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Abstract. We present an unconditional transformation from any honest-
verifier statistical zero-knowledge (HVSZK) protocol to standard SZK
that preserves round complexity and efficiency of both the verifier and
the prover. This improves over currently known transformations, which
either rely on some computational assumptions or introduce significant
computational overhead. Our main conceptual contribution is the in-
troduction of instance-dependent SZK proofs for NP, which serve as a
building block in our transformation. Instance-dependent SZK for NP
can be constructed unconditionally based on instance-dependent com-
mitment schemes of Ong and Vadhan (TCC’08).

As an additional contribution, we give a simple constant-round SZK pro-
tocol for Statistical-Difference resembling the textbook HVSZK proof
of Sahai and Vadhan (J.ACM’03). This yields a conceptually simple
constant-round protocol for all of SZK.

1 Introduction

Zero-knowledge proof systems, introduced by Goldwasser, Micali, and Rack-
off [9], give any powerful prover the ability to convince a verifier about validity
of a statement without revealing any additional information other than its cor-
rectness. This power has been extensively exploited in constructions of various
cryptographic protocols. Besides the many applications, great effort was invested
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to improve our understanding of the limits of zero-knowledge proof systems with
respect to different complexity measures such as round complexity or efficiency
of prover and verifier.

Similarly to the requirement of soundness for interactive proof systems, there
are many natural relaxations of zero-knowledge. In this work we study statisti-
cal zero-knowledge (SZK) proofs. In particular, we revisit the problem of immu-
nizing any honest-verifier statistical zero-knowledge (HVSZK) protocol against
malicious verifiers, while preserving the efficiency of the original protocol. Such
transformation suggests a methodology for constructing zero-knowledge proto-
cols: first construct an efficient proof system for the desired problem where the
zero-knowledge property holds against honest verifiers, and then compile it to a
full-blown zero-knowledge proof against malicious verifiers while preserving the
efficiency.

Bellare, Micali, and Ostrovsky [3] initiated the study of general transfor-
mations from honest-verifier zero-knowledge protocols to protocols in which
the zero-knowledge property holds against arbitrary verifiers. Their work pre-
sented such a transformation under the assumption of intractability of solving
the discrete-logarithm problem. Later, Ostrovsky, Venkatesan, and Yung [16]
presented a transformation under a weaker assumption of existence of one-way
permutations. Okamoto [13] further weakened the assumption to existence one-
way functions. However, relying on intractability assumptions prevents the zero-
knowledge property to hold against computationally unbounded verifiers which
might be a desirable property in some contexts.

Until recently, unconditional transformations of honest-verifier zero-knowledge
to zero-knowledge against malicious verifiers were only known via public-coin
proof system. Under the restriction to constant-round public-coin protocols [4,
5] gave first such unconditional transformations. The restriction to constant-
round was lifted by [7] who gave a transformation achieving general statisti-
cal zero-knowledge starting from any public-coin honest-verifier statistical zero-
knowledge protocol. Combining the transformation of [7] with the private-coin
to public-coin transformation of [13, 8] yields a general transformation starting
from any honest-verifier protocol. However, it follows from Vadhan [18] that any
transformation from honest-verifier zero-knowledge to general cheating verifier
that goes through public-coin protocol must result in a significant blow-up in
the prover’s complexity. Moreover, the private-coin to public-coin transformation
of [13, 8] does not preserve the message complexity.

Ong and Vadhan [14] successfully avoided the standard private-coin to public-
coin transformation by relying on their novel construction of a relaxed notion of
commitments, called instance-dependent commitment. Instance-dependent com-
mitments allow the hiding and binding properties of a commitment scheme not to
hold simultaneously but rather to depend on a given instance. Specifically, they
obtained a general transformation from honest-verifier statistical zero-knowledge
to general statistical zero-knowledge by going via the transformation of honest-
verifier statistical zero-knowledge to two-round Arthur-Merlin protocol due to
Aiello and H̊astad [1]. In the resulting statistical zero-knowledge protocol the



verifier sends the first message of Arthur in the AM protocol and the prover
then gives a statistical zero-knowledge proof for the NP statement of the form:
there exists a message of Merlin that makes Arthur accept. The statistical zero-
knowledge proof for this NP statement can be performed in constant number of
rounds by instantiating known statistical zero-knowledge protocols for NP us-
ing the instance-dependent commitment scheme of Ong and Vadhan [14]. The
transformation in [14] was the first to result in a protocol with constant number
of rounds. However, the [14] transformation, as well as all of the above uncon-
ditional transformations, result in a significant blow-up in the complexity of the
prover compared to the original honest-verifier protocol.

2 Our Results

We present a general efficiency-preserving compiler from any honest-verifier
statistical zero-knowledge proof to a statistical zero-knowledge proof against
malicious verifiers. Our compiler preserves both the round complexity and the
prover’s complexity of the original honest-verifier protocol. Our transformation
yields a very simple constant-round statistical zero-knowledge protocol for every
problem in honest-verifier statistical zero-knowledge.

Theorem 1 (honest-verifier SZK to SZK compiler). For every promise
problem Π ∈ HVSZK, there exists a statistical zero-knowledge proof where the
prover’s complexity and the round complexity match the parameters of the best
honest-verifier statistical zero-knowledge proof for Π.

Applying Theorem 1 on the honest-verifier statistical zero-knowledge proto-
col of Sahai and Vadhan [17] for the HVSZK-complete problem Statistical-
Difference yields the following:

Theorem 2 (Constant-round proof for SZK). For every promise problem
Π ∈ HVSZK, there exists a constant-round statistical zero-knowledge proof.

