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Abstract. An m output pseudorandom generator G : ({±1}b)n →
{±1}m that takes input n blocks of b bits each is said to be `-block
local if every output is a function of at most ` blocks. We show that
such `-block local pseudorandom generators can have output length at
most Õ(2`bnd`/2e), by presenting a polynomial time algorithm that dis-
tinguishes inputs of the form G(x) from inputs where each coordinate is
sampled from the uniform distribution on m bits.
As a corollary, we refute some conjectures recently made in the con-
text of constructing provably secure indistinguishability obfuscation
(iO). This includes refuting the assumptions underlying Lin and Tes-
saro’s [47] recently proposed candidate iO from bilinear maps. Specifi-
cally, they assumed the existence of a secure pseudorandom generator

G : {±1}nb → {±1}2
cbn as above for large enough c > 3 and ` = 2. (Fol-

lowing this work, and an independent work of Lombardi and Vaikuntan-
than [49], Lin and Tessaro retracted the bilinear maps based candidate
from their manuscript.)
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Our results actually hold for the much wider class of low-degree, non-
binary valued pseudorandom generators: if every output of G : {±1}n →
Rm (R = reals) is a polynomial (over R) of degree at most d with at
most s monomials and m ≥ Ω̃(sndd/2e), then there is a polynomial time
algorithm for distinguishing the output G(x) from z where each coordi-
nate zi is sampled independently from the marginal distribution on Gi.
Furthermore, our results continue to hold under arbitrary pre-processing
of the seed. This implies that any such map G, with arbitrary seed pre-
processing, cannot be a pseudorandom generator in the mild sense of
fooling a product distribution on the output space. This allows us to rule
out various natural modifications to the notion of generators suggested
in other works that still allow obtaining indistinguishability obfuscation
from bilinear maps.

Our algorithms are based on the Sum of Squares (SoS) paradigm, and in
most cases can even be defined more simply using a canonical semidef-
inite program. We complement our algorithm by presenting a class of
candidate generators with block-wise locality 3 and constant block size,
that resists both Gaussian elimination and sum of squares (SOS) algo-
rithms whenever m = n1.5−ε. This class is extremely easy to describe:
Let G be any simple non-abelian group with the group operation “∗”, and
interpret the blocks of x as elements in G. The description of the pseu-
dorandom generator is a sequence of m triples of indices (i, j, k) chosen
at random and each output of the generator is of the form xi ∗ xj ∗ xk.

1 Introduction

Understanding how “simple” a pseudorandom generator can be has been of
great interest in cryptography and computational complexity. In particular, re-
searchers have studied the question of whether there exist pseudorandom genera-
tors with constant input locality, in the sense that every output bit only depends
on a constant number of the input bits. Applebaum, Ishai and Kushilevitz [9]
showed that, assuming the existence of one-way functions computable by log-
depth circuits, there is such a generator mapping n bits to n + nε bits for a
small constant ε > 0. Goldreich [36] gave a candidate pseudorandom generator
of constant locality that could potentially have even polynomially large stretch
(e.g. map n bits to ns bits for some s > 1).5 The possibility of such “ultra sim-
ple” high-stretch pseudorandom generators has attracted significant attention
recently with applications including:

– Public key cryptography from “combinatorial” assumptions [8].
– Highly efficient multiparty computation [40].
– Reducing the assumptions needed for constructing indistinguishability ob-

fuscators (iO) [4,45,48,46,5,47].

5 While Goldreich originally only conjectured that his function is a one-way function,
followup work has considered the conjecture that it is a pseudorandom generator,
and also linked the two questions (see e.g., [6,11]; see also Applebaum’s survey [7]).
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The last application is perhaps the most exciting, as it represents the most
promising pathway for basing this important cryptographic primitive on more
standard assumptions. Furthermore, this application provides motivation for
considering qualitatively different notions of “simplicity” of a generator. For
example, it is possible to relax the condition of having small input locality to
that of just having small algebraic degree (over the rationals), as well as allow
other features such as preprocessing of the input and admitting non-Boolean
outputs.

At the same time, the application to obfuscation emphasizes a fine-grained
understanding of the quantitative relationship between the “simplicity” of a
generator (such as its locality, or algebraic degree) and its stretch (i.e., ratio
of output and input lengths). For example, works of Lin and Ananth and Sahai
[46,5] show that a generator mapping n bits to n1+ε bits with locality 2 implies an
obfuscation candidate based on standard cryptographic assumptions – a highly
desired goal, but it is known that it is impossible to achieve super-linear stretch
with locality four (let alone two) generator [52].

Very recently, Lin and Tessaro [47] proposed bypassing this limitation by
considering a relaxation of locality to a notion they referred to as block locality.
They also proposed a candidate generator with the required properties. If such
secure PRGs exist, this would imply obfuscators whose security is based on
standard cryptographic assumptions, a highly desirable goal. Ananth et al. [3]
observed that the conditions can be relaxed further to allow generators without a
block structure, and even allow non-Boolean outputs, but their method requires
(among other restrictions) that each output is computed by a sparse polynomial
of small degree.

In this paper we give strong limitations on this approach, in particular giving
negative answers to some of the questions raised in prior works. While a priori,
questions of algebraic flavor, such as the difference between the power of bilinear
vs trilinear maps, and those of combinatorial essence such as the difficulty of
refuting random constraint satisfaction instances might seem unrelated, it turns
out that techniques useful in the study of CSP refutation yield a barrier that,
somewhat surprisingly, seems to exactly correspond to what is needed to bypass
the ”trilinear map barrier” for obfuscation constructions.

We complement our negative results with a simple construction of a candidate
degree three pseudorandom generator which resists known attacks (Gaussian
elimination and sum-of-squares algorithms) even for output length n1+Ω(1).

1.1 Our Results

To state our results, let us define the notion of the image refutation problem for
a map G that takes n inputs into m outputs (e.g., a purported pseudorandom
generator). Looking ahead, we will allow maps to have non-Boolean outputs.6

6 Allowing non-Boolean output can make a significant difference. For example, [50,
Theorem 6.1] show that every degree two Boolean-valued function on {±1}n depends
on at most four variables, which in particular means that it cannot be used as the
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Informally, the image refutation problem asks for a efficiently computable cer-
tificate for a random string not being in the image of a purported generator
G.

Definition 1.1 (Refutation problem). Let G : {±1}n → Rm and Z be a dis-
tribution over Rm. An algorithm A is said to solve the G-image refutation prob-
lem w.r.t Z if on input z ∈ Rm, A outputs either ”refuted” or ”?” and satisfies:

– If z = G(x) for some x ∈ {±1}n then A(z) = ”?”.
– Pz∼Z [A(z) = ”refuted”] ≥ 0.5

Note that in particular if Z is the uniform distribution over {0, 1}m, then the
existence of an efficient algorithm that solves the G image refutation problem
with respect to Z means that G is not a pseudorandom generator - in fact, an
image refutation algorithm, with probability at least 1/2, shows that a random
string from {±1}m is not in the image of G.

Remark 1.2 (Refutation vs Distinguishing). It is instructive to contrast the al-
gorithmic tasks of image refutation with the easier task of distinguishing the
output of a pseudorandom generator from a uniformly random string. In the
latter case, we are typically concerned with distinguishing the output distribu-
tion of a generator G : {±1}n → {±1}m when the input is chosen according to
the uniform distribution on {±1}m. It’s easy to see that a refutation algorithm
immediately yields a distinguisher. In general, refutation, however can be more
powerful. For example, a refutation algorithm can distinguish between the uni-
form distribution on {±1}m from the output distribution of the generator even
under arbitrary distributions on the seed. Thus, an image refutation algorithm
rules out not only the natural PRG construction but also natural modifications
that involve using some non-trivial pre-processing on the seed before inputting
it into the generator, thus modifying the input distribution. Such modifications
were in fact suggested for candidate constructions of iO from bilinear maps in
the concurrent work of [49]. While a distinguisher for the original PRG may fail
after this modification, a refutation algorithm continues to work. As we discuss
later, this is one of the key differences in our approach from that of [49].

Our first result is a limitation on generators with “block locality” two:

Theorem 1.3 (Limitations of two block local generators). For every n,
b, let G : {±1}nb → {±1}m be such that, if we partition the input into n blocks of
size b, then every output of G depends only on variables inside two blocks. Then,
there is an absolute constant K such that if m > K · 22bn log2 n, then there
is an efficient algorithm for the G-image-refutation problem w.r.t. the uniform
distribution over {±1}m.

basis for a pseudorandom generator with super-linear output length. It also allows
us to consider polynomials that only take the values in {±1} on a subset of their
inputs.
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Theorem 1.3 yields an attack on the aforementioned candidate pseudorandom
generator proposed by Lin and Tessaro [47] towards basing indistinguishability
obfuscator on bilinear maps, as well as any other candidate of block-locality 2
compatible with their construction.

