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Abstract. We present simpler and improved constructions of unbounded attribute-
based encryption (ABE) schemes with constant-size public parameters under
static assumptions in bilinear groups. Concretely, we obtain:

– a simple and adaptively secure unbounded ABE scheme in composite-
order groups, improving upon a previous construction of Lewko and Waters
(Eurocrypt ’11) which only achieves selective security;

– an improved adaptively secure unbounded ABE scheme based on the k-
linear assumption in prime-order groups with shorter ciphertexts and secret
keys than those of Okamoto and Takashima (Asiacrypt ’12);

– the first adaptively secure unbounded ABE scheme for arithmetic branching
programs under static assumptions.

At the core of all of these constructions is a “bilinear entropy expansion”
lemma that allows us to generate any polynomial amount of entropy starting
from constant-size public parameters; the entropy can then be used to transform
existing adaptively secure “bounded” ABE schemes into unbounded ones.
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1 Introduction

Attribute-based encryption (ABE) [25, 13] is a generalization of public-key encryption
to support fine-grained access control for encrypted data. Here, ciphertexts and keys
are associated with descriptive values which determine whether decryption is possible.
In a key-policy ABE (KP-ABE) scheme for instance, ciphertexts are associated with
attributes like ‘(author:Waters), (inst:UT), (topic:PK)’ and keys with access policies like
‘((topic:MPC) OR (topic:Qu)) AND (NOT(inst:CWI))’, and decryption is possible only
when the attributes satisfy the access policy. A ciphertext-policy (CP-ABE) scheme is
the dual of KP-ABE with ciphertexts associated with policies and keys with attributes.

Over past decade, substantial progress has been made in the design and analysis of
ABE schemes, leading to a large families of schemes that achieve various trade-offs
between efficiency, security and underlying assumptions. Meanwhile, ABE has found
use as a tool for providing and enhancing privacy in a variety of settings from electronic
medical records to messaging systems and online social networks.

As institutions grow and with new emerging and more complex applications for
ABE, it became clear that we need ABE schemes that can readily accommodate the
addition of new roles, entities, attributes and policies. This means that the ABE set-
up algorithm should put no restriction on the length of the attributes or the size of the
policies that will be used in the ciphertexts and keys. This requirement was introduced
and first realized in the work of Lewko and Waters [21] under the term unbounded
ABE. Their constructions have since been improved and extended in several subsequent
works [18, 23, 24, 2, 17, 3, 5, 12, 1] (cf. Fig 1, 2).

In this work, we put forth new ABE schemes that simultaneously:

(1) are unbounded (the set-up algorithm is independent of the length of the
attributes or the size of the policies);
(2) can be based on faster asymmetric prime-order bilinear groups;
(3) achieve adaptive security;
(4) rely on simple hardness assumptions in the standard model.

All four properties are highly desirable from both a practical and theoretical stand-
point and moreover, properties (1) – (3) are crucial for many real-world applications
of ABE. Indeed, properties (2), (3) and (4) are by now standard cryptographic
requirements pertaining to speed and efficiency, strong security guarantees under
realistic and natural attack models, and minimal hardness assumptions. Property (2)
is additionally motivated by the fact that pairing-based schemes are currently more
widely implemented and deployed than lattice-based ones. There is now a vast body
of works (e.g. [19, 22, 27, 2, 6, 3]) showing how to achieve properties (2) – (4) for
“bounded” ABE where the set-up time and public parameters grow with the attributes
or policies, culminating in unifying frameworks that provide a solid understanding of
the design and analysis of these schemes. Unbounded ABE, on the other hand, has
received comparatively much less attention in the literature; this is in part because the
schemes and proofs remain fairly complex and delicate. Amongst these latter works,
only the work of Okamato and Takashima (OT) [23] simultaneously achieved (1) – (4).
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reference adaptive assumption standard model

OT12 [23] X 2-Lin X

RW13 [24] q-type X

Att16 [3] X q-type + k-Lin X

AC17 [1] X k-Lin, k ≥ 2

ours X k-Lin, k ≥ 1X X

Fig. 1. Summary of unbounded KP-ABE schemes for
monotone span programs from prime-order groups
with O(1)-size mpk.

reference |mpk| adaptive assumption

LW11 [21] O(1)X static X

Att14 [2] O(1)X X q-type

KL15 [17] O(logn) X static X

ours O(1)X X static X

Fig. 2. Summary of unbounded KP-ABE
schemes for monotone span programs
with n-bit attributes (i.e. universe [n])
from composite-order groups.

Our results. We present simpler and more modular constructions of unbounded ABE
that realize properties (1) – (4) with better efficiency and expressiveness than was
previously known.

(i) We present new adaptively secure, unbounded KP-ABE schemes for monotone
span programs –which capture access policies computable by monotone Boolean
formulas– whose ciphertexts are 42% smaller and our keys are 8% smaller than the
state-of-the-art in [23] (with even more substantial savings with our SXDH-based
scheme), as well as CP-ABE schemes with similar savings, cf. Fig 3.

(ii) Our constructions generalize to the larger class of arithmetic span programs [15],
which capture many natural computational models, such as monotone Boolean
formulas, as well as Boolean and arithmetic branching programs; this yields the
first adaptively secure, unbounded KP-ABE for arithmetic span programs. Prior to
this work, we do not even know any selectively secure, unbounded KP-ABE for
arithmetic span programs.

Moreover, our constructions generalize readily to the k-Lin assumption.
At the core of all of these constructions is a “bilinear entropy expansion” lemma [17]

that allows us to generate any polynomial amount of entropy starting from constant-size
public parameters; the entropy can then be used to transform existing adaptively secure
bounded ABE schemes into unbounded ones in a single shot. The fact that we only need
to invoke our entropy expansion lemma once yields both quantitative and qualitative
advantages over prior works [23, 17]: (i) we achieve security loss O(n + Q) for n-bit
attributes (i.e. universe [n]) and Q secret key queries, improving upon O(n ·Q) in [23]
andO(log n·Q) in [17] and (ii) there is clear delineation between entropy expansion and
the analysis of the underlying bounded ABE schemes, whereas prior works interweave
both techniques in a more complex nested manner.

Following the recent literature on adaptively secure bounded ABE, we first describe
our constructions in the simpler setting of composite-order bilinear groups, and
then derive our final prime-order schemes by building upon and extending previous
frameworks in [6, 11, 7]. Along the way, we also present a simple adaptively secure
unbounded KP-ABE scheme in composite-order groups whose hardness relies on
standard, static assumptions (cf. Fig 2).
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reference |mpk| |sk| |ct| assumption

KP-ABE OT12 [23] 79|G1|+ |GT | 14n+5 14n+5 DLIN

Ours 9|G1|+ |GT | 8n 5n+3 SXDH

28|G1|+2|GT | 13n 8n+5 DLIN

(5k2 + 4k)|G1|+ k|GT | (5k + 3)n (3k + 2)n+2k + 1 k-LIN

CP-ABE OT12 [23] 79|G1|+ |GT | 14n+5 14n+5 DLIN

Ours 11|G1|+ |GT | 5n+ 5 7n+3 SXDH

32|G1|+2|GT | 9n+ 9 12n+6 DLIN

(7k2 + 4)|G1|+ k|GT | (4k + 1)(n+ 1) (5k + 2)n+3k k-LIN

Fig. 3. Summary of adaptively secure, unbounded ABE schemes for read-once monotone span
programs with n-bit attributes (i.e. universe [n]) from prime-order groups. The columns |sk| and
|ct| refer to the number of group elements in G2 and G1 respectively (minus a |GT | contribution
in ct).

1.1 Technical overview

We will start with asymmetric composite-order bilinear groups (GN , HN , GT ) whose
order N is the product of three primes p1, p2, p3. Let gi, hi denote generators of order
pi in GN and HN , for i = 1, 2, 3.

Warm-up. We begin with the LOSTW KP-ABE for monotone span programs [19];
this is a bounded, adaptively secure scheme that uses composite-order groups. Here,
ciphertexts ctx are associated with attribute vector5 x ∈ {0, 1}n and keys skM with
read-once monotone span programs M.6

mpk := (g1, g
v1
1 , . . . , g

vn
1 , e(g1, h1)

α) (1)
ctx := (gs1, {g

svj
1 }xj=1, e(g1, h1)

αs ·m)

skM := ({hαj+rjvj1 , h
rj
1 }j∈[n])

where α1, . . . , αn are shares of α w.r.t. the span program M; the shares satisfy the
requirement that for any x ∈ {0, 1}n, the shares {αj}xj=1 determine α if x satisfies
M, and reveal nothing about α otherwise. For decryption, observe that we can compute
{e(g1, h1)αjs}xj=1, from which we can compute the blinding factor e(g1, h1)αs. The
proof of security relies on Waters’ dual system encryption methodology [26, 20, 27, 2],
in the most basic setting at the core of which is an information-theoretic statement about
αj , vj .

5 Some works associate ciphertexts with a set S ⊆ [n] where [n] is referred to as the attribute
universe, in which case x ∈ {0, 1}n corresponds to the characteristic vector of S.