Additionally, we show how to achieve Theorem 2 via simple direct construction
for Statistical-Difference. This is shown in Section 4.2.

Our transformation follows the classical approach of Goldreich, Micali and
Wigderson [6] to immunize protocols against malicious behavior. In the context
of zero-knowledge, an honest verifier follows the protocol specification using a
uniformly random tape. The standard way to preserve zero-knowledge in the
presence of a malicious verifier is to enforce the honest behavior. To this end,
we leverage the fact that the protocol specification is a deterministic function
of the verifier’s view; at each round the verifier’s view consists of its random
tape and the messages received up to this round. Thus, the verifier can give a
zero-knowledge proof for the NP statement attesting that its messages to the
prover are indeed computed according to the specifications of the protocol.

Note that the quality of the employed zero-knowledge proof for NP deter-
mines the quality of the resulting protocol. Specifically, if we use as a building
block a proof for NP that is zero-knowledge against polynomial-time verifiers



then the resulting protocol will be a zero-knowledge argument. This follows from
the fact that the roles of the prover and verifier are reversed in the intermediate
proof for NP and our compiler cannot guarantee soundness against unbounded
provers unless the simulator for the intermediate proofs can handle unbounded
verifiers. To solve this issue, we use a relaxation of statistical zero-knowledge for
NP that is sufficient for our compiler to result in a statistical zero-knowledge
proof.

Instance-dependent commitment schemes [2, 10], in which the properties of
the commitment protocol depend on a given instance of a language, proved
to be useful in constructions of zero-knowledge protocols by Itoh, Ohta, and
Shizuya [10]. Recently, Ong and Vadhan [14] constructed instance-dependent
(ID) commitments relative to all of SZK. The ID commitments of Ong and
Vadhan are statistically binding on Yes instances of the SZK problem and sta-
tistically hiding on No instances (and vice versa due to the fact that SZK is
closed under complement).

In this work, we define a relaxation of zero-knowledge proofs, called instance-
dependent zero-knowledge, and show that it suffices for the [6] approach when
constructing a compiler from honest-verifier statistical zero-knowledge to gen-
eral statistical zero-knowledge. Analogously to other instance-dependent prim-
itives, soundness and zero-knowledge do not necessary hold simultaneously in
instance-dependent zero-knowledge proofs but depending on the underlying in-
stance of the given promise problem. We believe that this primitive is of inde-
pendent interest and may find further applications beyond our compiler. We in-
stantiate the instance-dependent zero-knowledge by employing the construction
of instance-dependent commitments [14] in the constant-round zero-knowledge
proof of knowledge for NP of Lindell [11] (see Section 4.1 for details). The in-
stantiation and our compiler do not rely on any intractability assumption.

3 Preliminaries

Throughout the rest of the paper we use the following notation and definitions.
For n ∈ N, let [n] denote the set {1, . . . , n}. A function g : N→ R+ is negligible
if it tends to 0 faster than any inverse polynomial, i.e., for all c ∈ N there exists
kc ∈ N such that for every k > kc it holds that g(k) < k−c. We use neg(·) to
denote a negligible function if we do not need to specify its name.

A random variable X is a function from a finite set S to the nonnegative
reals with the property that

∑
s∈S X(s) = 1. We write x ← X to indicate

that x is selected according to X. We write Un to denote the random variable
that is uniform over {0, 1}n. We use the terms random variable and probability
distribution interchangeably

A probability ensemble is a set of random variables {Ax}x∈{0,1}∗ , where

Ax takes values in {0, 1}p(|x|) for some polynomial p. We call such an ensemble
samplable if there is a probabilistic polynomial-time algorithm such that for
every x, the output of the algorithm is distributed according to Ax.



3.1 Interactive Proof Systems

Definition 1 (Interactive proof system). A pair of interactive machines
〈P,V〉 is called an interactive proof system for a language L if V is a PPT ma-
chine and there exists a negligible function neg(·) such that ∀k ∈ N the following
holds:

Completeness: For all x ∈ L,

Pr[〈P,V〉(x, 1k) = 1] = 1 .

Soundness: For all x /∈ L, and every interactive machine P∗,

Pr[〈P∗,V〉(x, 1k) = 1] ≤ neg(k) .

Definition 2 (Proof of knowledge). Let L ∈ NP and let RL be its witness
relation. An interactive proof system 〈P, V 〉 for L is called a proof of knowledge
(PoK) if it satisfies the following property:

Knowledge Soundness: There exists a PPT machine E, called the extractor,
such that for every P∗, for every x ∈ L, auxiliary input z, random tape r,
and k ∈ N

Pr[EP∗(x, z, r; 1k) = w : (x,w) ∈ RL] ≥ Pr[〈P∗(z; r),V〉(x, 1k) = 1]−neg(k) .

If the soundness property (resp. the knowledge soundness) in 〈P,V〉 holds
only with respect to PPT provers, we call it an interactive argument system
(resp. an argument of knowledge).

3.2 Statistical Zero-Knowledge

We use the standard definition of statistical difference of two probability distri-
butions X,Y over universe U, i.e.,

SD (X,Y ) = max
S⊂U

|Pr[X ∈ S]− Pr[Y ∈ S]| .

Definition 3 (Promise problems). A promise problem is specified by two
disjoint sets of strings Π = (ΠY, ΠN), where ΠY is the set of YES instances
and ΠN is the set of NO instances. Any promise problem Π is associated with
the following algorithmic task: given an input string that is promised to lie in
ΠY ∪ΠN, decide whether it is in ΠY or in ΠN.

