
OPAQUE: An Asymmetric PAKE Protocol
Secure Against Pre-Computation Attacks

Stanislaw Jarecki1, Hugo Krawczyk2, and Jiayu Xu1

1 University of California, Irvine. Email: {stasio@ics.,jiayux@}uci.edu.
2 IBM Research. Email: hugo@ee.technion.ac.il.

Abstract. Password-Authenticated Key Exchange (PAKE) protocols
allow two parties that only share a password to establish a shared key
in a way that is immune to offline attacks. Asymmetric PAKE (aPAKE)
strengthens this notion for the more common client-server setting where
the server stores a mapping of the password and security is required even
upon server compromise, that is, the only allowed attack in this case is
an (inevitable) offline exhaustive dictionary attack against individual
user passwords. Unfortunately, most suggested aPAKE protocols (that
dispense with the use of servers’ public keys) allow for pre-computation
attacks that lead to the instantaneous compromise of user passwords
upon server compromise, thus forgoing much of the intended aPAKE
security. Indeed, these protocols use – in essential ways – deterministic
password mappings or use random “salt” transmitted in the clear from
servers to users, and thus are vulnerable to pre-computation attacks.

We initiate the study of Strong aPAKE protocols that are secure as
aPAKE’s but are also secure against pre-computation attacks. We
formalize this notion in the Universally Composable (UC) settings and
present two modular constructions using an Oblivious PRF as a main
tool. The first builds a Strong aPAKE from any aPAKE (which in turn
can be constructed from any PAKE [18]) while the second builds a
Strong aPAKE from any authenticated key-exchange protocol secure
against reverse impersonation (a.k.a. KCI). Using the latter
transformation, we show a practical instantiation of a UC-secure Strong
aPAKE in the Random Oracle model. The protocol (“OPAQUE”)
consists of 2 messages (3 with mutual authentication), requires 3 and 4
exponentiations for server and client, respectively (2 to 4 of which can
be fixed-base depending on optimizations), provides forward secrecy, is
PKI-free, supports user-side hash iterations, and allows a
user-transparent server-side threshold implementation.

1 Introduction

Passwords constitute the most ubiquitous form of authentication in the Internet,
from the most mundane to the most sensitive applications. The almost universal
password authentication method in practice relies on TLS/SSL and consists of
the user sending its password to the server under the protection of a client-to-
server confidential TLS channel. At the server, the password is decrypted and

verified against a one-way image typically computed via hash iterations applied
to the password and a random “salt” value. Both the password image and salt
are stored for each user in a so-called “password file.” In this way, an attacker
who succeeds in stealing the password file is forced to run an exhaustive offline
dictionary attack to find users’ passwords given a set (“dictionary”) of candidate
passwords. The two obvious disadvantages of this approach are: (i) the password
appears in cleartext at the server during login; and (ii) security breaks if the TLS
channel is established with a compromised server’s public key (a major concern
given today’s too-common PKI failures3).

Password protocols have been extensively studied in the crypto literature –
including in the above client-server setting where the user is assumed to possess
an authentic copy of the server’s public key [19,20], but the main focus has been
on password-only protocols where the user does not need to rely on any outside
keying material (such as public keys). The basic setting considers two parties
that share the same low-entropy password with the goal of establishing shared
session keys secure against offline dictionary attacks, namely, against an active
attacker that possesses a small dictionary from which the password has been
chosen. The only viable option for the attacker should be the inevitable online
impersonation attack with guessed passwords. Such model, known as password-
authenticated key exchange (PAKE), was first studied by Bellovin and Merritt [5]
and later formalized by Bellare et al. [4] in the game-based indistinguishability
approach. Canetti et al. [12] formalized PAKE in the Universally Composable
(UC) framework [11], which better captures PAKE security issues such as the
use of arbitrary password distributions, the inputting of wrong passwords by the
user, and the common use in practice of related passwords for different services.

Whereas the cryptographic literature on PAKE’s focuses on the above basic
setting, in practice the much more common application of password protocols is
in the client-server setting. However, sharing the same password between user
and server would mean that a break to the server leaks plaintext passwords
for all its users. Thus, what’s needed is that upon a server compromise, and
the stealing of the password file, an attacker is forced to perform an exhaustive
offline dictionary attack as in the above TLS scenario. No other attack, except
for an inevitable online guessing attack, should be feasible. In particular, the
two main shortcomings of password-over-TLS mentioned earlier - reliance on
public keys and exposure of the password to the server - need to be eliminated.
This setting, known as aPAKE, for asymmetric PAKE (also called augmented
or verifier-based), was introduced by Bellovin and Merrit [6], later formalized in
the simulation-based approach by Boyko et al. [10], and in the UC framework by
Gentry et al. [18]. Early protocols proven in the simulation-based model include
[10,28,29]. Later, Gentry et al. [18] presented a compiler that transforms any UC-
PAKE protocol into a UC-aPAKE (adding an extra round of communication and

3 PKI failures include stealing of server private keys, software that does not verify
certificates correctly, users that accept invalid or suspicious certificates, certificates
issued by rogue CAs, rogue CAs accepted as roots of trust, servers that share their
TLS keys with others, e.g. CDN providers or security monitoring software; and more.

2

a client’s signature). This was followed by [24] who show the first simultaneous
one-round adaptive UC-aPAKE protocol. In addition, several aPAKE protocols
targeting practicality have been proposed, most with ad-hoc security arguments,
and some have been (and are being) considered for standardization (see below).

A common unfortunate property of all these aPAKE protocols, including
those being proposed for practical use and regardless of their underlying
formalism, is that they are all vulnerable to pre-computation attacks. Namely,
the attacker A can pre-compute a table of values based on a passwords
dictionary D, so as soon as A succeeds in compromising a server it can
instantly find a user’s password. This significantly weakens the benefits of
security against server compromise that motivate the aPAKE notion in the
first place. Moreover, while current definitions require that the attacker cannot
exploit a server compromise without incurring a workload proportional to the
dictionary size |D|, these definitions allow all this workload to be spent before
the actual server compromise happens. Indeed, this weakening in the existing
aPAKE security definition [18] is needed to accommodate aPAKE protocols
that store a one-way deterministic mapping of the user’s password at the
server, say H(pw). Such protocols trivially fall to a pre-computation attack as
the attacker A can build a table of (H(pw), pw) pairs for all pw ∈ D, and once
it compromises the server, it finds the value H(pw) associated with a user and
immediately, in log(|D|) time, finds that user’s password. Such devastating
attack can be mitigated by “personalizing” the password map, e.g., hashing the
password together with the user id. This forces A to pre-compute separate
tables for individual users, yet all this effort can still be spent before the actual
server compromise. Note that in the case of passwords transmitted over TLS,
pre-computation is prevented since password are hashed with a random salt
visible to the server only. In contrast, existing aPAKE protocols that do not
rely on PKI, either don’t use salt or if they do, the salt is transmitted from
server to user during login in the clear4. Given that password stealing via
server compromise is the main avenue for collecting billions of passwords by
attackers, the above vulnerability of existing aPAKE protocols to
pre-computation attacks is a serious flaw, and in this aspect
password-over-TLS is more secure than all known aPAKE schemes.

Our contributions

We initiate the study of Strong aPAKE (SaPAKE) protocols that strengthen
the aPAKE security notion by disallowing pre-computation attacks. We formalize
this notion in the Universally Composable (UC) model by modifying the aPAKE
functionality from [18] to eliminate an adversarial action which allowed such pre-
computation attacks. As we explain above, allowing pre-computation attacks was
indeed necessary to model the security of existing aPAKE protocols.

4 While aPAKE protocols are not intended to run over TLS, we point out that even
in such a case, the transmitted salt would be open to a straightforward active attack.

3

The next contribution is building Strong aPAKE (SaPAKE) protocols. For
this we present two generic constructions. The first builds the SaPAKE protocol
from any aPAKE protocol (namely one that satisfies the original definition from
[18]) so that one can “salvage” existing aPAKE protocols. To do so we resort
to Oblivious PRF (OPRF) functions [17,22], namely, a PRF with an associated
two-party protocol that in our case is run between a server S that stores a PRF
key k and a user U with a password pw. At the end of the interaction, U learns the
PRF output Fk(pw) and S learns nothing (in particular, nothing about pw). We
show that by preceding any aPAKE protocol with an OPRF interaction in which
U computes the value rw = Fk(pw) with the help of S and uses rw as the password
in the aPAKE protocol, one obtains a Strong aPAKE protocol. We show that if
the OPRF and the given aPAKE protocol are, respectively, UC realizations of
the OPRF functionality (defined in [22]) and the original aPAKE functionality
from [18], the resultant scheme realizes our UC functionality FSaPAKE.

Our second transformation consists of the composition of an OPRF as
above with a regular authenticated key exchange protocol AKE. We require
UC security for the AKE protocol as well as a property known as resistance to
KCI attacks. The latter means that an attacker that learns the secret keys of
one party P, but does not actively control P, cannot use this information to
impersonate another party P′ to P. KCI resistance is a common property of
most AKE protocols. In our SaPAKE construction, U first runs the OPRF
with S to compute rw = Fk(pw); then it runs the AKE protocol with S using a
private key stored, encrypted using an authenticated encryption under rw, at S
who sends it to U. Crucial to the security of the protocol is the use of
authenticated encryption with a “random-key robustness” property, which is
achieved naturally by some schemes or otherwise can be easily ensured, e.g., by
adding an HMAC to a symmetric encryption scheme. Under these conditions
we show that the composed scheme realizes our UC functionality FSaPAKE.

Next, we use the above second transformation to instantiate a Strong
aPAKE protocol with a very efficient OPRF and any efficient AKE with the
KCI property. The OPRF scheme we use, essentially a Chaum-type blinded
DH computation, has been proven UC-secure by Jarecki et al. [21, 22]. We
show that this OPRF scheme, which we call DH-OPRF(called 2HashDH
in [21, 22]), remains secure in spite of changes to the OPRF functionality that
we introduce for supporting a stronger OPRF notion needed in our setting. We
call the result of this instantiation, the OPAQUE protocol.

OPAQUE combines the best properties of existing aPAKE protocols and
of the standard password-over-TLS. As any aPAKE-secure protocol, it offers
two fundamental advantages over the TLS-based solution: It does not rely on
PKI and the plaintext password is never in the clear at the server. The only
way for an attacker that observes (or actively controls) a session at a server to
learn the password is via an exhaustive offline dictionary attack. Watching or
participating in a session with the user does not help the attacker. At the same
time, OPAQUE resolves the major flaw of existing aPAKE protocols relative to
password-over-TLS, namely, their vulnerability to pre-computation attacks.

