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Abstract. We show a general framework for constructing non-malleable
codes against tampering families with average-case hardness bounds. Our
framework adapts ideas from the Naor-Yung double encryption paradigm
such that to protect against tampering in a class F , it suffices to have
average-case hard distributions for the class, and underlying primitives
(encryption and non-interactive, simulatable proof systems) satisfying
certain properties with respect to the class.

We instantiate our scheme in a variety of contexts, yielding efficient,
non-malleable codes (NMC) against the following tampering classes:
– Computational NMC against AC0 tampering, in the CRS model,

assuming a PKE scheme with decryption in AC0 and NIZK.
– Computational NMC against bounded-depth decision trees (of depth
nε, where n is the number of input variables and constant 0 < ε < 1),
in the CRS model and under the same computational assumptions
as above.

– Information theoretic NMC (with no CRS) against a streaming,
space-bounded adversary, namely an adversary modeled as a read-
once branching program with bounded width.

Ours are the first constructions that achieve each of the above in an
efficient way, under the standard notion of non-malleability.

1 Introduction

Non-malleable codes, introduced in the seminal work of Dziembowski, Pietrzak
and Wichs [32], are an extension of error-correcting codes. Whereas error-
correcting codes provide the guarantee that (if not too many errors occur)
the receiver can recover the original message from a corrupted codeword, non-
malleable codes are essentially concerned with security. In other words, correct
decoding of corrupted codewords is not guaranteed (nor required), but it is
instead guaranteed that adversarial corruptions cannot influence the output of
the decoding in a way that depends on the original message: the decoding is
either correct or independent of the original message.



The main application of non-malleable codes is in the setting of tamper-
resilient computation (although non-malleable codes have also found connections
in other areas of cryptography [24, 23, 37] and theoretical computer science [19]).
Indeed, as suggested in the initial work of Dziembowski et al. [32], non-malleable
codes can be used to encode a secret state in the memory of a device such
that a tampering adversary interacting with the device does not learn anything
more than the input-output behavior. Unfortunately, it is impossible to construct
non-malleable codes secure against arbitrary tampering, since the adversary can
always apply the tampering function that decodes the entire codeword to recover
the message m and then re-encodes a related message m′. Thus, non-malleable
codes are typically constructed against limited classes of tampering functions
F . Indeed, given this perspective, error correcting codes can be viewed as a
special case of non-malleable codes, where the class of tampering functions, F ,
consists of functions which can only modify some fraction of the input symbols.
Since non-malleable codes have a weaker guarantee than error correcting codes,
there is potential to achieve non-malleable codes against much broader classes
of tampering functions F (including tampering that modifies every bit).

Exploring rich classes of tampering functions. Several works construct non-
malleable codes (NMC) against general tampering classes of bounded size, but
with non-explicit, existential, or inefficient constructions (cf. [32, 20, 36]). For
efficient and explicit constructions, a large body of works construct NMC against
bit-wise tampering (cf. [32, 22, 11]), and more generally split-state tampering
(cf. [48, 31, 3, 20, 21, 2, 1, 16, 45, 40, 41]), where the adversary can tamper
each part of the codeword independently of other parts, as well as NMC against
permutations, flipping, and setting bits [5].

A recent line of works is shifting towards considering the construction of
NMC against tampering classes F that correspond to well-studied complexity-
theoretic classes, and may also better correspond to tampering attacks in
practice. Specifically, Ball et al. [8] construct NMC against local tampering
functions including NC0, and Chattopadhyay and Li [17] construct NMC against
AC0 tampering, but inefficiently (with super-poly size codewords). Additionally,
NMC with weaker notions of security are constructed by Faust et al. [33] against
space-bounded tampering (in the random-oracle model), and by Chandran et
al. [13] for block-wise tampering (where the adversary receives the message in a
streaming fashion, block-by-block). We discuss these works in Section 1.3.

In this work, we continue this line of research and consider constructing
non-malleable codes against various complexity classes, including: (1) AC0

tampering, where the tampering function is represented by a polynomial size
constant-depth, unbounded fan-in/fan-out circuit, (2) tampering with bounded-
depth decision trees, where the tampering function is represented by a decision
tree with n variables and depth nε for ε < 1, (3) streaming tampering with
quadratic space, where the tampering function is represented by a read-once,
bounded-width (2o(n

2)) branching program, (4) small threshold circuits: depth d
circuits of majority gates with a quasilinear number of wires, (5) fixed polynomial
time tampering: randomized turing machines running in time O(nk) for any fixed
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k. Constructing non-malleable codes against a wide array of complexity classes is
desirable since in practice, the capabilities of a tampering adversary are uniquely
tied to the computational setting under consideration and/or the physical device
being used. For example, our motivation for studying AC0 stems from a setting
wherein an attacker has limited time to tamper, since the tampering function
must complete before race conditions take effect (e.g. before the end of a clock-
cycle in a synchronous circuit). AC0 circuits, which are constant-depth circuits,
model such attackers since the propagation delay of a circuit is proportional to
the length of the longest path from input to output.

1.1 Our Results

We present general frameworks for constructing non-malleable codes for encoding
one and multi-bits against various tampering classes F for which average case
hardness results are known. Our frameworks (one for single-bit and one for multi-
bit) include both a generic construction, which requires that certain underlying
primitives are instantiated in a suitable way, as well as a proof “template.”
Our frameworks are inspired by the well-known double-encryption paradigm
for constructing CCA2-secure public key encryption schemes [49, 51, 46]. And
although we rely on techniques that are typically used in the cryptographic
setting, we instantiate our framework for particular tampering classes F in
both the computational setting and in the information theoretic one. For the
computational setting, our results rely on computational assumptions, and
require a common-reference string (CRS), which the adversary can see before
selecting the tampering function (as typical in other NMC works using CRS or
random oracles). For the information theoretic setting, our results do not require
CRS nor any computational assumption (as the primitives in our framework
can be instantiated information theoretically). Our general theorem statements
provide sufficient conditions for achieving NMC against a class F . Somewhat
informally, the main such condition, especially for the one-bit framework, is that
there are sufficiently strong average-case hardness results known for the class
F . In particular, we obtain the following results, where all the constructions
are efficient and, for the multi-bit NMC, the achieved rate is 1/ poly(m) where
m is the length of the message being encoded.

– Constructions for AC0 tampering: We obtain computational NMC in
the CRS model against AC0 tampering. Our constructions require public
key encryption schemes with decryption in AC0, which can be constructed
e.g. from exponential hardness of learning parity with noise [10], as well
as non-interactive zero knowledge (NIZK), which can be constructed in the
CRS model from enhanced trapdoor permutations.
Previous results by Chattopadhyay and Li [17] achieve NMC for AC0 with
information theoretic security (with no CRS), but are inefficient, with super-
polynomial rate.

– Constructions for bounded-depth decision trees: We obtain com-
putational NMC in the CRS model against tampering with bounded-
depth decision trees. Our construction requires the same computational
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assumptions as the AC0 construction above. The depth of the decision tree
we can handle is nε, where n is the number of bits being encoded, and ε is
any constant. No results for this class were previously known.

– Constructions for streaming, space-bounded tampering: We ob-
tain unconditional non-malleable codes against streaming, space-bounded
tampering, where the tampering function is represented by a read-once,
bounded-width branching program. Our construction does not require CRS
or computational assumptions.
No NMC results for this standard complexity theoretic class were previously
known. However, this tampering class can be viewed as a subset (or the
intersection) of the space bounded class considered by Faust et al. [33] (who
don’t limit the adversary to be streaming), and the block-wise tampering
class considered by Chandran et al. [13] (who don’t bound the adversary’s
space, but don’t give security in the event that decoding fails). In both cases
there cannot be NMC with the standard notion of security, and so those
previous works must relax the security requirement (and [33] also relies on
a random oracle). In contrast, we achieve standard (in fact, even stronger)
notion of NMC, without random oracle (nor CRS, nor any computational
assumption) for our class.

– Additional Constructions: We also briefly note two additional applica-
tions of our paradigm as proof of concept. Both complexity classes can be
represented circuits of size O(nc) for some fixed c, a class which [36] provide
non-malleable codes for in the CRS model, without computational assump-
tions. We include these results here, merely to show the applicability of
our framework to general correlation bounds; for example strong correlation
bounds against ACC0[p] or TC0 are likely immediately lead to non-malleable
codes against the same classes using our framework.
1. Under the same assumptions invoked in the constructions against AC0

and bounded-depth decision trees we obtain computational NMC in the
CRS model against tampering with small threshold circuits: threshold
circuits with depth d and n1+ε wires.

2. Assuming any public key encryption scheme and zk-SNARKs, we obtain
computational NMC in the CRS model against tampering by Turing
Machines running in time O(nk), where k is a constant. However, we
should note that these codes have weak tampering guarantees: tampering
experiments with respect to different messages are only polynomially
close to one another.

1.2 Technical Overview

We begin by describing our computational NMC construction (in the CRS
model) for one-bit messages secure against tampering in AC0, which will give the
starting point intuition for our results. We then show how the AC0 construction
can be modified to derive a general template for constructing NMC for one-
bit messages secure against a wider range of tampering classes F , and discuss
various classes F for which the template can be instantiated. We then discuss
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how the template can be extended to achieve NMC for multi-bit messages
secure against a wide range of tampering classes F . Finally, we discuss some
particular instantiations of our multi-bit template, including our constructions
of computational NMC (in the CRS model) against tampering in AC0 and against
bounded-depth decision trees, as well as our unconditional NMC (with no CRS)
against streaming tampering adversaries with bounded memory.

The starting point: Computational NMC against AC0 for one-bit messages. The
idea is to use a very similar paradigm to the Naor and Yung paradigm for
CCA1 encryption [49] (later extended to achieve CCA2 [51, 46]), using double
encryption with simulation-sound NIZK. The main observation is that using
the tableau method, we can convert any NIZK proof system with polynomial
verification into a NIZK proof system with a verifier in AC0.

We also need a PKE scheme with perfect correctness and decryption in
AC0(this can be constructed using the transformation of Dwork et al. [30] on
top of the scheme of Bogdanov and Lee [10]).