Recall that the zero-knowledge property is captured via an existence of a
simulator, an entity that simulates the view of the verifier in its interaction with
the prover.



Definition 4 (View of an interactive protocol). Let 〈A,B〉 be an inter-
active protocol. B’s view of 〈A,B〉 on common input x is the random variable
(A,B)(x) = (m1, . . . ,mt; r) consisting of all the messages m1, . . . ,mt exchanged
between A and B together with the string r containing all the random bits that
B has read during the interaction.4

Statistical zero knowledge requires that the statistical difference between the
simulator’s output distribution and the verifier’s view is so small that polynomi-
ally many repetitions of the protocol cannot make it noticeable. The definition
allows the simulator to occasionally fail and output fail, and it only measures
the quality of the simulation conditioned on non-failure.

Definition 5 (Honest-Verifier Statistical Zero-Knowledge). An interac-
tive proof system 〈P, V 〉 for a promise problem Π is said to be honest-verifier
statistical zero-knowledge if there exists a PPT S that fails with probability at
most 1/2 and a negligible function neg(·) such that ∀x ∈ ΠY, k ∈ N,

SD
(
S̃(x, 1k), (P,V)(x, 1k)

)
≤ neg(k)

where S̃ is the output distribution of S conditioned on not failing. HVSZK de-
notes the class of all promise problems admitting honest-verifier statistical zero-
knowledge proofs.

Zero knowledge against arbitrary verifier is captured by exhibiting a single,
universal simulator S that simulates an arbitrary verifier strategy V∗ by using
V∗ as a subroutine (denoted by SV

∗
). That is, the simulator does not depend

on or use the code of V∗, and instead only has black-box access to V∗. More
formally,

Definition 6 (Statistical Zero-Knowledge). An interactive proof system 〈P, V 〉
for a promise problem Π is said to be statistical zero-knowledge if there exists
a PPT S that fails with probability at most 1/2 such that for every nonuniform
PPT V∗ it holds that

SD
(
S̃V
∗
(x, 1k), (P,V∗)(x, 1k)

)
≤ neg(k) ∀x ∈ ΠY, k ∈ N ,

where S̃ is the output distribution of S conditioned on not failing, and neg(·) is
some negligible function that may depend on V∗. SZK denotes the class of all
promise problems admitting statistical zero-knowledge proofs.

3.3 Instance-Dependent Commitment Schemes

Definition 7 (Instance-dependent commitment schemes). An instance-
dependent commitment scheme is a family of commitment schemes {Comx}x∈{0,1}∗
with the following properties:

4 Note that equivalently we can define the view to be the messages from A to B and
B’s random bits. This is since the messages sent by B are a deterministic function
of the received messages and the B’s random bits.



1. Scheme Comx proceeds in two stages: a commit stage and a reveal stage.
In both stages, the sender and receiver receive instance x as common input,
and hence we denote the sender and receiver as Sx and Rx, respectively, and
write Comx = (Sx,Rx,Openx).

2. At the beginning of the commit stage, sender Sx receives a private input
b ∈ {0, 1}, which denotes the bit that Sx is supposed to commit to. At the
end of the commit stage, both sender Sx and receiver Rx output a commitment
c.

3. In the reveal stage, sender Sx sends a pair (b, d), where d is the decommitment
string for bit b. Receiver Rx outputs Openx(c, b, d) ∈ {accept, reject}.

4. The sender Sx and receiver Rx algorithms are computable in polynomial time
(in |x|), given x as auxiliary input.

5. For every x ∈ {0, 1}∗, Openx(c, b, d) = accept with probability 1 if both
sender Sx and receiver Rx follow their prescribed strategy.

Definition 8 (Statistical hiding). Instance-dependent commitment scheme
Comx = (Sx,Rx,Openx) is statistically hiding on I ⊆ {0, 1}∗ if for every R∗,
the ensembles {viewR∗(Sx(0),R∗)}x∈I and {viewR∗(Sx(1),R∗)}x∈I are statisti-
cally indistinguishable, where the random variable viewR∗(Sx(b),R∗) denotes the
view of R∗ in the commit stage interacting with Sx(b). For a promise problem
Π = (ΠY, ΠN), an instance-dependent commitment scheme Comx for Π is sta-
tistically hiding on the YES instances if Comx is statistically hiding on ΠY.

Definition 9 (Statistical binding). Instance-dependent commitment scheme
Comx = (Sx,Rx,Openx) is statistically binding on I ⊆ {0, 1}∗ if for every S∗,
there exists a negligible function neg such that for all x ∈ I, the malicious sender
S∗ wins in the following game with probability at most neg(|x|).

– S∗ interacts with Rx in the commit stage obtaining commitment c.

– Then S∗ outputs d0 and d1, and it wins if Openx(c, 0, d0) = Openx(c, 1, d1) =
accept.

For a promise problem Π = (ΠY, ΠN), an instance-dependent commitment
scheme Comx for Π is statistically binding on the NO instances if Comx is
statistically binding on ΠN.

Theorem 3 ([14]). Every problem Π = (ΠY, ΠN) ∈ HVSZK has an instance-
dependent commitment scheme that is statistically hiding on the YES instances
and statistically binding on the NO instances. Moreover, the instance-dependent
commitment scheme is public-coin and constant-round.

Since HVSZK is closed under complement, for everyΠ = (ΠY, ΠN) ∈ HVSZK,
we can also obtain instance dependent commitments in which the security prop-
erties are reversed (i.e., statistically binding on YES instances and statistically
hiding a on NO instances).