A special case that has been of considerable interest in literature is one where
all outputs of the PRG are computed by the same two-block-local predicate
P : {±1}b → {±1}b → {±1}. For this case, we give an image refutation algorithm
that works whenever the stretch m = Ω̃(n2b). 7

Theorem 1.4 (Limitations of two block local generators with a single
predicate, Theorem 5.3). For every n, b, let G : {±1}nb → {±1}m be such
that, if we partition the input into n blocks of size b, then every output of G is the
same predicate P applied to two b-bit blocks. Then, there is an absolute constant
K such that if m > K · 2bn log2 n, then there is an efficient algorithm for the
G-image-refutation problem w.r.t. the uniform distribution over {±1}m.

Yet another special case of interest is where the candidate generator obtained
is chosen at random: that is, the m pairs of blocks used to compute the output
are chosen at random and, further, each predicate computing an output is chosen
randomly and independently conditioned on being balanced. For this case, we
show (in Theorem 5.4, Section 5.3) that we can again improve our bound on the
output length from Õ(22bn) to Õ(2bn):

Our next result applies to any degree d map, and even allows maps with
non-Boolean output. For the refutation problem to make sense, the probabil-
ity distribution Z must be non-degenerate or have large entropy, as otherwise
it may well be the case that z ∼ Z is in the image of G with high probabil-
ity. For real-valued distributions, a reasonable notion of non-degeneracy is that
the distribution does not fall inside any small interval with high probability.
Specifically, if we consider normalized product distributions (where EZi = 0
and EZ2

i = 1 for every i and the Zi are independent), then we say that Z is
c-spread (see Definition 4.1) if it is a product distribution and P[Zi 6∈ I] ≥ 0.1
for every interval I ⊆ R of length at most 1/c (where we can think of c as a
large constant or even a poly-logarithmic or small polynomial factor).

If Z is supposed to be indistinguishable from G(U), where U is the uni-
form distribution over {±1}n, then these two distributions should agree on the
marginals and in particular at least on their first and second moments. Hence,
we can assume that the map G has the same normalization as Z, meaning that
EG(U)i = 0 and EG(U)2i = 1.8 Our result for general low degree generators is
the following:

Theorem 1.5 (Limitations on degree d generators). Suppose that
G : {±1}n → Rm is such that for every i ∈ [m] the map x 7→ G(x)i is a nor-
malized polynomial of degree at most d with at most s monomials. Let Z be a

7 Unlike the other results in this paper, Theorem 1.4 builds upon the concurrent work
[49]. See Section 1.3 for a detailed comparison between this work and [49].

8 We say that G is normalized if it satisfies these conditions. Clearly, any map can be
normalized by appropriate shifting and scaling.
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c-spread product distribution over Rm. Then, there is some absolute constant K
such that if m ≥ Kc2sndd/2e log2 n, then there is an efficient algorithm for the
G-image-refutation problem w.r.t. Z.

We believe the dependence on the degree d can be improved in the odd case
from dd/2e to d/2. Resolving this is related to some problems raised in the CSP
refutation literature (e.g., see [60, Questions 5.2.3,5.2.7,5.2.8]).

While for arbitrary polynomials we do not know how to remove the restriction
on sparsity (i.e., number of non-zero monomials s), we show in Section 4 that
we can significantly relax it in several settings. Moreover, the applications to
obfuscation require generators that are both low degree and sparse; see Section 2.
Nevertheless, we view eliminating the dependence on the sparsity as the main
open question left by this work. We conjecture that this can be done, at least in
the pseudorandom generator setting, as paradoxically, it seems that the only case
where our current algorithm fails is when the pseudorandom generator exhibits
some “non-random” behavior. Improving this is related to obtaining better upper
bound on the stretch of block-local generators.

Up to the dependence on sparsity, Theorem 1.5 answers negatively a question
of Lombardi and Vaikuntanathan [50, Question 7.2], who asked whether it is

possible to have a degree d pseudorandom generator with stretch nd
3
4de+ε. It

was already known by the work of Mossel et al. [52] that such output length
cannot be achieved by d-local generators; our work shows that, at least for no(1)-
sparse polynomials, relaxing locality to the notion of algebraic degree does not
help achieve a better dependency .

All of our results are based on the same algorithm: the sum of squares (SOS)
semidefinite program ([59,55,44]; see the lecture notes [16]). This is not surprising
as for refuting CSPs, semidefinite programs in general and the sum-of-squares
semi-definite programming hierarchy in particular are the strongest known gen-
eral tools [56,43]. This suggests that for future candidate generators, it will be
useful to prove resilience at least with respect to this algorithm. Fortunately,
there is now a growing body of techniques to prove such lower bounds.

Here, we establish that the sum-of-squares algorithm cannot be used to give
an attack on PRGs with stretch O(n2b). Note that the sum of squares algorithm
captures all the techniques in literature for efficiently refuting (non-linear) ran-
dom CSPs including the algorithms in this paper and the work of [49]. Our lower
bound on the sum of squares algorithm below shows that using such techniques,
one cannot hope to attack two-block-local PRGs with stretch at most O(n2b) -
for the case of identical predicates computing all outputs of the generator, this,
in particular, establishes the optimality of our analyis of any technique captured
by the sum of squares framework.

Concretely, in Section 6, we show that there is a natural sum-of-squares
resistant construction with a stretch of Θ̃(n2b). We stress that this PRG is only
secure against a sum-of-square algorithm, and is actually insecure outside the
sum-of-squares framework.
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Theorem 1.6 (See Theorem 6.1 for a formal version). For any b ≥
10 log log (n), there is a construction of a two-block-local PRG G : ({±1}b)n →
{±1}m for m = Ω(n2b) such that degree-Θ(n/24b) sum of squares algorithm
cannot solve the refutation problem for G.

For example, for b < ε/4 log (n), the above results rules out an attack on Ω(n2b)-

stretch PRGs using SoS algorithm that runs in time ∼ 2n
1−ε

.
While our results give strong barriers for degree two pseudorandom genera-

tors, they do not rule out a degree three pseudorandom generator with output
length n1+Ω(1). Indeed, we show a very simple candidate generator that might
satisfy this property. This is the generator G mapping Gn to Gm where G is
some finite non-abelian simple group (e.g., the size 60 group A5), where for
every ` ∈ [m], the `th output of G(x) is obtained as

G(x)` = xi ∗ xj ∗ xk

for randomly chosen indices i, j, k and ∗ is the group operation. This generator
has block locality three with constant size blocks and also (using the standard
representation of group elements as matrices) has algebraic degree three as well.
Yet, it is a hard instance for the SOS algorithm which encapsulates all the
techniques used in this paper. While more study of this candidate’s security is
surely needed, there are results suggesting that it resists algebraic attacks such
as Gaussian elimination [35]. See Section 7 for details.

1.2 Prior Work

Most prior work on limitations of “simple” pseudorandom generators focused
on providing upper bounds on the output length in terms of the locality. Cryan
and Miltersen [27] observe that there is no PRG with locality 2 and proved that
there is no PRG with locality 3 achieving super linear stretch (i.e., having input
length n and output length n + ω(n) bits). Mossel, Shpilka, and Trevisan [52]
extended this result to locality 4 PRGs and constructed (non-cryptographic)
small-biased locality 5 generators with linear stretch and exponentially-small
bias. They also showed that a k local generator cannot have output length bet-
ter than O(2kndk/2e). Applebaum, Ishai, and Kushilevitz [9] showed that, under
standard cryptographic assumptions, there are locality 4 PRGs with sublinear-
stretch. Applebaum and Raykov [6,11] related the pseudorandomness and one-
wayness of Goldreich’s proposed one-way function [36] in some regime of param-
eters.

We focus on (algebraic) degree instead of locality of the predicate that is
used. There were few works in the past with this property (for example [31,10]).
Apart from this, another feature that distinguishes our work from much of the
prior works on pseudorandom generators is the focus on the refutation problem
(certifying that a random string is not in the image of the generator) as op-
posed to the decision problem (given the output of a uniformly random seed,
distinguish from a random string) or the search problem (given the output of
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a uniformly random seed, recover the seed). This is important for us since we
do not want to make the typical assumption that the input (i.e., seed) to the
pseudorandom generator is uniformly distributed, as to allow the possibility of
preprocessing for it.

The refutation problem was extensively studied in the context of random
constraint satisfaction problems (CSPs). The refutation problem for a k-local
generator with n inputs and m outputs corresponds to refuting a CSP with n
variables and m constraints. Thus, the study of limitations for local generators
is tightly connected to the study of refutation algorithm for CSPs. Most well
studied in this setting is the problem of refuting random CSPs - given a random
CSP instance with a predicate P , certify that it is far from satisfiable with high
probability. There is a large body of works on the study of refuting random and
semirandom CSPs, starting with the work of Feige [28].9

In particular, we now know tight relations between the arity (or locality)
of the predicates and the number of constraints required to refute random in-
stances [1,56,43] using the sum-of-squares semidefinite programming hierarchy -
the algorithm of choice for the problem.