4

In addition to the above fundamental properties, OPAQUE enjoys
important properties for use in practice. Its modularity allows for its use with
different key-exchange schemes that can provide different features and
performance tradeoffs. When implemented with a 2-message
implicit-authentication KE protocol (e.g., HMQV [27]), OPAQUE takes only 2
messages (or 3 with mutual explicit authentication). The computational cost
(using the DH-OPRF scheme from Section A) is one exponentiation for the
server and two for the client5 in addition to the KE protocol cost (with
HMQV, this cost is 2.17 exponentiations per party). OPAQUE offers forward
secrecy (a particularly crucial property for password protocols) if the KE does.
OPAQUE further supports password hardening for increasing the cost of offline
dictionary attacks (upon server compromise) through user-side iterated hashing
without the need to transmit salt from S to U. In Figure 7 in Section 6 we
show an instantiation of OPAQUE in the RO model with HMQV as the AKE.

Compared to the practical aPAKE protocols that have been and are being
considered for standardization (cf., [1, 32]), OPAQUE fares clearly better on
the security side as the only scheme that offers resistance to pre-computation
attacks while all others are vulnerable. Performance-wise, OPAQUE is
competitive with the more efficient among these protocols (see Sec. 6).
Additional advantages of OPAQUE include its ability to store and retrieve
user’s secrets such as a bitcoin wallet, authentication credentials, encrypted
backup keys, etc., and to support a user-transparent server-side threshold
implementation [23] (where the only exposure of the user password - or any
stored secrets - is in case a threshold of servers is compromised and even then a
full dictionary attack is required). Finally, we comment that while OPAQUE
can completely replace password authentication in TLS, it can also be used in
conjunction with TLS, either for bootstrapping client authentication (via an
OPAQUE-retrieved client signing key) or as an hedge against PKI failures. In
other words, while we are accustomed to use TLS to protect passwords,
OPAQUE can be used to protect TLS.

We stress that variants of OPAQUE have been studied in prior work in several
settings but none of these works presents a formal analysis of the protocol as
an aPAKE, let alone as a Strong aPAKE, a notion that we introduce here for
the first time. While our treatment frames OPAQUE in the context of Oblivious
PRFs [21, 22], its design can be seen as an instantiation of the Ford-Kaliski
paradigm for password hardening and credential retrieval using Chaum’s blinded
exponentiation. Boyen [9] specifies and studies the protocol (called HPAKE) in
the setting of client-side halting KDF [8]. Jarecki et al. [21,22] study a threshold
version (also using the OPRF abstraction) in the context of password-protected
secret sharing (PPSS) protocols. Because of the relation between PPSS and
Threshold PAKE protocols [21], this analysis implies security of OPAQUE as
a PAKE protocol in the BPR model [4] but not as an aPAKE (let alone as a
strong aPAKE).

5 A variant of the protocol discussed in Section 6.2 allows one or both of the client’s
exponentiations to be fixed-base and offline.

5

2 The Strong aPAKE Functionality

We present the ideal UC Strong aPAKE functionality, FSaPAKE, that will serve
as our definition of Strong aPAKE security; namely, we call a protocol a secure
Strong aPAKE if it realizes FSaPAKE. Functionality FSaPAKE is a simple but
significant variant of the UC aPAKE functionality FaPAKE from [18] (it was
denoted FapwKE in [18]) which we recall in Fig. 1.

The aPAKE functionality of [18] is based on the UC PAKE functionality
from [12], and it includes extensions needed for taking care of the asymmetric
nature of the aPAKE setting. First, in an aPAKE scheme the server and the
user run different programs: The user runs an aPAKE session on a password
(via command UsrSession) while the server runs it on a “password file”
file[sid] that represents server’s user-specific state corresponding to the user’s
password, e.g., a password hash, which the server creates on input the user’s
password during aPAKE initialization, via command StorePwdFile.
Furthermore, FaPAKE models a possible compromise of a server, via command
StealPwdFile, from which the attacker obtains file[sid]. Such compromise
subsequently allows the attacker to (1) impersonate the server to the user, via
command Impersonate, and (2) find the password via an offline dictionary
attack, via command OfflineTestPwd. The way functionality FaPAKE of [18]
handles the offline dictionary attack is the focus of the Strong aPAKE
functionality we propose, and we discuss them below.

Strong aPAKE vs. aPAKE. Our functionality FSaPAKE is almost identical to
FaPAKE except that the text with the gray background in Fig. 1 is omitted.
That is, the only difference between FSaPAKE and FaPAKE are in the actions
upon the stealing of the password file; specifically, FSaPAKE omits recording the
(offline, pw) pairs and does not allow for OfflineTestPwd queries made
before the StealPwdFile query. Let us explain. Let’s consider first the
definition of FSaPAKE, i.e., with the gray text omitted. In this case, the actions
upon server compromise, i.e., StealPwdFile, are simple. First, a flag is
defined to mark that the password file has been compromised. Second, once
this event happens, the adversary is allowed to submit password guesses and be
informed if a guess was correct. Note that each guess “costs” the attacker one
OfflineTestPwd query. This together with the restriction that these queries
can only be made after the password file is compromised ensure that shortcuts
in finding the password after such compromise are not possible, namely that
the attacker needs to pay with one OfflineTestPwd query for each password
it wants to test. Thus, pre-computation attacks are made infeasible.

Now, consider the FaPAKE functionality from [18] which includes the text in
gray too. This functionality allows the attacker, via (offline, pw) records, to
make guess queries against the password even before the password file is
compromised. The restriction is that the responses to whether a guess was
correct or not are provided to the attacker only after a StealPwdFile event.
But note that if one of these guesses was correct, the attacker learns it
immediately upon server compromise. This provision was necessary in [18]

6

In the description below, we assume P ∈ {U, S}.
Password Registration

– On (StorePwdFile, sid ,U, pw) from S, if this is the first StorePwdFile
message, record 〈file,U, S, pw〉 and mark it uncompromised.

Stealing Password Data

– On (StealPwdFile, sid) from A∗, if there is no record 〈file,U,S, pw〉, return
“no password file” to A∗. Otherwise, if the record is marked uncompromised,
mark it compromised; regardless,

• If there is a record (offline, pw), send pw to A∗.

• Else Return “password file stolen” to A∗.
– On (OfflineTestPwd, sid , pw∗) from A∗, do:
• If there is a record 〈file,U, S, pw〉marked compromised, do: if pw∗ = pw,

return “correct guess” to A∗; else return “wrong guess.”

• Else record (offline, pw).

Password Authentication

– On (UsrSession, sid , ssid ,S, pw′) from U, send (UsrSession, sid , ssid ,U, S)
to A∗. Also, if this is the first UsrSession message for ssid , record
〈ssid ,U,S, pw′〉 and mark it fresh.

– On (SvrSession, sid , ssid) from S, retrieve 〈file,U, S, pw〉, and send
(SvrSession, sid , ssid ,U, S) to A∗. Also, if this is the first SvrSession
message for ssid , record 〈ssid , S,U, pw〉 and mark it fresh.

Active Session Attacks

– On (TestPwd, sid , ssid ,P, pw∗) from A∗, if there is a record 〈ssid ,P,P′, pw′〉
marked fresh, do: if pw∗ = pw′, mark it compromised and return “correct
guess” to A∗; else mark it interrupted and return “wrong guess.”

– On (Impersonate, sid , ssid) from A∗, if there is a record 〈ssid ,U,S, pw′〉
marked fresh, do: if there is a record 〈file,U, S, pw〉 marked compromised
and pw′ = pw, mark 〈ssid ,U, S, pw′〉 compromised and return “correct guess”
to A∗; else mark it interrupted and return “wrong guess.”

Key Generation and Authentication

– On (NewKey, sid , ssid ,P, SK) from A∗ where |SK| = τ , if there is a record
〈ssid ,P,P′, pw′〉 not marked completed, do:
• If the record is marked compromised, or either P or P′ is corrupted, send

(sid , ssid , SK) to P.
• If the record is marked fresh, a (sid , ssid , SK′) tuple was sent to P′,

and at that time there was a record 〈ssid ,P′,P, pw′〉 marked fresh, send
(sid , ssid , SK′) to P.

• Else pick SK′′ ←R {0, 1}τ and send (sid , ssid , SK′′) to P.
Finally, mark 〈ssid ,P,P′, pw′〉 completed.

– On (TestAbort, sid , ssid ,P) from A∗, if there is a record 〈ssid ,P,P′, pw′〉
not marked completed, do:
• If it is marked fresh and record 〈ssid ,P′,P, pw′〉 exists, send Succ to A∗.
• Else send Fail to A∗ and (abort, sid , ssid) to P, and mark
〈ssid ,P,P′, pw′〉 completed.

Fig. 1: Functionalities FaPAKE (full text) and FSaPAKE (shadowed text omitted)

7

because the file[sid] in their aPAKE construction contains a deterministic
publicly-computable hash of the password, thus allowing for a pre-computation
attack which lets the adversary instantaneously identify the password with a
single table lookup upon server compromise. Indeed, one can think of the pairs
(offline, pw) in the original FaPAKE functionality as a pre-computed table that
the attacker builds overtime and which it can use to identify the password as
soon as the server is compromised. By eliminating the ability to get guesses
(offline, pw) answered before server compromise in our FSaPAKE functionality,
we make such pre-computation attacks infeasible in the case of a Strong
aPAKE.

Modeling Server Compromise and Offline Dictionary Queries. As in
[18], we specify that StealPwdFile and OfflineTestPwd messages from
A∗ to FSaPAKE are accounted for by the environment. This is consistent with the
UC treatment of adaptive corruption queries and is crucial to our modeling. Note
that if the environment does not observe adaptive corruption queries then the
ideal model adversary, i.e., the simulator, could immediately corrupt all parties
at the beginning of the protocol, learning their private inputs and thus making
the work of simulation easier. By making the player-corruption queries, modeled
by StealPwdFile command in our context, observable by the environment,
we ensure that the environment’s view of both the ideal and the real execution
includes the same player-corruption events. This way we keep the simulator
“honest,” because it can only corrupt a party if the environment accounts for it.

The same concern pertains to offline dictionary queries OfflineTestPwd,
because if they were not observable by the environment, the ideal adversary
could make such queries even if the real adversary does not. In particular,
without environmental accounting for these queries the FaPAKE and FSaPAKE

functionalities would be equivalent because the simulator could internally
gather all the offline dictionary attack queries made by the real-world
adversary before server corruption, and it would send them all via the
OfflineTestPwd query to FSaPAKE after server corruption via the
StealPwdFile query. Such simulator would make the ideal-world view
indistinguishable from the real-world view to the environment if the
environment does not observe the sequence of OfflineTestPwd and
StealPwdFile queries.