4 Constant-Round Statistical Zero-Knowledge Proofs

In this section, we define a relaxation of zero-knowledge called instance-dependent
statistical zero-knowledge proofs. We show that for the class NP it is possible
to obtain constant-round instance-dependent statistical zero-knowledge proofs
of knowledge without relying on computational assumptions. Next, using this
relaxation of zero-knowledge for NP, we construct a constant-round statistical
zero-knowledge proof for any promise problem in HVSZK.

4.1 Instance-Dependent Statistical Zero-knowledge Proofs

Instance-dependent statistical zero-knowledge proofs are a relaxation of the stan-
dard notion of statistical zero-knowledge proofs that allows the proof to depend
on a specific promise problem Π. Similarly to instance-dependent commitment
schemes [2, 10, 12], the prover and the verifier receive an instance x of the problem
Π as auxiliary input and a statement ψ to prove. The proof system is required
to be sound proof of knowledge when x ∈ ΠY and zero-knowledge when x ∈ ΠN.

Looking ahead, instance-dependent zero-knowledge proofs will be used as
a sub-protocol within some outer protocol. Note that there are two instances
involved: 1) an instance of the promise problem Π, for which the outer protocol
is constructed and 2) an instance of the language L for which the instance-
dependent proof system is used.

Definition 10 (Instance-dependent statistical zero-knowledge). An instance-
dependent statistical zero-knowledge proof of knowledge for language L with re-
spect to a promise problemΠ = (ΠY, ΠN) is a family of protocols {〈Px, Vx〉}x∈{0,1}∗
with the following properties:

– 〈Px, Vx〉 is complete on all instances of Π, i.e., for all x ∈ ΠY ∪ΠN.
– 〈Px, Vx〉 is statistical zero-knowledge on the NO instances, i.e., for all x ∈
ΠN.

– 〈Px, Vx〉 is a sound proof of knowledge on the YES instances, i.e., for all
x ∈ ΠY.

We show that the protocol of Lindell [11] instantiated with the instance-
dependent commitments of Ong and Vadhan [15] gives rise to a constant-round
instance-dependent statistical zero-knowledge proof of knowledge for NP.

Theorem 4. For every promise problem Π = (ΠY, ΠN) ∈ HVSZK and for every
language L ∈ NP, there exists a constant-round instance-dependent statistical
zero-knowledge proof of knowledge for L with respect to Π. Moreover, the zero-
knowledge property holds against unbounded verifiers.

Similarly to instance-dependent commitments, for all Π = (ΠY, ΠN) ∈
HVSZK, we can obtain instance-dependent statistical zero-knowledge with the
security properties reversed, i.e., with knowledge soundness on NO instances and
statistical zero-knowledge on YES instances.



Let x be an instance of Π and let Comsh
x and Comsb

x be instance-dependent commit-
ment schemes.
Input: a graph G = (V,E), with n = |V |, and security parameter 1k.
Prover’s auxiliary input: a directed Hamiltonian cycle C ⊆ E in G.
The protocol 〈Px,Vx〉 for proving G ∈ HC proceeds as follows:

1. Px sends n independent copies of the first message for the basic proof of Hamil-
tonicity. That is, for 1 ≤ i ≤ n, Px selects a random permutation πi over the
vertices V and interacts with Vx to commit (using Comsb

x ) to the entries of the
adjacency matrix of the resulting permuted graph. That is, Px commits to an
n-by-n matrix so that the entry (πi(`), πi(j)) contains a commitment to 1 if
(`, j) ∈ E, and it contains a commitment to 0 otherwise.
(a) Vx samples q1 ← {0, 1}n and interacts with Px in Comsh

x , so that Px learns
c1, a commitment to q1.

(b) Px samples q2 ← {0, 1}n and interacts with Vx in Comsb
x , so that Vx learns

c2, a commitment to q2.
(c) Vx opens the commitment c1 by sending q1 and a decommitment string d1.
(d) If Openshx (c1, q1, d1) = reject, then Px aborts and halts. Otherwise, Px opens

the commitment c2 by sending q2 and a decommitment string d2.
2. Px computes an n bit string q = q1 ⊕ q2 and sends the second message for the

basic proof of Hamiltonicity for each of the n copies, where Px uses the i-th bit
of q as the verifier’s query in the i-th copy. That is, for 1 ≤ i ≤ n do:

– If q(i) = 0, then send πi and open all the commitments in the adjacency
matrix of the i-th instance.

– If q(i) = 1, open only the commitments of entries (πi(`), πi(j)) for which
(`, j) ∈ C.

3. Vx computes q = q1 ⊕ q2. If either Opensbx (c2, q2, d2) = reject or the response of
the prover is not accepting in all n copies, based on the queries according to q,
then output reject. Otherwise, output accept.

Fig. 1. The instance-dependent statistical zero-knowledge proof of knowledge 〈Px,Vx〉
for NP-complete problem Hamiltonian Cycle with respect to a promise problem Π ∈
HVSZK. The protocol builds on the constant-round zero-knowledge proof of knowledge
of Lindell [11] which we instantiate with instance-dependent commitments relative to
an instance x of Π.

Proof (Proof of Theorem 4).
Let Π = (ΠY, ΠN) ∈ HVSZK be some promise problem and denote by HC

the Hamiltonian Cycle language. Let x be an instance of Π, let Comsb
x be an

instance-dependent commitment scheme that is statistically binding on ΠY and
statistically hiding on ΠN. Let Comsh

x be an instance-dependent commitment
scheme that is statistically binding on ΠN and statistically hiding on ΠY. The
protocol is formally presented in Figure 1. Since HC is NP-complete, we obtain
a proof system for any language in NP by a standard reduction.