6 All known adaptively secure ABE for monotone span programs under static assumptions in
the standard model (even in the bounded setting and even with composite-order groups) have
a read-once restriction [19, 22, 27, 2, 6, 3].
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Towards our unbounded ABE. The main challenge in building an unbounded ABE
lies in “compressing” gv11 , . . . , g

vn
1 in mpk down to a constant number of group

elements. The first idea following [21, 23] is to generate {vj}j∈[n] via a pairwise-
independent hash function asw0+j ·w1, as in the Lewko-Waters IBE. Simply replacing
vj with w0 + j · w1 leads to natural malleability attacks on the ciphertext, and instead,
we would replace svj with sj(w0+j ·w1), where s1, . . . , sn are fresh randomness used
in encryption. Next, we need to bind the sj(w0 + j · w1)’s together via some common
randomness s; it suffices to use sw+ sj(w0 + j ·w1) in the ciphertext. That is, we start
with the scheme in (1) and we perform the substitutions (*) for each j ∈ [n]:

ciphertext: (s, svj) 7→ (s, sw + sj(w0 + j · w1), sj)

secret key: (αj + vjrj , rj) 7→ (αj + rjw, rj , rj(w0 + j · w1))
(*)

This yields the following scheme:

mpk := (g1, g
w
1 , g

w0
1 , gw1

1 , e(g1, h1)
α) (2)

ctx := (gs1, {g
sw+sj(w0+j·w1)
1 , g

sj
1 }xj=1, e(g1, h1)

αs ·m)

skM := ({hαj+rjw1 , h
rj
1 , h

rj(w0+j·w1)
1 }j∈[n])

As a sanity check for decryption, observe that we can compute {e(g1, h1)αjs}xj=1 and
then e(g1, h1)αs as before. We note that the ensuing scheme is similar to Attrapadung’s
unbounded KP-ABE in [2, Section 7.1], except the latter requires q-type assumptions.7

Our proof strategy. To analyze our scheme in (2), we follow a very simple and
natural proof strategy: we would “undo” the substitutions described in (*) to recover
ciphertext and keys similar to those in the LOSTW KP-ABE, upon which we could
apply the analysis for the bounded setting from the prior works. That is, we want to
computationally replace each w0 + j · w1 with a fresh uj :gs1, {g

sw+sj(w0+j·w1)
1 , g

sj
1 }j∈[n]

{hαj+rjw1 , h
rj
1 , h

rj(w0+j·w1)
1 }j∈[n]

 hopefully
≈c

gs1, {g
sw+sjuj
1 , g

sj
1 }j∈[n]

{hαj+rjw1 , h
rj
1 , h

rjuj
1 }j∈[n]

(3)

Unfortunately, once we give out gw0
1 , gw1

1 in mpk, the above distributions are trivially
distinguishable by using the relation e(g1, h

rj(w0+j·w1)
1 ) = e(gw0+j·w1

1 , h
rj
1 ). Further-

more, the above statement does not yield a scheme similar to LOSTW when applied to
our scheme in (2); for that, we would need to also replace w on the RHS in (3) with
fresh vj as described by

(g
sw+sjuj
1 , h

αj+rjw
1 ) 7→ (g

svj+sjuj

1 , h
αj+rjvj

1 )

in order to match up with the LOSTW KP-ABE in (1).

7 Attrapadung’s unbounded KP-ABE does have the advantage that there is no read-once
restriction on the span programs, but even with the read-once restriction, the proof still requires
q-type assumptions.
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1.2 Bilinear entropy expansion

The core of our analysis is a (bilinear) entropy expansion lemma [17] that captures the
spirit of the above statement in (3), namely, it allows us to generate fresh independent
randomness starting from the correlated randomness, albeit in a new subgroup of order
p2 generated by g2, h2.

More formally, given public parameters (g1, g
w
1 , g

w0
1 , gw1

1 , h1, h
w
1 , h

w0
1 , hw1

1 ), we
show thatgs1, {g

sw+sj(w0+j·w1)
1 , g

sj
1 }j∈[n]

{hrjw1 , h
rj
1 , h

rj(w0+j·w1)
1 }j∈[n]

 ≈c — ·

gs2, {g
svj+sjuj
2 , g

sj
2 }j∈[n]

{hrjvj2 , h
rj
2 , h

rjuj
2 }j∈[n]

 (4)

where “—” is short-hand for duplicating the terms on the LHS, so that the g1, h1-
components remain unchanged. That is, starting with the LHS, we replaced (i)w0+j·w1

with fresh uj , and (ii)w with fresh vj , both in the p2-subgroup. We also omitted the αj’s
from (3). We clarify that the trivial distinguisher on (3) fails here because e(g1, h2) = 1.

Prior work. We clarify that the name “bilinear entropy expansion” was introduced
in the prior work of Kowalczyk and Lewko (KL) [17], which also proved a statement
similar to (3), with three notable differences: (i) our entropy expansion lemma starts
with 3 units of entropy (w,w0, w1) whereas KL uses O(log n) units of entropy; (ii)
the KL statement does not account for the public parameters, and therefore (unlike
our lemma) cannot serve as an immediate bridge from the unbounded ABE to the
bounded variant; (iii) our entropy expansion lemma admits an analogue in prime-order
groups, which in turn yields an unbounded ABE scheme in prime-order groups, whereas
the composite-order ABE scheme in KL does not have an analogue in prime-order
setting (an earlier prime-order construction was retracted on June 1, 2016). In fact, the
“consistent randomness amplification” techniques used in the unbounded ABE schemes
of Okamoto and Takashima (OT) [23] also seem to yield an entropy expansion lemma
with O(1) units of entropy in prime-order groups. As noted earlier in the introduction,
our approach is also different from both KL and OT in the sense that we only need
to invoke our entropy expansion lemma once when proving security of the unbounded
ABE.

Proof overview. We provide a proof overview of our entropy expansion lemma in (4).
The proof proceeds in two steps: (i) replacing w0 + j · w1 with fresh uj , and then (ii)
replacing w with fresh vj .

(i) We replace w0 + j · w1 with fresh uj ; that is,{g
sj(w0+j·w1)
1 , g

sj
1 }j∈[n]

{hrj1 , h
rj(w0+j·w1)
1 }j∈[n],

 ≈c — ·

{g
sjuj
2 , g

sj
2 }j∈[n]

{hrj2 , h
rjuj
2 }j∈[n]

 (5)

where we suppressed the terms involving w; moreover, this holds even given
g1, g

w0
1 , gw1

1 . Our first observation is that we can easily adapt the proof of Lewko-
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Waters IBE [20, 8] to show that for each i ∈ [n],g
si(w0+i·w1)
1 , gsi1

{hrj1 , h
rj(w0+j·w1)
1 }j 6=i

 ≈c — ·

gsiui2 , gsi2

{hrj2 , h
rjuj
2 }j 6=i

 (6)

The idea is that the first term on the LHS corresponds to an encryption for the
identity i, and the next n − 1 terms correspond to secret keys for identities
j 6= i; on the right, we have the corresponding “semi-functional entities”. At
this point, we can easily handle (hri2 , h

ri(w0+i·w1)
2 ) via a statistical argument,

thanks to the entropy in w0 + i · w1 mod p2. Next, we need to get from a single
(g
si(w0+i·w1)
1 , gsi1 ) on the LHS in (6) to n such terms on the LHS in (5). This

requires a delicate “two slot” hybrid argument over i ∈ [n] and the use of an
additional subgroup; similar arguments also appeared in [23, 14]. This is where
we used the fact that N is a product of three primes, whereas the Lewko-Waters
IBE and the statement in (6) works with two primes in the asymmetric setting.

(ii) Next, we replace w with fresh vj ; that is,gs2, {g
sw+sjuj
2 , g

sj
2 }j∈[n]

{hrjw2 , h
rj
2 , h

rjuj
2 }j∈[n]

 ≈c
gs2, {g

svj+sjuj
2 , g

sj
2 }j∈[n]

{hrjvj2 , h
rj
2 , h

rjuj
2 }j∈[n]


Intuitively, this should follow from the DDH assumption in the p2-subgroup, which
says that (hrjw2 , h

rj
2 ) ≈c (h

rjvj
2 , h

rj
2 ). The actual proof is more delicate sincew also

appears on the other side of the pairing as gsw+sjuj
2 ; fortunately, we can treat uj as

a one-time pad that masks w.

Completing the proof of unbounded ABE. We return to a proof sketch of our
unbounded ABE in (2). Let us start with the simpler setting where the adversary makes
only a single key query. Upon applying our entropy expansion lemma8, we have that
the ciphertext/key pair (ctx, skM) satisfiesgs1, {g

sw+sj(w0+j·w1)
1 , g

sj
1 }xj=1

{hαj+rjw1 , h
rj
1 , h

rj(w0+j·w1)
1 }j∈[n]

 ≈c — ·

gs2, {g
svj+sjuj
1 , g

sj
2 }xj=1

{hαj+rjvj2 , h
rj
2 , h

rjuj
2 }j∈[n]


with e(g1, h1)

αs · m omitted. Note that the boxed term on the RHS is exactly the
LOSTW KP-ABE ciphertext/key pair in (1) over the p2-subgroup, once we strip away
the terms involving uj , sj .

Finally, to handle the general setting where the ABE adversary makes Q key
queries, we simply observe that thanks to self-reducibility, our entropy expansion
lemma extends to a Q-fold setting (with Q copies of {rj}j∈[n]) without any additional

8 and a subgroup assumption to introduce the hαj2 ’s.
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security loss:

gs1, {g
sw+sj(w0+j·w1)
1 , g

sj
1 }j∈[n]

{hrj,1w1 , h
rj,1
1 , h

rj,1(w0+j·w1)
1 }j∈[n]

...

{hrj,Qw1 , h
rj,Q
1 , h

rj,Q(w0+j·w1)
1 }j∈[n]


≈c — ·



gs2, {g
svj+sjuj
2 , g

sj
2 }j∈[n]

{hrj,1vj2 , h
rj,1
2 , h

rj,1uj
2 }j∈[n]

...

{hrj,Qvj2 , h
rj,Q
2 , h

rj,Quj
2 }j∈[n]


At this point, we can rely on the (adaptive) security for the LOSTW KP-ABE for the
setting with a single challenge ciphertext and Q key queries.

1.3 Our prime-order scheme

To obtain prime-order analogues of our composite-order schemes, we build upon and
extend the previous framework of Chen et al. [6, 11] for simulating composite-order
groups in prime-order ones. Along the way, we present a more general framework that
provides prime-order analogues of the static assumptions used in the security proof for
our composite-order ABE. Moreover, we show that these prime-order analogues follow
from the standard k-Linear assumption (and more generally, the MDDH assumption
[9]) in prime-order bilinear groups.