Most relevant to the current paper are works from this literature that deal
with predicates that have large arity but have small degree d (or the related no-
tion of not supporting (d+ 1)-wise independent distribution). Allen, O’Donnell,
and Witmer [1] showed that random instances of such predicates can be refuted
when the number of constraints m is larger than Õ(kdnd/2). In his thesis pro-
posal, Witmer [60] sketched how to generalize this to the semirandom setting,
though only for the case of even degree d. This is related to the questions consid-
ered in this work for higher degree, though our model is somewhat more general,
considering not just CSPs but arbitrary low-degree maps.

The notion of ` block locality is equivalent to the notion of CSPs of arity `
over a large alphabet (specifically, exponential in the block size). Though much of
the CSP refutation and approximation literature deals with CSPs over a binary
alphabet, there have been works dealing with larger alphabet (see e.g., [1]). The
work of [15] gives an SOS based algorithm for 2-local CSPs over large alphabet
(or equivalently, 2 block-local CSPs) as long as the underlying constraint graph
is a sufficiently good expander. However, their algorithm (at least their analysis)
has an exponential dependence in the running time on the alphabet size which
is unsuitable for our applications.

The main technical difference between our work and prior results in the CSP
literature, is that since for CSPs we often think as the arity as constant, these
works often had poor dependence on this parameter, whereas we want to handle
the case that it can be as large as nε or in some cases even unrestricted. Another
difference is that in the cryptographic setting, we wish to allow the designer of a
pseudorandom generator significant freedom, and this motivates studying more

9 In a random CSP the graph of dependence between variables and constraints is
random, and we also typically consider adding a random pattern of negations or
shifts to either the inputs or the outputs of the predicates. In semirandom instances
[29,30], the graph is arbitrary and only this pattern of negations or shifts is random.
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challenging semirandom models than those typically used in prior works. We
discuss these technical issues in more depth in Section 3.

The algorithms in almost all the refutation works in the CSP literature can be
encapsulated by the sum of squares semidefinite programming hierarchy. Some
lower bounds for this hierarchy, showing tightness of these analysis, were given
in [13,54,43]. For the alphabet-size sensitive setting of block-local PRGs, we give
a lower bound in Section 6.

1.3 Comparison with [49]

In a concurrent and independent work, Lombardi and Vaikuntanathan [49] also
analyzed the possibility of a secure block-wise local PRG motivated by the work
of Lin and Tessaro [47]. They show that there exists an efficient polynomial-
time distinguisher with the following property: for any m ≥ Ω̃(n2b) and any
predicate P : {±1}b × {±1}b → {±1} in two blocks of size b, there’s an efficient
distinguishing algorithm for the following two distributions over {±1}m: 1) the
uniform distribution on {±1}m and 2) the output distribution of Goldreich’s
PRG GH : ({±1}b)n → {0, 1}m instantiated with a random graph H and the
single predicate P computing all m outputs when given a uniformly random nb
bit string as input. 10

We point out the major differences between our results on block-local PRGs
and that of [49] here.

1. Distinguishing vs Refutation: As discussed in Remark 1.2, our approach
yields the stronger refutation guarantees while that of [49] yields a dis-
tinguisher. This allows us to show that reinforcing the block-local (or low-
degree, more generally) PRGs by allowing arbitrary input preprocessing can-
not lead to a larger stretch. This is important, as preprocessing is OK to do
in the context of the applications for obfuscation, and in fact this was one of
the avenues suggested for bypassing these general type of negative results.

2. Single Predicates vs Multiple Predicates: The work of [49] only applies to
the PRGs where each output is computed using the same predicate. Our
approach shows that block-local (or low-degree) PRGs cannot achieve large
enough stretch even if each output is computed using a different predicate -
a priori, one could hope that using different predicates for different outputs
could add significantly to the stretch of the PRG. This bottleneck is in fact
inherent in the technical approach of [49]. In particular, our approach allows
us to analyze the natural candidate for 2-block-local generator obtained by
applying independently chosen multiple random predicates to randomly cho-
sen pairs of input blocks and yields an Õ(2bn) upper bound on their stretch,
see Section 5.3.

3. Random Graph vs Arbitrary Graphs: The work of [49] only handles block-
local PRGs when the underlying graph G defining the generator is chosen

10 We learned that in an updated version of [49], they use a refutation algorithm from
our work to extend their distinguisher to the case when the graph H is arbitrarily
chosen.
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at random. This was because [49] relied on CSP refutation results that work
under the assumption of the instance being random.

4. Special Case of Single Predicate Block-Local PRGs: For the PRGs with all
outputs computed by a single predicate, [49] show a distinguisher that works
whenever the stretch of the PRG is Ω(n2b). For this case, we show that our
algorithm in fact guarantees image refutation at the same stretch require-
ment. (A previous version of our work didn’t include this result on PRGs
with single predicate.) Our refutation algorithm (Theorem 1.4) is in fact
inspired by the application of the Chor-Goldreich Lemma in the work of
[49].

We note that the three first differences: image refutation as opposed to dis-
tinguishing, allowing different predicates as opposed to a single predicate, and
using arbitrary graphs as opposed to random graphs, exactly correspond to the
open questions raised by [49].11 Thus, our results block all the approaches that
[49] identified as potential strategies for repairing the iO candidate. This sug-
gests that, rather than a ”patchable problem”, there is perhaps a fundamental
barrier to this approach of obtaining iO from bilinear maps.

1.4 Paper Organization

Section 2 explains the connection between simple generators and the construc-
tion of indistinguishability obfuscator. This explanation allows us to draw the
conclusion that our algorithm renders recently proposed methods ineffective for
constructing obfuscation from standard cryptographic assumptions. For those
interested in additional details, the full version [12, Appendix B] contains more
information about constructing obfuscators and in particular on the result of
[47]. In Section 3, we provide a high level overview of our algorithmic tech-
niques. Section 4 contains our main algorithm and analysis, and in particular
proves Theorem 1.5. We use standard tools from the SDP/SOS literature that
can be found in Appendix A. In Section 5 we focus our attention on pseudo-
random generators with small block-locality and show tighter results than those
achieved by our general analysis, in particular we prove Theorem 1.3 as well as
an even tighter result for generators with single predicates (Theorem 5.3) and
random two-block-local PRGs (Theorem 5.4). In Section 6, we show that sum-of-
squares algorithm cannot be used to prove sharper upper bounds on the stretch
than ∼ n2b. Finally, in Section 7 we present our class of candidate block-local
generators.

2 Relating Simple Generators and Program Obfuscators

A program obfuscator [38,14] is a compiler that given a program (say represented
as a Boolean circuit) transforms it into another “scrambled” program which
is functionally equivalent but its implementation details are “hidden”, making

11 See Section 5 on page 12 of https://eprint.iacr.org/2017/301/20170409:183008.

https://eprint.iacr.org/2017/301/20170409:183008
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it hard to reverse-engineer. The study of indistinguishability obfuscation (iO)
stands at the forefront of cryptographic research in recent years due to two
main developments. Firstly, Garg et al. [33] suggested that this notion might
be achievable given sufficiently strong cryptographic multilinear maps, for which
a candidate construction was given by [32]. Secondly, it was shown by Sahai
and Waters [58] and numerous follow-up works that iO is extremely useful for
constructing a wide variety of cryptographic objects, many of which are unknown
to exist under any other assumption.

A fundamental question in the construction of iO from multilinear maps is the
level of multilinearity. Without going into details, this essentially corresponds to
the highest degree of polynomials that can be evaluated by this object. Whereas
multilinear maps of level 2, a.k.a bilinear maps, can be constructed based on pair-
ing on elliptic curves [41,17] and have been used in cryptographic literature for
over 15 years, the first obfuscation candidates required polynomial level (in the
“security parameter” of the scheme). Proposed constructions of multilinear maps
for level > 2 have only started to emerge recently [32,25,26,34] and their security
is highly questionable. Indeed, many concrete security assumptions were shown
to be broken w.r.t all known candidates with level > 2 [18,24,21,39,20,22,51].

A beautiful work of Lin [45], followed by [48,46,5], showed that the required
level of multilinearity can be reduced to a constant (ultimately 5 in [46,5]).
These works show a relation between the required multilinearity level and the
existence of “simple” pseudorandom generators (PRGs). At a rudimentary level,
the PRGs are used to “bootstrap” simple obfuscation-like objects into full-
fledged obfuscators. This approach requires PRGs mapping {0, 1}n to {0, 1}m
with m = n1+Ω(1), which can be represented as low-degree polynomials over R.