Finally, we note that the functionality FSaPAKE, like FaPAKE, has effectively
two separate notions of a server corruption. Formally, it considers a static
adversarial model where all entities, including users and servers, are either
honest or corrupt throughout the life-time of the scheme. In addition, it allows
for an adaptive server compromise of an honest server, via the
StealPwdFile, which leaks to the adversary the server’s private state
corresponding to a particular password file, but it does not give the adversary
full control over the server’s entity. In particular, the accounts on the same
server for which the adversary does not explicitly issue the StealPwdFile
command must remain unaffected. We adopt this convention from [18] and we
call a server “corrupted” if it is (statically) corrupt and adversarially

8

controlled, and we call an aPAKE instance “compromised” if the adversary
steals its password file from the server.

Non-black-box Assumptions. Note that the aPAKE functionality requires
the simulator, playing the role of the ideal-model adversary, to detect offline
password guesses made by the real-world adversary. As pointed out by [18],
this seems to require a non-black-box hardness assumption on some
cryptographic primitive, e.g., the Random Oracle Model (ROM), which would
allow the simulator to extract a password guess from adversary’s local
computation, e.g., a local execution of aPAKE interaction on a password guess
and a stolen password file.

Server Initialization. We note that while FaPAKE defines password registration
as an internal action of server S, with the user’s password as a local input, one
can modify it to support an interactive procedure between user and server, e.g.,
to prevent S from ever learning the plaintext password. To that end one needs
to assume that during the Password Registration phase there is an authenticated
channel from server to user, so the user can verify that it is registering the
password with the correct server. (Functionality FaPAKE effectively also assumes
such authenticated channel because otherwise the user’s password cannot be
safely transported to S.) In practice, the server also needs to verify the user’s
identity, and the password file could be created by the user and transported to
the server. However, this is beyond the scope of the formal aPAKE functionality.

3 Oblivious Pseudorandom Function

Oblivious Pseudorandom Functions (OPRF) are a central tool in all our
constructions. An OPRF consists of a pseudorandom function family F with
an associated two-party protocol run between a server that holds a key k for F
and a user with an input x. At the end of the interaction, the user learns the
PRF output Fk(x) and nothing else, and the server learns nothing (in
particular, nothing about x). The notion of OPRF was introduced in [17]. The
first UC formulation of it was given in [21], including a verifiability property
that lets the user check the correct behavior of the server during the OPRF
execution. Later [22] gave an alternative UC definition of OPRF which
dispensed with the verifiability property, allowing for more efficient
instantiations. The main idea in the OPRF formulations of [21,22] is the use of
a ticketing mechanism tx(·) that ensures that the number of input values on
which anyone can compute the OPRF on a key held by an honest server S is no
more than the number of executions of the OPRF recorded by S. This
mechanism dispenses with the need to extract users’ inputs as is typically
needed in UC simulations and it leads to much more efficient OPRF
instantiations.

Here we adopt the formulation from [22] as the basis for our definition of
functionality FOPRF presented in Fig. 2. We refer to [22] for detailed rationale,
but we note that it requires PRF outputs to be pseudorandom even to the

9

Public Parameters: PRF output-length `, polynomial in security parameter τ .

Convention on F and tx: For every (sid ,S) value tx(sid , S) is initially set to 0, and
for every x value Fsid,S(x) is initially undefined. Whenever Fsid,S(x) is referenced
below and it is undefined, pick Fsid,S(x)←R {0, 1}`.
Initialization

– On (Init, sid , x) from server S, send (Init, sid , Fsid,S(x)) to S.

Server Compromise

– On (Compromise, sid) from A∗ for a server S, mark S compromised.

– On (OfflineEval, sid , S, x) from A∗, if S is corrupted or marked
compromised, send (OfflineEval, sid , Fsid,S(x)) to A∗.

Evaluation

– On (Eval, sid , ssid , S, x) from party P ∈ {U,A∗}, record 〈ssid ,P, S, x〉 and
send (Eval, sid , ssid ,P, S) to A∗.

– On (SndrComplete, sid , ssid) from S, send (SndrComplete, sid , ssid ,S) to
A∗. If this is the first SndrComplete message for ssid , set tx(sid , S)++.

– On (RcvComplete, sid , ssid , S∗) from A∗, retrieve 〈ssid ,P, S, x〉 (where P ∈
{U,A∗}); abort if (i) such record does not exist, or (ii) S is honest and not
marked compromised and S∗ 6= S, or (iii) tx(sid , S∗) = 0. Otherwise set
tx(sid ,S∗)−− and send (Eval, sid , ssid , Fsid,S∗(x)) to P.

Fig. 2: Functionality FOPRF with Adaptive Compromise

owner of the PRF key k. This does not seem achievable under non-black-box
assumptions, but it is achievable, indeed very efficiently, in the Random Oracle
Model (ROM). Note that the reliance on non-black-box assumptions like ROM
is called for in the aPAKE context, see Section 2.

Changes from OPRF functionality of [22]. To use UC OPRF in our
application(s) we need to make some changes to the way functionality FOPRF

was defined in [22], as described below. Changes (2), (3) and (4) are essentially
syntactic and require only cosmetic changes in the security argument. Change
(1) is the only one which influences the security argument in a more essential
way. Fortunately, the DH-OPRF protocol that we use for OPRF instantiation
in our protocols, shown in [22] to realize their version of the OPRF
functionality FOPRF, also realizes our modified FOPRF functionality. We recall
the DH-OPRF protocol in Figure 9 in Appendix A, adapting its syntax to our
changes in FOPRF, and we argue that the security proof of [22] which shows
that it realizes FOPRF defined by [22] extends to the modified functionality
FOPRF presented here.

10

(1) We extend the OPRF functionality to allow the adaptive compromise of a
server holding the PRF key via a Compromise message. Such action is needed
in the aPAKE setting where the attacker A∗ can compromise a server’s
password file that contains the server’s OPRF key. After the compromise, A∗ is
allowed to compute that server’s PRF function by itself on any value of its
choice using OfflineEval and without the restrictions of the ticketing
mechanism. We note that functionality FOPRF distinguishes between
(statically) corrupted servers and (adaptively) compromised sessions (the latter
representing different OPRF keys at the same server). This distinction allows
for a granular separation between compromised and uncompromised OPRF
keys held by the same server. We adopt this distinction for consistency with
the aPAKE functionality from Fig. 1 that distinguishes between an entirely
corrupted server and particular aPAKE instances that can be adaptively
compromised by an adversary.

(2) We change the SndrComplete message such that it is sent from S instead
of A, thus restricting the number of OPRF invocations per ssid to one. This
enforces a single password guess per aPAKE sub-session which is crucial for
aPAKE security.

(3) We change the session-id syntax used in [22] to model the use of multiple
OPRF keys by the same server. In the formulation of [22] each PRF key was
identified with a server identity making a one-to-one correspondence between
OPRF keys and servers. Here, we allow multiple OPRF keys to be associated
with one server. Each such key is identified with a tag sid and a server can be
associated with multiple such tags. In the context of our application to aPAKE
protocols, each aPAKE session is associated with a unique OPRF key used by the
server for a particular user, so the session-id sid corresponds to a user account
at that server. Any sid can include sub-sessions, denoted by ssid , corresponding
to different runs of the OPRF protocol between a user and a server.

(4) We add an Initialization phase to the functionality, which models a server
picking an OPRF key and, in addition, computing the OPRF value on any input.
This interface simplifies the usage of OPRF in our applications to aPAKE, where
the server will pick an OPRF key for a new user and evaluate the OPRF on
the user’s password (for generating an encryption key). This modeling differs
from [22] who framed OPRF initialization as an interactive procedure through
an Eval call while here it is performed locally by the server.

4 A Compiler from aPAKE to Strong aPAKE via OPRF

In Fig. 3 we specify a compiler that transforms any OPRF and any aPAKE into
a Strong aPAKE protocol. In UC terms the Strong aPAKE protocol is defined in
the (FOPRF,FaPAKE)-hybrid world, for FOPRF with the output length parameter
` = 2τ . The compiler is simple. First, the user transforms its password pw into a
randomized value rw by interacting with the server in an OPRF protocol where
the user inputs pw and the server inputs the OPRF key. Nothing is learned at the

11

server about pw (i.e., rw is indistinguishable from random as long as the input
pw is not queried as input to the OPRF). Next, the user sets rw as its password
in the given aPAKE protocol. Note that since the password rw is taken from a
pseudorandom set, then even if the size of this set is the same as the original
dictionary D from which pw was taken, the pseudorandom set is unknown to the
attacker (the attacker can only learn this set via OPRF queries which require an
online dictionary attack). Thus, any previous ability to run a pre-computation
attack against the aPAKE protocol based on dictionary D is now lost.

We assume that A always simultaneously sends queries (Compromise, sid)
and (StealPwdFile, sid) for the same sid , resp. to FOPRF to FaPAKE, because
in any instantiation of this scheme the server’s OPRF-related state and aPAKE-
related state would be part of the same file[sid]. Consequently, for a single sid ,
S’s status (compromised or not) in FOPRF and FaPAKE is always the same.

Password Registration

1. On input (StorePwdFile, sid ,U, pw), S sends (Init, sid , pw) to FOPRF.
On FOPRF’s response (Init, sid , rw), S sends (StorePwdFile, sid ,U, rw) to
FaPAKE.

Password Authentication and Key Generation

1. On input (UsrSession, sid , ssid , S, pw′), U sends (Eval, sid , ssid , S, pw′) to
FOPRF.
On FOPRF’s response (Eval, sid , ssid , rw′), U sends
(UsrSession, sid , ssid , S, rw′) to FaPAKE.

2. On input (SvrSession, sid , ssid), S sends (SndrComplete, sid , ssid) to
FOPRF and (SvrSession, sid , ssid) to FaPAKE.

3. On (sid , ssid , SK) or (abort, sid , ssid) from FaPAKE, the recipient, either U or
S, outputs this message.

Fig. 3: Strong aPAKE Protocol in the (FOPRF,FaPAKE)-Hybrid World

4.1 Proof of Security

Theorem 1. The protocol in Fig. 3 UC-realizes the FSaPAKE functionality
assuming access to the OPRF functionality FOPRF and aPAKE functionality
FaPAKE.