Our KP-ABE. Let (G1, G2, GT ) be a bilinear group of prime order p. Following
[6, 11], we start with our composite-order KP-ABE scheme in (2), sample A1 ←R

Z(2k+1)×k
p ,B←R Z(k+1)×k

p , and carry out the following substitutions:

g1 7→ [A1]1, h1 7→ [B]2

α 7→ k ∈ Z2k+1
p w,w0, w1 7→W,W0,W1 ∈ Z(2k+1)×(k+1)

p

s, sj 7→ s, sj ∈ Zkp, rj 7→ rj ∈ Zkp
gs1 7→ [s>A>1 ]1, h

rj
1 7→ [Brj ]2

gws1 7→ [s>A>1 W]1, h
wrj
1 7→ [WBrj ]2

(7)

where [·]1, [·]2 correspond respectively to exponentiations in the prime-order groups
G1, G2. This yields the following prime-order KP-ABE scheme for monotone span
programs:

mpk := ( [A>1 ]1, [A
>
1 W]1, [A

>
1 W0]1, [A

>
1 W1]1, e([A

>
1 ]1, [k]2) ),

ctx := ( [s>A>1 ]1, {[s>A>1 W + s>j A
>
1 (W0 + j ·W1)]1, [s

>
j A
>
1 ]1}xj=1,

e([s>A>1 ]1, [k]2) ·m )

skM := ( {[kj +WBrj ]2, [Brj ]2, [(W0 + j ·W1)Brj ]2}j∈[n] )

where kj is the j’th share of k. Decryption proceeds as before by first computing
{e([s>A>1 ]1, [kj ]2)}xj=1 and relies on the associativity relations A>1 W · B = A>1 ·
WB (ditto W0 + j ·W1) [7].
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Dimensions of A1,B. It is helpful to compare the dimensions of A1,B to those of the
CGW prime-order analogue of LOSTW in [6]; once we fix the dimensions of A1,B,
the dimensions of W,W0,W1 are also fixed. In all of these constructions, the width
of A1,B is always k, for constructions based on the k-linear assumption. CGW uses a
shorter A1 of dimensions (k + 1) × k, and a B of the same dimensions (k + 1) × k.
Roughly speaking, increasing the height of A1 by k plays the role of adding a subgroup
in our composite-order scheme; in particular, the LOSTW KP-ABE uses a group of
order p1p2 in the asymmetric setting, whereas our unbounded ABE uses a group of
order p1p2p3.

We note that the direct adaptation of the prior techniques in [11] would yield A1 of
height 3k and B of height k + 1, and reducing the height of A1 down to 2k + 1 is the
key to our efficiency improvements over the prime-order unbounded KP-ABE scheme
in [23]. To accomplish this, we need to optimize on the static assumptions used in the
composite-order bilinear entropy expansion lemma, and thereafter, carefully transfer
these optimizations to the prime-order setting, building upon and extending the recent
prime-order IBE schemes in [11].

Bilinear entropy expansion lemma. In the rest of this overview, we motivate the
prime-order analogue of our bilinear entropy expansion lemma in (4), and defer a more
accurate treatment to Section 6. Upon our substitutions in (7), we expect to prove a
statement of the form: [s>A>1 ]1, {[s>A>1 W + s>j A

>
1 (W0 + j ·W1)]1, [s

>
j A
>
1 ]1}j∈[n]

{[WBrj ]2, [Brj ]2, [(W0 + j ·W1)Brj ]2}j∈[n]

 (8)

roughly
≈c — ·

 [ŝ>A>2 ]1, {[ŝ>A>2 Vj + ŝ>j A
>
2 Uj ]1, [ŝ

>
j A
>
2 ]1}j∈[n]

{[VjBrj ]2, [0]2, [UjBrj ]2}j∈[n]


given also the public parameters [A>1 ]1, [A

>
1 W]1, [A

>
1 W0]1, [A

>
1 W1]1. Here, A2 ←R

Z(2k+1)×k
p is an additional matrix that plays the role of g2, whereas Uj ,Vj play the

roles of the fresh entropy uj , vj . Note that we do not introduce additional terms that
correspond to those involving h2 on the RHS, and can therefore keep B of dimensions
(k+1)×k. To prevent a trivial distinguishing attack based on the associativity relation
A>1 W ·B = A>1 ·WB, we need to sample random Uj ,Vj subject to the constraints
A>1 Uj = A>1 Vj = 0. In the proof of the entropy expansion lemma, we will show that
the k-Lin assumption implies

(A1,A
>
1 W, {[WBrj ]2, [Brj ]2}j∈[n]) ≈c (A1,A

>
1 W, {[(W+ Uj )Brj ]2, [Brj ]2}j∈[n]).

To complete the proof of the unbounded ABE, we proceed as before in the composite-
order setting, and observe that the boxed term in (8) above (once we strip away the terms
involving Uj and ŝj) correspond to the prime-order variant of the LOSTW KP-ABE in
CGW, as given by:

ctx := ( [ŝ>A>2 ]1, {[ŝ>A>2 Vj ]1}xj=1, e([ŝ
>A>2 ]1, [k]2) ·m )

skM := ( {[kj +VjBrj ]2, [Brj ]2}j∈[n] )

9



As in the composite-order setting, we need to first extend our bilinear entropy expansion
lemma to a Q-fold setting via random self-reducibility. We may then carry out the
analysis in CGW to complete the proof of our unbounded ABE.

1.4 Extensions

Due to lack of space, we briefly sketch two extensions: CP-ABE for monotone span
programs, and KP-ABE for arithmetic span programs.

CP-ABE. Here, we start with the LOSTW CP-ABE for monotone span programs [19],
which basically reverses the structures of the ciphertexts and keys. This means that
we will need a variant of our entropy expansion lemma that accommodates a similar
reversal. The statement adapts naturally to this setting, and so does the proof, except
we need to make some changes to step two, which requires that we start with a taller
A1 ∈ Z3k×k

q . This gives rise to the following prime-order CP-ABE:

mpk := ( [A>1 ]1, [A
>
1 W]1, [A

>
1 W0]1, [A

>
1 W1]1, [A

>
1 U0]1 e([A

>
1 ]1, [k]2) ),

ctM := ( [s>A>1 ]1, { [c>0,j + s>j A
>
1 W]1, [s

>
j A
>
1 ]1, [s

>
j A
>
1 (W0 + j ·W1)]1 }j∈[n],

e([s>A>1 ]1, [k]2) ·m )

skx := ( [k+U0Br]2, [Br]2, { [WBr+ (W0 + j ·W1)Brj ]2, [Brj ]2 }xj=1 )

where c0,j is the j’th share of c0 := s>A>1 U0 w.r.t. M. Decryption proceeds by first
computing {e([c>0,j ]1, [Br]2)}xj=1 and then e([c>0 ]1, [Br]2).

Arithmetic span programs. In arithmetic span programs, the attributes x come from
Znp instead of {0, 1}n, which enable richer and more expressive arithmetic computation.
The analogue of the LOSTW KP-ABE for arithmetic span programs [6, 15] will then
have ciphertexts:

ctx := (gs1, {g
(vj+xjv

′
j)s

1 }j∈[n], e(g1, h1)αs ·m).

That is, we replaced gxjvjs1 in (1) with g
(vj+xjv

′
j)s

1 . In the unbounded setting, we will
need to generate {vj}j∈[n] and {v′j}j∈[n] via two different pairwise-independent hash
functions, given by w0 + j · w1 and w′0 + j · w′1 respectively. Our entropy expansion
lemma generalizes naturally to this setting.

2 Preliminaries

Notation. We denote by s ←R S the fact that s is picked uniformly at random from a
finite set S. By PPT, we denote a probabilistic polynomial-time algorithm. Throughout
this paper, we use 1λ as the security parameter. We use lower case boldface to denote
(column) vectors and upper case boldcase to denote matrices. We use ≡ to denote two
distributions being identically distributed, and ≈c to denote two distributions being
computationally indistinguishable. For any two finite sets (also including spaces and
groups) S1 and S2, the notation “S1 ≈c S2” means the uniform distributions over them
are computationally indistinguishable.

10



2.1 Monotone span programs

We define (monotone) span programs [16].

Definition 1 (span programs [4, 16]). A (monotone) span program for attribute
universe [n] is a pair (M, ρ) where M is a ` × `′ matrix over Zp and ρ : [`] → [n].
Given x = (x1, . . . , xn) ∈ {0, 1}n, we say that

x satisfies (M, ρ) iff 1 ∈ span〈Mx〉,

Here, 1 := (1, 0, . . . , 0)> ∈ Z1×`′ is a row vector; Mx denotes the collection of vectors
{Mj : xρ(j) = 1} where Mj denotes the j’th row of M; and span refers to linear span
of collection of (row) vectors over Zp.

That is, x satisfies (M, ρ) iff there exists constants ω1, . . . , ω` ∈ Zp such that∑
j:xρ(j)=1

ωjMj = 1 (9)

Observe that the constants {ωj} can be computed in time polynomial in the size of
the matrix M via Gaussian elimination. Like in [19, 6], we need to impose a one-use
restriction, that is, ρ is a permutation and ` = n. By re-ordering the rows of M, we may
assume WLOG that ρ is the identity map, which we omit in the rest of this section.

Lemma 1 (statistical lemma [6, Appendix A.6]). For any x that does not satisfy M,
the distributions

({vj}j:xj=1, {Mj (
α
u ) + rjvj , rj}j∈[n])

perfectly hide α, where the randomness is taken over vj ←R Zp,u ←R Z`′−1p , and for
any fixed rj 6= 0.

2.2 Attribute-based encryption

An attribute-based encryption (ABE) scheme for a predicate P( · , · ) consists of four
algorithms (Setup,Enc, KeyGen,Dec):

Setup(1λ,X ,Y,M) → (mpk,msk). The setup algorithm gets as input the security
parameter λ, the attribute universe X , the predicate universe Y , the message space
M and outputs the public parameter mpk, and the master key msk.

Enc(mpk, x,m) → ctx. The encryption algorithm gets as input mpk, an attribute
x ∈ X and a message m ∈ M. It outputs a ciphertext ctx. Note that x is public
given ctx.