More accurately, for a security parameter λ and large enough n, the re-
quired output length is m = n1+ε · poly(λ), for some fixed polynomial poly(·)
which is related to the computational complexity of evaluating the underlying
cryptographic primitives. One can ensure this condition as long as the output
length is at least n1+Ω(1) by setting n to be a sufficiently large polynomial in
λ. The situation complicates further when trying to optimize the concrete con-
stant corresponding to the level of multilinearity by means of preprocessing as in
[46,5,47]. The stretch bound needs to hold even with respect to the preprocessed
seed length (see the full version [12, Appendix B] for more details).

Lin [46] and Ananth and Sahai [5] instantiated this approach with locality-5
PRGs, which can trivially be represented as degree 5 polynomials. Their main
insight was that for constant locality PRGs, preprocessing only blows up the
seed by a constant factor. However, even so, the required stretch is impossible
to achieve with locality smaller than 5 [52].

Implications of our Work to Candidate Bilinear-Maps-Based Constructions.
Very recently, Lin and Tessaro [47] proposed an approach to overcome the lo-
cality barrier and possibly get all the way to an instantiation of iO based on
bilinear maps. This could be a major breakthrough in cryptographic research,
allowing to base “fantasy” cryptography on well studied hardness assumptions.
Lin and Tessaro showed that it is sufficient if the PRG has low block-wise locality
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for blocks of logarithmic size. Namely, if we consider the seed of the PRG as an
b×n matrix for b = O(log n), then each output bit can be allowed to depend on `
columns of this matrix. The required output length is m = 2c·bn1+Ω(1) for some
constant c. An explicit value for c is not given, but the construction requires
c > 3 which seems to be essential for this approach (see the full version [12, Ap-
pendix B]).Block-wise locality allows a possible way to bypass the impossibility
results for standard (i.e., bitwise) locality, and indeed Lin and Tessaro conjec-
tured that there is a pseudorandom generator with output length n1+Ω(1) and
block-wise locality ` = 2, and proposed a candidate construction.

Theorem 1.3 shows that generators with block-wise locality 2 cannot have
the stretch required by the [47] construction, thus suggesting that their current
techniques are insufficient for achieving obfuscation from bilinear maps. While
our worst-case result leaves a narrow margin for possible improvement of the
obfuscation reduction to work with 1 < c < 2, our improved analysis for random
graphs and predicates (see Theorem 5.4 in Section 5.3) suggests that our methods
may be effective, at least heuristically, for generators with any c > 1.

Ananth et al. [3] observed that there is a way to generalize the [47] approach,
so that it is sufficient that the range of the PRG is not {0, 1}, but rather some
small specified set, so long as the degree (as a polynomial over the rationals) is
bounded by the level of multilinearity. Furthermore, pseudorandomness was no
longer a requirement, but rather it is only required that the output of the gener-
ator is indistinguishable from some product distribution (in particular, the one
where each output entry is distributed according to its marginal). This suggests
that perhaps a broader class of generators than ones that have been considered
in the literature so far are useful for reducing the degree of multilinearity. How-
ever, their approach imposes a number of restrictions on such generators in order
to be effective. In particular, it requires preprocessing which increases the seed
length by a factor of sc, for some c > 1, where s is the number of monomials in
each output coordinate of the generator. Therefore, Theorem 1.5 rules out the
applicability of this technique for degree 2 generators, as well.

Supporting Evidence for Block-Wise Locality 3. We show that while the Lin-
Tessaro approach might not yet bring us all the way to level 2, it is quite plau-
sible that it implies a construction from tri-linear maps. Namely, that any im-
provement on the state of the art would imply full-fledged program obfuscators.
Specifically, as explained in Section 1.1, we present a candidate generator of
block-wise locality 3, with constant size blocks. We show that this candidate is
robust against algorithms such as ours, as well as other algorithmic methods.
See Section 7 for more details.

3 Our Techniques

In this section we give an informal overview of the proof of our main result,
Theorem 1.5 (i.e., limitations of low degree generators), focusing mostly on the
degree two case, and making some simplifying assumptions. For the full proof
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see Section 4. We also describe at a high level, the ideas involved in the im-
proved algorithm for the special cases of single-predicate generators (Theorem
1.4), random block-local generators (Theorem 5.4) and sum-of-squares lower
bound (Theorem 1.6) that shows a generator with stretch m = Ω(n2b) that is
resistant to sum-of-squares based attacks (an algorithm that encapsulates all our
techniques.)

As we observe in Section 3.1 below, Theorem 1.5 can be used in a black-box
way to obtain a slightly weaker variant of Theorem 1.3, showing limitations of
two block-local (and more generally ` block-local) generators. The full proof of
Theorem 1.3, with the stated parameters, appears in Section 5.

Our work builds on some of the prior tools used for analyzing local pseudoran-
dom generators and refuting constraint satisfaction problems, and in particular
relies on semidefinite programming. The key technical difference is that while
prior work mostly focused on generators/predicates with constant input locality
or arity, we consider functions that could have much larger input locality, but
have small degree. The fact that (due to our motivations in the context of ob-
fuscation) we consider mappings with non-Boolean output also induces an extra
layer of complexity.

We now describe our results in more detail. For simplicity, we focus on the
degree two case, which is the case that is of greatest interest in the application
for obfuscation. Recall that a degree-two map of Rn to Rm is a tuple of m degree
two polynomials p̄ = (p1, . . . , pm). We will assume that the polynomials are
normalized in the sense that E pi(U) = 0 and E pi(U)2 = 1 for every i. Let
Z be some “nice” (e.g., O(1)-spread) distribution over Rm. (For starters, one
can think of the case that Z is the uniform distribution over {±1}n, though we
will want to consider more general cases as well.) The image refutation problem
for the map p̄ and the distribution Z is the task of certifying, given a random
element z from Z, that z 6∈ p̄({±1}n).

A natural approach is to use an approximation or refutation algorithm for the
constraint satisfaction problem obtained from the constraints {pi(x) = zi} for
every i. The problem in our case is that while each of these predicates is “simple”
in the sense of having quadratic degree, it can have very large locality or arity.
In particular, the locality can be as large as s— the number of monomials of
pi— which we typically think of as equal to nε for some small ε > 0.

Much of the CSP refutation literature (e.g., see [1]) followed the so called
“XOR principle” which reduces the task of refuting a CSP with arbitrary pred-
icates, to the task of refuting a CSP where all constraints involve XORs (or
products, when the input is thought of as ±1 valued) of the input variables.
Generally, applying this principle to arity s predicates leads to a 2s multiplica-
tive loss in the number of constraints, and also yields XORs that can involve
up to s variables, which is unacceptable in our setting. However, as shown by
[1], the situation is much better when the original predicate has small degree d
(which, in particular, means it does not support a (d+ 1)-wise-independent dis-
tribution). In this case, utilizing the XOR principle results in a d-XOR instance,
and only yields roughly an sd loss in the number of constraints.
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However, there are two issues with this approach. First, this reduction is
not directly applicable in the non-Boolean setting, which is relevant to potential
applications in obfuscation. Second, reducing to an XOR inherently leads to a
loss in the output length that is related to the sparsity s, while, as we’ll see, it
may be sometimes possible to avoid losing such factors altogether.

Thus, our algorithm takes a somewhat different approach. Given the variables
z1, . . . , zm, we consider the quadratic program

max
x∈{±1}n

m∑
i=1

zipi(x) . (3.1)

The value of this program can be approximated to within a O(log n) factor using
semidefinite relaxation via the symmetric Grothendieck inequality of Charikar
and Wirth [19]. Thus, it is sufficient to show a gap in the value of this program
between the “planted” case, where there is some x such that pi(x) = zi for every
i, and the case where the values zi are sampled from Z.

If there is some x such that pi(x) = zi for every i, then the value of the pro-
gram (3.1) is at least

∑m
i=1 z

2
i which (using the fact that E z2i = 1 and standard

concentration bounds) we can assume to be very close to m.12

On the other hand, consider the case where (z1, . . . , zm) is chosen from Z.
For every fixed x ∈ {±1}n, we can define m random variables Y x1 , . . . , Y

x
m such

that Y xi = zipi(x) and let Y x =
∑m
i=1 Y

x
i . Since Z is a product distribution,

the random variables Y xi are independent, and hence we can use the Chernoff
bound to show that with all but 0.01 · 2−n probability, the value of Y x will be
at most O(

√
nBm), where B is a bound on the magnitude of zipi(x). We can

then apply the union bound over all possible x’s to show that the value of the
quadratic program (3.1) is at most O(

√
nBm) with probability 0.99.

For example, if each zi is a uniform element in {±1}, and |pi(x)| ≤ O(1) for
every x (as is the case when pi is a predicate), then B = O(1) and so in this
case the value of (3.1) will be at most m/c as long as m� c2n. Setting c to the
aforementioned approximation factor O(log n), we get a successful refutation.