Lindell [11] showed that if the verifier commits using a statistically hiding
scheme Comsh

x and the prover commits using a statistically binding scheme Comsb
x

then the protocol in Figure 1 is sound proof of knowledge for HC. Since Comsh
x

and Comsb
x satisfy this requirement on ΠY, we obtain that 〈Px,Vx〉 is sound



Input: instance x of Π ∈ HVSZK, a graph G = (V,E), with n = |V |, and security
parameter 1k. Given oracle access to verifier V∗, the simulator S works as follows:

1. S chooses a random string q ∈ {0, 1}n. Then, for the prover’s message in the i-th
execution, S interacts in Comsb

x , so that V∗ learns a commitment to a random
permutation of G if q(i) = 0, and to a simple n-cycle if q(i) = 1.

2. S honestly interacts with V∗ in Comsh
x , and learns the verifier’s commitment c1.

S chooses a random q2 and interacts with V∗ in Comsb
x , so that V∗ learns c2, a

commitment to q2.
3. S receives q1 and the decommitment string d1 from V∗. If Openshx (c1, q1, d1) =

reject, then S simulates Px aborting, outputs whatever V∗ outputs and halts.
Otherwise, S proceeds to the next step.

4. Rewinding phase:
(a) S rewinds V∗ back to the point before the interaction in Comsh

x . S interacts
honestly with V∗ to produce a commitment c2 for value q1 ⊕ q.

(b) S receives q′1 and d′1 from V∗ and proceeds as follows:
– If Openshx (c1, q

′
1, d
′
1) = reject then abort on behalf of Px, S outputs

whatever V∗ outputs and halts.
– If Openshx (c1, q

′
1, d
′
1) = accept but q′1 6= q1 then S outputs fail and

halts.
– Otherwise, S opens the commitment c2 and for each i ∈ [n], opens the

commitments either to the entire graph (for q(i) = 0) or the simple cycle
(for q(i) = 0).

5. S outputs whatever V∗ outputs.

Fig. 2. Simulator for the protocol in Figure 1.

proof of knowledge for HC with respect to all x ∈ ΠY. Therefore, it is only left
to show that 〈Px,Vx〉 is statistical zero-knowledge against unbounded verifiers
with respect to all x ∈ ΠN.

Note that when x ∈ ΠN, the commitment Comsh
x is statistically binding and

Comsb
x is statistically hiding. In Figure 2, we present a simulator that produces

a distribution of transcripts which is statistically close to the real distribution
of transcripts.

Lemma 5. For all x ∈ ΠN, every input graph G = (V,E), every security pa-
rameter k ∈ N, and any verifier V∗, it holds that

Pr[SV
∗
(x,G, 1k) = fail] ≤ neg(k) .

Proof. Given x ∈ ΠN, let V∗ be an arbitrary verifier. We get that

Pr[SV
∗
(x,G, 1k) = fail]

≤ Pr[∃c, q1, d1, q′1, d′1 : Openshx (c, q1, d1) = Openshx (c, q′1, d
′
1) = accept]

which is at most negligible in the security parameter since the commitment
scheme Comsh

x is statistically binding for any x ∈ ΠN. ut



Note that the simulator S rewinds V∗ such that the initially chosen string q is
the coin-flipping result. In this case, S can decommit appropriately and conclude
the proof. The statistical closeness of the distribution of transcripts produced by
the simulator and the real distribution of transcripts follows from the statistical
hiding of Comsb

x combined with the statistical binding of Comsh
x .

Due to statistical hiding of Comsb
x , the probability over q2 and r2 that V∗

decommits to c1 in the main thread (before rewinding) is basically equivalent
to the probability that V∗ decommits to c1 in the rewind. Thus, the only differ-
ence between the output distribution generated by S and the output distribution
generated in a real proof is that in the case that q(i) = 1 the unopened commit-
ments in the simulated transcript are all to 0, and not to the rest of the graph
apart from the cycle. However, due to the statistical hiding property of Comsb

x

on x ∈ ΠN, the distributions are statistically close. This completes the proof
of Theorem 4. ut

4.2 A Concrete Protocol for a SZK-Complete Problem

In this section, we show that HVSZK ⊆ SZK[c], where SZK[c] is the class of all
promise problems that admit constant-round statistical zero-knowledge poof.
Concretely, in Figure 3 we present a simple constant-round statistical zero-
knowledge protocol secure against any malicious verifier for a complete prob-
lem in HVSZK, called Statistical-Difference. The constant-round proto-
col for any problem in HVSZK would comprise of a reduction to Statistical-
Difference (which can be performed locally by both P and V) and then running
our protocol.

First, we recall the Statistical-Difference problem which was shown to
be HVSZK-complete by Sahai and Vadhan [17]. In this work we consider the
polarized form of Statistical-Difference, that can be obtained from the
basic definition in polynomial-time.

Definition 11 (Statistical-Difference). Given k ∈ N, the promise problem
Statistical-Difference is SD = (SDY ,SDN ), where

SDY = {(X0, X1) : SD (X0, X1) ≥ 1− 2−k} ,
SDN = {(X0, X1) : SD (X0, X1) ≤ 2−k} .

Above, X0, X1 are circuits encoding probability distributions.

Given X = (X0, X1), an instance of Statistical-Difference, our proto-
col builds on the standard honest-verifier statistical zero-knowledge proof for
Statistical-Difference of Sahai and Vadhan [17]. To force the verifier to
behave as in the original honest-verifier protocol, we use 1) a constant-round
instance-dependent commitment scheme ComX = (SX ,RX ,OpenX) that is sta-
tistically binding on SDY , and 2) a constant-round instance-dependent statisti-
cal zero-knowledge proof of knowledge 〈PX ,VX〉 for NP that is zero-knowledge
on SDN against any unbounded verifier. These building blocks are provided
by Theorem 3 and Theorem 4, respectively. The protocol is formally presented
in Figure 3.



