a faster simulation not satisfying the same-
input restriction is left open, but it is hard to imagine how querying different
input is useful.

4.2 Main Theorem and Related Results

Theorem 3. For every 2−o(n) < ε < 0.001, ` = o(n), ω(2`/ε3) < m < 22
o(n)

and a = 2o(n), a same-input black-box (ε, `,m, a)-simulator must have query
complexity q = Ω(2`ε−2).

Remark 2. For ε we require it to be smaller than some constant so that Bern( 1
2 +

Θ(ε)) is well defined. Besides, we also require the size of distinguisher set m to
be large enough to guarantee that the simulator must “simulate” the function
instead of fooling distinguishers one by one. As we saw in Remark 1, the range
of parameters here is reasonable.

Before this paper, there were some lower bounds either for Leakage Simu-
lation Lemma itself or for its implications. We classify these results by their
models as follows.

– Non-Adaptive Same-Input Black-Box Lower Bounds. Recall that
Leakage Simulation implies Hardcore Theorem and Dense Model Theorem.
Lu, Tsai and Wu [LTW11] proved an Ω(log( 1

δ )/ε2) lower bound for query
complexity in Hardcore Lemma proof where δ denotes the density of the
hardcore set. By taking δ = Θ(1) we can obtain an Ω(1/ε2) lower bound for
query complexity of Leakage Simulation. Similarly, Zhang [Zha11] proved
a lower bound for query complexity in Dense Model Theorem proof which
implies the same Ω(1/ε2) lower bound.9 Besides, Pietrzak and Skórski [PS16]
proved a Ω(2`/ε) lower bound for leakage chain rule, which also implies a
Ω(2`/ε) lower bound for Leakage Simulation. These lower bounds assume
both the non-adaptivity and the independence of inputs.10

9 The black-box model these results considered is more restricted. Actually, the black-
box model in [LTW11] does not contain Holenstein’s proof [Hol05]. Nevertheless,
their proof for query lower bound also works for the model we define here.

10 Interestingly, in the reduction from Leakage Chain Rule to Leakage Simulation,
there exists a distinguisher in the reduction which only need to be queried on one
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– Non-Adaptive Black-Box Lower Bounds. Impagliazzo [Imp95] proved
that the Hardcore Lemma implies Yao’s XOR Lemma [GNW95,Yao82], which
is an important example of hardness amplification. Since the reduction is
black-box, it is not hard to see that the Ω(log( 1

δ )/ε2) lower bound for hard-
ness amplification proved by Shaltiel and Viola [SV10] is also applicable to
Hardcore Lemma. Similarly, by setting δ = Θ(1) we get a Ω(1/ε2) lower
bound for Leakage Simulation. Moreover, this lower bound does not require
the same-input assumption.11 Nevertheless, the proof highly relies on non-
adaptivity.

– General Black-Box Lower Bounds. Artemenko and Shaltiel [AS11]
proved an Ω(1/ε) lower bound for a simpler type of hardness amplification,
and removed the non-adaptivity. Their result implies a general black-box
lower bound for Leakage Simulation, but the lower bound is far from optimal.

– Non-Black-Box Lower Bounds. Trevisan, Tulsiani and Vadhan show
that the simulator cannot be much more efficient than the distinguish-
ers [TTV09, Remark 1.6]. Indeed, for any large enough s ∈ N they construct
a function g such that any simulator h of complexity s can be distinguished
from g by a distinguisher of size Õ(ns). Jetchev and Pietrzak [JP14] also
show an Ω(2` ·s) lower bound under some hardness assumptions for one-way
functions.

None of the existing results imply an optimal lower bound for Leakage Sim-
ulation. However, proving a lower bound for Leakage Simulation might be a
simpler task, and it turns out that we can prove a lower bound of Ω(2`ε−2).
The basic ideas is as follows, and would be further explained in the proof. To
capture the 2` factor, for each distinguisher f and input x we hide information
at f(x, z) for a random z, similar to the proof in [PS16]. Then checking all z
over {0, 1}` is necessary. Although the claim seems trivial, the analysis would be
more complicated in our adaptive model. To capture the ε−2 factor, we utilize
the anti-concentration of almost uniform Bernoulli distribution Bern(1

2 +Θ(ε)),
so that Ω(1/ε2) samples are needed to distinguish it from uniform distribu-
tion with constant probability. A similar concept can be found for example in
[Fre95,LTW11,PS16]. Note that in [PS16] they only require an advantage of ε
when distinguishing such Bernoulli distribution from uniform, which causes an
O(1/ε) loss in complexity.