We now sketch (a slightly simplified version of) the NM encoding scheme:

The CRS will contain a public key pk for an encryption scheme E =
(Gen,Encrypt,Decrypt) as above, and a CRS crs for a NIZK. For b ∈ {0, 1},
Let Db denote the distribution over x1, . . . , xn ∈ {0, 1}n such that x1, . . . , xn are
uniform random, conditioned on the parity of the bits being equal to b.

To encode a bit b:

1. Randomly choose bits x1, . . . , xn from Db
2. Compute c1 ← Encryptpk(x1), . . . , cn ← Encryptpk(xn) and c← Encryptpk(b).
3. Compute n NIZK proofs π1, . . . , πn that c1, . . . , cn are encryptions of bits
x1, . . . , xn.

4. Compute a NIZK proof π that there exists a bit b′ such that the plaintexts
underlying c1, . . . , cn are in the support of Db′ and b′ is the plaintext
underlying c.

5. Compute tableaus T1, . . . , Tn of the computation of the NIZK verifier on
π1, . . . , πn.

6. Compute a tableau T of the computation of the NIZK verifier on proof π.
7. Output (c1, . . . , cn, c, T, (x1, T1), . . . , (xn, Tn)).

To decode (c1, . . . , cn, c, T, (x1, T1), . . . , (xn, Tn)):

1. Check the tableaus T1, . . . , Tn, T .
2. If they all accept, output the parity of x1, . . . , xn.

In the proof we will switch from an honest encoding of b to a simulated
encoding and from an honest decoding algorithm to a simulated decoding
algorithm. At each point we will show that the decodings of tampered encodings
stay the same. Moreover, if, in the final hybrid, decodings of tampered encodings
depend on b, we will use this fact to build a circuit in AC0, whose output is
correlated with the parity of its input, reaching a contradiction. In more detail,
in the first hybrid we switch to simulated proofs. Then we switch c1, . . . , cn, c,
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in the “challenge” encoding to encryptions of garbage c′1, . . . , c
′
n, c
′, and next we

switch to an alternative decoding algorithm in AC0 , which requires the trapdoor
sk (corresponding to the public key pk which is contained in the CRS).

Alternative Decoding Algorithm:

To decode (c1, . . . , cn, c, T, (x1, T1), . . . , (xn, Tn)):

1. check the tableaus T1, . . . , Tn, T
2. If it accepts, output the decryption of c using trapdoor sk.

In the final hybrid, the simulator will not know the parity of x1, . . . , xn in
the challenge encoding and will have received precomputed T 0

1 , T
1
1 , . . . , T

0
n , T

1
n , T

as non-uniform advice, where T is a simulated proof of the statement “the
plaintexts underlying c′1, . . . , c

′
n and the plaintext underlying c′ have the same

parity” and for i ∈ [n], β ∈ {0, 1}, T βi is a simulated proof of the statement “c′i
is an encryption of the bit β”.

We will argue by contradiction that if the decoding of the tampered encoding
is correlated with the parity of x1, . . . , xn then we can create a circuit whose
output is correlated with the parity of its input in AC0 . Specifically, the AC0

circuit will have the crs, sk, precomputed c′1, . . . , c
′
n, c
′, T, T 0

1 , T
1
1 , . . . , T

0
n , T

1
n and

adversarial tampering function f hardwired in it. It will take x1, . . . , xn as input.
It will compute the simulated encoding in AC0 by selecting the correct tableaus:
T x1
1 , . . . , T xnn according to the corresponding input bit. It will then apply the

adversarial tampering function (in AC0 ), perform the simulated decoding (in
AC0 ) and output a guess for the parity of x1, ..xn based on the result of the
decoding. Clearly, if the decoding in the final hybrid is correlated with parity,
then we have constructed a distribution over AC0 circuits such that w.h.p. over
choice of circuit from the distribution, the output of the circuit is correlated
with the parity of its input. This contradicts known results on the hardness of
computing parity in AC0 .

A general template for one-bit NMC. The above argument can be used to derive
a template for the construction/security proof of NMC against more general
classes F . The idea is to derive a high-level sequence of hybrid distributions
and corresponding minimal requirements for proving the indistinguishability
of consecutive hybrids. We can now instantiate the tampering class F , “hard
distributions” (D0,D1), encryption scheme and NIZK proof in any way that
satisfies these minimal requirements. Note that each hybrid distribution is a
distribution over the output of the tampering experiment. Therefore, public key
encryption and NIZK against arbitrary PPT adversaries may be too strong of a
requirement. Indeed, it is by analyzing the exact security requirements needed to
go from one hybrid to the other that (looking ahead) we are able to remove the
CRS and all computational assumptions from our construction of NMC against
streaming adversaries with bounded memory. In addition, we can also use our
template to obtain constructions (in the CRS model and under computational
assumptions) against other tampering classes F .
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Extending the template to multi-bit NMC. The construction for AC0 given above
and the general template do not immediately extend to multi-bit messages. In
particular, encoding m bits by applying the parity-based construction bit-by-bit
fails, even if we use the final proof T to “wrap together” the encodings of multiple
individual bits. The problem is that the proof strategy is to entirely decode the
tampered codeword and decide, based on the results, whether to output 0 or
1 as the guess for the parity of some x1, . . . , xn. But if we encode many bits,
b1, . . . , bm, then the adversary could maul in such a way that the tampered
codeword decodes to b′1, . . . , b

′
m where each of b′i is individually independent

of the parity of the corresponding xi1, . . . , x
i
n, but taken as a whole, the entire

output may be correlated. As a simple example, the attacker might maul the
codeword so that it decodes to b′1, . . . , b

′
m that are uniform subject to satisfying

b′1 ⊕ · · · ⊕ b′m = b1 ⊕ · · · ⊕ bm. Clearly, there is a correlation here between the
input and output, but we cannot detect this correlation in AC0, since detecting
the correlation itself seems to require computing parity!

In the case of parity (and the class AC0 ), the above issue can be solved by
setting m sufficiently small (but still polynomial) compared to n. We discuss
more details about the special case of parity below. However, we would first
like to explain how the general template must be modified for the multi-bit case,
given the above counterexample. Specifically, note that the difficulty above comes
into play only in the final hybrid. Thus, we only need to modify the final hybrid
slightly and require that for any Boolean function F over m variables, it must
be the case that the composition of F with the simulated decoding algorithm is
in a computational class that still cannot distinguish between draws x1, . . . , xn
from D0 or D1. While the above seems like a strong requirement, we show that
by setting m much smaller than n, we can still obtain meaningful results for
classes such as AC0 and bounded-depth decision trees.

Multi-bit NMC against AC0. If we want to encode m bits, for each of the
underlying encodings i ∈ [m], we will use n :≈ m3 bits: xi = xi1, . . . , x

i
n. To

see why this works, we set up a hybrid argument, where in each step we will fix
all the underlying encodings except for a single one: x = x1, . . . , xn, which we will
switch from having parity 0 to having parity 1. Therefore, we can view C—the
function computing the output of the tampering experiment in this hybrid—to
be a function of variables x = x1, . . . , xn only (everything else is constant and
“hardwired”). For i ∈ [m], let Ci denote the i-th output bit of C. We use PAR(x)
to denote the parity of x.

Now, for any Boolean function F over m variables, consider F (C1(x), C2(x),
. . . , Cm(x)), where we are simply taking an arbitrary Boolean function F of
the decodings of the individual bits. Our goal is to show that F (C1(x), C2(x),
. . . , Cm(x)) is not correlated with parity of x. Consider the Fourier represen-
tation of F (y1, . . . , ym). This is a linear combination of parities of the input
variables y1, . . . , ym, denoted χS(y1, . . . , ym), for all subsets S ∈ {0, 1}m. (See
here [27]).
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On the other hand, F (C1(x), C2(x), . . . , Cm(x)) is a Boolean function
over n ≈ m3 variables (i.e. a linear combination over parities of the input
variables x1, . . . , xn, denoted χS′(x1, . . . , xn), for all subsets S′ ∈ {0, 1}n). A
representation of F (C1(x), C2(x), . . . , Cm(x)) can be obtained by taking each
term F̂ (S)χS(y1, . . . , ym) in the Fourier representation of F and composing
with C1, . . . , Cm to obtain the term F̂ (S)χS(C1(x), C2(x), . . . , Cm(x)). Since,
by well-known properties of the Fourier transform, |F̂ (S)| ≤ 1, we can get an
upper bound on the correlation of F (C1(x), C2(x), . . . , Cm(x)) and PAR(x),
by summing the correlations of each function χS(C1(x), C2(x), . . . , Cm(x)) and
PAR(x). Recall that the correlation of a Boolean function g with PAR(x)
is by definition, exactly the Fourier coefficient of g corresponding to parity
function χ[n]. Thus, to prove that the correlation of χS(C1(x), C2(x), . . . , Cm(x))
and PAR(x) is low, we use the fact that χS(C1(x), C2(x), . . . , Cm(x)) can be
computed by a (relatively) low depth circuit. To see this, note that each Ci is in
AC0 and so has low depth, moreover, since S has size at most m, we only need
to compute parity over m variables, which can be done in relatively low depth
when m � n. We now combine the above with Fourier concentration bounds
for low-depth circuits [52]. Ultimately, we prove that for each S, the correlation
of χS(C1(x), C2(x), . . . , Cm(x)) and PAR(x), is less than 1/2m(1+δ), where δ is
a constant between 0 and 1. This means that we can afford to sum over all 2m

terms in the Fourier representation of F and still obtain negligible correlation.

Multi-bit NMC against bounded-depth decision trees. Our result above extends to
bounded-depth decision trees by noting that (1) If we apply a random restriction
(with appropriate parameters) to input x1, . . . , xn then, w.h.p. the AC0 circuit
used to compute the output of the tampering experiment collapses to a bounded-
depth decision tree of depth mε − 1; (2) on the other hand, again choosing
parameters of the random restriction appropriately, PAR(x1, . . . , xn) collapses
to parity over at least m1+ε variables; (3) any Boolean function over m variables
can be computed by a decision tree of depth m; (4) the composition of a depth-
mε− 1 decision tree and depth-m decision tree yields a decision tree of depth at
most (mε− 1)(m) < m1+ε. Finally, we obtain our result by noting that decision
trees of depth less than m1+ε are uncorrelated with parity over m1+ε variables.