Input: Given X = (X0, X1), a pair of circuits, and security parameter 1k. Let
ComX = (SX ,RX ,OpenX) be an instance-dependent commitment scheme that is
statistically binding on SDY and let 〈PX ,VX〉 be an instance dependent statistical
zero-knowledge proof of knowledge for NP with knowledge soundness on SDY . The
protocol SD = 〈PSD,VSD〉 for proving X ∈ SDY proceeds as follows:

1. Coin flipping phase:
(a) VSD samples r0 ← {0, 1}n, b0 ← {0, 1}.
(b) VSD and PSD interact in ComX , so that PSD learns c, a commitment to the

pair (r0, b0).
(c) PSD samples r1 ← {0, 1}n, b1 ← {0, 1} and sends them to VSD. Then, VSD

sets b = b0 ⊕ b1 and r = r0 ⊕ r1.
2. Honest SD-protocol execution phase:

(a) VSD sends y = Xb(r) to PSD.
(b) Let Lsamp = {(c, r′, b′, y)|∃r, b, d : OpenX(c, (r, b), d) = accept ∧ y =

Xb′⊕b(r
′⊕ r)}. VSD uses 〈PX ,VX〉 to prove to PSD that (c, r1, b1, y) ∈ Lsamp.

Denote by θ the transcript of this proof.
(c) If VX rejects θ then PSD aborts, otherwise, it replies with b′′ ∈ {0, 1} such

that
Pr

r←Un

[Xb′′(r) = y] ≥ Pr
r←Un

[X1−b′′(r) = y] .

(d) If b = b′′ then VSD outputs accept, otherwise outputs reject.

Fig. 3. The statistical zero-knowledge proof 〈PSD,VSD〉 for Statistical-Difference.
Our protocol builds on the honest-verifier statistical zero-knowledge proof of Sahai and
Vadhan [17] with the following changes: 1) The verifier’s randomness is picked mutually
by the verifier and the prover (while maintaining the secrecy to the prover). 2) The
verifier is required to provide a proof that it used the mutually chosen randomness.

Theorem 6. The protocol presented in Figure 3 is constant-round statistical
zero-knowledge proof for Statistical-Difference.

By completeness of Statistical-Difference for HVSZK, we obtain a constant-
round protocol secure against any verifier for every problem in the class.

Corollary 7. There exists a constant-round statistical zero-knowledge proof for
every Π ∈ HVSZK, where the zero-knowledge holds against any malicious veri-
fier.

Proof of Theorem 6. Here we show that the protocol in Figure 3 is complete,
sound and achieves statistical zero-knowledge.

Completeness. Due to the perfect completeness of the 〈PX ,VX〉 proof , it follows
that the completeness error of our protocol is the same as the completeness error
of the standard protocol for SD of [17], i.e., at most 2−k.

Soundness. We present here a proof sketch. The full proof can be found in Section
5, where we present the general transformation. Given X = (X0, X1) ∈ SDN , a
NO instance of Statistical-Difference, let P∗ be an arbitrary prover. Let



Input: Given X = (X0, X1) and security parameter 1k. Let E be the extractor of
〈PX ,VX〉 scheme. The simulator SSD with oracle access to V∗ proceeds as follows:

1. Execute honestly the protocol up to the last round with V∗(x) in order to learn
a commitment c, and a sample y. Let b1 and r1 be the values given to V∗(x) in
the simulated coin-flipping phase. Participate as the honest VX in the proof of
knowledge for the committed value in c and correctness of y. Denote this proof
of knowledge θ.

2. If θ is not accepting then abort. Otherwise, use the knowledge extractor EV∗ to
extract the values r∗0 , b

∗
0, d
∗. If the extractor fails output fail.

3. Send b = b∗0 ⊕ b1 to V∗.
4. Output the simulated transcript and r∗0 , b

∗
0, d
∗ as the randomness of V∗.

Fig. 4. Simulator SV∗
SD for protocol 〈PSD,VSD〉. The simulator honestly participates in an

execution with V∗ but instead of sending the last message, it extracts the randomness
of the verifier and uses it to generate the last message.

ComX and 〈PX ,VX〉 be as defined above. Finally, let SimX be the statistical
zero-knowledge simulator for 〈PX ,VX〉.

We show that the soundness error in the above protocol is at most negligi-
bly larger than the soundness error in the original honest-verifier protocol. This
follows from the statistical zero-knowledge property against unbounded verifiers
of 〈PX ,VX〉, and the statistical hiding property of ComX . Specifically, the dis-
tribution of transcripts 〈P∗,VSD〉(X) is statistically close to the distribution of
transcripts where the proof in Step 2b is performed using SimX (this can be
done since V is honest, and proves a true statement). Note that when Step 2b
is performed using SimX , the acceptance probability of V is equivalent to its
acceptance probability in a protocol where the proof of Step 2b is not performed
at all. We can use the statistical hiding property of ComX to argue that the
distribution of transcripts of the protocol without Step 2b is in turn statisti-
cally close to a distribution of transcripts where the verifier commits to a fixed
value (r∗, b∗) and uses uniformly random r0, b0 to compute y = Xb0⊕b1(r0⊕ r1).
However, this corresponds exactly to the original honest-verifier protocol of Sa-
hai and Vadhan [17]. Therefore, the soundness error can be at most negligibly
larger.