KeyGen(mpk,msk, y) → sky . The key generation algorithm gets as input msk and a
value y ∈ Y . It outputs a secret key sky . Note that y is public given sky .

Dec(mpk, sky, ctx) → m. The decryption algorithm gets as input sky and ctx such
that P(x, y) = 1. It outputs a message m.

11



Correctness. We require that for all (x, y) ∈ X × Y such that P(x, y) = 1 and all
m ∈M,

Pr[Dec(mpk, sky,Enc(mpk, x,m)) = m] = 1,

where the probability is taken over (mpk,msk) ← Setup(1λ,X ,Y,M), sky ←
KeyGen(mpk,msk, y), and the coins of Enc.

Security definition. For a stateful adversary A, we define the advantage function

AdvABE
A (λ) := Pr

b = b′ :

(mpk,msk)← Setup(1λ,X ,Y,M);

(x∗,m0,m1)← AKeyGen(msk,·)(mpk);

b←R {0, 1}; ctx∗ ← Enc(mpk, x∗,mb);

b′ ← AKeyGen(msk,·)(ctx∗)

−
1

2

with the restriction that all queries y that A makes to KeyGen(msk, ·) satisfies
P(x∗, y) = 0 (that is, sky does not decrypt ctx∗ ). An ABE scheme is adaptively secure
if for all PPT adversaries A, the advantage AdvABE

A (λ) is a negligible function in λ.

Unbounded ABE. An ABE scheme is unbounded [21] if the running time of Setup
only depends on λ; otherwise, we say that it is bounded.

3 Bilinear Entropy Expansion, Revisited

3.1 Composite-order bilinear groups and computational assumptions

A generator G takes as input a security parameter λ and outputs G := (GN , HN , GT , e),
where N is product of three primes p1, p2, p3 of Θ(λ) bits, GN , HN and GT are cyclic
groups of order N and e : GN × HN → GT is a non-degenerate bilinear map.
We require that the group operations in GN , HN and GT as well the bilinear map e
are computable in deterministic polynomial time with respect to λ. We assume that a
random generator g (resp. h) of GN (resp. HN ) is always contained in the description
of bilinear groups. For every divisor n of N , we denote by Gn the subgroup of GN of
order n. We use g1, g2, g3 to denote random generators of the subgroups Gp1 , Gp2 , Gp3
respectively. We define h1, h2, h3 random generators of the subgroups Hp1 , Hp2 , Hp3

analogously.

Computational assumptions. We review two static computational assumptions in the
composite-order group, used e.g. in [20, 8].

Assumption 1 (SDGNp1 7→p1p2 ) We say that (p1 7→ p1p2)-subgroup decision assumption,
denoted by SDGNp1 7→p1p2 , holds if for all PPT adversaries A, the following advantage
function is negligible in λ.

Adv
SDGNp1 7→p1p2
A (λ) :=

∣∣Pr[A(G, D, T0) = 1]− Pr[A(G, D, T1) = 1]
∣∣

12



where
D := (g1, g2, g3, h1, h3, h12), h12 ←R Hp1p2

T0 ←R Gp1 , T1 ←R Gp1p2 .

Assumption 2 (DDHHN
p1 ) We say that p1-subgroup Diffie-Hellman assumption, denot-

ed by DDHHNp1 , holds if for all PPT adversaries A, the following advantage function is
negligible in λ.

Adv
DDHHNp1
A (λ) :=

∣∣Pr[A(G, D, T0) = 1]− Pr[A(G, D, T1) = 1]
∣∣

where

D := (g1, g2, g3, h1, h2, h3),

T0 := (hx1 , h
y
1, h

xy
1 ), T1 := (hx1 , h

y
1, h

xy+z
1 ), x, y, z ←R ZN .

By symmetry, one may permute the indices for subgroups and/or exchange the roles
of GN and HN , and define SDGNp1 7→p1p3 , SDGNp3 7→p3p2 , SDHNp1 7→p1p2 , SDHNp1 7→p1p3 and
DDHHNp2 ,DDHHNp3 analogously.

3.2 Lemma in Composite-order groups

We state our entropy expansion lemma in composite-order groups as follows.

Lemma 2 (Bilinear entropy expansion lemma). Under the SDHNp1 7→p1p2 , SDHNp1 7→p1p3 ,
SDGNp1 7→p1p2 , DDHHNp2 , SDGNp1 7→p1p3 , DDHHNp3 , SDGNp3 7→p3p2 assumptions, we have

aux : g1, g
w
1 , g

w0
1 , gw1

1

ct : gs1, {g
sw+sj(w0+j·w1)
1 , g

sj
1 }j∈[n]

sk : {hrjw1 , h
rj
1 , h

rj(w0+j·w1)
1 }j∈[n]


≈c


aux : g1, g

w
1 , g

w0
1 , gw1

1

ct : gs1 · gs2 , {g
sw+sj(w0+j·w1)
1 · gsvj+sjuj2 , g

sj
1 · g

sj
2 }j∈[n]

sk : {hrjw1 · hrjvj2 , h
rj
1 · h

rj
2 , h

rj(w0+j·w1)
1 · hrjuj2 }j∈[n]


where

w,w0, w1 ←R ZN , vj , uj ←R ZN , s, sj ←R ZN , rj ←R ZN .
Concretely, the distinguishing advantage AdvEXPLEM

A (λ) is at most

Adv
SDHNp1 7→p1p2
B (λ) + Adv

SDHNp1 7→p1p3
B′ (λ) + Adv

SDGNp1 7→p1p2
B′′ (λ) + Adv

SDHNp1 7→p1p3
B′′′ (λ)

+ Adv
DDHHNp2
B0

(λ) + n ·
(
Adv

SDGNp1 7→p1p3
B1

(λ) + Adv
DDHHNp3
B2

(λ) + Adv
SDGNp3 7→p3p2
B4

(λ)

+ Adv
DDHHNp3
B6

(λ) + Adv
SDGNp1 7→p1p3
B7

(λ)
)
+ Adv

DDHHNp2
B8

(λ)

where Time(B), Time(B′), Time(B′′), Time(B′′′), Time(B0), Time(B1), Time(B2),
Time(B4), Time(B6), Time(B7), Time(B8) ≈ Time(A).
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We will prove the lemma in two main steps (cf. Section 1.2), which are formulated
via the following two lemmas.

Lemma 3 (Bilinear entropy expansion lemma (step one)). Under the DDHHNp2 ,
SDGNp1 7→p1p3 , DDHHNp3 , SDGNp3 7→p3p2 assumptions, we have

aux : g1, g
w0
1 , gw1

1 , g2

ct : {gsj(w0+j·w1)

1 , g
sj
1 }j∈[n]

sk : {hrj123, h
rj(w0+j·w1)

123 }j∈[n]

 ≈c


aux : g1, g
w0
1 , gw1

1 , g2

ct : {gsj(w0+j·w1)

1 · gsjuj2 , g
sj
1 · g

sj
2 }j∈[n]

sk : {hrj13 · h
rj
2 , h

rj(w0+j·w1)

13 · hrjuj2 }j∈[n]


where

w0, w1 ←R ZN , uj ←R ZN , sj ←R ZN , rj ←R ZN .
Concretely, the distinguishing advantage AdvSTEP1

A (λ) is at most

Adv
DDHHNp2
B0

(λ) + n ·
(
Adv

SDGNp1 7→p1p3
B1

(λ) + Adv
DDHHNp3
B2

(λ) + Adv
SDGNp3 7→p3p2
B4

(λ)

+ Adv
DDHHNp3
B6

(λ) + Adv
SDGNp1 7→p1p3
B7

(λ)
)

where Time(B0), Time(B1), Time(B2), Time(B4), Time(B6), Time(B7) ≈ Time(A).
Note that sk in the LHS of this lemma has an extra h23-component, which we may

introduce using the SDHNp1 7→p1p2 and SDHNp1 7→p1p3 assumption. The proof of this lemma is
fairly involved, and we defer the proof to Section 3.3.

Lemma 4 (Bilinear entropy expansion lemma (step two)). Under the DDHHNp2
assumption, we have

aux : g1, g
w
1 , h1, h

w
1

ct : gs2, { gsw2 · g
sjuj
2 , g

sj
2 }j∈[n]

sk : {hrjw2 , h
rj
2 , h

rjuj
2 }j∈[n]

 ≈c


aux : g1, g
w
1 , h1, h

w
1

ct : gs2, { g
svj
2 · gsjuj2 , g

sj
2 }j∈[n]

sk : { h
rjvj
2 , h

rj
2 , h

rjuj
2 }j∈[n]


where

w ←R ZN , vj , uj ←R ZN , s, sj ←R ZN , rj ←R ZN .

Concretely, the distinguishing advantage AdvSTEP2
A (λ) is at most Adv

DDHHNp2
B8

(λ) where
Time(B8) ≈ Time(A).
Proof. This follows from the DDHHNp2 assumption, which tells us that

{hrj2 , h
rjw
2 }j∈[n] ≈c {h

rj
2 , h

rjvj
2 }j∈[n].

The adversaryB8 on input {hrj2 , Tj}j∈[n] along with g1, g2, h1, h2, picks w̃, s, sj , ũj ←R

ZN (and implicitly sets uj = 1
sj
(ũj − sw)), then runs A on input

aux : g1, g
w̃
1 , h1, h

w̃
1

ct : gs2, { g
ũj
2 , g

sj
2 }j∈[n]

sk : {Tj , h
rj
2 , (h

rj
2 )

ũj
sj · T

− s
sj

j }j∈[n]

 .
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By the Chinese Remainder Theorem, we have (gw1 , h
w
1 , g

w
2 , h

w
2 ) ≡ (gw̃1 , h

w̃
1 , g

w
2 , h

w
2 ),

where w, w̃ ←R ZN . Next, observe that

– When Tj = grjw and if we write rjuj = rj · ũjsj +rjw ·(−
s
sj
), then ũj = sw+sjuj

and the distribution we feed to A is exactly that of the left distribution.
– When Tj = grjvj and if we write rjuj = rj · ũjsj +rjvj ·(−

s
sj
), then ũj = svj+sjuj

and the distribution we feed to A is exactly that of the right distribution.