Concretely, for any adversary A against the protocol, there is a simulator
SIM that produces a view in the simulated ideal world (henceforth simulated
world) such that the advantage that an environment has in distinguishing
between this view and the view in the (FOPRF,FaPAKE)-hybrid real world

12

(henceforth real world) is no more than (q2F + 2qO + 6)/22τ+1, where τ is the
security parameter, qF is the number of Eval and OfflineEval messages
aimed at FOPRF from A, and qO is the number of OfflineTestPwd messages
aimed at FaPAKE from A. (In the real world, A sends the messages to FOPRF

and FaPAKE. In the simulated world, A sends the messages to SIM acting as
both FOPRF and FaPAKE.)

Due to lack of space, we leave the proof to the full version of this paper.

5 A Compiler from AKE-KCI to Strong aPAKE via OPRF

Our second transformation for building a Strong aPAKE protocol composes an
OPRF with an Authenticated Key Exchange (AKE) protocol, “glued” together
using authenticated encryption. We require the AKE to be secure in the UC
model, namely, to realize the UC KE functionality of [14], but we also require
it to be “KCI secure,” a property which we call here “security against reverse
impersonation.” The notion of AKE-KCI security has been formalized with a
game-based approach in [27], but to the best of our knowledge it was not
formalized in UC setting, and we present such formalization in Section 5.1.

5.1 UC Definition of AKE-KCI

The KCI notion for KE protocols, which stands for “key-compromise
impersonation,” captures the property we call “security against reverse
impersonation,” which concerns an attacker A who learns party P’s long-term
keys but otherwise does not actively control P. Resistance to KCI attacks, or
“KCI security” for short, postulates that even though A can impersonate P to
other parties, sessions which P itself runs with honest peers need to remain
secure. A game-based definition of this notion appears in [27], and here we
formalize it in the UC model through functionality FAKE−KCI presented in Fig.
4. We specialize functionality FAKE−KCI to our user-server setting where only
servers can be compromised, but it can be extended to allow for compromise of
any protocol party.

Functionality FAKE−KCI extends the standard KE functionality of [14] with
two adversarial actions. The first, Compromise, is targeted at a server and
captures the compromise of the server’s keys. The second is Impersonate
which is borrowed from the aPAKE functionality of [18] shown in Fig. 1. This
action can only be targeted at users’ sessions, and only for sessions with servers
compromised via the Compromise action, and it marks such session as
compromised, which implies that the attacker can determine the session key
this session outputs, via the NewKey action. This models the fact that user’s
sessions with a compromised S as a peer cannot be assumed to be secure since
they could have been run with the adversary who has stolen S’s keys. However,
sessions at S itself must not be affected by the Impersonate action, and they
remain secure. All other elements in FAKE−KCI are the same as in the basic UC

13

In the description below, we assume P ∈ {U, S}.

– On (UsrSession, sid , ssid ,S) from U, send (UsrSession, sid , ssid ,U, S) toA∗.
If there is no record (ssid ,U, ·), record (ssid ,U, S) and mark it fresh.

– On (SvrSession, sid , ssid ,U) from S, send (SvrSession, sid , ssid ,U, S) to A∗.
If there is no record (ssid , S, ·), record (ssid , S,U) and mark it fresh.

– On (Compromise, sid) from A∗, mark S compromised.

– On (Impersonate, sid , ssid) from A∗, if S is marked compromised and there
is a record (ssid ,U,S) marked fresh, mark the record compromised.

– On (NewKey, sid , ssid ,P, SK) from A∗ where |SK| = τ , if there is a record
(ssid ,P,P′) not marked completed, do:
• If the record is marked compromised, or either P or P′ is corrupted, send

(sid , ssid , SK) to P.
• If the record is marked fresh, a (sid , ssid , SK′) tuple was sent to P′,

and at that time there was a record (ssid ,P′,P) marked fresh, send
(sid , ssid , SK′) to P.

• Else pick SK′′ ←R {0, 1}τ and send (sid , ssid , SK′′) to P.
Finally, mark (ssid ,P,P′) completed.

Fig. 4: Functionality FAKE−KCI

KE functionality, except of some syntactic specialization to the user-server
setting.

AKE-KCI security of HMQV. A concrete instantiation of protocol
OPAQUE shown in Fig. 7 in Section 6, which instantiates the generic Strong
aPAKE protocol shown in Section 5.2 below, using HMQV [27] as the
AKE-KCI protocol. The KCI property of HMQV was proved in [27] in the
game-based Canetti-Krawczyk model [13] extended to include KCI security.
Here we require UC security, namely, a protocol that realizes functionality
FAKE−KCI. Fortunately, [14] proves the equivalence of the game-based definition
of [13] and their UC AKE formulation. Thanks to this equivalence, HMQV, as
a basic KE, is secure in the UC model. More precisely, this applies to the
three-message HMQV with client authentication (which satisfies the “ACK”
property required for the equivalence in [14]). For the 2-message version of
HMQV, the equivalence still holds using the notion of non-information
oracle [14] that holds for HMQV under Computational Diffie-Hellman (CDH)
assumption in the RO model. For our purposes, however, we need HMQV to
realize the extended AKE-KCI functionality of Fig. 4. Luckily, the equivalence
with the game-based definition extends to this case. Indeed, since the original
equivalence from [14] holds even in the case of adaptive party corruptions, the
Compromise and Impersonate actions introduced here – which constitute a
limited form of adaptive corruptions – follow as a special case. Finally, we note

14

that the equivalence between the above models also preserves forward secrecy,
so this property (proved in the game-based Canetti-Krawczyk model in [27])
holds in the UC too. We note that by the results in [27], the 3-message HMQV
enjoys full PFS while the 2-message only weak PFS (against passive attackers
only). The above security of HMQV (without including security against the
leakage of ephemeral exponents) is based on the CDH assumption in the RO
model [27].

5.2 Strong aPAKE Construction from OPRF and AKE-KCI

Public Components:

– KCI-secure AKE protocol Π with private/public keys denoted ps, Ps, pu, Pu;
– Random-key robust authenticated encryption AE = (AuthEnc,AuthDec) with

(2τ)-bit keys;
– Functionality FOPRF with output length parameter ` = 2τ .

Password Registration

1. On input (StorePwdFile, sid ,U, pw), S generates pairs (ps, Ps) and (pu, Pu),
and sends (Init, sid , pw) to FOPRF.
On FOPRF’s response (Init, sid , rw), S computes c ← AuthEncrw(pu, Pu, Ps)
and records file[sid] := 〈ps, Ps, Pu, c〉.

Server Compromise

1. On (StealPwdFile, sid) from A, S retrieves file[sid] and sends it to A.

Login

1. On (UsrSession, sid , ssid , S, pw′), U sends (Eval, sid , ssid ,S, pw′) to FOPRF.
2. On (SvrSession, sid , ssid), S retrieves file[sid] = 〈ps, Ps, Pu, c〉, sends c to U,

sends (SndrComplete, sid , ssid) to FOPRF and runs Π on input (ps, Ps, Pu).
3. On (Eval, sid , ssid , rw′) from FOPRF and c from S, U computes AuthDecrw′(c).

If the result is ⊥, U outputs (abort, sid , ssid) and halts. Otherwise U parses
(p′u, P

′
u, P

′
s) := AuthDecrw′(c) and runs Π on input (p′u, P

′
u, P

′
s).

4. Given Π’s local output SK, the corresponding party, either U or S, outputs
(sid , ssid , SK).

Fig. 5: Strong aPAKE based on AKE-KCI in the FOPRF-Hybrid World

Our Strong aPAKE protocol based on OPRF and AKE-KCI is shown in Fig.
5. The protocol uses the same OPRF tool as the Strong aPAKE construction of
Section 4, for length parameter ` = 2τ , which defines the “randomized password”
value rw = Fk(pw) for user U’s password pw and OPRF key k held by server S.

15

We assume that in the AKE-KCI protocol Π each party holds a (private,public)
key pair, and that the each party runs the Login subprotocol using its key pair
and the public key of the counterparty as inputs. In Password Registration phase,
server S generates the user U’s keys, and S’s password file contains S’s key pair
ps, Ps; U’s public key Pu; and a ciphertext c of U’s private key pu, and the
public keys Pu and Ps created using an Authenticated Encryption scheme using
rw = Fk(pw) as the key. After creating the password file, value pu is erased at
S. In Login phase, S runs OPRF with U, which lets U compute rw = Fk(pw),
it sends c to U, who can decrypt it under rw and retrieves its key-pair pu, Pu
together with the server’s key Ps, at which point both parties have appropriate
inputs to the AKE-KCI protocol Π to compute the session key.

Role of Authenticated Encryption. The Strong aPAKE protocol of Fig. 5
utilizes an Authenticated Encryption scheme AE = (AuthEnc,AuthDec) to
encrypt and authenticate U’s AKE “credential” m = (pu, Pu, Ps). We encrypt
the whole payload m for simplicity, because unlike U’s private key pu, values
Pu, Ps could be public and need to be only authenticated, not encrypted.
However, the authentication property of AE must apply to the whole payload.
Intuitively, U must authenticate S’s public key Ps, but if U derived even its key
pair (pu, Pu) using just the secrecy of rw = Fk(pw), e.g., using rw as
randomness in a key generation, and U then executed AKE on such (pu, Pu)
pair, the resulting protocol would already be insecure. To see an example, if an
AKE leaks U’s public key input Pu (note that AKE does not guarantee privacy
of the public key) then an adversary A who engages U in a single protocol
instance can find U’s password pw via an offline dictionary attack by running
the OPRF with U on some key k∗, and then given Pu leaked in the subsequent
AKE it finds pw s.t. the key generation outputs Pu as a public key on
randomness rw = Fk∗(pw).

Thus the role of the authentication property in authenticated encryption is
to commit A to a single guess of rw and consequently, given the OPRF key
k∗, to a single guess pw. (Note that our UC OPRF notion implies that F is
collision-resistant.) To that end we need the authenticated encryption to satisfy
the following property which we call random-key robustness:6 For any efficient
algorithm A there is a negligible probability that A on input (k1, k2) for two
random keys k1, k2 outputs c s.t. AuthDeck1(c) 6=⊥ and AuthDeck2(c) 6=⊥. In
other words, it must be infeasible to create an authenticated ciphertext that
successfully decrypts under two different randomly generated keys. This property
can be achieved in the standard model using e.g. encrypt-then-MAC with a
MAC that is collision resistant with respect to the message and key, a property
enjoyed by HMAC with full hash output. In the RO model used by our aPAKE
application one can also enforce it for any authenticated encryption scheme by
attaching to its ciphertext c a hash H(k, c) for a RO hash H with 2τ -bit outputs.