The resulting algorithm does the following. On input z1, . . . , zm, run the SDP
relaxation for (3.1) and if the value is smaller than m/2, then output ”refuted”
and declare that z is not in the image of G. In the case where z = G(x) the
value of the quadratic program, and so also its SDP relaxation, will be at least
0.9m.13 On the other hand, if m = ω(n log n), then with high probability the
value of the quadratic program will be o(m/ log n) and hence the relaxation will
have value o(m).

In the discussion above we made two key assumptions:

– |pi(x)| ≤ O(1) for every x ∈ {±1}n
– |zi| ≤ O(1) for x ∈ {±1}n

12 Formally, in the case that pi(x) = zi we do not assume anything about the distribu-
tion of z. However, if

∑m
i=1 z

2
i < 0.9m, we can simply choose to output ”?”.

13 We ignore here the case where
∑
z2i < 0.9m, in which case our algorithm will halt

with the output ”?”.
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In general both of these might be false. If pi has at most s non-zero monomi-
als, and satisfies E pi(U)2 = 1, then we can show that |pi(x)| ≤

√
s for every x,

using the known relations between the `1 and `2 norms of pi’s Fourier transform.
The second condition can be a little more tricky. If the zi’s are subgaussian, then
we can use Hoeffding’s inequality in place of the Chernoff bound, but in general
we cannot assume that this is the case. Luckily, it turns out that in our appli-
cation we can use a simple trick of rejecting outputs in which zi has unusually
large magnitude to reduce to the bounded case. The bottom line is that we get
an efficient algorithm for the image-refutation problem of an s-sparse quadratic
map whenever m� sn log n.

The higher degree case reduces to the degree 2 by “quadratisizing” polyno-
mials. That is, we can consider a degree d polynomial on n variables as a degree
2 polynomial on the ndd/2e variables obtained by considering all degree dd/2e
monomials. Using this approach, we can generalize our results (at a correspond-
ing loss in the bound on the output) to higher degree maps.

3.1 Distinguishing Generators with Block-Locality 2

A priori the notions of block locality and algebraic degree seem unrelated to one
another. After all, a two block local generator on size b blocks could have degree
that is as large as 2b. However, we can pre-process a length bn input x ∈ {±1}bn,
by mapping it to an input x′ ∈ {±1}n′ for n′ = 2bn where for every i ∈ [n], the
ith block of x′ will consist of the values of all the 2b monomials on the ith block
of x. Note that a map of block locality ` in x becomes a map of degree ` in x′.
Moreover, since every output bit depends on at most ` blocks, each containing
2b variables, the number of monomials in this degree ` polynomial is at most 2`b.

In this way, we can transform a candidate two block-local pseudorandom
generator G : {±1}bn → {±1}m into a degree-2 sparsity-22b map G′ : {±1}n′ →
Rm. Note that even if G is a secure pseudorandom generator, it is not necessarily
the case that G′ is also a pseudorandom generator, as the uniform distribution

on x ∈ {±1}bn does not translate to the uniform distribution over x′ ∈ {±1}2bn.
However, the image of G′ contains the image of G, and hence if we can solve the
image refutation problem for G′, then we can do so for G as well. Applying the
above result as a black-box gives an efficient algorithm to break a two block-local
generator of block size b as long as the output length m satisfies

m� 22bn′ log2 n = 23bn log2 n .

This is already enough to break the concrete candidate of Lin and Tes-
saro [47], but a more refined analysis shows that we can improve the 23b factor
to 22b. Furthermore, if we initialize the construction with a random predicate
on an expanding constraint graph we can bring this factor down to 2b. Both
improvements still use the same algorithm, only providing a tighter analysis of
it in these cases. We do not know if our analysis can be improved even further.
Mapping out the various trade-offs for block-local generators (or, equivalently,
refuting very large alphabet CSPs), is a very interesting open question.
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The first improvement, described in Section 5.1, yields a better bound on the
output of any two-block-wise generator. As mentioned above, it uses the same
algorithm. That is, we take a candidate two-block-local generator G : {±1}bn →
{±1}m and transform it into a degree two mapping G′ : {±1}2bn → Rm by
“expanding out” the monomials in each block. We then run the same algorithm
as before on the generator G′, but the key idea is that because G′ arose out
of the expansion of a two-block-local generator, we can show a better upper
bound on the objective value of the quadratic program (3.1). Specifically, we
can express each of these polynomials as a function of the Fourier transform
of the predicate that the original block local generator applied to each pair of
blocks. We can then change the order of summations, which enables us to reduce
bounding (3.1) to bounding 22b “simpler” sums, for which we able to obtain, in
the random case, tighter bounds with sufficiently high probability that allows to
take a union bound over these 22b options. See Section 5.1 for the full detail.

3.2 Improving the Stretch to n2b for the Single Predicate Case

The second improvement (Theorem 5.3), considers the special case where each
output of the generator is computed using the same predicate (as discussed be-
fore, this case is the principle focus of [49]). In this case, we show that our image
refutation algorithm works whenever m (the number of outputs) of the generator
satisfies m = Ω̃(n2b). This matches the stretch required for the distinguisher of
[49] to work.

We now describe at a high level, how our refutation algorithm works. The
refutation algorithm is given a string z ∈ {±1}m and description of the gen-
erator G that includes the underlying graph G on n vertices and the predicate
P : {±1}b×{±1}b → {±1}. As a first step, we will reduce the problem of image
refuting G to image refuting a somewhat simpler G′ where the predicate P will
be replaced by a “product-predicate” P ′. A predicate P ′ : [q]× [q] → {±1} is a
product predicate if it can be written as a product of two functions f : [q]→ {±1}
and g : [q] → {±1} applied to each of the inputs to P . In the second step, we
will give an efficient algorithm for image-refuting two-block-local, single product
predicate PRG.

We now describe the first step. Here, the algorithm wishes to certify that
there’s no x ∈ ({±1}b)n such that G(x) = z. Fix any x ∈ ({±1}b)n. For this
fixed x, consider the distribution D on inputs to P , generated by taking a random
edge {i, j} in G and outputting (xi, xj). We will show, using a result of Linial
and Schraibman shown in the context of relating marginal complexity to various
measures of communication complexity, that on D (more generally, any distri-
bution on inputs to P ), there’s a product predicate F (α, β) = f(α) · g(β) such
that E(α,β)∼D[P (α, β) · F (α, β)] ≥ Θ(2−b/2). Thus, if there is an x ∈ ({±1}b)n
such that G(x) = z, then for the same x, Ei∼[m][G′(x)i · zi] ≥ Θ(2−b/2). If we

can now certify an upper bound of � 2−b/2 on Ei∼[m][G′(x)i · zi] for every x
and with high probability over the draw of z, we’d obtain an image refutation
algorithm. This latter question turns out to be simpler because of the product
nature of the predicate defining G′.
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This step in our algorithm is inspired by the use of a result of Chor-Goldreich
in the work of [49]. This lemma says14 that for the uniform distribution on the
inputs to P , there’s a product predicate that has a correlation of Θ(2−b/2) with
P . In the work of [49] this observation is used to replace P by a constant-
alphabet predicate (obtained by massaging the constituents of the product pred-
icate given by Chor-Goldreich lemma above) to obtain a simplified PRG on
constant-alphabet size such that when the seed is chosen according to the uni-
form distribution on ({±1}b)n, the modified PRG’s output distribution correlates
well with that of the original one. Thus, a strong enough refutation algorithm
(they use one due to [1]) applied to the modified PRG is enough to give a distin-
guisher. Observe that this approach doesn’t give a refutation algorithm because
the key step of replacing P with f · g relies on x being drawn uniformly from
[q]n.

Instead of using off-the-shelf refutation algorithms (such as that of [2]), we
solve the image refutation problem for single product predicate block-local PRGs
by giving a direct, simple algorithm – this algorithm crucially works without
the knowledge of the product predicate itself or even the block size parameter
b. This is important, as our argument that obtains G′ is not constructive, in
particular, the distribution that the product predicate approximates P on is a
complicated function of the (purported) arbitrary assignment x and the graph G.
Thus, our product-predicate refutation algorithm must work without the explicit
knowledge of the underlying product predicate.

Indeed, we show (in the full version [12]) that given a graph G on n vertices
with m� n edges and any string z, we can (in one shot) show that z (w.h.p) is
not in the image of any of the (infinitely many!) generators obtained by using
any two-block-local product predicate of arbitrarily large block size with the
same underlying graph G. In particular, our refutation algorithm does not need
to know the predicate itself or even the number of bits in each block of the seed
for the generator!