This completes the proof. ut

3.3 Entropy expansion lemma: Step one

Proof overview. First, we note that we can adapt the proof of the Lewko-Waters IBE
[20, 8]9 to show that under SDGNp1 7→p1p3 and DDHHNp3 assumptions, we have that for each
i ∈ [n]:

aux : g1, g
w0
1 , gw1

1

ct : {gsi(w0+i·w1)
1 , gsi1 }

sk : {hrj13, h
rj(w0+j·w1)

13 }j∈[n]

 ≈c


aux : g1, g
w0
1 , gw1

1

ct : {gsi(w0+i·w1)
1 · gsiui3 , gsi1 · g

si
3 }

sk : {hrj1 · h
rj
3 , h

rj(w0+j·w1)

1 · hrjuj3 }j∈[n]

 .

We can then use the SDGNp3 7→p2p3 assumption to argue that

(gsi3 , g
siui
3 ) ≈c (gsi3 · g

si
2 , gsiui3 · gsiui2 )

Roughly speaking, we will then repeat the above argument n times for each i ∈ [n] (see
Sub-Gamei,1 through Sub-Gamei,4 below). Here, there is an additional complication
arising from the fact that in order to invoke the SDGNp1 7→p1p3 assumption, we need
to simulate sk given only h1, h13, h2. To do this, we need to switch sk back to
{hrj13, h

rj(w0+j·w1)
13 }j∈[n], which we do in Sub-Gamei,5 through Sub-Gamei,7.

At this point, we are almost done, except we still need to introduce a (h
rj
2 , h

rjuj
2 )-

component into sk. We will handle this at the very beginning of the proof (cf. Game0′ ).
Fortunately, we can carry out the above argument even with the extra (h

rj
2 , h

rjuj
2 )-

component in sk.

Actual proof. We prove step one of the entropy expansion lemma in Lemma 3 via the
following game sequence. Each claim will be followed by a proof sketch but a formal
proof is omitted. By ctj (resp. skj), we denote the j’th tuple of ct (resp. sk).

Game0. This is the left distribution in Lemma 3:
aux : g1, g

w0
1 , gw1

1 , g2

ct : {gsj(w0+j·w1)
1 , g

sj
1 }j∈[n]

sk : {hrj123, h
rj(w0+j·w1)
123 }j∈[n]

 .

9 with two main differences: (i) we are in the selective setting which allows for a much simpler
proof, (ii) we allow j = i in sk.
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Game0′ . We modify sk as follows:

sk : {hrj13 · h
rj
2 , h

rj(w0+j·w1)
13 · hrjuj2 }j∈[n]

where u1, . . . , un ←R ZN . We claim that Game0 ≈c Game0′ . This follows from the
DDHHNp2 assumption, which tells us that

{hrj2 , h
rjw0

2 }j∈[n] ≈c {h
rj
2 , h

rju
′
j

2 }j∈[n] given g1, g2, h13

where u′j ←R ZN and we will then implicitly set uj = u′j + j ·w1 for all j ∈ [n]. In the
security reduction, we use the fact that aux, ct leak no information about w0 mod p2.

Gamei (i = 1, . . . , n+ 1). We modify ct as follows:

ct : {gsj(w0+j·w1)
1 · gsjuj2 , g

sj
1 · g

sj
2 }j<i

{gsj(w0+j·w1)
1 , g

sj
1 }j≥i

where u1, . . . , ui−1 are defined as in Game0′ . It is easy to see that Game0′ ≡ Game1.
To show that Gamei ≈c Gamei+1, we will require another sequence of sub-games.

Sub-Gamei,1. Identical to Gamei except that we modify cti as follows:

cti : {gsi(w0+i·w1)
1 · gsi(w0+i·w1)

3 , gsi1 · g
si
3 }

We claim that Gamei ≈c Sub-Gamei,1. This follows from the SDGNp1 7→p1p3 assumption,
which tells us that

gsi1 ≈c g
si
1 · g

si
3 given g1, g2, h13, h2

In the reduction, we will sample w0, w1, uj ←R ZN and use g1, g2 to simulate
aux, {ctj}j 6=i and h13, h2 to simulate sk.

Sub-Gamei,2. We modify the distribution of skj for all j 6= i (while keeping ski
unchanged):

skj (j 6= i) : h
rj
1 · h

rj
2 · h

rj
3 , h

rj(w0+j·w1)
1 · hrjuj2 · hrjuj3

We claim that Sub-Gamei,1 ≈c Sub-Gamei,2. This follows from the DDHHNp3
assumption, which tells us that

{hrj3 , h
rjw1

3 }j 6=i ≈c {h
rj
3 , h

rju
′
j

3 }j 6=i given g1, g2, g3, h1, h2, h3.

where u′j ←R ZN . In the reduction, we will program w0 := w̃0 − i · w1 mod p3

with w̃0 ←R ZN so that we can simulate gsi(w0+i·w1)
3 in cti, and then implicitly set

uj = w̃0 + (j − i) · u′j mod p3 for all j 6= i.
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Sub-Gamei,3. We modify the distribution of cti and ski simultaneously:

cti : g
si(w0+i·w1)
1 · gsiui3 , gsi1 · g

si
3

ski : h
ri
1 · h

ri
2 · h

ri
3 , h

ri(w0+i·w1)
1 · hriui2 · hriui3

We claim that Sub-Gamei,2 ≡ Sub-Gamei,3. This follows from the fact that for all
j 6= i, the quantity w0 + j · w1 mod p3 leaked in skj is masked by uj and therefore
{w0 + i · w1 mod p3} ≡ {ui mod p3}.

Sub-Gamei,4. We modify the distribution of cti as follows:

cti : g
si(w0+i·w1)
1 · gsiui2 · gsiui3 , gsi1 · g

si
2 · gsi3

We claim that Sub-Gamei,3 ≈c Sub-Gamei,4. This follows from the SDGNp3 7→p3p2
assumption, which tells us that

gsi3 ≈c gsi2 · gsi3 given g1, g2, h1, h23.

In the reduction, we will sample w0, w1, uj ←R ZN and use g1, g2 to simulate
aux, {ctj}j 6=i. In addition, we will use generator h23 to sample {hrj2 · h

rj
3 , h

rjuj
2 ·

h
rjuj
3 }j∈[n] in sk.

Sub-Gamei,5. We modify the distribution of cti and ski:

cti : g
si(w0+i·w1)
1 · gsiui2 · gsi(w0+i·w1)

3 , gsi1 · g
si
2 · g

si
3

ski : h
ri
1 · h

ri
2 · h

ri
3 , h

ri(w0+i·w1)
1 · hriui2 · hri(w0+i·w1)

3

We claim that Sub-Gamei,4 ≡ Sub-Gamei,5. The proof is completely analogous to that
of Sub-Gamei,2 ≡ Sub-Gamei,3.

Sub-Gamei,6. We modify the distribution of skj for all j 6= i:

skj (j 6= i) : h
rj
1 · h

rj
2 · h

rj
3 , h

rj(w0+j·w1)
1 · hrjuj2 · hrj(w0+j·w1)

3

We claim that Sub-Gamei,5 ≈c Sub-Gamei,6. The proof is completely analogous to
that of Sub-Gamei,1 ≈c Sub-Gamei,2.

Sub-Gamei,7. We modify the distribution of cti:

cti : g
si(w0+i·w1)
1 · gsiui2 ·������

g
si(w0+i·w1)
3 , gsi1 · g

si
2 ·��g

si
3

We claim that Sub-Gamei,6 ≈c Sub-Gamei,7. The proof is completely analogous to
that of Gamei ≈c Sub-Gamei,1. Furthermore, observe that Sub-Gamei,7 is actually
identical to Gamei+1.
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Gamen+1. In Gamen+1, we have:
aux : g1, g

w0
1 , gw1

1 , g2

ct : {gsj(w0+j·w1)
1 · gsjuj2 , g

sj
1 · g

sj
2 }j∈[n]

sk : {hrj13 · h
rj
2 , h

rj(w0+j·w1)
13 · hrjuj2 }j∈[n]

 .

This is exactly the right distribution of Lemma 3.

4 KP-ABE for Monotone Span Programs in Composite-Order
Groups

In this section, we present our adaptively secure, unbounded KP-ABE for monotone
span programs based on static assumptions in composite-order groups (cf. Section 3.1).

4.1 Construction

Setup(1λ, 1n): On input (1λ, 1n), sample G := (N = p1p2p3, GN , HN , GT , e) ←
G(1λ) and select random generators g1, h1 and h123 of Gp1 , Hp1 and HN ,
respectively. Pick

w,w0, w1 ←R ZN , α←R ZN ,

a pairwise independent hash function H : GT → {0, 1}λ, and output the master
public and secret key pair

mpk := ( (N,GN , HN , GT , e); g1, g
w
1 , g

w0
1 , gw1

1 , e(g1, h123)
α; H )

msk := (h123, h1, α, w,w0, w1 ) .

Enc(mpk,x,m): On input an attribute vector x := (x1, . . . , xn) ∈ {0, 1}n and m ∈
{0, 1}λ, pick s, sj ←R ZN for all j ∈ [n] and output

ctx :=

 C0 := gs1, { C1,j := g
sw+sj(w0+j·w1)
1 , C2,j := g

sj
1 }j:xj=1,

C := H(e(g1, h123)
αs) ·m


∈ G2n+1

N × {0, 1}λ.

KeyGen(mpk,msk,M): On input a monotone span program M ∈ Zn×`
′

N , pick u ←R

Z`
′−1
N and rj ←R ZN for all j ∈ [n], and output

skM :=
(
{K0,j := h

Mj(αu )
123 ·hrjw1 , K1,j := h

rj
1 , K2,j := h

rj(w0+j·w1)

1 }j∈[n]
)
∈ H3n

N .