Unconditional NMC (with no CRS) against bounded, streaming tampering.
Recently, Raz [50] proved that learning parity is hard for bounded, streaming
adversaries. In particular, this gives rise to hard distributions Db, b ∈ {0, 1}
such that no bounded, streaming adversary can distinguish between the two.
Db corresponds to choosing a random parity χS , outputting random examples
(x, χS(x)) and then outputting x∗ such that χS(x∗) is equal to b. The
above also yields an unconditional, “parity-based” encryption scheme against
bounded, streaming adversaries. Note, however, that in order to decrypt (without
knowledge of the secret key), we require space beyond the allowed bound of the
adversary. Given the above, we use Db, b ∈ {0, 1} as the hard distributions in
our construction and use the parity-based encryption scheme as the “public key
encryption scheme” in our construction. Thus, we get rid of the public key in
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the CRS (and the computational assumptions associated with the public key
encryption scheme).

To see why this works, note that in the hybrid where we require semantic
security of the encryption scheme, the decryption algorithm is not needed for
decoding (at this point the honest decoding algorithm is still used). So essentially
we can set the parameters for the encryption scheme such that the output of
the Tampering experiment in that hybrid (which outputs the decoded value
based on whether x1, .., xn is in the support of D0 or D1) can be computed in
a complexity class that is too weak to run the decryption algorithm. On the
other hand, we must also consider the later hybrid where we show that the
output of the tampering experiment can be computed in a complexity class that
is too weak to distinguish D0 from D1. In this hybrid, we do use the alternate
decoding procedure. But now it seems that we need decryption to be contained
in a complexity class that is too weak to decide whether x1, . . . , xn is in the
support of D0 or D1, while previously we required exactly the opposite! The key
insight is that since we are in the streaming model and since (1) the simulated
ciphertexts (c′1, . . . , c

′
n, c
′) in this hybrid contain no information about x1, . . . , xn

and (2) the simulated ciphertexts precede x1, . . . , xn, the output of the tampering
function in blocks containing ciphertexts does not depend on x1, . . . , xn at all. So
the decryption of the tampered ciphertexts can be given as non-uniform advice,
instead of being computed on the fly, and we avoid contradiction.

In order to get rid of the CRS and computational assumption for the
NIZK, we carefully leverage some additional properties of the NMC setting
and the streaming model. First, we consider cut-and-choose based NIZK’s
(based on MPC-in-the-head), where the Verifier is randomized and randomly
checks certain locations or “slots” in the proof to ensure soundness. Specifically,
given a Circuit-SAT circuit C and witness w, the prover will secret share
w := w1 ⊕ · · · ⊕ w` and run an MPC protocol among ` parties (for constant
`), where party Pi has input wi and the parties are computing the output of
C(w1 ⊕ · · · ⊕ w`). The prover will then “encrypt” each view of each party in
the MPC protocol, using the parity-based encryption scheme described above
and output this as the proof. This is then repeated λ times (where λ is security
parameter). The Verifier will then randomly select two parties from each of the
λ sets, decrypt the views and check that the views correspond to the output of
1 and are consistent internally and with each other.

We next note that in our setting, the NIZK simulator can actually know
the randomness used by the Verifier. This is because the simulated codeword
and the decoding are done by the same party in the NMC security experiment.
Therefore, the level of “zero-knowledge” needed from the simulation of the NIZK
is in-between honest verifier and malicious. This is because the adversary can
still use the tampering function to “leak” information from the unchecked slots
of the proof to the checked slots, while a completely honest verifier would learn
absolutely nothing about the unchecked slots. In order to switch from a real proof
to a simulated proof, we fill in unchecked slots one-by-one with parity-based
encryptions of garbage. We must rely on the fact that a bounded, streaming
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adversary cannot distinguish real encryptions from garbage encryptions in order
to argue security. Specifically, since we are in the bounded streaming model, we
can argue that the adversary can only “leak” a small amount of information from
the unchecked slots to the checked slots. This means that the entire output of the
experiment can be simulated by a bounded, streaming adversary, which in turn
means that the output of the experiment must be indistinguishable when real,
unchecked encodings are replaced with encodings of garbage. Arguing simulation
soundness, requires a similar argument, but more slots are added to the proof
and slots in an honest proof are only filled if the corresponding position in the
bit-string corresponding to the statement to be proven is set to 1. We encode
the statement in such a way that if the statement changes, the adversary must
switch an unfilled slot to a filled slot. Intuitively, since the bounded streaming
attacker can only carry over a small amount of information from previous slots,
this will be as difficult as constructing a new proof from scratch.

1.3 Related Work

The notion of NMC was formalized by Dziembowski, Pietrzak and Wichs [32].
Split state classes of tampering functions introduced by Liu and Lysyan-
skaya [48], have subsequently received much attention with a sequence of
improvements achieving reduced number of states, improved rate, or other
desirable features [31, 3, 18, 2, 7, 1, 42, 16, 45, 40, 41]. Recently [6, 8] gave efficient
constructions of non-malleable codes for “non-compartmentalized” tampering
function classes.

Faust et.al [36] presented a construction of efficient NMC in CRS model, for
tampering function families F with size |F| ≤ 2poly(n), where n is the length
of codeword. The construction is based on t-wise independent hashing for t
proportional to log |F|. This gives information-theoretically secure NMC resilient
to tampering classes which can be represented as poly-size circuits. While [36]
construction allows adaptive selection of tampering function f ∈ F after the
t-wise independent hash function h (CRS) is chosen, the bound on the size
of F needs to be fixed before h is chosen. In particular, this means that the
construction does not achieve security against the tampering functions f ∈ AC0

in general, since AC0 contains all poly-size and constant depth circuit families,
but rather provides tamper resilience against specific families in AC0 (ACC0, etc.)
Cheraghchi and Guruswami [20] in an independent work showed the existence
of information theoretically secure NMC against tampering families F of size
|F| ≤ 22

αn

with optimal rate 1 − α. This paper gave the first characterization
of the rate of NMC, however the construction of [20] is inefficient for negligible
error.

Ball et.al [8] gave a construction of efficient NMC against nδ-local tampering
functions, for any constant δ > 0. Notably, this class includes NC0 tampering
functions, namely constant depth circuits with bounded fan-in. It should be
noted however, that the results of [8] do not extend to tampering adversaries in
AC0, since even for a low depth circuit in AC0, any single output bit can depend
on all input bits, thus violating the nδ-locality constraint.

10



In a recent work, Chattopadhyay and Li [17] gave constructions of NMC
based on connections between NMC and seedless non-malleable extractors. One
of their results is an efficient NMC against t-local tampering functions, where
the decoding algorithm for the NMC is deterministic (in contrast, the result
in [8] has randomized decoding). The locality parameters of the NMC in [17]
are not as good as the one in [8], but better than the deterministic-decoding
construction given in the appendix of the full version of [8]. Additionally, [17]
also present a NMC against AC0 tampering functions. However, this NMC results
in a codeword that is super-polynomial in the message length, namely inefficient.

A recent work by Faust et.al [33] considered larger tampering classes by
considering space bounded tampering adversaries in random oracle model.
The construction achieves a new notion of leaky continuous non-malleable
codes, where the adversary is assumed to learn some bounded log(|m|) bits of
information about the underlying message m. However, this result is not directly
comparable to ours as the adversarial model we consider is a that of standard
non-malleability (without leakage), and for a subset of this tampering class
(streaming space-bounded adversary) we achieve information theoretic security
without random oracles.

Chandran et.al [13] considered another variant of non-malleable codes, called
block-wise non-malleable codes. In this model, the codeword consists of number
of blocks and the adversary receives the codeword block-by-block. The tampering
function also consists of various function fis, where each fi can depend on
codeword blocks c1, . . . , ci and modifies ci to c′i. It can be observed that standard
non-malleability cannot be achieved in this model since, the adversary can simply
wait to receive all the blocks of the codeword and then decode the codeword as
part of last tampering function. Therefore, [13] define a new notion called non-
malleability with replacement which relaxes the non-malleability requirement
and considers the attack to be successful only if the tampered codeword is valid
and related to the original message.

Other works on non-malleable codes include [34, 21, 14, 4, 38, 12, 26, 35, 2,
15, 42, 25, 29]. We guide the interested reader to [39] and [48] for a discussion
of various models for tamper and leakage resilience.

2 Definitions

Where appropriate, we interpret functions f : S → {±1} as boolean functions
(and vice-versa) via the mapping: 0 ↔ 1 and 1 ↔ −1. The support of vector x
is the set of indices i such that xi 6= 0. A bipartite graph is an undirected graph
G = (V,E) in which V can be partitioned into two sets V1 and V2 such that
(u, v) ∈ E implies that either u ∈ V1 and v ∈ V2 or v ∈ V1 and u ∈ V2.

Non-Malleable Codes In this section we define the notion of non-malleable
codes and its variants. In this work, we assume that the decoding algorithm of the
non-malleable code may be randomized and all of our generic theorems are stated
for this case. Nevertheless, only our instantiation for the streaming adversary
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(refer Section 7 in full version [9])requires a randomized decoding algorithm,
while our other instantiations enjoy deterministic decoding. We note that the
original definition of non-malleable codes, given in [32], required a deterministic
decoding algorithm. Subsequently, in [8], an alternative definition that allows
for randomized decoding was introduced. We follow here the definition of [8].
Please see [8] for a discussion on why deterministic decoding is not necessarily
without loss of generality in the non-malleable codes setting and for additional
motivation for allowing randomized decoding.

Definition 1 (Coding Scheme). Let Σ, Σ̂ be sets of strings, and κ, κ̂ ∈ N
be some parameters. A coding scheme consists of two algorithms (E,D) with the
following syntax:

– The encoding algorithm (perhaps randomized) takes input a block of message
in Σ and outputs a codeword in Σ̂.

– The decoding algorithm (perhaps randomized) takes input a codeword in Σ̂
and outputs a block of message in Σ.