Statistical Zero-Knowledge. For any V∗, the simulator SSD proceeds as described
in Figure 4.

Lemma 8. For all PPT V∗, X ∈ SDY , and k ∈ N, it holds that

Pr[SV
∗

SD(X, 1k) = fail] ≤ 1/2 .

Proof. Let V∗ be some PPT verifier, let X ∈ SDY be some input, and let k be
the security parameter. Note that SV

∗

SD fails only when V∗ provides an accepting
proof of knowledge of the value committed in c while the extractor fails to extract



this value. Therefore,

Pr[SV
∗

SD(X, 1k) = fail]

≤ Pr[VX(c, r1, b1, y, θ) = accept ∧ EV∗

X
(c, r1, b1, y, θ) = fail] ,

where (c, r1, b1, y, θ) is the partial transcript produced by SV
∗

SD(X, 1k) in Step 1
of the simulation. Since SV

∗

SD behaves in Step 1 exactly as the honest prover PSD,
we can switch to (c, r1, b1, y, θ) ← 〈PSD,V

∗〉(X, 1k), and obtain the following
series of inequalities.

≤ Pr[VX(c, r1, b1, y, θ) = accept] · (1− Pr[EV∗

X
(c, r1, b1, y, θ) 6= fail])

≤ Pr[VX(c, r1, b1, y, θ) = accept] · (1− Pr[VX(c, r1, b1, y, θ) = accept] + neg(k))

< 1/2 ,

where (c, r1, b1, y, θ)← 〈PSD,V
∗〉(X, 1k). ut

To complete the proof, we show that conditioned on not outputting fail,
the output distribution of SV

∗

SD is statistically close to the view of V∗. Due to the
statistical binding of ComX , the extracted randomness is distributed statistically
close to the randomness of V∗. Moreover, the simulated transcript in Step 1 is
distributed identically to 〈PSD,V

∗〉. Given this observation, it is sufficient to
bound the probability that the last message of the simulated transcript differs
from the last message of the real transcript (the real and the simulated transcript
distributions are otherwise identical).

Lemma 9. For all PPT V∗, X ∈ SDY , and k ∈ N, it holds that

Pr[S̃V
∗

SD(X, c, r1, b1, y, θ) 6= b′′] ≤ neg(k) ,

where (c, r1, b1, y, θ, b
′′) ← 〈PSD,V

∗〉(X, 1k), and S̃V
∗

SD(X, c, r1, b1, y, θ) denotes
simulator’s message in Step 3 on input X and transcript prefix (c, r1, b1, y, θ),
conditioned on not outputting fail.

Proof. Let V∗ be some PPT verifier, let X ∈ SDY be some input, and let k be
the security parameter. The claim follows from the fact that the transcripts may
differ if either the statistical binding does not hold or the verifier samples a value
from one of the distributions such that the probability of this value in the other
distribution is higher (this event happens with 2−k probability). That is,

Pr[S̃V
∗

SD(X, c, r1, b1, y, θ) 6= b′′]

≤ Pr[c is not binding ] + Pr[∃r∗0 , d∗ : OpenX(c, r∗0 , 1− b′′, d∗) = accept]

≤ neg(k) ,

where (c, r1, b1, y, θ, b
′′)← 〈PSD,V

∗〉(X, 1k). ut
Lemma 9 completes the proof of Theorem 6.



5 Efficient Transformation from Honest-Verifier SZK to
SZK

The general transformation takes any honest-verifier statistical zero-knowledge
protocol 〈P,V〉 for promise problem Π = (ΠY, ΠN) ∈ HVSZK, an instance
x ∈ Π, a constant-round instance-dependent commitment scheme Comx that is
statistically binding on ΠY instances, and a constant-round instance-dependent
statistical zero-knowledge proof of knowledge protocol 〈Px,Vx〉 for NP (from
Theorem 4), and constructs a statistical zero-knowledge proof for Π.

Theorem 10 (Theorem 1 restated). For every promise problem Π ∈ HVSZK,
there exists a statistical zero-knowledge proof where the prover’s complexity and
the round complexity match the parameters of the best hones-verifier statistical
zero-knowledge proof for Π.

The transformation is given in Figure 5. We establish the proof of Theorem 10
by arguing its correctness, soundness, and zero-knowledge property below.

Correctness. Correctness of the compiled protocol 〈P′,V′〉 follows directly from
correctness of the building blocks, i.e., the instance-dependent statistical zero-
knowledge proof of knowledge for NP 〈Px,Vx〉 and the honest-verifier statistical
zero-knowledge proof 〈P,V〉.

Soundness. Soundness of the compiled protocol 〈P′,V′〉 follows from the sound-
ness of the basic honest-verifier procol 〈P,V〉 combined with the instance-dependent
zero-knowledge proofs for NP being statistical zero-knowledge against unbounded
verifiers on ΠN. Moreover, the statistical hiding property of Comx on ΠN allows
V′ to use random coins distributed almost identically as the randomness of V
(the distribution of randomness might be influenced by a cheating prover only
if the hiding property does not hold).

Proposition 11 (Soundness of 〈P′,V′〉). Let Π = (ΠY, ΠN) ∈ HVSZK, and
let 〈P,V〉 be honest-verifier statistical zero-knowledge protocol for Π. For all
x ∈ ΠN, k ∈ N, and P∗, it holds that

Pr[〈P∗, V ′〉(x, 1k) = 1] = η〈P,V〉 + neg(k) ,

where η〈P,V〉 denotes the soundness error of 〈P,V〉.