3.3 Random Block Local Generators

We analyze the natural candidate of multiple-predicate, block-local generators,
where both the underlying graph and each of the predicates are chosen uniformly
at random (conditioned on the predicates being balanced), and show (see Section
5.3) that our refutation algorithm works whenever m = Ω(n2b). As before, our
idea to consider the problem of maximizing the polynomial

∑
i zipi(x). We work

with the matrix M such that our target polynomial
∑
i zipi(x) is a bilinear

form of M . To obtain a certificate for the upper bound on the polynomial, it
then suffices to show a strong enough upper bound on the spectral norm of the
matrix M – which we show is small enough (w.h.p) because of the randomness
involved in defining the generator. M has some dependencies between its various
entries that preclude the use of standard bounds to upper bound the spectral

14 We use a somewhat different way to describe the use Chor-Goldreich lemma by [49]
in order to show how it inspires our approach.
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norm. So we compute an upper bound on the spectral norm using the standard
trace method that reduces the problem to some combinatorial properties that
are simple to reason about.

4 Image Refutation for Low Degree Maps

In this section we will prove our main technical theorem, which is an algo-
rithm for the image refutation problem for every low degree map and “nice” or
“non-degenerate” product distributions. We start by defining the notion of non-
degenerate distributions, which amounts to distributions that do not put almost
all their probability mass on a small (compared to their standard deviation)
interval.

Definition 4.1 (c-spread distributions). Let Z be a product distribution over
Rm with EZi = 0 and EZ2

i = 1 for every i. We say that Z is c-spread if for
every interval I ⊆ R of length 1/c, the probability that Zi ∈ I is at most 0.9.

Normalized low-degree maps are polynomials over {±1}n - we use the stan-
dard Fourier basis (e.g., see [53]) to represent them:

Definition 4.2 (Fourier notation). For any S ⊆ [n], let χS(x) = Πi∈Sxi
for any x ∈ {±1}n. A function p : {±1}n → R can be uniquely expanded as∑
S⊆[n] p̂(S)χS where the ”Fourier coefficients” p̂(S) = Ex∼{±1}n [χS(x)p(x)]

and the expectation is over the uniform distribution over the hypercube
{±1}n. Fourier coefficients satisfy the Parseval’s theorem: Ex∼{±1}n p(x)2 =∑
S⊆[n] p̂(S)2.

We define a normalized degree d map to be a collection of degree d poly-
nomials p̄ = (p1, . . . , pm) mapping {±1}n to Rm such that E pi(U) = 0 and
E pi(U)2 = 1 for every i where U is the uniform distribution.15

Our main technical theorem is the following:

Theorem 4.3 (Main theorem). There is an efficient algorithm that solves the
refutation problem for every normalized degree d map p̄ and c-spread probability
distribution Z as long as

m > K · c2s(p̄)ndd/2e log2(n) (4.1)

for some global constant K.

15 Note that we are using the same normalization for the Zi’s and pi(U), which makes
sense in the context of a pseudorandom generator applied to the uniform distribution
over the seed. If we wanted to consider other distributions D over the seed, we would
need to require that E pi(D)2 is not much smaller than E pi(U)2. This condition is
satisfied by many natural distributions.
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To state the result in a stronger form, we use a somewhat technical defini-
tion for the parameter s(p̄), which is deferred till later (see Equation (4.5) and
Definition 4.9 below). However, one important property of it is that for every
normalized polynomial map p̄ = (p1, . . . , pm), s(p̄) is smaller than the maximum
sparsity (i.e., number of monomials) of the polynomials. Hence, Theorem 4.3
implies Theorem 1.5 from Section 1.1. The fact that we only require a factor of
s(p̄) as opposed to the sparsity makes our result stronger, and in some cases this
difference can be very significant.

The algorithm for proving Theorem 4.3 is fairly simple:

Refutation algorithm
Input: z ∈ Rm, p1, . . . , pm normalized polynomials of degree d in {±1}n.
Output: ”refuted” or ”?”.
Operation:

1. Let I = {i ∈ [m] : z2i ≤ 100}. Let µi be the conditional expectation of zi
conditioned on z2i ≤ 100.

2. If
∑
i∈I(zi − µi)2 < m/(10c) return ”?”.

3. Let θ be the value of the degree dd/2e SOS relaxation for the degree d
polynomial optimization problem

max
x∈{±1}n

∑
i∈I

(zi − µi)pi(x) (4.2)

4. Return ”refuted” if θ −
∑
i∈I µi(zi − µi) < m/(10c) otherwise return ”?”.

The degree d sum of squares program is a semidefinite programming relax-
ation to a polynomial optimization problem, which means that the value θ is
always an upper bound on (4.2). The most important fact we will use about this
program is the symmetric Grothendieck Inequality of Charikar and Wirth [19],
which states that in the important case where d = 2, the integrality gap of this
program (i.e., ratio between its value and the true maximum) is O(log n).

For this case, where d = 2, this program is equivalent to the semidefinite
program known as the basic SDP relaxation for the corresponding quadratic
program. This means that θ can also be computed as

max
X∈R(n+1)×(n+1)

X�0, Xii=1 ∀i

tr(A ·X) , (4.3)

where A is an (n+ 1)× (n+ 1) matrix that represents the quadratic polynomial∑
i∈I(zi − µi)pi, in the sense that for every i, j ∈ [n], Ai,j corresponds to the

coefficient of xixj in this polynomial, and for every i ∈ [n], Ai,n+1 = An+1,i is
the coefficient of xi.

We now turn to proving Theorem 4.3. We start by showing the case that
d = 2. The proof for general degree will follow by a reduction to that case.
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4.1 Degree 2 Image Refutation

In this section, we prove Theorem 4.3 for the case d = 2, which is restated below
as the following lemma:

Lemma 4.4 (Image refutation for degree 2). There is an efficient algo-
rithm that solves the refutation problem for every normalized degree 2 map p̄
and c-spread probability distribution Z as long as

m > K · c2s(p̄)n log2 n (4.4)

for some absolute constant K > 0.

In this case, the parameter s(p̄) is defined as follows:

s(p1, . . . , pm) = 1
m max
x∈{±1}n

m∑
i=1

pi(x)2 (4.5)

By expanding each pi in the Fourier basis as pi =
∑
p̂i(S)χS , we can see

that maxx∈{±1}n |pi(x)| ≤
∑
|p̂i|. Hence, in particular, s(p̄) is smaller than the

average of the `1 norm squared of the pi’s Fourier coefficients. Using the fact
that E pi(U)2 = 1, and the standard relations between the `1 and `2 norms, we
can see that if every one of the pi polynomials has at most s monomials (i.e.,
non-zero Fourier coefficients), then s(p̄) ≤ s.

We now prove Lemma 4.4. To do so, we need to show two statements:

– If z = p̄(x), then the algorithm will never output ”refuted”.
– If z is chosen at random from Z, then the algorithm will output ”refuted”

with high probability.

We start with the first and easiest fact, which in fact holds for every degree
d.

Lemma 4.5. Let z ∈ Rm be such that there exists an x∗ such that pi(x
∗) = zi.

Then, the algorithm does not output ”refuted”.

Proof. Suppose otherwise. We can assume that
∑
i∈I(zi−µi)2 ≥ m/(10c) as oth-

erwise we will output ”?”. Since the SDP is a relaxation, in particular, the value
θ is larger than

∑
i∈I(zi − µi)pi(x∗) =

∑
i∈I(zi − µi)zi under our assumption.

Hence, θ −
∑
i∈I(zi − µi)µi ≥

∑
i∈I(zi − µi)2 ≥ m/(10c)

We now turn to the more challenging part, which is to show that the algo-
rithm outputs ”refuted” with high probability when z is sampled from Z. We
start by observing that by Markov’s inequality, for every i, the probability that
z2i > 100E z2i = 100 is at most 0.99. Hence, the expected size of the set I defined
by the algorithm is at least 0.99m and using Chernoff’s bound it follows with
very high probability that |I| > 0.9m. Let Z ′i be the random variable Zi con-
ditioned on the (probability ≥ 0.99) event that Z2

i ≤ 100, and µi = EZ ′i. Note
that by definition (Z ′i)

2 ≤ 100 with probability 1, i.e. |Z ′i| ≤ 10 with probability
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1, which in turn implies that |µi| ≤ 10. By the “spread-out-ness” condition on
Zi and the union bound, P[Z ′i 6∈ [µi − 1

2c , µi + 1
2c ] ≥ 0.1 − 0.01 and hence, in

particular, E[(Z ′i − µi)2] ≥ 1
500c2 .

We can consider the process of sampling the zi values from the algorithm as
being obtained by first choosing the set I, and then sampling zi independently
from the random variable Z ′i for every coordinate i ∈ I. The following lemma
says that there will not be an integral (i.e., {±1}-valued) solution to the SDP
with large value.