4.3 Proof of Theorem 3

Overview We would like to show that there exists a function g and a set of
distinguisher F such that any simulator h with limited queries to F cannot ap-
proximate g well. Since |F| is much larger than the number of queries, there exist
some distinguishers which can distinguish g and any bad simulator h “fairly”,

adaptively chosen input. In this case non-adaptivity causes a 2` additive loss. This
can be viewed as an evidence that adaptivity might be useful.

11 Actually, such assumption is not even natural in hardness amplification.
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i.e. these distinguishers are independent of h. Therefore more queries are re-
quired to successfully simulate g and fool F . We will prove the existence of g
and F by probabilistic argument.

To make the simulation task as hard as possible, let g be a random function.
Besides, for any distinguisher f ∈ F , let f(x, z) be a random bit drawn from
Bern( 1

2 +c1ε) for some constant c1 if z = g(x), or from Bern( 1
2 ) otherwise, so that

a query to f provides least possible information.12 To understand such setting,
we can imagine that there exists a random oracle O which takes input (x, z) and
only return biased bit at z = g(x) for each x. Then g(x) is considered as the key to
the oracle, and our goal is to find out the correct key. Each f ∈ F can be viewed
as a collection of samples from the oracle with certain randomness. Intuitively,
since f(x, g(x)) is only Θ(ε) away from uniform, f can distinguish g and any
bad simulator h which does not approximate g with constant probability. To
approximate g well, we need to test all 2` keys to find the correct one. Besides,
it requires Ω(1/ε2) samples to distinguish Bern( 1

2 + Θ(ε)) and Bern( 1
2 ) with

constant probability, so Ω(1/ε2) queries are required for each key to make sure
we can distinguish the real key from other fake keys. Therefore a successful
simulator h should make at least Ω(ε−22`) queries.

Now we proceed to the formal proof. Assume for contradiction that D is
a black-box (ε, `,m, a)-simulator with query complexity q ≤ c2(2`ε−2), where
c2 = 1

360000 . Let g : {0, 1}n → {0, 1}` be a random function such that for every
x ∈ {0, 1}n, g(x) is chosen uniformly at random from {0, 1}`. Let F be a set
of random function defined in previous paragraph, and we specify that c1 = 30.
First we prove that given any fixed advice string α, the decision function DF (, α)
cannot guess g correctly with high enough probability over the choice of F and
g.

Lemma 5. Fix α and let h = DF,α. For any x ∈ {0, 1}n, we have Pr[h(x) =
g(x)] ≤ 1− 3

c1
, where the probability is taken over the choice of g(x), f(x, ·) for

every f ∈ F (abbreviated as F(x)), and the randomness of h.

Proof. Without loss of generality, assume that h has no randomness other than
oracle queries. (We can obtain the same bound for probabilistic h by taking av-
erage over deterministic circuits.) We also assume that h always make q different
queries by adding dummy queries.

Consider h as a decision tree where queries are the nodes and different an-
swers represent different branches. For every fixed g(x) and F(x), the computa-
tion of h(x) corresponds to a root-to-leaf path denoted as t = {a1, . . . , aq} where
ai is the answer to the i-th query, and we call t transcript. Let T be a random
variable over {0, 1}q which represents such transcript. Note that the output of
h(x) is uniquely determined by its transcript. Let Dec : {0, 1}q → {0, 1}` denote
the corresponding decision function from transcript to output. Then we have

Pr[h(x) = g(x)] = Pr[Dec(T ) = g(x)] =
∑
t,k

Pr[T = t, g(x) = k,Dec(t) = k].