We require that for any message m ∈ Σ, Pr[D(E(m)) = m] = 1, where the
probability is taken over the choice of the encoding algorithm. In binary settings,
we often set Σ = {0, 1}κ and Σ̂ = {0, 1}κ̂.

We next provide definitions of non-malleable codes of varying levels of
security. We present general, game-based definitions that are applicable even for
NMC that are in a model with a CRS, or that require computational assump-
tions. The corresponding original definitions of non-malleability, appropriate for
an unconditional setting without a CRS, can be obtained as a special case of
our definitions when setting crs = ⊥ and taking G to include all computable
functions. These original definitions are also presented in Appendix A.1 of the
full version [9].

Definition 2 (Non-malleability). Let Π = (CRSGen,E,D) be a coding
scheme. Let F be some family of functions. For each attacker A, m ∈ Σ, define
the tampering experiment TamperΠ,FA,m(n):

Fig. 1: Non-Malleability Experiment TamperΠ,FA,m(n)

1. Challenger samples crs← CRSGen(1n) and sends crs to A.
2. Attacker A sends the tampering function f ∈ F to the challenger.
3. Challenger computes c← E(crs,m).
4. Challenger computes the tampered codeword c̃ = f(c) and computes
m̃ = D(crs, c̃).

5. Experiment outputs m̃.

We say the coding scheme Π = (CRSGen,E,D) is non-malleable against
tampering class F and attackers A ∈ G, if for every A ∈ G there exists a PPT
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simulator Sim such that for any message m ∈ Σ we have,

TamperΠ,FA,m(n) ≈ IdealSim,m(n)

where IdealSim,m(n) is an experiment defined as follows,

Fig. 2: Non-Malleability Experiment IdealSim,m(n)

1. Simulator Sim has oracle access to adversary A and outputs m̃ ∪
{same∗} ← SimA(·)(n).

2. Experiment outputsm if Sim outputs same∗ and outputs m̃ otherwise.

Definition 3 (Strong Non-malleability). Let Π = (CRSGen,E,D) be a
coding scheme. Let F be some family of functions. For each attacker A ∈ G,
m ∈ Σ, define the tampering experiment StrongTamperΠ,FA,m(n):

Fig. 3: Strong Non-Malleability Experiment StrongTamperΠ,FA,m(n)

1. Challenger samples crs← CRSGen(1n) and sends crs to A.
2. Attacker A sends the tampering function f ∈ F to the challenger.
3. Challenger computes c← E(crs,m).
4. Challenger computes the tampered codeword c̃ = f(c).
5. Compute m̃ = D(crs, c̃).
6. Experiment outputs same∗ if c̃ = c, and m̃ otherwise.

We say the coding scheme Π = (CRSGen,E,D) is strong non-malleable
against tampering class F and attackers A ∈ G if we have

StrongTamperΠ,FA,m0
(n) ≈ StrongTamperΠ,FA,m1

(n)

for any A ∈ G, m0,m1 ∈ Σ.

We now introduce an intermediate variant of non-malleability, called Medium
Non-malleability, which informally gives security guarantees “in-between” strong
and regular non-malleability. Specifically, the difference is that the experiment
is allowed to output same∗ only when some predicate g evaluated on (c, c̃) is set
to true. Thus, strong non-malleability can be viewed as a special case of medium
non-malleability, by setting g to be the identity function. On the other hand,
regular non-malleability does not impose restrictions on when the experiment
is allowed to output same∗. Note that g cannot be just any predicate in order
for the definition to make sense. Rather, g must be a predicate such that if g
evaluated on (c, c̃) is set to true, then (with overwhelming probability over the
random coins of D) D(c̃) = D(c).

Definition 4 (Medium Non-malleability). Let Π = (CRSGen,E,D) be a
coding scheme. Let F be some family of functions.
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Let g(·, ·, ·, ·) be a predicate such that, for each attacker A ∈ G, m ∈ Σ,

the output of the following experiment, ExptΠ,FA,m,g(n) is 1 with at most negligible
probability:

Fig. 4: The experiment corresponding to the special predicate g

1. Challenger samples crs← CRSGen(1n) and sends crs to A.
2. Attacker A sends the tampering function f ∈ F to the challenger.
3. Challenger computes c← E(crs,m).
4. Challenger computes the tampered codeword c̃ = f(c).
5. Challenger samples r ← U`.
6. Experiment outputs 1 if ([g(crs, c, c̃, r) = 1] ∧ [D(crs, c̃; r) 6= m]).

For g as above, each m ∈ Σ, and attacker A ∈ G, define the tampering
experiment
MediumTamperΠ,FA,m,g(n) as shown in figure 5:

Fig. 5: Medium Non-Malleability Experiment
MediumTamperΠ,FA,m,g(n)

1. Challenger samples crs← CRSGen(1n) and sends crs to A.
2. Attacker A sends the tampering function f ∈ F to the challenger.
3. Challenger computes c← E(crs,m).
4. Challenger computes the tampered codeword c̃ = f(c).
5. Challenger samples r ← U` and computes m̃ = D(crs, c̃, r).
6. Experiment outputs same∗ if g(crs, c, c̃, r) = 1, and m̃ otherwise.

We say the coding scheme Π = (CRSGen,E,D) is medium non-malleable
against tampering class F and attackers A ∈ G if we have

MediumTamperΠ,FA,m0,g
(n) ≈ MediumTamperΠ,FA,m1,g

(n)

for any A ∈ G, m0,m1 ∈ Σ.

We next recall some standard definitions of public-key encryption (PKE),
pseudorandom generator (PRG), and non-interactive zero knowledge proof
systems with simulation soundness in sections 2.2, and 2.3 of the full version [9].

Definition 5 (Non-Interactive Simulatable Proof System). A tuple of
probabilistic polynomial time algorithms ΠNI = (CRSGenNI,PNI,VNI,SimNI) is a
non-interactive simulatable proof system for language L ∈ NP with witness
relation W if (CRSGenNI,PNI,VNI,SimNI) have the following syntax:

– CRSGenNI is a randomized algorithm that outputs (crsNI, τsim).
– On input crs, x ∈ L and witness w such that W (x,w) = 1, PNI(crs, x, w)

outputs proof π.
– On input crs, x, π, VNI(crs, x, π) outputs either 0 or 1.
– On input crs, τsim and x ∈ L, SimNI(crs, τsim, x) outputs simulated proof π′.
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Completeness: We require the following completeness property: For all x ∈ L,
and all w such that W (x,w) = 1, for all strings crsNI of length poly(|x|), and for
all adversaries A we have

Pr

[
(crsNI, τSim)← CRSGenNI(1n); (x,w)← A(crsNI);

π ← PNI(crsNI, x, w) : VNI(crsNI, x, π) = 1

]
≥ 1− negl(n)

Soundness: We say that ΠNI enjoys soundness against adversaries A ∈ G if: For
all x /∈ L, and all adversaries A ∈ G:

Pr

[
(crsNI, τSim)← CRSGenNI(1n);

(x, π)← A(crsNI) : VNI(crsNI, x, π) = 0

]
≥ 1− negl(n)

The security properties that we require of ΠNI will depend on our particular
non-malleable code construction as well as the particular class, F , of tampering
functions that we consider. The exact properties needed are those that will arise
from Theorems 2 and 4. In subsequent sections, we will show how to construct
non-interactive simulatable proof systems satisfying these properties.

Proof Systems for Circuit SAT We now consider proof of knowledge systems
for Circuit SAT, where the prover and/or verifier have limited computational
resources.

Definition 6 (Proof of Knowledge Systems for Circuit SAT with
Computationally Bounded Prover/Verifier). For a circuit C, let L(C)
denote the set of strings x such that there exists a witness w such that C(x,w) =
1. For a class C, let L(C) denote the set {L(C) | C ∈ C}. Π = (P,V) is
a Circuit SAT proof system for the class L(C) with prover complexity D and
verifier complexity E if the following are true:

– For all C ∈ C and all valid inputs (x,w) such that C(x,w) = 1, P(C, ·, ·) can
be computed in complexity class D.

– For all C ∈ C, V(C, ·, ·) can be computed in complexity class E.
– Completeness: For all C ∈ C and all (x,w) such that C(x,w) = 1, we have

V(C, x,P(C, x,w)) = 1
– Extractability: For all (C, x, π), if Prr[V(C, x, π; r) = 1] is non-negligible,

then given (C, x, π) it is possible to efficiently extract w such that C(x,w) =
1.

We construct Circuit SAT proof systems for the class L(P/poly) with verifier
complexity AC0 in section 2.4 of full version [9]. We also construct Circuit SAT
proof systems for the class. L(P/poly) with streaming verifier in section 2.4 of
full version [9].

Given the above, we have the following theorem:
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Theorem 1. Assuming the existence of same-string, weak one-time simulation
sound NIZK with deterministic verifier, there exists same-string, weak one-time
simulation sound NIZK with verifier in AC0 .

We also recall some definitions and results related to boolean analysis and
present them next. in section 2.5 of full version [9].

Computational Model for Streaming Adversaries In this section we
discuss the computational model used for analysis of the streaming adversaries.
This model is similar to the one used in [50].

General Streaming Adversaries. The input is represented as a stream S1, . . . , S`,
where for i ∈ [`], each Si ∈ {0, 1}B , where B is the block length. We model the
adversary by a branching program. A branching program of length ` and width w,
is a directed acyclic graph with the vertices arranged in `+1 layers such that no
layer contains more than w vertices. Intuitively, each layer represents a time step
of computation whereas, each vertex in the graph corresponds to the potential
memory state learned by the adversary. The first layer (layer 0) contains a single
vertex, called the start vertex, which represents the input. A vertex is called leaf
if it has out-degree 0, and represents the output (the learned value of x) of the
program. Every non-leaf vertex in the program has exactly 2B outgoing edges,
labeled by elements S ∈ {0, 1}B , with exactly one edge labeled by each such S,
and all the edges from layer j − 1 going to vertices in layer j. Intuitively, these
edges represent the computation on reading Si as streaming input. The stream
S1, . . . , S`, therefore, define a computation-path in the branching program.