Lemma 4.6. With probability at least 0.99 it holds that for every x ∈ {±1}n,∑
i∈I

(z′i − µi)pi(x) ≤ O(
√
nms(p̄)) (4.6)

Proof. We use the union bound. For every fixed x ∈ {±1}n, we let αi = pi(x).
We know that

∑
i∈I α

2
i ≤

∑m
i=1 α

2
i ≤ maxx∈{±1}n

∑
pi(x)2 = ms(p̄). Since

|z′i − µi| ≤ 20, it follows that (z′i − µi) is sub-gaussian with constant standard
deviation. Therefore,

∑
i∈I(z

′
i−µi)αi is sub-gaussian with zero expectation stan-

dard deviation O(
√
ms(p̄)). Therefore, there exists a value O(

√
nms(p̄)) s.t. the

probability that
∑
i∈I(z

′
i−µi)αi exceeds it is smaller than 0.001 · 2−n. Applying

the union bound implies the lemma.

Lemma 4.4 will follow from Lemma 4.6 using the fact that the SDP gives
O(log n) approximation factor for true maximum. In particular the symmet-
ric version of Grothendieck inequality shown by [19] implies that the value θ
computed by the algorithm is at most a factor of O(log n) larger than the true
maximum of the integer program (4.2), see Theorem A.3 in Appendix A.

To finish the proof, we need to ensure that (after multiplying by O(log n))
the bound on the RHS of (4.6) will be smaller than m/(100c) +

∑
i∈I(zi−µi)µi.

Indeed, since |µi| ≤ 10, with high probability over the choice of the zi’s (which
are chosen from Z ′i), the quantity

∑
i(zi − µi)µi is at most, say, 10 times the

standard deviation, which is O(
√
m)� m/c. (Here no union bound is needed.)

So, by plugging in (4.6) what we really need is to ensure that

m/(20c log n) ≥ O(
√
nms(p̄))

or that
m ≥ O(ns(p̄)c2 log2 n)

which exactly matches the conditions of Lemma 4.4 hence concluding its proof
(and hence the proof Theorem 4.3 for the d = 2 case).

4.2 Refutation for d > 2

In this section, we show how to reduce the general degree d case to the case
d = 2, hence completing the proof of Theorem 4.3. The main tool we use is
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the notion of “quadratizing” a polynomial. That is, we can convert a degree
d polynomial p on n variables into a degree two polynomial p̃ on (n + 1)dd/2e

variables by simply encoding every monomial of degree up to dd/2e of the input
as a separate variable.

Definition 4.7 (Quadratization). Let p be a degree d polynomial on Rn which
we write in Fourier notation (see Definition 4.2) as p =

∑
|S|≤d p̂(S)χS. Let

d′ = dd/2e Then the quadratization of p is the degree two polynomial q on
(
n
≤d′
)

variables defined as:

q(y) =
∑
S,T

p̂(S ∪ T )ySyT ,

where the elements of the
(
n
≤d′
)

dimensional vector y are indexed by sets of size at

most d′, and this sum is taken over all sets S, T ⊆ [n] of size at most d′ such that
every element in S is smaller than every element of T , |S| = max{|S ∪ T |, d′}.

The following simple properties ensured by quadratization are easy to verify:

Lemma 4.8. Let q be the quadratization of a degree d polynomial p on
(
n
≤d′
)

variables for d′ = dd/2e. Then,

1. For any x ∈ {±1}n there exists y ∈ {±1}(
n
≤d′) such that q(y) = p(x).

2.
∑
S,S′ q̂({S, S′})2 =

∑
T p̂(T )2.

3. max
y∈{±1}(

n
≤d′)

q(y) ≤
∑
|T |≤d |p̂(T )|.

Proof (sketch). For 1, we let yS = χS(x) for every |S| ≤ d′. For 2 and 3, we note
that the set of nonzero Fourier coefficients of p and q is identical because for every
set |U | ≤ d there is a unique way to split it into disjoint sets S, T of size at most
d′ where S is the first min{|U |, d′} coordinates of U , and q̂({S, T}) = Û . For all
other pairs S, T that do not arise in this manner, it will hold that q̂({S, T}) = 0.
This means that both the `1 and `2 norms of the vector q̂ are the same as that
of the vector p̂, implying both 2 and 3.

We define the complexity of the degree d normalized map p̄ as the complexity
of the degree 2 normalized map of the quadratizations of pis:

Definition 4.9 (Complexity of degree d normalized maps). Let p̄ be a
normalized degree d map and let q̄ be its quadratization. Then, we define s(p̄) as
s(q̄) from (4.5).

Remark 4.10. Part 2 of Lemma 4.8 shows that if p̄ is normalized the so is its
quadratization q̄. Part 3 of Lemma 4.8 shows that s(p̄) ≤ sparsity(p) for any
normalized degree d map p.

We can now complete the proof of Theorem 4.3.
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Proof (of Theorem 4.3). Let p̄ = (p1, . . . , pm) be a normalized degree d polyno-
mial map and let z1, . . . , zm be the inputs given to the algorithm. If there is an
x such that pi(x) = zi for every i, then by Lemma 4.5 (which did not assume
that d = 2), the algorithm will return ”?”.

Suppose otherwise, that z1, . . . , zm are chosen from the distribution Z. Recall
that our algorithm computes θ to be the value of the degree 2d′ SOS relaxation
for the quadratic program (4.2). This value satisfies

θ = max
µ(x)

Ẽ
µ

[∑
i∈I

(zi − µi)pi(x)

]
,

where the maximum is over all degree 2d′ pseudo-distributions satisfying {x2i =
1} for every i ≤ n.

If µ is a degree 2d′ pseudodistribution over {±1}n then we can define a degree

2 pseudodistribution µ′ over {±1}(
n
d′) by having y ∼ µ be defined as yS = χS(x)

for x ∼ µ.16 Let q̄ = (q1, . . . , qm) be the quadratization of p̄ = (p1, . . . , pm).
Then the distribution µ′ above demonstrates that θ ≤ θ′ where

θ′ = max
µ′(y)

Ẽ
µ′

[∑
i∈I

(zi − µi)qi(x)

]
.

But since this is the value of a degree two SDP relaxation for a quadratic
program, we know by Theorem A.3 that it provides an O(log n) approximation
factor, or in other words that

θ′ ≤ O(log n) max
y∈{±1}(

n
d′)

∑
i∈I

(zi − µi)qi(y) . (4.7)

Since the qi’s are degree two polynomials over O(nd
′
) variables, Lemma 4.6

implies that when z1, . . . , zm are randomly chosen from Z, w.h.p. the RHS of
(4.7) is at most O((log n)

√
nd′ms(q̄)) = O((log n)

√
nd′ms(p̄)). Setting this to

be smaller than (m/10c2) recovers Theorem 4.3.

5 Block Local Generators

Recall that a map G : {±1}bn → {±1}m is ` block-local if the input can be
separated into n blocks of b bits each17, such that every output of G depends on
at most ` blocks.

In this section we will show tighter bounds for block-local generators than
those derived from the theorem in Section 4. Of particular interest is the case

16 While it is clear that this operation makes sense for actual distributions, it turns out
to be not hard to verify that it also holds for pseudodistributions, see the lecture
notes [16].

17 Our algorithm works even if the blocks intersect arbitrarily. The construction in [47]
uses only non-intersecting blocks.
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of block-locality 2 due to its applications for obfuscation from bilinear maps.
In Section 5.1 we show a tighter analysis of our algorithm from Section 4 for
any block-local generator. This yields a distinguisher for any block-locality 2
generator with m� 22bn log n. In Section 5.3, we analyze a particularly natural
instantiation for 2-block-local PRGs - a random predicate and random constraint
graph and show that our distinguisher works for an even smaller m � 2bn. In
fact, we show that one can even use a simpler distinguisher that computes the
largest singular value of a certain matrix arising out of the input instead of
running a semidefinite program.

5.1 Bounds on General Block-Local Generators

In this subsection we prove the following result:

Theorem 5.1 (Limitations of block local generators). For every `-block-
local G : {±1}bn → {±1}m there is an efficient algorithm for the G image refu-
tation problem w.r.t. the uniform distribution over {±1}m as long as

m > (K log n)2`b(n+ 2`b)d`/2e,

where K is a constant depending only on `.
If ` is constant and b = o(n) (as is mostly the case), the above translates to

refutation for m > (K log n)2`bnd`/2e.

The proof of this theorem can be found in the full version [12].
Theorem 1.3 from the introduction is the special case of Theorem 5.1 for

the case ` = 2, and so in particular Theorem 5.1 breaks any 2 block local
pseudorandom generator with stretch Ω̃(n22b) to instantiate the bilinear-map
based construction of iO of [47].

Remark 5.2. A slightly weaker bound can be obtained by a direct application of
Theorem 4.3. We sketch the argument in the full version [12].