12 Note that F should be able to distinguish g from easy functions with advantage ε,
otherwise the simulation is trivial.
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To prove the upper bound for Pr[h(x) = g(x)], first we consider an ideal case such
that each function in F is an uniform random function. In this case, for every
(t, k) ∈ {0, 1}q × {0, 1}`, Pr[T ∗ = t, g(x) = k] = 2−(q+`) where T ∗ is the ideal
transcript, i.e., uniform distribution over {0, 1}q. Since for each t there exists
a unique k where Dec(t) = k, only 2q pairs (t, k) are correct (i.e. Dec(t) = k).
In such ideal case, we have Pr[h∗(x) = g(x)] = 2−` where h∗ denotes the ideal
variant of h. In the real case, Pr[T = t, g(x) = k] can be at most 2−`( 1

2 + c1ε)
q,

in the case that h queries with correct key in every query and all the responses
are 1. However, there does not exist too many extreme cases like this. Besides,
we have seen that most of the pairs (t, k) over {0, 1}q × {0, 1}` do not satisfy
Dec(t) = k. Therefore we can expect that a large fraction of pairs are normal
(i.e. chosen with probability Θ(2−(q+`))) and wrong (i.e. Dec(t) 6= k). Such
statement implies a lower bound for Pr[h(x) 6= g(x)].

Next we formally prove the statement above. Consider any transcript t =
{a1, a2, . . . , aq}. Recall that the queries made by h are uniquely determined by
t: the first query is fixed, the second query is determined by the first bit of t,
and so on. Let {z1, z2, . . . , zq} be the sequence of key such that the i-th query is
fi(x, zi) for some fi ∈ F . For any k ∈ {0, 1}`, t ∈ {0, 1}q, let ui denote the index
of the i-th useful query, which means the i-th index satisfying zui = k. Then
we define Nb(t, k) =

∑
i[aui = b] for b ∈ {0, 1}, which represents the number

of useful queries with response b. Besides, let N(t, k) = N0(t, k) + N1(t, k) and
N∆(t, k) = N0(t, k)−N1(t, k). Similarly, for j ≤ N(t, k), we define Nb(t, k, j) =∑j
i=1[aui = b] for b ∈ {0, 1} and N∆(t, k, j) = N0(t, k, j)−N1(t, k, j), which only

consider the first j useful queries. Recall that for any f ∈ F , f(x, z) is uniform
when z 6= g(x) and biased when z = g(x). For any fixed (t, k),

Pr[g(x) = k, T = t] =

(
1

2

)(`+q−N(t,k))(
1

2
− c1ε

)N0(t,k)(1

2
+ c1ε

)N1(t,k)

=

(
1

2

)(`+q)

(1− 2c1ε)
N∆(t,k) (

1− 4c21ε
2
)N1(t,k)

≥
(

1

2

)(`+q)

(1− 2c1ε)
N∆(t,k) (

1− 4c21ε
2
)N(t,k)

(3)

Therefore a pair (t, k) is normal if N∆(t, k) = O(1/ε) and N(t, k) = O(1/ε2).
We claim that a large enough fraction of pairs over {0, 1}q × {0, 1}` are wrong
and normal as following:

Claim. Let q′ = 5q/2` ≤ 5c2ε
−2. Then for at least 1

5 fraction of pairs (t, k) over
{0, 1}q × {0, 1}` satisfies the following conditions:

1. Dec(t) 6= k.
2. N(t, k) < q′.
3. N∆(t, k) <

√
5q′.

Proof. We will prove upper bounds for correct pairs and extreme cases to make
sure a large fraction of normal and wrong pairs are left. More precisely, we prove
upper bound for the contrary of each condition one by one.
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1. Only 2−` of pairs are correct:
This obviously holds because (t, k) is correct only when Dec(t) = k.

2. At most 1
5 of pairs (t, k) satisfy N(t, k) ≥ q′:

For any t we have Ek←U` [N(t, k)] = q
2`

. By Markov’s inequality, at most
q

2`q′
= 1

5 of pairs satisfy N(t, k) ≥ q′.
3. For at most 1

10 of pairs (t, k), N(t, k) < q′ and N∆(t, k) >
√

5q′:
Fix k. Let T ∗ be a random transcript which is uniform over {0, 1}q. Consider
a sequence of random variable {Yj} depending on T ∗ such that

Yj =

{
N∆(T ∗, k, j), if j < N(T ∗, k)

N∆(T ∗, k), otherwise.

It’s not hard to see that {Yi} is a martingale with difference at most 1. By
Azuma’s inequality, we have Pr[Yq′ ≥

√
5q′] ≤ e−5q

′/2q′ < 0.1. Since T ∗ is
uniform, the statement above is the same as saying for at most 0.1 fraction
of t ∈ {0, 1}q, Yq′(t) ≥

√
5q′. When restricted to t satisfying N(t, k) < q′ we

have N∆(t, k) = Yq′(t) ≥
√

5q′.

By union bound, all three conditions in the claim hold simultaneously for at
least 1

5 of pairs over {0, 1}q × {0, 1}`.