6 This notion is a weakening of full robustness (FROB) from [16] where the attacker is
allowed to choose k1, k2 (in our case these keys are random). An even weaker notion,
Semi-FROB, is defined in [16] where k1, k2 are random but only k1 is provided to A.

16

Note on not utilizing FAKE−KCI. In Fig. 5 we abstract the OPRF protocol
as functionality FOPRF, but we use the real-world AKE-KCI protocol Π, rather
than functionality FAKE−KCI. The reason for this presentation is that in the KE
functionality of [14], of which FAKE−KCI is an extension, it is not clear how to
support a usage of the KE protocol on keys which are computed via some other
mechanism than the intended KE key generation. The KE functionality of [14]
assumes that each entity keeps its private key as a permanent state, authenticates
to a counterparty given its identity, and a KE party cannot specify any bitstring
as one’s own private key and a counterparty’s public key. This is not how we
use AKE in our Strong aPAKE of Fig. 5 precisely because U does not keep state
and has to reconstruct its keys from a password (via OPRF). However, we can
still use the real-world protocol Π, which UC-realizes FAKE−KCI, giving it the
OPRF-computed information as input. In the proof of security we utilize the
simulator SIMAKE, which shows that Π UC-realizes FAKE−KCI, in our simulator
construction, but we rely on its correctness only if U runs Π on the correctly
reconstructed (pu, Ps, Ps), and if the adversary causes U to reconstruct a different
string we interpret this as a successful attack on U’s login session.

5.3 Proof of Security

In Theorem 2 below we state security of the Strong aPAKE protocol of Fig. 5.

Theorem 2. If protocol Π UC-realizes functionality FAKE−KCI then protocol in
Fig. 5 UC-realizes functionality FSaPAKE in the FOPRF-hybrid model.

Concretely, suppose that there is a simulator SIMAKE such that the
distinguishing advantage of an environment Z between the real execution of Π
and Z’s interaction with SIMAKE is at most AdvDIST

SIMAKE,Z(τ), where τ is the
security parameter. Then for any adversary A with running time T against the
protocol, there is a simulator SIM that produces a view in the simulated world
such that the advantage that Z has in distinguishing between this view and the
view in the real world is no more than AdvAUTH

AE,T (τ) + q2F · AdvRK−RBST
AE,T (τ) +

2AdvDIST
SIMAKE,Z(τ), where qF is the number of Eval and OfflineEval

messages aimed at FOPRF from A, and AdvAUTH
AE,T (τ) and AdvRK−RBST

AE,T (τ) are
the probabilities that any algorithm in running time T breaks the authenticity of
AE and the random-key robustness of AE, respectively.

Proof. For any adversary A, we construct a simulator SIM as in Fig. 6. While
interacting with SIMAKE, SIM plays the role of both FAKE−KCI and A.

Following [11], without loss of generality, we may assume that A is a
“dummy” adversary that merely passes all its messages and computations to
the environment Z. We omit all interactions with corrupted U and S where
SIM acts as FOPRF, since the simulation is trivial (SIM gains all information
needed and simply follows the code of FOPRF). To keep notation brief we
denote functionality FSaPAKE as F .

In order to account for the advantage of the environment Z in distinguishing
between its views in the real world and the simulated world, we compare between

17

Z U/S

A FOPRF

oo //
OO

��

OO

��
oo //

==

Π

}}

(a) real world

Z U/S

F

A SIM

SIMAKE

oo //
OO

��

OO

��
OO

��
oo //

OO

��

(b) simulated world

these two settings in the different simulator actions and derive the distinguishing
advantages in cases where the simulation is not perfect. Below we assume that
Z issues the (StorePwdFile, sid ,U, pw) command to S for some pw; otherwise
any subsequent server-side commands of Z will not have any effect.

– file[sid] = 〈ps, Ps, Pu, c〉 (from A): In both worlds, Z receives this message
after A sends (Compromise, sid) aimed at FOPRF and (StealPwdFile,
sid) to S, provided that Z input (StorePwdFile, sid ,U, pw) to S
previously.
In both worlds, ps, Ps and Pu are generated in the same way, and c is
computed as AuthEncrw(pu, Pu, Ps). The only difference is that rw is
Fsid,S(pw) in the real world, while it is chosen from random in the
simulated world. There is no way for Z to distinguish unless and until it
queries Fsid,S(pw) by letting A send (OfflineEval, sid ,S, pw) aimed at
FOPRF. However, once A sends such message, SIM sets Fsid,S(pw) to rw.
Therefore, in both worlds, Fsid,S(pw) = rw and Z cannot distinguish.

– (OfflineEval, sid , ρ) (from A): In both worlds, Z receives this message
after A sends (OfflineEval, sid ,S, x) to FOPRF, provided that S is
corrupted or marked compromised. The selection of ρ is the same in the
two worlds, except that in the simulated world, if x = pw, ρ is set to rw
which was chosen from random in advance, while in the real world, ρ is
always chosen from random directly. There is no way to distinguish
between these two cases.

– (Eval, sid , ssid ,U,S) (from A): In both worlds, Z receives this message after
inputting (UsrSession, sid , ssid ,S, pw′) to U.

– c and (SndrComplete, sid , ssid ,S) (from A): In both worlds, Z receives
these two messages after inputting (SvrSession, sid , ssid) to S. As argued
above, Z cannot distinguish the two c’s in the two worlds.

– (abort, sid , ssid) (from U): In both worlds, Z may receive this message
after A sends (RcvComplete, sid , ssid ,S∗) aimed at FOPRF and c′ aimed
at U, provided that (i) there is a record 〈ssid ,U,S, pw′〉 in FOPRF (or a

18

For every sid and every server S, initialize tx(sid , S) to 0.

Stealing Password Data and Offline Queries

1. On (Compromise, sid) from A aimed at FOPRF and (StealPwdFile, sid) from A
aimed at S, send (StealPwdFile, sid) to F .
If F returns “password file stolen,” mark S compromised, generate two key pairs
(ps, Ps) and (pu, Pu), pick rw←R {0, 1}2τ , compute c← AuthEncrw(pu, Pu, Ps), record
file[sid] := 〈ps, Ps, Pu, c〉, and send file[sid] to A as a message from S.

2. On (OfflineEval, sid ,S, x) from A aimed at FOPRF, if S is marked compromised
or corrupted, send (OfflineTestPwd, sid , x) to F . If F returns “correct guess,” set
Fsid,S(x) := rw. Regardless, send (OfflineEval, sid , Fsid,S(x)) to A as a message from
FOPRF (if Fsid,S(x) is undefined, pick ρ←R {0, 1}2τ and set Fsid,S(x) := ρ).

Password Authentication

1. On (UsrSession, sid , ssid ,U, S) from F , send (Eval, sid , ssid ,U, S) to A as a message
from FOPRF. Also, if this is the first UsrSession message for ssid , record 〈ssid ,U,S, ·〉.

2. On (SvrSession, sid , ssid ,U, S) from F , retrieve file[sid] = 〈ps, Ps, Pu, c〉, send c
and (SndrComplete, sid , ssid , S) to A as a message from S to U and from FOPRF,
respectively, and send (SvrSession, sid , ssid ,U, S) to SIMAKE as a message from
FAKE−KCI. Also, if this is the first SvrSession message for ssid , set tx(sid , S)++.

3. On (RcvComplete, sid , ssid , S∗) from A aimed at FOPRF, retrieve 〈ssid ,U,S, ·〉; ignore
this message if (i) such record does not exist, or (ii) S is honest and not marked
compromised and S∗ 6= S, or (iii) tx(sid ,S∗) = 0. Else set tx(sid , S∗)−−, augment
〈ssid ,U,S, ·〉 to 〈ssid ,U, S, S∗, ·〉 and mark (ssid ,U) completed.

Key Generation and Authentication

1. As soon as (ssid ,U) is marked completed and a c′ is sent from A aimed at U, retrieve
file[sid] = 〈ps, Ps, Pu, c〉 and 〈ssid ,U, S, S∗, ·〉, and proceed as follows:
– If c′ = c and S∗ = S, send (TestAbort, sid , ssid ,U) to F .

If F returns Succ, send (UsrSession, sid , ssid ,U, S) to SIMAKE as a message from
FAKE−KCI. Mark this case (1).

– Else for every x such that Fsid,S∗(x) is defined (denote it y), check whether
AuthDecy(c′) 6=⊥.
• If there are more than one such x’s, output halt and abort.
• If there is a unique such x, send (TestPwd, sid , ssid ,U, x) to F .

If F returns “correct guess,” parse (p′u, P
′
u, P

′
s) := AuthDecy(c′). Mark this

case (2).
If F returns “wrong guess,” send (TestAbort, sid , ssid ,U) to F and halt.

• If there is no such x, send (TestAbort, sid , ssid ,U) to F and halt.
2. In case (1): (i) On (Impersonate, sid , ssid) from SIMAKE, if S is marked compromised,

pass this message to F ; (ii) While SIMAKE simulates the execution of Π, pass messages
between it and A; (iii) On (NewKey, sid , ssid ,P, SK) from SIMAKE, pass this message
to F .

3. In case (2): (i) On A’s message as from S to U, run U’s algorithm in Π (henceforth Πu)
on (p′u, P

′
u, P

′
s); (ii) On A’s message as from U to S, pass it to SIMAKE as a message from

A, and pass SIMAKE’s response to A as from S to U; (iii) When Πu is completed with
output SK, send (NewKey, sid , ssid ,U, SK) to F ; (iv) On (NewKey, sid , ssid , S, SK)
from SIMAKE, send (NewKey, sid , ssid ,S, 0τ) to F .

Fig. 6: The Simulator SIM
19

record 〈ssid ,U,S, ·〉 in SIM), (ii) if S is honest and not marked
compromised, then S∗ = S, and (iii) tx(sid ,S∗) > 0.
Note that Z may see a halt message from SIM at this time. halt occurs
when there exists x1 6= x2 such that AuthDecy1(c′) 6=⊥ and AuthDecy2(c′)
6=⊥, where y1 = Fsid,S∗(x1) and y2 = Fsid,S∗(x2). Since Fsid,S∗(·) is a
random function onto {0, 1}2τ , y1 and y2 are independent random strings
in {0, 1}2τ ; thus, for fixed y1 and y2, the probability that A finds c′ such
that AuthDecy1(c′) 6=⊥ and AuthDecy2(c′) 6=⊥ is at most AdvRK−RBST

AE,T (τ)
due to the random-key robustness of AE. Since A queries F qF times, there
are qF independent y’s; using a polynomial reduction, we have
Pr[halt] ≤ q2F ·AdvRK−RBST

AE,T (τ).
Next we assume that halt does not occur. In the real world, Z receives
(abort, sid , ssid) from U if and only if AuthDecrw′(c

′) =⊥; that is, Z does
not receive this message if and only if AuthDecrw′(c

′) 6=⊥. There are only
three possibilities:
(1) (pw′,S∗, c′) = (pw,S, c): Then rw′ = rw = Fsid,S(pw), thus AuthDecrw′(c

′)
= AuthDecrw(c) = (pu, Pu, Ps).