Dec(mpk, skM, ctx): If x satisfies M, compute ω1, . . . , ωn ∈ Zp such that∑
j:xj=1 ωjMj = 1.
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Then, compute

K ←
∏
j:xj=1

(
e(C0,K0,j) · e(C1,j ,K1,j)

−1 · e(C2,j ,K2,j)
)ωj ,

and recover the message as m← C/H(K) ∈ {0, 1}λ.

It is direct to prove the correctness and we omit the detail here.

4.2 Proof of Security

We prove the following theorem:

Theorem 1. Under the subgroup decision assumptions and the subgroup Diffie-
Hellman assumptions (cf. Section 3.1), the unbounded KP-ABE scheme described in
this section (cf. Section 4.1) is adaptively secure (cf. Section 2.2).

Main technical lemma. We prove the following technical lemma. Our proof consists
of two steps. We first apply the entropy expansion lemma (see Lemma 2) and obtain
a copy of the LOSTW KP-ABE (variant there-of) in the p2-subgroup. We may then
carry out the classic dual system methodology used for establishing adaptive security of
the LOSTW KP-ABE in the p2-subgroup with the p3-subgroup as the semi-functional
space.

Lemma 5. For any adversary A that makes at most Q key queries against the
unbounded KP-ABE scheme, there exist adversaries B0,B1,B2,B2 such that:

AdvABE
A (λ) ≤ AdvEXPLEM

B0 (λ)+Adv
SD
GN
p2 7→p2p3

B1 (λ)+Q·AdvSD
HN
p2 7→p2p3

B2 (λ)+Q·AdvSD
HN
p2 7→p2p3

B3 (λ)

where Time(B0),Time(B1),Time(B2),Time(B3) ≈ Time(A). In particular, we achieve secu-
rity loss O(n + Q) based on the SDHNp1 7→p1p2 , SDHNp1 7→p1p3 , SDGNp1 7→p1p2 , DDHHNp2 , SDGNp1 7→p1p3 ,
DDHHNp3 , SDGNp3 7→p3p2 , SDGNp2 7→p2p3 , SDHNp2 7→p2p3 assumptions.

The proof follows a series of games based on the dual system methodology (see Fig. 4).
We first define the auxiliary distributions, upon which we can describe the games.

Auxiliary distributions. We define various forms of a ciphertext (of message m under
attribute vector x):

– Normal: Generated by Enc.
– E-normal: Same as a normal ciphertext except that a copy of normal ciphertext is

created in Gp2 and then we use the substitution:

w 7→ vj mod p2 in j’th component and w0 + j · w1 7→ uj mod p2 (10)

where vj , uj ←R ZN . Concretely, an E-normal ciphertext is of the form

ctx :=

gs1 · gs2 , { g
sw+sj(w0+j·w1)
1 · gsvj+sjuj2 , g

sj
1 · g

sj
2 }j:xj=1,

H(e(gs1 · gs2 , hα123)) ·m


where g2 is a random generator of Gp2 and s, sj ←R ZN .
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Game CT
SK

Justification
κ < i κ = i κ > i

0 Normal Normal real game

0’ E-normal E-normal entropy expansion lemma, Lemma 2

i SF SF E-normal E-normal SDGNp2 7→p2p3 , Gamei = Gamei−1,3

i, 1 — — P-normal — SDHNp2 7→p2p3
i, 2 — — P-SF — statistical lemma, Lemma 1

i, 3 — — SF — SDHNp2 7→p2p3
Final random m SF statistical hiding

Fig. 4. Game sequence for our composite-order unbounded KP-ABE.

– SF: Same as E-normal ciphertext except that we copy all entropy from Gp2 to Gp3 .
Concretely, an SF ciphertext is of the form

ctx :=


gs1 · gs2 · gs3 ,

{ gsw+sj(w0+j·w1)
1 · gsvj+sjuj2 · gsvj+sjuj3 , g

sj
1 · g

sj
2 · g

sj
3 }j:xj=1,

H(e(gs1 · gs2 · gs3 , hα123)) ·m


where g3 is a random generator of Gp3 and s, sj ←R ZN .

Then we pick α̂←R ZN and define various forms of a key (for span program M):

– Normal: Generated by KeyGen.
– E-normal: Same as a normal key except that a copy of {hrjw1 , h

rj
1 , h

rj(w0+j·w1)
1 }j∈[n]

is created in Hp2 and use the same substitution as in (10). Concretely, an E-normal
key is of the form

skM :=
(
{ hMj(αu )

123 · hrjw1 · hrjvj2 , h
rj
1 · h

rj
2 , h

rj(w0+j·w1)
1 · hrjuj2 }j∈[n]

)
where h123, h1 and h2 are respective random generators of HN , Hp1 and Hp2 ,
u←R Z`

′−1
N and rj ←R ZN .

– P-normal: Same as E-normal key except that a copy of {hrjvj2 , h
rj
2 , h

rjuj
2 }j∈[n] is

created in Hp3 . Concretely, a P-normal key is of the form

skM :=


 h

Mj(αu )
123 · hrjw1 · hrjvj2 · hrjvj3 ,

h
rj
1 · h

rj
2 · h

rj
3 , h

rj(w0+j·w1)
1 · hrjuj2 · hrjuj3


j∈[n]


where h3 is a random generator of Hp3 , u←R Z`

′−1
N and rj ←R ZN .
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– P-SF: Same as P-normal key except that α̂ is introduced inHp3 . Concretely, a P-SF
key is of the form

skM :=


 h

Mj(αu )
123 · h

Mj( α̂0 )
3 · hrjw1 · hrjvj2 · hrjvj3 ,

h
rj
1 · h

rj
2 · h

rj
3 , h

rj(w0+j·w1)
1 · hrjuj2 · hrjuj3


j∈[n]


where u←R Z`

′−1
N and rj ←R ZN .

– SF: Same as P-SF key except that {hrjvj3 , h
rj
3 , h

rjuj
3 }j∈[n] is removed. Concretely,

a SF key is of the form

skM :=


 h

Mj(αu )
123 · h

Mj( α̂0 )
3 · hrjw1 · hrjvj2 ·���h

rjvj
3 ,

h
rj
1 · h

rj
2 ·��h

rj
3 , h

rj(w0+j·w1)
1 · hrjuj2 ·���h

rjuj
3


j∈[n]


where u←R Z`

′−1
N and rj ←R ZN .

Here E, P, SF means “expanded”, “pesudo”, “semi-functional”, respectively.

Games. We describe the game sequence in detail. For each following claim, we omit
its formal proof but provide a proof sketch instead.

Game0. The real security game (cf. Section 2.2) where keys and ciphertext are normal.

Game′0. Identical to Game0 except that all keys and the challenge ciphertext are E-
normal. We claim that Game0 ≈c Game0′ . This follows from the entropy expansion
lemma (see Lemma 2). In the reduction, on input

aux : g1, g
w
1 , g

w0
1 , gw1

1

ct : C0, {C1,j , C2,j}j∈[n]
sk : {K0,j , K1,j , K2,j}j∈[n]

 ,

we select a random generator h123 of HN , sample α ←R ZN , uκ ←R Z`
′−1
N , r̃j,κ ←R

ZN for j ∈ [n] and κ ∈ [Q], and simulate the game with
mpk : aux, e(g1, h123)

α

ctx∗ : {C0, C1,j , C2,j}j:x∗j=1, e(C0, h
α
123) ·mb

skκM : { hMj( αuκ )
123 ·K r̃j,κ

0,j ,K
r̃j,κ
1,j ,K

r̃j,κ
2,j }j∈[n]

 .
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Gamei. Identical to Game0′ except that the first i− 1 keys and the challenge ciphertext
is SF. We claim that Game0′ ≈c Game1. This follows from the SDGNp2 7→p2p3 assumption,
which asserts that

( gs2, {g
sj
2 }j∈[n] ) ≈c ( gs2 · gs3 , {g

sj
2 · g

sj
3 }j∈[n] ) given g1, h1, h2.

In the reduction, we sample w,w0, w1, vj , uj ←R ZN , h123 ←R HN , α ←R ZN and
simulate mpk, skκM honestly. To show that Gamei ≈c Gamei+1, we will require another
sequence of sub-games.

Gamei,1. Identical to Gamei except that the i’th key is P-normal. We claim that
Gamei ≈c Gamei,1. This follows from SDHNp2 7→p2p3 assumption which asserts that

{hrj2 }j∈[n] ≈c {h
rj
2 · h

rj
3 }j∈[n] given g1, g23, h1, h2, h3

In the reduction, we sample w,w0, w1, vj , uj , α, α̂ ←R ZN and select a random
generator h123 of HN , and simulate mpk, ct, {skκM}κ 6=i honestly.

Gamei,2. Identical to Gamei except that the i’th key is P-SF. We claim that Gamei,1 ≡
Gamei,2. This follows from Lemma 1 in Section 2 which ensures that for any x that
does not satisfy M,

(

κ’th sk, κ 6= i︷ ︸︸ ︷
h2, {h

vj
2 }j∈[n], α, α̂;

SF ct︷ ︸︸ ︷
{g2, g

vj
2 , g3, g

vj
3 }j:xj=1;

P-normal i’th sk︷ ︸︸ ︷
{hMj(αu )

123 · hrjvj3 , h
rj
3 }j∈[n] )

≡ ( h2, {h
vj
2 }j∈[n], α, α̂; {g2, g

vj
2 , g3, g

vj
3 }j:xj=1; {h

Mj(αu )
123 · h

Mj( α̂0 )
3 · hrjvj3 , h

rj
3 }j∈[n]︸ ︷︷ ︸

P-SF i’th sk

)

where vj ←R ZN and u←R Z`
′−1
N , and for all α, α̂, and rj 6= 0 mod p3. It is straight-

forward to compute the remaining terms in mpk, the challenge ciphertext and the Q
secret keys by sampling g1, w, w0, w1, uj , s, sj ourselves.

Gamei,3. Identical to Gamei except that the i’th key is SF. We claim that Gamei,2 ≈c
Gamei,3. The proof is completely analogous to that of Gamei ≈c Gamei,1. Further-
more, observe that Gamei,3 is actually identical to Gamei+1.