Now consider any pair (t, k) which satisfies condition 2 and 3 in the claim
above, in other word a normal pair. By inequality (3), we have

Pr[g(x) = k, T = t] ≥ (1/2)
(`+q)

(1− 2c1ε)
N∆(t,k)(1− 4c21ε

2)N(t,k)

≥ (1/2)
(`+q)

(1− 2c1ε)
√
5q′(1− 4c21ε

2)q
′

(4)

= (1/2)
(`+q)

(1− 2c1ε)
5
√
c2ε
−1

(1− 4c21ε
2)5c2ε

−2

≥ (1/2)
(`+q)

(0.3)10c1
√
c2(0.3)20c

2
1c2 (5)

≥ (1/2)
(`+q) · 0.5 (6)

The inequality (5) holds because (1 − δ)1/δ ≥ 0.3 for any 0 < δ ≤ 0.1. Since 1
5

of pairs satisfy the conditions above, we have

Pr[h(x) 6= g(x)] =
∑
k,t

[g(x) = k, T = t,Dec(t) 6= k] ≥ 0.1. (7)

Therefore Pr[h(x) = g(x)] ≤ 0.9 = 1− 3
c1

.

With the lemma above, we can finish the proof simply with a concentra-
tion bound and probabilistic method. Consider the probabilistic distinguisher
fR which is a uniform distribution over all distinguishers in F . Fix any advice
α and consider h(·) = DF (·, α). For any x ∈ {0, 1}n, f ∈ F such that f is not
queried by h(x), we have E [f(x, h(x))] = 1

2 + Pr[h(x) = g(x)] · c1ε by definition
of f . Since h makes at most q query when computing h(x), fR chooses a query
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coincident with queries in h with probability q
m . Even in the worst case that fR

returns 1 in all these cases, we still have

E [fR(x, g(x))] ≤ 1

2
+ Pr[g(x) = h(x)] · c1ε+

q

m
(8)

≤ 1

2
+ (c1 − 2)ε (9)

because m is large enough. Also we have E [fR(x, g(x))] = 1
2 + c1ε by definition.

Therefore, E [fR(x, g(x))− fR(x, h(x))] ≥ 2ε. Let X be the uniform distribu-
tion. Note that for different x, g(x) and F(x) are chosen independently. There-
fore Eh [fR(x, g(x))− fR(x, h(x))]13 for each x are independent random vari-
ables since it is only influenced by randomness of g(x) and F(x). By Chernoff-
Hoeffding bound, Ex←X [fR(x, g(x)) − fR(x, h(x))] < ε holds with probability

2−Ω(ε22n) over the choice of F and g. By taking union bound over α, we have

∀α ∈ {0, 1}2
o(n)

, E
x←X

[
fR(x, g(x))− fR(x,DF (x, α))

]
≤ ε (10)

with probability 2−Ω(ε22n)+2o(n)

, which is less than 1 for large enough n. By the
probabilistic argument there exists a function g and a set F such that

E
x←X

[fR(x, g(x))− fR(x,DF (x, α))] > ε. (11)

By averaging argument, for any α, there exists f ∈ F such that f can distinguish
(X,DF (X,α)) and (X, g(X)). Therefore the simulation fails no matter what α
is, which contradicts to our assumption. Thus there is no simulator with query
complexity c2(2`ε−2).

To summarize, we proved an Ω(2`ε−2) lower bound for black-box (ε, `, k, a)-
simulator, while the upper bound is only O(`2`ε−2). Note that in order to apply
Chernoff bound, we need the same-input assumption (i.e. D(x) cannot query
F(x′) for x′ 6= x) to guarantee the independence of different x, even though
querying with different input seems useless. A general black-box tight lower
bound is left for future work.
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PS16. Krzysztof Pietrzak and Maciej Skórski. Pseudoentropy: Lower-bounds for
chain rules and transformations. In Hirt and Smith [HS16], pages 183–203.

Rou16. Tim Roughgarden. No-Regret Dynamics, pages 230–246. Cambridge Uni-
versity Press, 2016.

RTTV08. Omer Reingold, Luca Trevisan, Madhur Tulsiani, and Salil P. Vadhan. Dense
subsets of pseudorandom sets. In 49th Annual IEEE Symposium on Founda-
tions of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia,
PA, USA [DBL08], pages 76–85.
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