(2) A queries rw′ = Fsid,S∗(pw′) previously, and AuthDecrw′(c
′) 6=⊥: If A

learns rw′, then it can compute an AuthEnc instance on rw′ and any
message to find a c′ such that AuthDecrw′(c

′) 6=⊥.
(3) Other cases where A finds a c′ such that AuthDecrw′(c

′) 6=⊥, while rw′

is independently random of everything else in Z’s view (since A does
not query Fsid,S∗(pw′)), and Z does not query AuthEncrw′(p

′
u, P

′
u, P

′
s) (Z

queries AuthEncrw′(p
′
u, P

′
u, P

′
s) by setting pw′ = pw [thus making rw′ =

rw] and receiving c = AuthEncrw(pu, Pu, Ps) from S). Since AE is an
authenticated encryption, the probability of (3) is at most AdvAUTH

AE,T (τ).
In the simulated world, Z does not receive this message if and only if either
of the following two conditions holds:
(1) c′ = c, S∗ = S and F returns Succ on (TestAbort, sid , ssid ,U) from

SIM. The last condition holds if and only if there are two records
〈ssid ,U,S, pw′〉 and 〈ssid ,S,U, pw′′〉, the former marked fresh and
pw′ = pw′′. Note that no TestPwd, Impersonate or NewKey
message has been issued yet, so the record must be fresh. According
to the syntax of SvrSession, we have pw′′ = pw. Therefore, the last
condition is equivalent to pw′ = pw, thus this case is equivalent to case
(1) in the real world.

(2) There exists x s.t. y = Fsid,S∗(x) is defined in SIM, AuthDecy(c′) 6=⊥ and
F returns “correct guess” on (TestPwd, sid , ssid , x) from SIM. The last
condition is equivalent to x = pw′; thus, the three conditions conbined are
equivalent to rw′ = Fsid,S∗(pw′) is defined in SIM and AuthDecrw′(c

′) 6=⊥.
SIM defines Fsid,S∗(pw′) only when receiving (OfflineEval, sid ,S∗, pw′)
from A. Therefore, this case is equivalent to case (2) in the real world.

Hence, Z receives this message in the two worlds under the same conditions,
except for case (3) in the real world.

– Messages sent from U and S while executing Π (in the real world), or
messages sent from SIM (in the simulated world) (from A): In case (1) and

20

messages sent from S in case (2), they are simulated by SIM who in turn
receives them from SIMAKE. Since SIMAKE generates A’s view
indistinguishable from A’s view in the real world, SIM, who merely passes
messages between SIMAKE and A, can also achieve that; the distinguishing
advantage of Z is at most AdvDIST

SIMAKE,Z(τ). For messages sent from U in
case (2), they are the results of Πu on (p′u, P

′
u, P

′
s), and are simulated

perfectly.
– (sid , ssid , SK ′) (from U): In both worlds, Z receives this message when Π

is completed and sends output to U. In the real world, there are two cases:
• (p′u, P

′
u, P

′
s) = (pu, Pu, Ps), i.e., the input of U to Π is correct. This

corresponds to case (1) above. There are two subcases regarding Π:
∗ S is not compromised. Then according to the syntax of FAKE−KCI,
SK ′ is a random string in {0, 1}τ (independent of everything else,
or the same with S’s output if S already output previously). In the
simulated world, the record 〈ssid ,U,S, pw′〉 in F is marked fresh,
so SK ′ is also a random string in {0, 1}τ .

∗ S is compromised (then A may impersonate S while interacting
with U in the execution of Π and set U’s output). In the simulated
world, SIMAKE sends (Impersonate, sid , ssid) to SIM, who
transfers this message to F , which makes the record 〈ssid ,U,S, pw′〉
marked compromised (note that we have pw′ = pw here since this
is a condition of case (1)). Therefore, SK ′ chosen by SIMAKE (which
is the same with the SK ′ output by Π in the real world except for
probability at most AdvDIST

SIMAKE,Z(τ)) is the value output to U.
• (p′u, P

′
u, P

′
s) 6= (pu, Pu, Ps), i.e., the input of U to Π is incorrect. This

may occur only in cases (2) and (3) above. As argued above, the
probability of (3) is at most AdvAUTH

AE,T (τ).
(2) is equivalent to case (2) in the simulated world, where SIM sends
(TestPwd, sid , ssid ,U, x) to F and F returns “correct guess”
(meaning that x = pw′). After this, the record 〈ssid ,U,S, pw′〉 is
marked compromised. Therefore, SK ′, which is computed by SIM as
Πu’s output on (p′u, P

′
u, P

′
s), is the value output to U. In the real world,

U also outputs SK ′.
– (sid , ssid , SK) (from S): In both worlds, Z receives this message when Π is

completed and sends output to S.
In the real world, SK is always a random string in {0, 1}τ (independent of
everything else, or the same with U’s output if U already output previously).
Note that in the simulated world, the record 〈ssid ,S,U, pw′〉 is always marked
fresh. Therefore, SK is also random string in {0, 1}τ .

It remains to show that SIMAKE’s view while interacting with SIM is the
same as interacting with FAKE−KCI and A. When SIM acts as A, the interaction
is trivial since SIM merely passes messages between SIMAKE and the real A.
Consider when SIM acts as FAKE−KCI, and note that SIM engages with SIMAKE

only in cases (1) and (2):

(1) U’s input is correct: Same effect as honest U and S executing Π;

21

(2) U’s input is incorrect: Same effect as corrupted U and honest S executing
Π. Note that SIM engages with SIMAKE on the side of S only, so SIMAKE’s
view is again the same.

We conclude that Z’s view in the real world and the simulated world is the
same, except for (1) (abort, sid , ssid) or halt after A sends
(RcvComplete, sid , ssid ,S∗) and c′, (2) messages sent during the execution of
Π, and (3) (sid , ssid , SK ′) output from U. The probabilities that (1), (2) and
(3) are different in the two worlds are no more than AdvAUTH

AE,T (τ) +

q2F ·AdvRK−RBST
AE,T (τ), AdvDIST

SIMAKE,Z(τ) and AdvDIST
SIMAKE,Z(τ), respectively. Using a

hybrid argument, we can see that Z’s advantage is no more than
AdvAUTH

AE,T (τ) + q2F ·AdvRK−RBST
AE,T (τ) + 2AdvDIST

SIMAKE,Z(τ).

6 OPAQUE: A Strong Asymmetric PAKE Instantiation

Figure 7 shows OPAQUE, a concrete instantiation of the generic OPRF+AKE
protocol from Fig. 5. An illustration is presented in Figure 8.

The OPRF is instantiated with the DH-OPRF scheme from [22] recalled in
Appendix A, while the AKE protocol can be instantiated with any UC-secure
2-message implicitly-authenticated AKE-KCI; in Fig. 7 this is illustrated with
HMQV [27]. Fortunately, the two messages of DH-OPRF and the two messages
from HMQV (or a similar protocol) can be run “in parallel” hence obtaining a
2-message SaPAKE.

By Theorem 2 on the security of the generic OPRF+AKE construction,
by Lemma 1 in Appendix A on the security of DH-OPRF, and by security
of HMQV (see below), we get that protocol OPAQUE realizes functionality
FSaPAKE, hence it is a provably-secure Strong aPAKE, under the One-More Diffie-
Hellman assumption [3, 22] in ROM.

6.1 Protocol Details and Properties

We expand on the specification of OPAQUE and the protocol’s properties.

• Password registration. Password registration is the only part of the protocol
assumed to run over secure channels where parties can authenticate each other.
We note that while OPAQUE is presented with S doing all the registration
operations, in practice one may want to avoid that. Instead, we can let S
choose an OPRF key ks and U choose pw, and then run the OPRF protocol
between U and S so only U learns its secrets (pw, rw, pu) and only S learns ps.
A problem arises with this approach if S’s policy is to check the user’s
password for compliance with some rules. A possible workaround is to adapt
techniques from [26] that present zero-knowledge proofs for proving compliance
without disclosing the password.

• Authenticated encryption. As specified in Section 5.2, the scheme AuthEnc
used in the protocol needs to satisfy the key-committing property defined there.
In practice, using an encrypt-then-mac scheme with HMAC-256 (or larger) as

22

Public Parameters and Components

– Security parameter τ
– Group G of prime order q, |q| = 2τ and generator g (G∗ denotes G \ {1}).
– Hash functions H(·, ·), H ′(·) with ranges {0, 1}2τ and G, respectively.
– Pseudorandom function (PRF) f(·) with range {0, 1}2τ .
– OPRF function defined as Fk(x) = H(x, (H ′(x))k) for key k ∈ Zq.
– Key-committing authenticated encryption scheme (AuthEnc,AuthDec).
– Key exchange formula KE defined below.

Password Registration

1. (StorePwdFile, sid ,U, pw): S computes ks ←R Zq, rw := Fks(pw),
ps ←R Zq, pu ←R Zq, Ps := gps , Pu := gpu , c← AuthEncrw(pu, Pu, Ps);
it records file[sid] := 〈ks, ps, Ps, Pu, c〉.

Login

1. (UsrSession, sid , ssid , S, pw): U picks r, xu ←R Zq; sets α := (H ′(pw))r and
Xu := gxu ; sends α and Xu to S.

2. (SvrSession, sid , ssid): On input α from U, S proceeds as follows:

(a) Checks that α ∈ G∗. If not, outputs (abort, sid , ssid) and halts;

(b) Retrieves file[sid] = 〈ks, ps, Ps, Pu, c〉;

(c) Picks xs ←R Zq and computes β := αks and Xs := gxs ;

(d) Computes K := KE(ps, xs, Pu, Xu) and SK := fK(0);

(e) Sends β, Xs and c to U;

(f) Outputs (sid , ssid , SK).

3. On β, Xs and c from S, U proceeds as follows:

(a) Checks that β ∈ G∗. If not, outputs (abort, sid , ssid) and halts;

(b) Computes rw := H(pw, β1/r);

(c) Computes AuthDecrw(c). If the result is ⊥, outputs (abort, sid , ssid) and
halts. Otherwise sets (pu, Pu, Ps) := AuthDecrw(c);

(d) Computes K := KE(pu, xu, Ps, Xs) and SK := fK(0);

(e) Outputs (sid , ssid , SK).