We discuss the streaming branching program adversaries, and streaming
adversaries for learning parity in section 2.6 of full version [9].

3 Generic Construction for One-Bit Messages

In this section we present the generic construction for encoding a single bit.

Let E = (Gen,Encrypt,Decrypt) be a public key encryption scheme
with perfect correctness (see Definition 7 in [9]). Let ΠNI =
(CRSGenNI,PNI,VNI,SimNI) be a non-interactive simulatable proof system
with soundness against adversaries A ∈ G (see Definition 5). Note that in
the CRS model, we implicitly assume that all algorithms take the CRS
as input, and for simplicity of notation, sometimes do not list the CRS
as an explicit input.

CRSGen(1n):

1. Choose (pk, sk)← Gen(1n).
2. Choose [(crsNIi , τ

i
sim)]i∈{0,...n} ← CRSGenNI(1n). Let −→crsNI :=

[crsNIi ]i∈{0,...n} and let −→τ sim := [τ isim]i∈{0,...n}
3. Output crs := (pk,−→crsNI).
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Fig. 6: Non-malleable code (CRSGen,E,D), secure against F
tampering.

Languages. We define the following languages:

– Lβi : For i ∈ [n], β ∈ {0, 1}, s := (k̂, c, c) ∈ Lβi iff the i-th ciphertext

ci := ki ⊕ β (where c = c1, . . . , cn) and the i-th encryption k̂i (where

k̂ = k̂1, . . . , k̂n+1) is an encryption of ki under pk (where pk is
hardwired into the language).

– L: s := (k̂, c, c) ∈ L iff (x1, . . . , xn) is in the support of Db where:
1. For i ∈ [n], xi := ci ⊕ ki
2. b := c⊕ kn+1

3. k̂ is an encryption of k1, . . . , kn+1 under pk (where pk is
hardwired into the language).

E(crs, b):

1. Sample x← Db, where x = x1, . . . , xn.
2. Choose an n+1-bit key k = k1, . . . , kn, k uniformly at random. For i ∈

[n], compute k̂i ← Encryptpk(ki) and compute k̂n+1 ← Encryptpk(k).

Let k̂ := k̂1, . . . , k̂n+1.
3. Compute c1 := k1 ⊕ x1, . . . , cn := kn ⊕ xn. Let c := c1, . . . , cn.
4. Compute c := b⊕ k.
5. For i ∈ [n], compute a non-interactive, simulatable proof Ti proving

s := (k̂, c, c) ∈ Lxii relative to crsNIi .
6. Compute a non-interactive, simulatable proof T proving s :=

(k̂, c, c) ∈ L relative to crsNI0 .

7. Output CW := (k̂, c1, . . . , cn, c, T, x1, T1, .., xn, Tn).

D(crs,CW):

1. Parse CW := (k̂, c1, . . . , cn, c, T, x1, T1, .., xn, Tn)
2. Check that VNI outputs 1 on all proofs T1, .., Tn, T , relative to the

corresponding CRS.
3. If yes, output b such that x1...xn is in the support of Db. If not,

output 0.

E1(crs,−→τ sim, r, b):

1. Sample x← Db, where x = x1, . . . , xn.
2. Choose an n+1-bit key k = k1, . . . , kn, k uniformly at random. For i ∈

[n], compute k̂i ← Encryptpk(ki) and compute k̂n+1 ← Encryptpk(k).

Let k̂ := k̂1, . . . , k̂n+1.
3. Compute c1 := k1 ⊕ x1, . . . , cn := kn ⊕ xn. Let c := c1, . . . , cn.
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Fig. 7: Encoding algorithm with simulated proofs.

4. Compute c := b⊕ k.
5. For i ∈ [n], use τ isim and r to simulate a non-interactive proof T ′i prov-

ing (k̂, c, c) ∈ Lxii , relative to crsNIi .
6. Use τ0sim and r to simulate a non-interactive proof T ′ proving

(k̂, c, c) ∈ L, relative to crsNI0 .

7. Output CW := (k̂, c1, . . . , cn, c, T
′, x1, T

′
1, .., xn, T

′
n).

Fig. 8: Encoding algorithm with simulated proofs and
encryptions.

E2(crs,−→τ sim, r, b):

1. Sample x← Db, where x = x1, . . . , xn.
2. Choose c′1, . . . , c

′
n uniformly at random. Let c′ := c′1, . . . , c

′
n.

3. Choose c′ uniformly at random.

4. Set k′ = c′1, . . . , c
′
n, c
′. For i ∈ [n], compute k̂′i ← Encryptpk(k′i) and

compute k̂′n+1 ← Encryptpk(k′). Let k̂
′

:= k̂′1, . . . , k̂
′
n+1.

5. For i ∈ [n], use τ isim and r to simulate a non-interactive proof T ′i
proving (k̂′, c′, c) ∈ Lxii , relative to crsNIi .

6. Use τ0sim and r to simulate a non-interactive proof T ′ proving

(k̂′, c′, c) ∈ L, relative to crsNI0 .

7. Output CW := (k̂
′
, c′1, . . . , c

′
n, c
′, T ′, x1, T

′
1, .., xn, T

′
n).

Fig. 9: Extracting procedure Ext.

Ext(crs, sk,CW):

1. Parse CW := (k̂, c1, . . . , cn, c, T, x1, T1, .., xn, Tn),

2. Output Decryptsk(k̂n+1).

Fig. 10: Alternate decoding procedure D′, given additional
extracted key k as input.

D′(crs, k,CW):

1. Parse CW := (k̂, c1, . . . , cn, c, T, x1, T1, .., xn, Tn),
2. Check that VNI outputs 1 on all proofs T1, .., Tn, T , relative to the

corresponding CRS,
3. If not, output 0. Otherwise, output b := k ⊕ c.
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Fig. 11: The predicate g(crs,CW,CW∗, r).

g(crs,CW,CW∗, r):

1. Parse CW = (k̂, c, c, T, x1, T1, .., xn, Tn), CW∗ =

(k̂
∗
, c∗, c∗, T ∗, x∗1, T

∗
1 , .., x

∗
n, T

∗
n) .

2. If (1) VNI outputs 1 on all proofs T ∗, T ∗1 , .., T
∗
n , relative to the

corresponding CRS; and (2) (k̂, c, c) = (k̂
∗
, c∗, c∗), then output 1.

Otherwise output 0.

Let Ψ(p, c, x, y, r, z) be defined as a function that takes as input a predicate
p, and variables c, x, y, r, z. If p(c, x, y, r) = 1, then Ψ outputs 0. Otherwise, Ψ
outputs z.

Theorem 2. Let (E,D), E1, E2, Ext, D′ and g be as defined in Figures 6, 7,
8, 9, 10 and 11. Let F be a computational class. If, for every adversary A ∈ G
outputting tampering functions f ∈ F , all of the following hold:

Simulation of proofs.
1. Pr[g(crs,CW0, f(CW0), r0) = 1] ≈ Pr[g(crs,CW1, f(CW1), r1) = 1],

2. Ψ(g, crs,CW0, f(CW0), r0,D(crs, f(CW0); r0)) ≈ Ψ(g, crs,CW1, f(CW1),
r1,D(crs, f(CW1); r1)),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r0, r1 are sampled
uniformly at random, CW0 ← E(crs, 0) and CW1 ← E1(crs,−→τ sim, r1, 0).

Simulation of Encryptions.
1. Pr[g(crs,CW1, f(CW1), r1) = 1] ≈ Pr[g(crs,CW2, f(CW2), r2) = 1],

2. Ψ(g, crs,CW1, f(CW1), r1,D(crs, f(CW1); r1)) ≈ Ψ(g, crs,CW2, f(CW2),
r2,D(crs, f(CW2); r2)),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r1, r2 are sampled uni-
formly at random, CW1 ← E1(crs,−→τ sim, r1, 0) and CW2 ← E2(crs,−→τ sim, r2, 0).

Simulation Soundness.

Pr

[
D(crs, f(CW2); r2) 6= D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2)

∧g(crs,CW2, f(CW2), r2) = 0

]
≤ negl(n),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r2 is sampled uniformly
at random and CW2 ← E2(crs,−→τ sim, r, 0).

Hardness of Db relative to Alternate Decoding.
1. Pr[g(crs,CW2, f(CW2), r2) = 1] ≈ Pr[g(crs,CW3, f(CW3), r3) = 1],

2. D′(crs,Ext(sk, f(CW2)), f(CW2); r2) ≈ D′(crs,Ext(sk, f(CW3)), f(CW3);
r3),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r2, r3 are sampled uni-
formly at random, CW2 ← E2(crs,−→τ sim, r2, 0) and CW3 ← E2(crs,−→τ sim, r3, 1).
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Then the construction presented in Figure 6 is a non-malleable code for class
F against adversaries A ∈ G.

Proof (Proof of Theorem 2). We take g to be the predicate that is used in the

MediumTamperΠ,FA,m,g(n) tampering experiment. We must argue that for every

m ∈ {0, 1} and every attacker A ∈ G the output of the experiment ExptΠ,FA,m,g(n)
is 1 with at most negligible probability.

Assume towards contradiction that for some A ∈ G the output of the
experiment is 1 with non-negligible probability. Then this means that the
probability in the last line of experiment ExptΠ,FA,m,g(n) that g(crs,CW,CW∗, r) =

1∧D(crs,CW∗; r) 6= m is non-negligible. Parse CW = (k̂, c, c, T, x1, T1, .., xn, Tn),

CW∗ = (k̂
∗
, c∗, c∗, T ∗, x∗1, T

∗
1 , .., x

∗
n, T

∗
n).

Recall that D(crs,CW; r) = m. Thus, if the above event occurs, it means that
D(crs,CW; r) 6= D(crs,CW∗; r). But since g(crs,CW,CW∗, r) = 1, it means that

VNI outputs 1 on all proofs T ∗, [T ∗i ]i∈[n] and (k̂, c, c) = (k̂
∗
, c∗, c∗).