GameFinal. Identical to GameQ+1 except that the challenge ciphertext is a SF one for a
random message in GT . We claim that GameQ+1 ≡ GameFinal. This follows from the
fact that

(

mpk︷ ︸︸ ︷
e(g1, h

α
123),

SF sk︷ ︸︸ ︷
hα123 · hα̂3 ,

SF ct︷ ︸︸ ︷
e(gs123, h

α
123) ) ≡ ( e(g1, h

α
123), h

α
123, e(g

s
123, h

α
123 · hα̂3 ) )

where g123, h123 and h3 are respective random generators of GN , HN and Hp3 ,
α, α̂ ←R ZN . The message mb is statistically hidden by e(gs123, h

α̂
3 ). In GameFinal,

the view of the adversary is statistically independent of the challenge bit b. Hence,
AdvFinal = 0.
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5 Simulating Composite-Order Groups in Prime-Order Groups

We build upon and extend the previous framework of Chen et al. [6, 11] for simulating
composite-order groups in prime-order ones. We provide prime-order analogues of the
static assumptions SDGNp1 7→p1p2 ,DDHHNp1 used in the previous sections. Moreover, we
show that these prime-order analogues follow from the standard k-Linear assumption
(and more generally, the MDDH assumption [9]) in prime-order bilinear groups.

Additional notation. Let A be a matrix over Zp. We use span(A) to denote the column
span of A, and we use span`(A) to denote matrices of width ` where each column
lies in span(A); this means M ←R span`(A) is a random matrix of width ` where
each column is chosen uniformly from span(A). We use basis(A) to denote a basis of
span(A), and we use (A1 | A2) to denote the concatenation of matrices A1,A2. If A
is a m-by-n matrix with m > n, we use A to denote the sub-matrix consisting of the
first n rows and A the sub-matrix with remaining m− n rows. We let In be the n-by-n
identity matrix and 0 be a zero matrix whose size will be clear from the context.

5.1 Prime-order groups and matrix Diffie-Hellman assumptions

A generator G takes as input a security parameter λ and outputs a description G :=
(p,G1, G2, GT , e), where p is a prime of Θ(λ) bits, G1, G2 and GT are cyclic
groups of order p, and e : G1 × G2 → GT is a non-degenerate bilinear map.
We require that the group operations in G1, G2 and GT as well the bilinear map e
are computable in deterministic polynomial time with respect to λ. Let g1 ∈ G1,
g2 ∈ G2 and gT = e(g1, g2) ∈ GT be the respective generators. We employ the
implicit representation of group elements: for a matrix M over Zp, we define [M]1 :=
gM1 , [M]2 := gM2 , [M]T := gMT , where exponentiation is carried out component-wise.
Also, given [A]1, [B]2, we let e([A]1, [B]2) = [AB]T .

We define the matrix Diffie-Hellman (MDDH) assumption on G1 [9]:

Assumption 3 (MDDHm
k,` Assumption) Let ` > k ≥ 1 and m ≥ 1. We say that

the MDDHmk,` assumption holds if for all PPT adversaries A, the following advantage
function is negligible in λ.

Adv
MDDHmk,`
A (λ) :=

∣∣Pr[A(G, [M]1, [MS]1) = 1]− Pr[A(G, [M]1, [U]1) = 1]
∣∣

where M←R Z`×kp , S←R Zk×mp and U←R Z`×mp .

The MDDH assumption on G2 can be defined in an analogous way. Escala et al. [9]
showed that

k-Lin⇒ MDDH1
k,k+1 ⇒ MDDHmk,` ∀` > k,m ≥ 1

with a tight security reduction. Henceforth, we will use MDDHk to denote MDDH1
k,k+1.
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5.2 Basis structure

We want to simulate composite-order groups whose order is the product of three primes.
Fix parameters `1, `2, `3, `W ≥ 1. Pick random

A1 ←R Z`×`1p ,A2 ←R Z`×`2p ,A3 ←R Z`×`3p

where ` := `1 + `2 + `3. Let (A‖1 | A
‖
2 | A

‖
3)
> denote the inverse of (A1 | A2 | A3),

so that A>i A
‖
i = I (known as non-degeneracy) and A>i A

‖
j = 0 if i 6= j (known as

orthogonality), as depicted in Fig 5. This generalizes the constructions in [10, 11] where
`1 = `2 = `3 = k.

A1 A2 A3

A
‖
1 A

‖
2 A

‖
3

Fig. 5. Basis relations. Solid lines mean orthogonal, dashed lines mean non-degeneracy. Similar
relations hold in composite-order groups with (g1, g2, g3) in place of (A1,A2,A3) and
(h1, h2, h3) in place of (A‖1,A

‖
2,A

‖
3).

Correspondence. We have the following correspondence with composite-order groups:

gi 7→ [Ai]1, gsi 7→ [Ais]1

w ∈ ZN 7→W ∈ Z`×`Wp , gwi 7→ [A>i W]1

The following statistical lemma is analogous to the Chinese Remainder Theorem, which
tells us that w mod p2 is uniformly random given gw1 , g

w
3 , where w ←R ZN :

Lemma 6 (statistical lemma). With probability 1−1/p over A1,A2,A3,A
‖
1,A

‖
2,A

‖
3,

the following two distributions are statistically identical.

{ A>1 W,A>3 W, W } and { A>1 W,A>3 W, W +U(2) }

where W←R Z`×`Wp and U(2) ←R span`W (A
‖
2).

5.3 Basic Assumptions

We first describe the prime-order (A1 7→ A1,A2)-subgroup decision assumption,
denoted by SDG1

A1 7→A1,A2
. This is analogous to the subgroup decision assumption in

composite-order groups SDGNp1 7→p1p2 which asserts that Gp1 ≈c Gp1p2 given h1, h3, h12
along with g1, g2, g3. By symmetry, we can permute the indices for A1,A2,A3.
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Lemma 7 (MDDH`1,`1+`2 ⇒ SDG1

A1 7→A1,A2
). Under the MDDH`1,`1+`2 assumption

in G1, there exists an efficient sampler outputting random ([A1]1, [A2]1, [A3]1) (as
described in Section 5.2) along with base basis(A

‖
1), basis(A

‖
3), basis(A

‖
1,A

‖
2) (of

arbitrary choice) such that the following advantage function is negligible in λ.

Adv
SDG1

A1 7→A1,A2

A (λ) :=
∣∣Pr[A(D, [t0]1) = 1]− Pr[A(D, [t1]1) = 1]

∣∣
where

D := ( [A1]1, [A2]1, [A3]1, basis(A
‖
1), basis(A

‖
3), basis(A

‖
1,A

‖
2) ),

t0 ←R span(A1), t1 ←R span(A1,A2).

Similar statements were also implicit in [10, 11].
We then formalize the prime-order A1-subgroup Diffie-Hellman assumption, de-

noted by DDHG2

A1
. This is analogous to the subgroup Diffie-Hellman assumption in

the composite-order group DDHHNp1 which ensures that {hrjw1 , h
rj
1 }j∈[Q] ≈c {h

rjw
1 ·

h
uj
1 , h

rj
1 }j∈[Q] given g1, g2, g3, h1, h2, h3 for Q = poly(λ). One can permute the

indices for A1,A2,A3.

Lemma 8 (MDDH`1
`W ,Q

⇒ DDHG2

A1
). Fix Q = poly(λ) with Q > `W ≥ 1. Under the

MDDH`1`W ,Q assumption in G2, the following advantage function is negligible in λ

Adv
DDHG2

A1

A (λ) :=
∣∣Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]

∣∣
where

D := ( A1,A2,A3,A
‖
1,A

‖
2,A

‖
3; A

>
2 W,A>3 W ),

T0 := ([WD]2, [D]2), T1 := ([WD+R(1)]2, [D]2),

and W←R Z`×`Wp , D←R Z`W×Qp , R(1) ←R spanQ(A
‖
1).

6 KP-ABE for Monotone Span Programs in Prime-Order Groups

In this section, we present our adaptively secure, unbounded KP-ABE for monotone
span programs programs based on the k-Lin assumption in prime-order groups.

6.1 Construction

Setup(1λ, 1n): On input (1λ, 1n), sample A1 ←R Z(2k+1)×k
p ,B←R Z(k+1)×k

p and

W,W0,W1 ←R Z(2k+1)×(k+1)
p , k←R Z2k+1

p

and output the master public and secret key pair

mpk :=
(
[A>1 ,A

>
1 W,A>1 W0,A

>
1 W1]1, e([A

>
1 ]1, [k]2)

)
msk := ( k, B, W, W0, W1 ) .

25



Enc(mpk,x,m): On input an attribute vector x := (x1, . . . , xn) ∈ {0, 1}n and m ∈
GT , pick c, cj ←R span(A1) for all j ∈ [n] and output

ctx :=


C0 := [c>]1,

{ C1,j := [c>W + c>j (W0 + j ·W1)]1, C2,j := [c>j ]1 }j:xj=1,

C := e([c>]1, [k]2) ·m


∈ G2k+1

1 × (Gk+1
1 ×G2k+1

1 )n ×GT .

KeyGen(mpk,msk,M): On input a monotone span program M ∈ Zn×`′p , pick K′ ←R

Z(2k+1)×(`′−1)
p , dj ←R span(B) for all j ∈ [n], and output

skM :=


K0,j := [(k‖K′)M>j +Wdj ]2, K1,j := [dj ]2,

K2,j := [(W0 + j ·W1)dj ]2


j∈[n]


∈ (G2k+1

2 ×Gk+1
2 ×G2k+1

2 )n.

Dec(mpk, skM, ctx): If x satisfies M, compute ω1, . . . , ωn ∈ Zp such that∑
j:xj=1 ωjMj = 1.

Then, compute

K ←
∏
j:xj=1

(
e(C0,K0,j) · e(C1,j ,K1,j)

−1 · e(C2,j ,K2,j)
)ωj

,

and recover the message as m← C/K ∈ GT .

The proof of correctness is direct and we omit it here.