Key exchange formula KE with HMQV instantiation (if any of Xu, Pu, Xs, Ps /∈ G∗
the receiving party outputs (abort, sid , ssid) and halts)

For S: KE(ps, xs, Pu, Xu) = H
(
(XuP

eu
u)xs+esps

)
For U: KE(pu, xu, PS , XS) = H

(
(XsP

es
s)xu+eupu

)
where eu = H(Xu, S) mod q, es = H(Xs,U) mod q.

Fig. 7: Protocol OPAQUE

23

𝑈 (𝑝𝑤) 𝑆 (𝑘, 𝑝𝑆, 𝑐)

𝑟, 𝑥  𝑍𝑞

𝑦 𝑍𝑞

𝛼 = 𝐻’(𝑝𝑤)𝑟, 𝑋 = 𝑔𝑥

• 𝑟𝑤 𝐻(𝑝𝑤, 𝛽1/r)

• 𝑝𝑈, 𝑃𝐾𝑈, 𝑃𝐾𝑆 𝐴𝑢𝑡ℎ𝐷𝑒𝑐𝑟𝑤(𝑐)

• 𝐾 = 𝐾𝐸(𝑝𝑈, 𝑥, 𝑃𝑆, 𝑌) 𝐾 = 𝐾𝐸(𝑝𝑆, 𝑦, 𝑃𝑈, 𝑋)

Init: On input 𝑝𝑤, 𝑝𝑈 by 𝑈 and 𝑘, 𝑃𝑆 by 𝑆, 𝑈 computes 𝑟𝑤 = 𝐻(𝑝𝑤,𝐻’(𝑝𝑤)𝑘) .

and 𝑐 = 𝐴𝑢𝑡ℎ𝐸𝑛𝑐𝑟𝑤(𝑝𝑈, 𝑃𝑈, 𝑃𝑆). 𝑆 stores (𝑘, 𝑝𝑆, 𝑐). 𝑈 only keeps 𝑝𝑤.

Login:

𝛽 = 𝛼𝑘, 𝑐, 𝑌 = 𝑔𝑦

Fig. 8: Schematic Representation of OPAQUE (see Fig. 7 for the details)

the MAC provides this property (if a scheme does not have this property then
adding on top of it such a HMAC computed on the scheme’s ciphertext will
ensure this property).

• Key exchange. The generic AKE representation via the KE formula applies
to any protocol whose session key is computed as a function of the long-term
private-public key pair of each party and ephemeral session-specific
private-public values. These values are represented as (ps, Ps, xs, Xs) for the
server and (pu, Pu, xu, Xu) for the user. We note that while more general
key-exchange protocols can be used with OPAQUE, this representation applies
to many such protocols and, in particular, to HMQV [27] which we use here as
our main instantiation.

• Explicit mutual authentication. The protocol as illustrated takes just two
messages but does not provide explicit user authentication. With a third message
the protocol achieves mutual authentication by simply adding the value fK(1)
to the server’s message and adding a third message where U sends fK(2) to S.
Each party verifies that the value received from the other is computed correctly
and if not it aborts.

24

• Use of HMQV. Recall that the security of OPAQUE depends on the KE
protocol being AKE-secure in the UC model with the additional KCI property;
namely, it should realize the AKE-KCI UC functionality from Fig. 4. As
argued in Section 5.1, HMQV indeed realizes this functionality (under the
CDH assumption in the RO model), hence it is appropriate for use in
OPAQUE. Moreover, HMQV enjoys forward secrecy. Specifically, the
2-message protocol provides weak forward secrecy (i.e., forward secrecy is
guaranteed for sessions where the user’s message delivered to the server came
from the real U) while the 3-message variant with explicit client authentication
provides full forward secrecy, namely, against arbitrary active attacks [27].

• Forward secrecy. This property (or lack of it) is inherited by OPAQUE from the
key exchange component KE. In the case of HMQV, forward secrecy is achieved as
stated above. One cannot overstate the importance of forward secrecy in password
protocols: it guarantees that past session keys remain secure upon the compromise
of a user’s password (or server’s information).

• User iterated hashing. OPAQUE can be strengthened by increasing the cost
of a dictionary attack in case of server compromise. This is done by changing the
computation of rw to rw = Hn(Fk(pw)), that is, the client applies n iterations of
the function H on top of the result of the OPRF value Fk(pw). In practice, the
iterations Hn would be replaced with one of the standard password-based KDFs,
such as PBKDF2 [25] or bcrypt [31]. This forces an attacker that compromises
the password file at the server to compute for each candidate password pw′ the
function Fk(pw′) as well as the additional n hash iterations. Note that n needs
not be remembered by the user; it can be sent from S to U in the server’s message.
Furthermore, one can follow Boyen’s design and apply the probabilistic Halting
KDF function [8] as used in [9] so that the iterations count is hidden from the
attacker and even from the server.

• Performance. OPAQUE takes two messages (three with explicit mutual
authentication); one exponentiation for S, two and a hashing-into-G for U, plus
the cost of KE. With HMQV, the latter cost is one offline fixed-base
exponentiation and one multi-exponentiation (at the cost of 1.16 regular
exponentiations) per party (about three exponentiations in total for the server
and four for the user). All exponentiations are in regular DH groups, hence
accommodating the fastest elliptic curves (e.g., no pairings). It is common in
PAKE protocols to count number of group elements transmitted between the
parties. In OPAQUE, U sends two while S sends three (one, Pu, can be omitted
at the cost of one fixed-based exponentiation at the client).

• Performance comparison. The introduction presents background on OPAQUE
and other password protocols. Here we provide a comparison with the more
efficient among these protocols, particularly those that are being, or have been,
considered for standardization. Clearly, OPAQUE is superior security-wise as
the only one not subject to pre-computation attacks, but it also fares well in
terms of performance.

AugPAKE [33, 34], is computationally very efficient with only 2.17
exponentiations per party; however, it uses 4 messages and does not provide

25

forward secrecy. In addition, the protocol has only been analyzed as a PAKE
protocol, not aPAKE [34]. Another proposed aPAKE protocol,
SPAKE2+ [2, 15], uses two messages only and 3 multi-exponentiations (or
about 3.5 exponentiations) per party which is similar to OPAQUE cost. The
security of the protocol has only been informally argued in [15] and to the best
of our knowledge no formal analysis has appeared. We also mention SRP which
has been included in TLS ciphersuites in the past but is considered outdated as
it does not have an instantiation that works over elliptic curves (the protocol is
defined over rings and uses both addition and multiplication). Its
implementations over RSA moduli is therefore less efficient than those over
elliptic curve; it also takes 4 messages.

We also mention two very recent schemes that have been formally analyzed
as aPAKE protocols but, as the rest, are vulnerable to pre-computation. The
protocol VTBPEKE in [30] uses 3 messages and 4 exponentiations per party
and was proven secure in the non-UC aPAKE model of [7], while [24] shows a
simultaneous one-round scheme that they prove secure in the UC aPAKE model
of [18] augmented with adaptive security. The protocol works over bilinear groups
and its computational cost includes 4 exponentiations and 3 pairing per party.
We note that all of the above protocols require an initial message from server to
user in order to transmit salt, which results in one or two added messages to the
above message counts (except for VTBPEKE which already includes the salt
transmission in its 3 messages). Also, all these protocols, like OPAQUE, work in
the RO model.

• Threshold implementation. We comment on a simple extension of OPAQUE
that can be very valuable in large deployments, namely, the ability to implement
the OPRF phase as a Threshold OPRF [23]. In this case, an attacker needs to
break into a threshold of servers to be able to impersonate the servers to the user
or to run an offline dictionary attack. Such an implementation requires no user-
side changes, i.e., the user does not need to know if the system is implemented
with one or multiple servers.

• Secret retrieval and hedging TLS. Additional features of OPAQUE include the
ability to store and retrieve user’s secrets (such as a bitcoin wallet, authentication
credentials, encrypted backup keys, etc.) as part of the information encrypted
and authenticated at the server under ciphertext c. In one particular use case
such secret can be a client signature key for TLS. In this case, the key exchange
part of OPAQUE can reuse that of TLS and a server’s certificate can be replaced
with the server’s public key stored under the client-authenticated ciphertext c.

6.2 An OPAQUE variant: Multiplicative blinding

A variant of OPAQUE is obtained by replacing the user’s exponential blinding
operation α := (H ′(pw))r with α := (H ′(pw)) ·gr. The server responds as before
with β = αks . Assuming that U knows the value y = gks (previously stored
or received from S), it can compute the same “hashed Diffie-Hellman” value
(H ′(pw))ks as β/yr. The advantage of this variant is that while the number

26

of client exponentiations remains the same, one is fixed-base (gr) and the other
(yr) can also be fixed-base if U caches y, a realistic possibility for accounts where
the user logs in frequently (e.g., a personal email or social network). Computing
yr can also be done while waiting for the server’s response to reduce latency.
Moreover, both exponentiations can be done offline although only short-term
storage is recommended as the leakage of r exposes H ′(pw). If U does not store
y, it needs to be transmitted to U by S together with the response β. This still
allows for fixed-base optimization for computing gr but not for yr.

However, it turns out that this multiplicative mechanism results in an
OPRF protocol that does not realize our OPRF functionality FOPRF. Thus, our
analysis here does not imply the security of the multiplicative OPAQUE
variant in general. If rw is redefined as rw := H(pw, y,H ′(pw)ks), i.e. if y is
included under the hash, then the resulting OPRF does realize our
functionality, and OPAQUE remains secure as SaPAKE under both blinding
variants. This change, however, introduces a (slight) overhead of having to
transmit y even if it is not strictly needed, e.g. if the client implements the
exponential blinding operation. An alternative approach would be to replace
the OPRF functionality FOPRF with a weaker form F ′OPRF and to show that (i)
F ′OPRF is realized by the multiplicative variant (even without hashing y) and
(ii) F ′OPRF is sufficient for proving Theorem 2 hence implying the security of
OPAQUE as SaPAKE. We intend to investigate this weakening of FOPRF.

References

1. CFRG, Crypto Forum Research Group, https://datatracker.ietf.org/rg/

cfrg/documents/.

2. M. Abdalla and D. Pointcheval. Simple password-based encrypted key exchange
protocols. In Topics in Cryptology – CT-RSA 2005, pages 191–208. Springer, 2005.

3. M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. Journal
of Cryptology, 16(3), 2003.

4. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In Advances in Cryptology – EUROCRYPT 2000, pages
139–155. Springer, 2000.

5. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In IEEE Computer Society Symposium on
Research in Security and Privacy – S&P 1992, pages 72–84. IEEE, 1992.

6. S. M. Bellovin and M. Merritt. Augmented encrypted key exchange: a password-
based protocol secure against dictionary attacks and password file compromise. In
ACM Conference on Computer and Communications Security – CCS 1993, pages
244–250. ACM, 1993.

7. F. Benhamouda and D. Pointcheval. Verifier-based password-authenticated key
exchange: New models and constructions. IACR Cryptology ePrint Archive,
2013:833, 2013.

8. X. Boyen. Halting password puzzles. In Usenix Security Symposium – SECURITY
2007, pages 119–134. The USENIX Association, 2007.

27

https://datatracker.ietf.org/rg/cfrg/documents/
https://datatracker.ietf.org/rg/cfrg/documents/

9. X. Boyen. HPAKE: Password authentication secure against cross-site user
impersonation. In Cryptology and Network Security – CANS 2009, pages 279–
298. Springer, 2009.

10. V. Boyko, P. MacKenzie, and S. Patel. Provably secure password-authenticated
key exchange using Diffie-Hellman. In Advances in Cryptology – EUROCRYPT
2000, pages 156–171. Springer, 2000.

11. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In IEEE Symposium on Foundations of Computer Science – FOCS 2001,
pages 136–145. IEEE, 2001.

12. R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. MacKenzie. Universally
composable password-based key exchange. In Advances of Cryptology –
EUROCRYPT 2005, pages 404–421. Springer, 2005.

13. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In Advances in Cryptology – EUROCRYPT 2001, pages
453–474. Springer, 2001.

14. R. Canetti and H. Krawczyk. Universally composable notions of key exchange and
secure channels. In Advances in Cryptology – EUROCRYPT 2002, pages 337–351.
Springer, 2002.

15. D. Cash, E. Kiltz, and V. Shoup. The twin Diffie-Hellman problem and
applications. In Advances in Cryptology – EUROCRYPT 2008, pages 127–145.
Springer, 2008.

16. P. Farshim, C. Orlandi, and R. Rosie. Security of symmetric primitives under
incorrect usage of keys. IACR Transactions on Symmetric Cryptology, 2017(1):449–
473, 2017.

17. M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and
oblivious pseudorandom functions. In Theory of Cryptography – TCC 2005, pages
303–324. Springer, 2005.

18. C. Gentry, P. MacKenzie, and Z. Ramzan. A method for making password-based
key exchange resilient to server compromise. In Advances in Cryptology – CRYPTO
2006, pages 142–159. Springer, 2006.

19. L. Gong, M. A. Lomas, R. M. Needham, and J. H. Saltzer. Protecting poorly chosen
secrets from guessing attacks. IEEE Journal on Selected Areas in Communications,
11(5):648–656, 1993.

20. S. Halevi and H. Krawczyk. Public-key cryptography and password protocols.
ACM Transactions on Information and System Security (TISSEC), 2(3):230–268,
1999.

21. S. Jarecki, A. Kiayias, and H. Krawczyk. Round-optimal password-protected secret
sharing and T-PAKE in the password-only model. In Advances in Cryptology –
ASIACRYPT 2014, pages 233–253. Springer, 2014.

22. S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. Highly-efficient and composable
password-protected secret sharing (or: how to protect your bitcoin wallet online).
In IEEE European Symposium on Security and Privacy – EuroS&P 2016, pages
276–291. IEEE, 2016.

23. S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. TOPPSS: Cost-minimal password-
protected secret sharing based on threshold OPRF. In Applied Cryptology and
Network Security – ACNS 2017, pages 39–58. Springer, 2017.

24. C. S. Jutla and A. Roy. Smooth NIZK arguments with applications to asymmetric
UC-PAKE. IACR Cryptology ePrint Archive, 2016:233, 2016.

25. B. Kaliski. PKCS# 5: Password-based cryptography specification version 2.0. 2000.

28

26. F. Kiefer and M. Manulis. Zero-knowledge password policy checks and verifier-
based PAKE. In Computer Security – ESORICS 2014, pages 295–312. Springer,
2014.

27. H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol
(extended abstract). In Advances in Cryptology – CRYPTO 2005, page 546.
Springer, 2005.

28. P. Mackenzie. More efficient password-authenticated key exchange. In Topics in
Cryptology – CT-RSA 2001, pages 361–377. Springer, 2001.

29. P. MacKenzie, S. Patel, and R. Swaminathan. Password-authenticated key
exchange based on RSA. In Advances in Cryptology – ASIACRYPT 2000, pages
599–613. Springer, 2000.

30. D. Pointcheval and G. Wang. VTB-peke: Verifier-based two-basis password
exponential key exchange. In ACM Asia Conference on Computer and
Communications Security – AsiaCCS 2017, pages 301–312. ACM, 2017.

31. N. Provos and D. Mazieres. A future-adaptable password scheme. In USENIX
Annual Technical Conference, FREENIX Track, pages 81–91, 1999.

32. J. Schmidt. Requirements for password-authenticated key agreement (PAKE)
schemes. Technical report, 2017.

33. S. Shin and K. Kobara. Augmented password-authenticated key exchange
(AugPAKE). draft-irtf-cfrg-augpake-08.

34. S. Shin, K. Kobara, and H. Imai. Security proof of AugPAKE. IACR Cryptology
ePrint Archive, 2010:334, 2010.

A The DH-OPRF Protocol Realizing Revised FOPRF

Figure 9 shows the DH-OPRF protocol of [22] (who calls it 2HashDH),
syntactically modified to realize functionality FOPRF, see Fig. 2 in Section 3.
Recall that the FOPRF functionality we show in Section 3 is a revision of the
OPRF functionality defined in [22], with the most important difference being
modeling adaptive corruptions. The protocol shown below is essentially the
same as in [22], and requires the same One-More Diffie-Hellman
assumption [3, 22] for security.

We defer the proof of the following Lemma 1 to the full version because it is
very similar to the proof of security given in [22].

Lemma 1. The DH-OPRF protocol shown in Fig. 9 UC-realizes the OPRF
functionality FOPRF under the One-More Diffie Hellman assumption in ROM.

Modifications in the Proof of [22]. We briefly discuss how our modifications
to FOPRF influence the security proof, and leave the detailed proof to the full
version of this paper.

Since no message is sent to A∗ in the Initialization phase, adding
Initialization has no impact on simulation. Allowing for sub-sessions (identified
by ssid) results in adding ssid in the simulator whenever appropriate. The
impact of changing SndrComplete messages as sent from Z, instead of from
A∗, is that no such messages are sent from SIM any more in steps 6 and 7;
however, this does not influence the reduction that Pr[halt] is negligible, since

29

Components: Hash functions H(·, ·), H ′(·) with ranges {0, 1}` and G, respectively.

Initialization

– On input (Init, sid , x), S picks k ←R Zq and outputs (Init, sid , H(x,H ′(x)k)).

Evaluation

– On input (Eval, sid , ssid , S, x), U proceeds as follows:
• If there is a record 〈S, x, r, y〉, outputs (Eval, sid , ssid , y) to Z.
• Else if there is a record 〈S′, x, r, y〉 (where S′ 6= S), sends a := H ′(x)r to

S.
• Else picks r ←R Zq, records 〈S, x, r, ·〉 and sends a := H ′(x)r to S.

– On input (SndrComplete, sid , ssid) and a from U, S sends b := ak to U.
– On b from S, if this is the first such message for ssid , U retrieves record
〈S, x, r, ·〉, replaces · with y := H2(x, b1/r) and outputs (Eval, sid , ssid , y).

Fig. 9: Protocol DH-OPRF (for PRF output length `)

the only SndrComplete messages which count are those in step 5, which are
still there (the only difference is that their issuers become Z instead of SIM,
but they still have the effect of increasing the tx value).

The remaining change is that A may compromise a server (for a specific
sid) at any time; after that, A can compute the server’s function value on any
valid input. SIM is able to simulate this by sending OfflineEval messages to
F . Furthermore, note that halt may only occur on servers who is not marked
compromised at that time; therefore, the argument upper-bounding Pr[halt]
(in the setting where a server cannot be compromised) is not influenced.

30

1. Pick r1, . . . , rN ←R Zm, and compute g1 := gr1 , . . . , gN := grN . Record
(r1, g1), . . . , (rN , gN). Set counter J := 1.

2. Every time when there is a fresh query x to H ′(·), answer it with gJ and
record (x, rJ , gJ). Finally, set J++.

3. On (Compromise, sid) from A as a message to S, mark S compromised, send
(Compromise, sid) to F and do:
– If there is no record 〈S, k, z〉, pick k ←R Zq, compute z := gk, record
〈S, k, z〉 and send k to A as S’s response.

– Else retrieve 〈S, k, z〉 and send k to A as S’s response.
4. On (Eval, sid , ssid ,U, S) from F , send gJ to A as U’s message to S and record
〈ssid ,U, S, rJ , gJ〉. Finally, set J++.

5. On (SndrComplete, sid , ssid , S) from F and a from A as some user U’s
message to S, do:
– If there is no record 〈S, k, z〉, pick k ←R Zq, compute z := gk, record
〈S, k, z〉 and send ak to A as S’s response to U.

– Else retrieve 〈S, k, z〉 and send ak to A as S’s response to U.
6. On b from A as some server S’s message to a user U, retrieve record
〈ssid ,U, ·, rj , gj〉 and do:
– If there is a record 〈S′, ·, z〉 such that b1/rj = z, send

(RcvComplete, sid , ssid ,S′) to F .

– Else create a new server S′, record
〈

S′, ·, b1/rj
〉

and send

(RcvComplete, sid , ssid , S′) to F .
7. Every time when there is a fresh query (x, u) to H(·, ·), do:

(a) If there is a record (x, rj , gj), do:
(1) If there is a record 〈S, k, z〉 such that u1/rj = z and S is marked

compromised, send (OfflineEval, sid , S, x) to F .
On F ’s response (OfflineEval, sid , y), set H(x, u) := y.

(2) Else if there is a record 〈S, ·, z〉 such that u = zrj and S is
not marked compromised, send (Eval, sid , ssid , S, x) and then
(RcvComplete, sid , ssid , S) to F .
If F ignores this message, output halt and abort.
Otherwise on F ’s response (Eval, sid , ssid , y), set H(x, u) := y.

(b) In any other case, set H(x, u)←R {0, 1}l.

Fig. 10: The Simulator SIM for the DH-OPRF Protocol (FOPRF Denoted F)

31

	OPAQUE: An Asymmetric PAKE Protocol Secure Against Pre-Computation Attacks