This, in turn, means that there must be some bit xi, x
∗
i that CW and CW∗

differ on. But note that by assumption ci = c∗i . Due to the fact that CW is
well-formed and perfect correctness of the encryption scheme, it must mean that

c∗i /∈ L
x∗i
i . But recall that by assumption, proof T ∗i verifies correctly. This means

that soundness is broken by A ∈ G. This contradicts the security of the proof
system ΠNI.

Next, recall that we wish to show that for any adversary A ∈ G outputting
tampering function {MediumTamperΠ,FA,0,g}k∈N ≈ {MediumTamperΠ,FA,1,g}k∈N

To do so we consider the following hybrid argument:

Hybrid 0: The real game, MediumTamperΠ,FA,0,g, relative to g, where the real
encoding CW0 ← E(crs, 0) and the real decoding oracle D are used.
Hybrid 1: Replace the encoding from the previous game with
CW1 ← E1(crs,−→τ sim, r1, 0) where r1 is chosen uniformly at random and g, D
use random coins r1.
Hybrid 2: Replace the encoding from the previous game with CW2 ←
E2(crs,−→τ sim, r2, 0), where r2 is chosen uniformly at random and g, D use
random coins r2.
Hybrid 3: Replace the decoding from the previous game, with
D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2). where r2 is chosen uniformly at
random and g, E2 use random coins r2.
Hybrid 4: Same as Hybrid 3, but replace the encoding with CW3 ←
E2(crs,−→τ sim, r3, 1), where r3 is chosen uniformly at random and g, D′ use
random coins r3.

Now, we prove our hybrids are indistinguishable.

Claim. Hybrid 0 is computationally indistinguishable from Hybrid 1.

Proof. The claim follows immediately from the Simulation of proofs property
in Theorem 2.
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Claim. Hybrid 1 is computationally indistinguishable from Hybrid 2.

Proof. The claim follows immediately from the Simulation of Encryptions
property in Theorem 2.

Claim. Hybrid 2 is computationally indistinguishable from Hybrid 3.

Proof. This claim follows from the fact that (1) if g(crs,CW,CW∗, r) = 1, then
the experiment outputs same∗ in both Hybrid 2 and Hybrid 3; and (2) the
probability that g(crs,CW,CW∗, r) = 0 and the output of the experiment is
different in Hybrid 2 and Hybrid 3 is at most negligible, due to the Simulation
Soundness property in Theorem 2.

Claim. Hybrid 3 is computationally indistinguishable from Hybrid 4.

Proof. This follows from the fact that (1) for γ ∈ {2, 3} if g(crs,CW2, f(CW2), r2)
= 1 then D′(crs,Ext(crs, sk, f(CWγ)), f(CWγ); rγ) always outputs 0 and so

D′(crs,Ext(crs, sk, f(CWγ)), f(CWγ); rγ)

≡ Ψ(g, crs,CWγ , f(CWγ), rγ ,D
′(crs,Ext(crs, sk, f(CWγ)), f(CWγ); rγ));

and (2) the Hardness of Db relative to Alternate Decoding property in
Theorem 2.

4 One-Bit NMC for AC0

In this section, we show that our generic construction yields efficient NMC for
AC0 in the CRS model, when each of the underlying primitives is appropriately
instantiated.

Theorem 3. Π = (CRSGen,E,D) (presented in Figure 6) is a one-bit, computa-
tional, non-malleable code in the CRS model, secure against every PPT adversary
A outputting tampering functions f ∈ AC0 , if the underlying components are
instantiated in the following way:

– E := (Gen,Encrypt,Decrypt) is a public key encryption scheme with perfect
correctness and decryption in AC0 .

– ΠNI := (CRSGenNI,PNI,VNI,SimNI) is a same-string, weak one-time simulation-
sound NIZK with verifier in AC0 .

– For b ∈ {0, 1}, Db is the distribution that samples bits x1 . . . xn uniformly at
random, conditioned on x1 ⊕ · · · ⊕ xn = b.

Note that given Theorem 1, proof systems ΠNI as above exist, under
the assumption that same-string, weak one-time simulation-sound NIZK with
(arbitrary polynomial-time) deterministic verifier exists. Such NIZK can be
constructed in the CRS model from enhanced trapdoor permutations [51]. Public
key encryption with perfect correctness and decryption in AC0 can be constructed
by applying the low-decryption-error transformation of Dwork et al. [30] to the
(reduced decryption error) encryption scheme of Bogdanov and Lee [10]. Refer
to section 4 of the full version [9] for additional details.
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Proof (Proof of theorem 3). To prove the theorem, we need to show that for
every PPT adversary A outputting tampering functions f ∈ F , the necessary
properties from Theorem 2 hold. We next go through these one by one.

Simulation of proofs.
1. Pr[g(crs,CW0, f(CW0), r0) = 1] ≈ Pr[g(crs,CW1, f(CW1), r1) = 1],

2. Ψ(g, crs,CW0, f(CW0), r0,D(crs, f(CW0); r0)) ≈ Ψ(g, crs,CW1, f(CW1),
r1,D(crs, f(CW1); r1)),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r0, r1 are sampled
uniformly at random, CW0 ← E(crs, 0) and CW1 ← E1(crs,−→τ sim, r1, 0).
This follows immediately from the zero-knowledge property of ΠNI =
(CRSGenNI,PNI,VNI,SimNI).
Simulation of Encryptions.
1. Pr[g(crs,CW1, f(CW1), r1) = 1] ≈ Pr[g(crs,CW2, f(CW2), r2) = 1],

2. Ψ(g, crs,CW1, f(CW1), r1,D(crs, f(CW1); r1)) ≈ Ψ(g, crs,CW2, f(CW2),
r2,D(crs, f(CW2); r2)),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r1, r2 are sampled uni-
formly at random, CW1 ← E1(crs,−→τ sim, r1, 0) and CW2 ← E2(crs,−→τ sim, r2, 0).
This follows immediately from the fact that c, c and c′, c′ are identically
distributed when generated by E1 versus E2 and from the semantic security
of the public key encryption scheme E = (Gen,Encrypt,Decrypt).
Simulation Soundness.

Pr

[
D(crs, f(CW2); r2) 6= D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2)

∧g(crs,CW2, f(CW2), r2) = 0

]
≤ negl(n),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r2 is sampled uniformly
at random and CW2 ← E2(crs,−→τ sim, r, 0).
Note that g(crs,CW2, f(CW2), r2) = 0 only if either of the following is
true: (1) VNI did not output 1 on all tampered proofs T ∗, T ∗1 , . . . , T

∗
n in

f(CW2); or (2) the first 3 elements of CW2 and f(CW2) are not identical

(i.e., (k̂, c, c) 6= (k̂∗, c∗, c∗)). Now in case (1), both D(crs, f(CW2); r2), and
D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) output 0. This is contradiction to
the claim that D(crs, f(CW2); r2) 6= D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2).
In case (2), the extractor Ext(crs, sk, f(CW2)) outputs k∗n+1 :=

Decryptsk(k̂∗n+1) and D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) outputs
b∗ = c∗ ⊕ k∗n+1. Now, if D(crs, f(CW2); r2) 6= D′(crs,Ext(crs, sk, f(CW2)),
f(CW2); r2) but VNI outputs 1 on all tampered proofs T ∗, T ∗1 , . . . , T

∗
n in

f(CW2) then one-time simulation soundness of ΠNI = (CRSGenNI,PNI,VNI,
SimNI) does not hold.
Hardness of Db relative to Alternate Decoding.
1. Pr[g(crs,CW2, f(CW2), r2) = 1] ≈ Pr[g(crs,CW3, f(CW3), r3) = 1],

2. D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) ≈ D′(crs,Ext(crs, sk, f(CW3)),
f(CW3); r3),
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where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r2, r3 are sampled uni-
formly at random, CW2 ← E2(crs,−→τ sim, r2, 0) and CW3 ← E2(crs,−→τ sim, r3, 1).
Let X denote a random variable where X is sampled from D0 with
probability 1/2 and X is sampled from D1 with probability 1/2 and let
random variable CW denote the output of E2 when X replaces x.
To show (1), assume Pr[g(crs,CW2, f(CW2), r2) = 1] and Pr[g(crs,CW3,
f(CW3), r3) = 1] differ by a non-negligible amount. This implies that takes
as input X, hardwires all other random variables, and outputs 1 in the case
that g(crs,CW, f(CW), r) = 1 and 0 otherwise, implying that it has non-
negligible correlation to the parity of its input X. We will show that the
above can be computed by an AC0 circuit with input X, thus contradicting
Theorem 2 from [9] which says that an AC0 circuit has at most negligible
correlation with parity of its input X, denoted P(X).
We construct the distribution of circuits C1F , and C ∼ C1F is drawn as:
1. Sample (crs, sk,−→τ sim)← CRSGen(1n).
2. Sample tampering function f ← A(crs).
3. Sample c′, c′ uniformly at random.
4. Set k′ = c′1, . . . , c

′
n, c. For i ∈ [n], compute k̂′i ← Encryptpk(k′i) and

compute k̂′n+1 ← Encryptpk(k′).
5. Sample r uniformly at random.

6. Sample simulated proofs [T
′β
i ]β∈{0,1},i∈[n] and T ′ (as described in

Figure 8).
7. Output the following circuit C that has the following structure:

• hardwired variables: crs, sk, f , k̂
′
, c′, c′, r, [T

′β
i ]β∈{0,1},i∈[n].

• input: X.
• computes and outputs: g(crs,CW, f(CW), r).

Note that given all the hardwired variables, computing CW is in AC0

since all it does is, for i ∈ [n], select the correct simulated proof T
′xi
i

based on the corresponding input bit xi. Additionally, f in AC0 and g
in AC0 , since bit-wise comparison is in AC0 and V SAT is in AC0 . Thus,
the entire circuit is in AC0 .