6.2 Entropy expansion lemma in prime-order groups

With A1,A2,A3,A
‖
1,A

‖
2,A

‖
3 defined as in Section 5.2, our prime-order entropy

expansion lemma is stated as follows. The proof is analogous to that for composite-
order entropy expansion lemma (Lemma 2) shown in Section 3.2.

Lemma 9 (prime-order entropy expansion lemma). Suppose `1, `3, `W ≥ k. Then,
under the MDDHk assumption, we have

aux : [A>1 ]1, [A>1 W]1, [A>1 W0]1, [A>1 W1]1

ct : [c>]1,
{
[c>W + c>j (W0 + j ·W1)]1, [c>j ]1

}
j∈[n]

sk :
{
[WDj ]2, [Dj ]2, [(W0 + j ·W1)Dj ]2

}
j∈[n]



≈c


aux : [A>1 ]1, [A>1 W]1, [A>1 W0]1, [A>1 W1]1

ct : [ c
>
]1,
{
[ c
>
(W + V

(2)
j ) + cj

>
(W0 + j ·W1 + U

(2)
j )]1, [ cj

>
]1
}
j∈[n]

sk :
{
[(W + V

(2)
j )Dj ]2, [Dj ]2, [(W0 + j ·W1 + U

(2)
j )Dj ]2

}
j∈[n]


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where W,W0,W1 ←R Z`×`Wp ,V
(2)
j ,U

(2)
j ←R span`W (A

‖
2),Dj ←R Z`W×`Wp , and

c, cj ←R span(A1) in the left distribution while c, cj ←R span(A1,A2) in the right
distribution. Concretely, the distinguishing advantage AdvEXPLEM

A (λ) is at most

Adv
SDG1

A1 7→A1,A2

B (λ) + Adv
DDHG2

A2

B0
(λ) + n ·

(
Adv

SDG1
A1 7→A1,A3

B1
(λ) + Adv

DDHG2
A3

B2
(λ)

+ Adv
SDG1

A3 7→A3,A2

B4
(λ) + Adv

DDHG2
A3

B6
(λ) + Adv

SDG1
A1 7→A1,A3

B7
(λ)
)
+ Adv

DDHG2
A2

B8
(λ)

where Time(B), Time(B0), Time(B1), Time(B2), Time(B4), Time(B6), Time(B7),
Time(B8) ≈ Time(A).

Remark 1 (Differences from overview in Section 1.3). We stated our prime-order
expansion lemma for general `1, `2, `3; for our KP-ABE, it suffices to set (`1, `2, `3) =
(k, 1, k). Compared to the informal statement (8) in Section 1.3, we use A2 ∈ Z2k+1

p

instead of A2 ∈ Z(2k+1)×k
p , and we introduced extra A2-components corresponding

to A>2 W,A>2 (W0 + j ·W1) in ct on the RHS. We have Dj in place of Brj in the
above statement, though we will introduce B later on in Lemma 10. We also picked
Dj to be square matrices to enable random self-reducibility of the sk-terms. Finally,
V

(2)
j ,U

(2)
j correspond to Vj ,Uj in the informal statement, and in particular, we have

A>1 V
(2)
j = A>1 U

(2)
j = 0.

6.3 Proof of Security

We prove the following theorem:

Theorem 2. Under the MDDHk assumption in prime-order groups (cf. Section 5.1),
the unbounded KP-ABE scheme for monotone span programs described in this Section
(cf. Section 6.1) is adaptively secure (cf. Section 2.2).

Bilinear entropy expansion lemma, revisited With the additional basis B ∈
Z(k+1)×k
p , we need a variant of the entropy expansion lemma in Lemma 9 with

(`1, `2, `3, `W ) = (k, 1, k, k + 1) where the columns of Dj are drawn from span(B)
instead of Zk+1

p (see Lemma 10).

Lemma 10 (prime-order entropy expansion lemma, revisited). Pick (A1,a2,A3)←R

Z(2k+1)×(k+1)
p × Z2k+1

p × Z(2k+1)×(k+1)
p and define its dual (A

‖
1,a
‖
2,A

‖
3) as in

Section 5.2. With B←R Z(k+1)×k
p , we have

aux : [A>1 ]1, [A>1 W]1, [A>1 W0]1, [A>1 W1]1

ct : [c>]1,
{
[c>W + c>j (W0 + j ·W1)]1, [c>j ]1

}
j∈[n]

sk :
{
[WDj ]2, [Dj ]2, [(W0 + j ·W1)Dj ]2

}
j∈[n]



≈c


aux : [A>1 ]1, [A>1 W]1, [A>1 W0]1, [A>1 W1]1

ct : [ c
>
]1,
{
[ c
>
(W + V

(2)
j ) + cj

>
(W0 + j ·W1 + U

(2)
j )]1, [ cj

>
]1
}
j∈[n]

sk :
{
[(W + V

(2)
j )Dj ]2, [Dj ]2, [(W0 + j ·W1 + U

(2)
j )Dj ]2

}
j∈[n]


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where W,W0,W1 ←R Z(2k+1)×(k+1)
p , V

(2)
j ,U

(2)
j ←R spank+1(a

‖
2), Dj ←R spank+1(B),

and c, cj ←R span(A1) in the left distribution while c, cj ←R span(A1,a2) in the right
distribution. We let AdvEXPLEMREV

A (λ) denote the distinguishing advantage.

We claim that the lemma follows from the basic entropy expansion lemma
(Lemma 9) and the MDDHk assumption, which tells us that

{[Dj ←R Z(k+1)×(k+1)
p ]2}j∈[n] ≈c {[Dj ←R spank+1(B)]2}j∈[n].

Concretely, for all A, we can construct B0 and B1 with Time(B0),Time(B1) ≈
Time(A) such that

AdvEXPLEMREV
A (λ) ≤ AdvEXPLEM

B0
(λ) + 2 · Adv

MDDHn(k+1)
k,k+1

B1
(λ).

The proof is straight-forward by demonstrating that the left (resp. right) distributions in
Lemma 9 and Lemma 10 are indistinguishable under the MDDHk assumption and then
applying Lemma 9. In the reduction, we sample W,W0,W1 ←R Z(2k+1)×(k+1)

p (and
V

(2)
j ,U

(2)
j ←R spank+1(a

‖
2) for the right distributions) and simulate aux, ct honestly.

Main technical lemma. We prove the following technical lemma. As with the
composite-order scheme in Section 4, we first apply the new entropy expansion lemma
in Lemma 10 and obtain a copy of the CGW KP-ABE (variant-thereof) in the a2-
subspace. We may then carry out the classic dual system methodology used for
establishing adaptive security of the CGW KP-ABE.

Lemma 11. For any adversary A that makes at most Q key queries against the
unbounded KP-ABE scheme, there exist adversaries B0,B1,B2 such that:

AdvABE
A (λ) ≤ AdvEXPLEMREV

B0
(λ)+Q·AdvMDDHnk,k+1

B1
(λ)+Q·AdvMDDHnk,k+1

B2
(λ)+O(1/p).

where Time(B0),Time(B1),Time(B2) ≈ Time(A). In particular, we achieve security
loss O(n+Q) based on the MDDHk assumption.

The proof follows the same game sequence as shown in Section 4.2 except that
the adversary is given an E-normal challenge ciphertext instead of a SF one in Gamei,
Gamei,1, Gamei,2, Gamei,3 (in fact, we do not need to define SF ciphertexts) and the
auxiliary distributions are defined as follows.

Auxiliary distributions. We define various forms of ciphertext (of message m under
attribute vector x):

– Normal: Generated by Enc; in particular, c, cj ←R span(A1).
– E-normal: Same as a normal ciphertext except that c, cj ←R span(A1,a2) and we

use the substitution:

W 7→W +V
(2)
j in j’th component

and W0 + j ·W1 7→W0 + j ·W1 +U
(2)
j (11)

where U
(2)
j ,V

(2)
j ←R spank+1(a

‖
2).
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Then we pick α←R Zp and define various forms of key (for span program M):

– Normal: Generated by KeyGen.
– E-normal: Same as a normal key except that we use the same substitution as in (11).
– P-normal: Sample dj ←R Zk+1

p in an E-normal key.
– P-SF: Replace k with k+ αa

‖
2 in a P-normal key.

– SF: Sample dj ←R span(B) in a P-SF key.

Acknowledgments. We greatly thank Katsuyuki Takashima for insightful and con-
structive feedback. We also thank all anonymous reviewers for their helpful comments.

References

[1] S. Agrawal and M. Chase. FAME: Fast attribute-based message encryption. In ACM CCS,
2017.

[2] N. Attrapadung. Dual system encryption via doubly selective security: Framework, fully
secure functional encryption for regular languages, and more. In P. Q. Nguyen and
E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 557–577. Springer,
Heidelberg, May 2014.

[3] N. Attrapadung. Dual system encryption framework in prime-order groups via
computational pair encodings. In J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016,
Part II, volume 10032 of LNCS, pages 591–623. Springer, Heidelberg, Dec. 2016.

[4] A. Beimel. Secure Schemes for Secret Sharing and Key Distribution. Ph.D., Technion -
Israel Institute of Technology, 1996.

[5] Z. Brakerski and V. Vaikuntanathan. Circuit-ABE from LWE: Unbounded attributes and
semi-adaptive security. In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part III, volume
9816 of LNCS, pages 363–384. Springer, Heidelberg, Aug. 2016.

[6] J. Chen, R. Gay, and H. Wee. Improved dual system ABE in prime-order groups via
predicate encodings. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part II,
volume 9057 of LNCS, pages 595–624. Springer, Heidelberg, Apr. 2015.

[7] J. Chen and H. Wee. Fully, (almost) tightly secure IBE and dual system groups. In R. Canetti
and J. A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 435–460.
Springer, Heidelberg, Aug. 2013.

[8] J. Chen and H. Wee. Semi-adaptive attribute-based encryption and improved delegation for
Boolean formula. In M. Abdalla and R. D. Prisco, editors, SCN 14, volume 8642 of LNCS,
pages 277–297. Springer, Heidelberg, Sept. 2014.
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