5.2 Sharper Bounds on the Stretch of Block-Local PRGs with a
Single Predicate

Next, we prove a tighter upper bound of Θ̃(n2b) on the stretch of a block local
PRGs with a single predicate P (instead of a different predicate for each output)
with block-locality 2. The following is the main result of this section:

Theorem 5.3. For b ∈ N, let G : {±1}bn → {±1}m be a two block-local PRG
defined by an instance graph G([n], E) with m = |E| edges and an arbitrary
predicate P : {±1}b → {±1}b → {±1} such that for any seed x ∈ ({±1}b)n, for
every e ∈ E, Ge = P (xe1 , xe2). Let z ∈ {±1}m.

Then, for any m > O(log2 (n))n2b, there exists a poly(m,n) time algorithm
that takes input G, z and P and outputs ”refuted” or ”?” with the following
guarantees:
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1. If the output is ”refuted”, then,

max
x∈({±1}b)n

∑
(i,j)∈E

P (xe1 , xe2)ze < 0.99m.

2. When z ∈ {±1}m is chosen uniformly at random, then
P[ Algorithm outputs ”refuted”] > 1− 1/n.

The proof of this theorem can be found in the full version [12].

5.3 Image Refutation for Random Block-Local PRGs

A particularly appealing construction of block local PRGs is obtained by instan-
tiating them with a random graph with ∼ m edges and a random and inde-
pendent predicate for every edge. A priori, the randomness in this construction
could appear to aid the security of the PRG. Indeed, such instantiations are
in fact suggested by [47]. We show that in this case, as in the previous section
where all predicates are identical, we can show a stronger upper bound on the
stretch of the local PRG in terms of the block size b. Whereas in Section 5.1,
for general block-local PRGs with non-identical predicates, we lost a factor of
22b log(n) in the output length, for the special case of a random graphs and
random, independent predicates, this can be improved to Θ(2b) as we show in
this section. We note that the only property of random graphs that we use is
expansion.

More concretely, in this section, we analyze the stretch of the following can-
didate construction of a block-local PRG.

– We choose a graph G([n], q) where every edge is present in G with probability
q = m

(n
2)
. Thus, with high probability, the number of edges in the graph is

m±
√
m.

– For every edge {i, j} in G, we choose a uniformly random pred-
icate Pi,j(x, y) = ±1 conditioned on Pi,js being balanced, i.e.
Ex,y∼{±1}b Pi,j(x, y) = 0.

– On input (seed) x ∈ {±1}bn, which we think of as partitioned into blocks
x1, . . . , xn ∈ {±1}b, the generator outputs hi,j(xi, xj) for every edge (i, j) of
G.

Theorem 5.4 (Limitations of random block-local generators). There is
some constant K such that if G : {±1}bn → {±1}m is a generator sampled
according to the above model and m ≥ K2bn log3 (n), then w.h.p. there is a
polynomial-time algorithm for the G image refutation problem w.r.t. the uniform
distribution over {±1}m.

The proof of this theorem can be found in the full version [12].
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6 Lower Bound for Refuting Two-Block-Local PRGs

In this section, we establish that if b > 10 log log (n), then there’s no 2O(n/24b)-
time algorithm for image refutation of block-local PRG of stretch Ω(n2b) based
on the sum-of-squares method.

The main goal of this section is summarized in the following theorem.

Theorem 6.1. For any b > 10 log log (n), there’s a construction G : {±1}n →
{±1}m for m = Ω(n2b) such that for any z ∈ {±1}m, there’s a feasible solution
for the degree Θ(n/24b) sum-of-squares relaxation of the constraints {Gi = zi}.
In particular, sum of squares algorithm of degree Θ(n/24b) cannot accomplish
image refutation for G.

The proof of this theorem can be found in the full version [12].

7 A Class of Block-Local Candidate Pseudorandom
Generators

In this section we outline a simple candidate pseudorandom generator of degree
d that has potentially output length as large as nd/2−ε. We have not conducted
an extensive study of this candidate’s security, but do believe it’s worthwhile ex-
ample as a potential counterpoint to our results on limitations for pseudorandom
generator, demonstrating that they might be tight.

The idea is simple: for a finite group G that does not have any abelian
quotient group (for example, a non-abelian simple group will do), we choose dm
random indices {ij,k}j∈[m],k∈[d] and let G be the generator mapping Gn to Gm
where

G(x)j = xij,1 ∗ xij,2 ∗ · · · ∗ xij,d (7.1)

If want to output m bits rather than m elements of G, then we use a group G
of even order and apply to each coordinate some balanced map f : G → {0, 1}.
For every group element g ∈ G, the predicate

x1 ∗ · · · ∗ xd = g (7.2)

supports a d− 1 wise independent distribution. Hence, using the results of [43]
we can show that as long m < nd/2−ε, for a random z ∈ Gm, the SOS algorithm
cannot be used to efficiently refute the statement that z = G(x) for some x.

Ruling out Gaussian-elimination type attacks is trickier. For starters, solving
a linear system over a non-abelian group is NP-hard [35,42]. Also, Applebaum
and Lovett [10, Theorem 5.5] showed that at least for the large d case, because
the predicate (7.2) has rational degree d, the image-refutation problem for this
generator is hard with respect to algebraic attacks (that include Gaussian elim-
ination) for m = nΩ(d). Nevertheless, there are non trivial algorithms in the
group theoretic settings (such as the low index subgroup algorithm, see [23] and
[57, Sec. 6]). A more extensive study of algebraic attacks against this predicate
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is needed to get better justifications of its security, and we leave such study for
future work.

We remark that the condition that the group G does not have abelian normal
subgroups is crucial. Otherwise, we can write G as the direct product H × H′
where H is abelian, and project all equations to their component in H. We will
get m random equations in n variables over the abelian group H, and hence we
can use Gaussian elimination to refute those.
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corresponds to

max Ẽ
µ
p

where Ẽ ranges over the set of degree d expectation operators that satisfy the
constraints {x2i = 1}ni=1. These are defined as follows:

Definition A.1 (Pseudo-expectation). Let Pn,d denote the space of all de-

gree ≤ d polynomials on n variables. A linear operator Ẽ : Pn,d is a degree d
pseudo-expectation if it satisfies the following conditions:

1. Ẽ[1] = 1.

2. Ẽ[p2] ≥ 0 for every polynomial p of degree at most d/2.

A pseudo-expectation is said to satisfy a constraint {q = 0} if for every poly-
nomial p of degree at most d − deg(q), Ẽ[pq = 0. We say that Ẽ satisfies the
constraint {q ≥ 0} if for every polynomial p of degree at most d/2 − deg(q)/2,
Ẽ[p2q] ≥ 0.

If µ is any distribution on Rn, then the associated expectation is a pseudo-
expectation operator of all degrees. The above definition can be thought of as a
relaxation of the notion of an actual expectation.

Key to the utility of the definition above is the following theorem that shows
one can efficiently search over the space of all degree d pseudo-expectations.

Theorem A.2 ([59,55,44]). For any n, and integer d, the following set has an
nO(d) time weak separation oracle (in the sense of [37]):

{Ẽ[(1, x1, x2, . . . , xn, )
⊗d] | Ẽ is a degree d pseudo-expectation}

In this appendix we expand on how Charikar and Wirth’s work [19] implies
the the following theorem:

Theorem A.3. For every degree two polynomial p : Rn → R with no constant
term, the value of the degree two SOS program for

max
x∈{±1}n

p(x) (A.1)

is larger than the true value of (A.1) by a factor of at most O(log n).

Theorem A.3 is a direct implication of the following result of [19]:

Theorem A.4 (Symmetric Grothendieck Inequality, [19], Theorem 1).
Let A be any m×m matrix such that Ai,i = 0 for every i. Then,

max
X�0,Xi,i=1∀i

Tr(AX) ≤ O(log n) max
x∈{±1}n

x>Ax
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Proof (of Theorem A.3 from Theorem A.4). Suppose that there is a degree 2
pseudo-distribution {x} such that Ẽ p(x) ≥ θ, and let X be the n + 1 × n + 1
matrix corresponding to Ẽ(x, 1)(x, 1)>. That is, Xi,j = Ẽxixj and Xn+1,i =

Xi,n+1 = Ẽxi. Note that X is a psd matrix with 1’s on the diagonal.
Then Tr(AX) ≥ θ if A be the (n + 1) × (n + 1) matrix that represents the

polynomial p. In this case Theorem A.4 implies that there is an n+1 dimensional
vector (x, σ) ∈ {±1}n+1 such that (x, σ)>A(x, σ) ≥ Ω(θ/ log n). If we write
p(x) = q(x) + l(x), where q is the homogeneous degree two and l is linear, then
we can see by direct inspection that

(x, σ)>A(x, σ) = q(x) + σl(x) = p(σx)

with the last equality following from the fact that q(−x) = q(x) and l(−x) =
−l(x). Hence the vector σx ∈ {±1}n demonstrates that the value of (A.1) is at
least Ω(θ/ log n).
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