To show (2), assume D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) and D′(crs,
Ext(crs, sk, f(CW3)), f(CW3); r3) have non-negligible statistical distance.
This implies that a circuit that takes as input X, hardwires all other ran-
dom variables, and outputs D′(crs,Ext(crs, sk, f(CW)), f(CW); r2) has non-
negligible correlation to the parity of X. We will show that D′(crs,Ext(crs, sk,
f(CW)), f(CW); r2) can be computed by an AC0 circuit with input X, thus
contradicting Theorem 2 from [9], which says that an AC0 circuit has at most
negligible correlation with the parity of its input X, denoted P(X).
We construct the distribution of circuits C2F , and C ∼ C2F is drawn as:
1. Sample (crs, sk,−→τ sim)← CRSGen(1n).
2. Sample tampering function f ← A(crs).
3. Sample c′, c′ uniformly at random.
4. Set k′ = c′1, . . . , c

′
n, c. For i ∈ [n], compute k̂′i ← Encryptpk(k′i) and

compute k̂′n+1 ← Encryptpk(k′).
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5. Sample r uniformly at random.

6. Sample simulated proofs [T
′β
i ]β∈{0,1},i∈[n] and T ′ (as described in

Figure 8).
7. Output the following circuit C that has the following structure:

• hardwired variables: crs, sk, f , k̂
′
, c′, c′, r, [T

′β
i ]β∈{0,1},i∈[n].

• input: X.
• computes and outputs: D′(crs,Ext(crs, sk, f(CW)), f(CW); r2).

Note that Ext ∈ AC0 since decryption for E := (Gen,Encrypt,Decrypt) in
AC0 . Moreover, as above, given all the hardwired variables, computing
CW is in AC0 since all it does is, for i ∈ [n], select the correct simulated

proof T
′xi
i based on the corresponding input bit xi. Additionally, f in

AC0 and D′ is in AC0 , since xor of two bits is in AC0 and V SAT is in AC0

. Thus, the entire circuit is in AC0 .

Analysis for more tampering classes is presented in section 4.1 of full
version [9]

5 Construction for Multi-Bit Messages

The construction for encoding multi-bit messages is similar to that for encoding
a single bit, presented in section 3. The construction repeats the procedure for
encoding single bit m times, for encoding m-bit messages and binds it with a
proof T .

Let E = (Gen,Encrypt,Decrypt) be a public key encryption scheme
with perfect correctness (see Definition 7 in [9]). Let ΠNI =
(CRSGenNI,PNI,VNI,SimNI) be a non-interactive simulatable proof system
with soundness against adversaries A ∈ G (see Definition 5). Note that in
the CRS model, we implicitly assume that all algorithms take the CRS
as input, and for simplicity of notation, sometimes do not list the CRS
as an explicit input.

CRSGen(1n):

1. Choose (pk, sk)← Gen(1n).
2. Choose [crsNIi,j , τ

i,j
sim](i,j)=(0,0),i∈[m],j∈[n] ← CRSGenNI(1n). Let −→crsNI :=

[crsNIi,j ](i,j)=(0,0),i∈[m],j∈[n] and let −→τ sim := [τ i,jsim](i,j)=(0,0),i∈[m],j∈[n]
3. Output crs := (pk,−→crsNI).

Languages. We define the following languages:

– Lβi,j : For i ∈ [m], j ∈ [n], β ∈ {0, 1}, s := ([k̂
i
]i∈[m], c, c) ∈ Lβi,j iff

the (i, j)-th ciphertext cij := kij⊕β (where c = [cij ]i∈[m],j∈[n]) and the

(i, j)-th encryption k̂ij (where k̂
i

= k̂i1, . . . , k̂
i
n+1) is an encryption of

kij under pk (where pk is hardwired into the language).
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Fig. 12: Non-malleable code (CRSGen,E,D), secure against F
tampering.

– L: s := ([k̂
i
]i∈[m], c, c) ∈ L iff For each i ∈ [m], (xi1, . . . , x

i
n) is in the

support of Dbi where:
1. For i ∈ [m], j ∈ [n], xij := cij ⊕ kij
2. bi := ci ⊕ kin+1 (where c := c1, . . . , cm)

3. k̂
i

is an encryption of ki1, . . . , k
i
n+1 under pk (where pk is

hardwired into the language).

E(crs, b := b1, . . . , bm):

1. Sample x := x1, . . . ,xm ← Db, where for i ∈ [m], xi = xi1, . . . , x
i
n.

2. Choose an m · (n + 1)-bit key k := [ki]i∈[m] = [ki1, . . . , k
i
n, k

i]i∈[m]

uniformly at random. For i ∈ [m], j ∈ [n + 1], compute k̂ij ←
Encrypt(pk, kij). For i ∈ [m], let k̂

i
:= k̂i1, . . . , k̂

i
n+1.

3. For i ∈ [m], j ∈ [n], compute cij := kij ⊕ xij . Let c := [cij ]i∈[m],j∈[n].

4. For i ∈ [m], compute ci := ki ⊕ bi. Let c := [ci]i∈[m].
5. For i ∈ [m], j ∈ [n], compute a non-interactive, simulatable proof T ij

proving ([k̂
i
]i∈[m], c, c) ∈ L

xij
i,j relative to crsNIi,j .

6. Compute a non-interactive, simulatable proof T proving

([k̂
i
]i∈[m], c, c) ∈ L relative to crsNI0,0.

7. Output CW := ([k̂
i
]i∈[m], c, c, T, [(x

i
j , T

i
j )]i∈[m],j∈[n]).

D(crs,CW):

1. Parse CW := ([k̂
i
]i∈[m], c, c, T, [(x

i
j , T

i
j )]i∈[m],j∈[n])

2. Check that VNI outputs 1 on all proofs [T ij ]i∈[m],j∈[n], T , relative to
the corresponding CRS.

3. If yes, output [bi]i∈[m] such that xi1...x
i
n is in the support of Dbi . If

not, output 0.

E1(crs,−→τ sim, r, b := b1, . . . , bm):

1. Sample x := x1, . . . ,xm ← Db, where for i ∈ [m], xi = xi1, . . . , x
i
n.

2. Choose an m · (n + 1)-bit key k := [ki]i∈[m] = [ki1, . . . , k
i
n, k

i]i∈[m]

uniformly at random. For i ∈ [m], j ∈ [n + 1], compute k̂ij ←
Encrypt(pk, kij). For i ∈ [m], let k̂

i
:= k̂i1, . . . , k̂

i
n+1.

3. For i ∈ [m], j ∈ [n], compute cij := kij ⊕ xij . Let c := [cij ]i∈[m],j∈[n].
4. For i ∈ [m], compute ci := ki ⊕ bi. Let c := [ci]i∈[m].
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Fig. 13: Encoding algorithm with simulated proofs.

5. For i ∈ [m], j ∈ [n], simulate, using τ i,jsim and r, a non-interactive proof

T
′i
j proving s := ([k̂

i
]i∈[m], c, c) ∈ L

xij
i,j , relative to crsNIi,j .

6. Simulate, using τ0,0sim and r, a non-interactive proof T ′ proving

s := ([k̂
i
]i∈[m], c, c) ∈ L, relative to crsNI0,0.

7. Output CW := ([k̂
i
]i∈[m], c, c, T

′, [(xij , T
′i
j )]i∈[m],j∈[n]).

Fig. 14: Encoding algorithm with simulated proofs and
encryptions.

E2(crs,−→τ sim, r, b := b1, . . . , bm):

1. Sample x := x1, . . . ,xm ← Db, where for i ∈ [m], xi = xi1, . . . , x
i
n.

2. Choose [c
′i
j ]i∈[m],j∈[n] uniformly at random. Let c′ := [c

′i
j ]i∈[m],j∈[n].

3. Choose [c
′i]i∈[m] uniformly at random. Let c′ := [c

′i]i∈[m].

4. Set the m · (n+ 1)-bit key k′ := [k
′i]i∈[m] = [c

′i
1 , . . . , c

′i
n , c

′i]i∈[m]. For

i ∈ [m], j ∈ [n+ 1], compute k̂
′i
j ← Encrypt(pk, k

′i
j ). For i ∈ [m], let

k̂
′i

:= k̂
′i
1 , . . . , k̂

′i
n+1.

5. For i ∈ [m], j ∈ [n], simulate, using τ i,jsim and r, a non-interactive proof

T
′i
j proving s := ([k̂

i
]i∈[m], c, c) ∈ L

xij
i,j , relative to crsNIi,j .

6. Simulate, using τ0,0sim and r, a non-interactive proof T ′ proving s :=

([k̂
i
]i∈[m], c, c) ∈ L, relative to crsNI0,0.

7. Output CW := ([k̂
′i

]i∈[m], c
′, c′, T ′, [(xij , T

′i
j )]i∈[m],j∈[n]).

Fig. 15: Extracting procedure Ext.

Ext(crs, sk,CW):

1. Parse CW := ([k̂
i
]i∈[m], c, c, T, [(x

i
j , T

i
j )]i∈[m],j∈[n]),

2. Output [Decrypt(sk, k̂in+1)]i∈[m].

Fig. 16: Alternate decoding procedure D′, given additional
extracted key [ki]i∈[m] as input.

D′(crs, [ki]i∈[m],CW):

1. Parse CW := ([k̂
i
]i∈[m], , c, c, T, [(x

i
j , T

i
j )]i∈[m],j∈[n]),

2. Check that VNI outputs 1 on all proofs [T ij ]i∈[m],j∈[n], T , relative to
the corresponding CRS,

3. For i ∈ [m], output bi := ki ⊕ ci.
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Fig. 17: The predicate g(crs,CW,CW∗, r).

g(crs,CW,CW∗, r):

1. Parse CW = ([k̂
i
]i∈[m], c, c, T, [(x

i
j , T

i
j )]i∈[m],j∈[n]), CW∗ =

([k̂
∗i

]i∈[m], c
∗, c∗, T ∗, [(x∗ij , T

∗i
j )]i∈[m],j∈[n]).

2. If (1) VNI outputs 1 on all proofs T ∗, [T ∗ij )]i∈[m],j∈[n], relative to the

corresponding CRS; and (2) ([k̂
i
]i∈[m], c, c) = ([k̂

∗i
]i∈[m], c

∗, c∗), then
output 1. Otherwise output 0.

Let Ψ(p, c, x, y, r, z) be defined as a function that takes as input a predicate
p, and variables c, x, y, r, z. If p(c, x, y, r) = 1, then Ψ outputs the m-bit string
0. Otherwise, Ψ outputs z.

Theorem 4. Let (E,D), E1, E2, Ext, D′ and g be as defined in Figures 12, 13,
14, 15, 16 and 17. Let F be a computational class. If, for every pair of m-bit
messages b0, b1 and if, for every adversary A ∈ G outputting tampering functions
f ∈ F , all of the following hold:

Simulation of proofs.
1. Pr[g(crs,CW0, f(CW0), r0) = 1] ≈ Pr[g(crs,CW1, f(CW1), r1) = 1],

2. Ψ(g, crs,CW0, f(CW0), r0,D(crs, f(CW0); r0)) ≈ Ψ(g, crs,CW1, f(CW1),
r1,D(crs, f(CW1); r1)),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r0, r1 are sampled
uniformly at random, CW0 ← E(crs, b0) and CW1 ← E1(crs,−→τ sim, r1, b0).
Simulation of Encryptions.
1. Pr[g(crs,CW1, f(CW1), r1) = 1] ≈ Pr[g(crs,CW2, f(CW2), r2) = 1],

2. Ψ(g, crs,CW1, f(CW1), r1,D(crs, f(CW1); r1)) ≈ Ψ(g, crs,CW2, f(CW2),
r2,D(crs, f(CW2); r2)),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r1, r2 are sampled uni-
formly at random, CW1 ← E1(crs,−→τ sim, r1, b0) and CW2 ← E2(crs,−→τ sim, r2, b0).
Simulation Soundness.

Pr

[
D(crs, f(CW2); r2) 6= D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2)

∧g(crs,CW2, f(CW2), r2) = 0

]
≤ negl(n),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r2 is sampled uniformly
at random and CW2 ← E2(crs,−→τ sim, r, b0).
Hardness of Db relative to Alternate Decoding.
1. Pr[g(crs,CW2, f(CW2), r2) = 1] ≈ Pr[g(crs,CW3, f(CW3), r3) = 1],

2. For every Boolean function, represented by a circuit F over m variables,
F◦D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) ≈ F◦D′(crs,Ext(crs, sk, f(CW3)),
f(CW3); r3),
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where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r2, r3 are sampled uni-
formly at random, CW2 ← E2(crs,−→τ sim, r2, b0) and CW3 ← E2(crs,−→τ sim, r3, b1).

Then the construction presented in Figure 12 is a non-malleable code for
class F against adversaries A ∈ G.

We present the proof of theorem 4 in section 5.1 of the full version [9]

6 Efficient, Multi-Bit NMC for AC0

Theorem 5. Π = (CRSGen,E,D) (presented in Figure 12) is an m-bit,
computational, non-malleable code in the CRS model against tampering by depth-

(mlogδm/2− c) circuits with unbounded fan-in and size δ · logm
log logm − p(n) (where

c is constant and p(·) is a fixed polynomial), and m is such that n = m3+5δ, if
the underlying components are instantiated in the following way:

– E := (Gen,Encrypt,Decrypt) is a public key encryption scheme with perfect
correctness and decryption in AC0 .

– ΠNI := (CRSGenNI,PNI,VNI,SimNI) is a same-string, weak one-time simulation-
sound NIZK with verifier in AC0 .

– For b ∈ {0, 1}, Db is the distribution that samples bits x1 . . . xn uniformly at
random, conditioned on x1 ⊕ · · · ⊕ xn = b.

For as in the one-bit case, given Theorem 1, proof systems ΠNI as above exist,
under the assumption that same-string, weak one-time simulation-sound NIZK
with (arbitrary polynomial-time) deterministic verifier exists. Refer to section 4
of the full version [9] for a discussion of how such NIZK and public key encryption
can be instantiated. The proof the of the theorem 5, is presented as proof for
Theorem 11 in [9], followed by the analysis for tampering with decision trees in
section 6.1.

7 One-Bit NMC Against Streaming Adversaries

In this section, we show that our generic construction yields efficient uncondi-
tional NMC resilient against the tampering class F corresponding to streaming
adversaries with memory o(n′′).

Let n be the parameter for the hard distribution described below, n′ be the
parameter for the semantically secure parity based encryption scheme against
streaming adversaries with o(n′) storage (described in section 7.2 of [9]), and n′′

be the parameter for the non-interactive simulatable proof system with streaming
verifier (described in section 7.4 of [9]). Such that n ∈ ω(n′′) and n′ ∈ ω(n).

The Hard Distribution Db (parameter n) Let n = (µ + 1)2 − 1. For
b ∈ {0, 1}, a draw from the distribution Db is defined as follows: Choose a parity
χS uniformly at random from the set of all (non-zero) parities over µ variables
(∅ 6= S ⊆ [µ]). Choose y1, . . . , yµ ∼ {0, 1}µ uniformly at random. Choose y
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uniformly at random, conditioned on χS(y) = b. Output the following n-bit
string: [(yi, χS(yi)]i∈[µ]||y.

The proof of the hardness of Db described above, along with the details
of the parity-based encryption scheme, and non-interactive simulatable proof
system with streaming verifier are described in sections 7.1, 7.2, and 7.4 of [9]
respectively.

Theorem 6. Π = (E,D) (presented in Figure 6) is a one-bit, unconditional
non-malleable code against streaming adversaries with space o(n′′), if the
underlying components are instantiated in the following way:

– E := (Encrypt,Decrypt) is the parity based encryption scheme (with parame-
ter n′ := n′(n)).

– ΠNI := (PNI,VNI,SimNI) the simulatable proof system with streaming verifier
with parameter n′′ := n′′(n).

– For b ∈ {0, 1}, Db is the distribution described above (with paramter n).

We wish to emphasize that no CRS or computational assumptions are needed
for this result. Therefore, we can assume that the adversary A outputting
tampering function f is computationally unbounded. Moreover, the result
extends trivially for any number m of bits and all other parameters (n, n′, n′′) can
remain the same and do not need to be increased. To see this, note that the only
one additional property that needs to be proved in the multi-bit case (regarding
hardness of Db relative to alternate decoding in 4. But in the bounded, it can be
achieved without requiring any additional memory beyond what is required in
the one-bit case. We refer the interested readers to section 7.5 of [9] for further
details.
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33. Faust, S., Hostáková, K., Mukherjee, P., Venturi, D.: Non-malleable codes for
space-bounded tampering. In Katz, J., Shacham, H., eds.: CRYPTO 2017, Part II.
Volume 10402 of LNCS., Springer, Heidelberg (August 2017) 95–126

34. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. [47] 465–488

35. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: A tamper and leakage resilient
von neumann architecture. In Katz, J., ed.: PKC 2015. Volume 9020 of LNCS.,
Springer, Heidelberg (March / April 2015) 579–603

36. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes
and key-derivation for poly-size tampering circuits. In Nguyen, P.Q., Oswald, E.,

31

http://eprint.iacr.org/2017/357


eds.: EUROCRYPT 2014. Volume 8441 of LNCS., Springer, Heidelberg (May 2014)
111–128

37. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. [53]
1128–1141

38. Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes.
[28] 451–480

39. Kalai, Y.T., Kanukurthi, B., Sahai, A.: Cryptography with tamperable and leaky
memory. In Rogaway, P., ed.: CRYPTO 2011. Volume 6841 of LNCS., Springer,
Heidelberg (August 2011) 373–390

40. Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Four-state non-malleable codes with
explicit constant rate. In Kalai, Y., Reyzin, L., eds.: TCC 2017, Part II. Volume
10678 of LNCS., Springer, Heidelberg (November 2017) 344–375

41. Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Non-malleable randomness encoders
and their applications. Cryptology ePrint Archive, Report 2017/1097 (2017)
https://eprint.iacr.org/2017/1097.

42. Kiayias, A., Liu, F.H., Tselekounis, Y.: Practical non-malleable codes from l-more
extractable hash functions. In Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers,
A.C., Halevi, S., eds.: ACM CCS 16, ACM Press (October 2016) 1317–1328

43. Kushilevitz, E., Malkin, T., eds.: TCC 2016-A, Part I. In Kushilevitz, E.,
Malkin, T., eds.: TCC 2016-A, Part I. Volume 9562 of LNCS., Springer, Heidelberg
(January 2016)

44. Kushilevitz, E., Malkin, T., eds.: TCC 2016-A, Part II. In Kushilevitz, E.,
Malkin, T., eds.: TCC 2016-A, Part II. Volume 9563 of LNCS., Springer, Heidelberg
(January 2016)

45. Li, X.: Improved two-source extractors, and affine extractors for polylogarithmic
entropy. In Dinur, I., ed.: 57th FOCS, IEEE Computer Society Press (October
2016) 168–177

46. Lindell, Y.: A simpler construction of cca2-secure public-key encryption under
general assumptions. In Biham, E., ed.: EUROCRYPT 2003. Volume 2656 of
LNCS., Springer, Heidelberg (May 2003) 241–254

47. Lindell, Y., ed.: TCC 2014. In Lindell, Y., ed.: TCC 2014. Volume 8349 of LNCS.,
Springer, Heidelberg (February 2014)

48. Liu, F.H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In Safavi-Naini, R., Canetti, R., eds.: CRYPTO 2012. Volume 7417 of LNCS.,
Springer, Heidelberg (August 2012) 517–532

49. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd ACM STOC, ACM Press (May 1990) 427–437

50. Raz, R.: Fast learning requires good memory: A time-space lower bound for parity
learning. CoRR abs/1602.05161 (2016)

51. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS, IEEE Computer Society Press (October 1999)
543–553

52. Tal, A.: Tight bounds on the fourier spectrum of AC0. In O’Donnell, R., ed.: 32nd
Computational Complexity Conference, CCC 2017, July 6-9, 2017, Riga, Latvia.
Volume 79 of LIPIcs., Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)
15:1–15:31

53. Wichs, D., Mansour, Y., eds.: 48th ACM STOC. In Wichs, D., Mansour, Y., eds.:
48th ACM STOC, ACM Press (June 2016)

32

https://eprint.iacr.org/2017/1097

	Non-Malleable Codes from Average-Case Hardness: AC0, Decision Trees, and Streaming Space-Bounded Tampering