Proof. The proof of soundness follows from a series of lemmas. First, we define
protocol 〈Pr,Vr〉 to be the same as the compiled protocol 〈P′,V′〉 but without
the proofs of correctness provided by V′. We use 〈Pr,Vr〉 to argue that the-coin
flipping phase alone increases the soundness error by at most a negligible amount
over η〈P,V〉.

Lemma 12. For all x ∈ ΠN, k ∈ N, and P∗r, it holds that

Pr[〈P∗r ,Vr〉(x, 1k) = 1] ≤ η〈P,V〉 + neg(k) .



Input: Given x ∈ Π and security parameter 1k. Let Comx = (Sx,Rx,Openx) be a
constant-round instance-dependent commitment scheme that is statistically binding
on ΠY, and let 〈Px,Vx〉 be a constant-round instance-dependent statistical zero-
knowledge proof of knowledge for NP with knowledge soundness on ΠY. The protocol
〈P′,V′〉 for proving x ∈ ΠY proceeds as follows:

1. Coin-flipping phase:
(a) V′ samples rV ← {0, 1}tV , where tV is a bound on the running time of V.
(b) V′ and P′ interact in Comx, so that P′ learns c, a commitment to rV.
(c) V′ and P′ run 〈Px,Vx〉, where V′ proves that it knows an opening for c.

Denote the transcript this proof θc. P
′ aborts if θc is not accepting.

(d) P′ samples rP ← {0, 1}tV and sends rP to V′ that sets r = rV ⊕ rP.
2. Honest-verifier protocol execution phase: V′ and P′ engage in an execution

of the honest-verifier protocol 〈P,V〉. For each round 1 ≤ i ≤ t of 〈P,V〉 they
proceed as follows:
(a) denote by τi−1 = (α1, β1, . . . , αi−1, βi−1) the transcript of 〈P,V〉 up to round

i− 1 (included).
(b) V′ computes the i-th message αi = Vi(x, τi−1; r) of V and sends αi to P′.
(c) Let Li = {(c, r, τ, α)|∃r̃, d : Openx(c, r̃, d) = accept∧α = Vi(x, τ ; r̃⊕r})}. V′

proves to P′ that (c, rP, τi−1, αi) ∈ Li using 〈Px,Vx〉. Denote the transcript
of this proof θi. P

′ aborts if θi is not accepting.
(d) P′ computes the i-th message βi ← Pi(x, τi−1, αi) of P and sends βi to V′.

3. If Vt+1(x, τt; r) = accept then V′ outputs accept, and otherwise reject.

Fig. 5. Compiled protocol 〈P′,V′〉. A compiler from honest-verifier protocol 〈P,V〉 for
promise problem Π to protocol 〈P′,V′〉 that is zero-knowledge against general verifiers.
For a t-round protocol 〈P,V〉 we denote by Vi the next-message function of V in round i
computed on the input, the (i−1)-rounds transcript, and the random tape of V (where
Vt+1 refers to the output of V in the protocol). The next-message function is similarly
defined for P.

Proof. We consider an intermediate protocol, denoted by 〈P1,V1〉. The protocol
〈P1,V1〉 is the same as 〈Pr,Vr〉 with the difference that V1 commits to 0tV and
uses a uniformly random string independent of rP as its randomness.

First, we show that for all x ∈ ΠN, k ∈ N, and P∗1, it holds that

Pr[〈P∗1,V1〉(x, 1k) = 1] ≤ η〈P,V〉 .

This is shown by constructing a prover P∗ that wins the security game for 〈P,V〉
with the same probability as P∗1. The constructed P∗ simulates for P∗1 the coin-
flipping phase using a commitment to all-zero string, receives rP and answers all
messages from V with messages from P∗1. It follows from construction of P∗1 that
Pr[〈P∗1,V1〉(x, 1k) = 1] = Pr[〈P∗,V〉(x, 1k) = 1] ≤ η〈P,V〉.

Next, we show that for all x ∈ ΠN, k ∈ N, and P∗r , it holds that

Pr[〈P∗r ,Vr〉(x, 1k) = 1] ≤ η〈P,V〉 + neg(k) .

The bound follows from the statistical hiding property of Comx on NO in-
stances, i.e., on ΠN. Specifically, the transcripts of the coin-flipping phase in



〈P∗r ,Vr〉 and in 〈P∗r ,V1〉 are statistically indistinguishable. This completes the
proof of Lemma 12. ut

We now define a sequence of hybrid protocols that gradually move between
the interaction in 〈Pr,Vr〉 (where the verifier does not provide any proof of
correctness for its messages) and the interaction in 〈P′,V′〉 (where every message
of V′ is followed by a proof of correctness). Let t be the number of rounds in
〈P,V〉, we define t+ 2 protocols as follows:

Protocol 〈P′,V′0〉 is defined similarly to 〈P′,V′〉 , where V′0 behaves as V′, except
that V′0 provides simulated proofs using the simulator for 〈Px,Vx〉.

Protocol 〈P′,V′i〉 is defined for 1 ≤ i ≤ t+ 1. The protocol 〈P′,V′i〉 is the same
as 〈P′,V′i−1〉, except that V′i performs the i-th proof using the actual witness
instead of the simulator.

Note that 〈P′,V′t+1〉 is equivalent to 〈P′,V′〉. Moreover, the soundness er-
ror of 〈P′,V′0〉 is equal to the soundness error of 〈Pr,Vr〉. This can be seen
by converting any cheating prover P′∗ for 〈P′,V′0〉 to a cheating prover P∗r for
〈Pr,Vr〉. Concretely, on input x, the constructed prover P∗r internally runs P′∗

and provides it with simulated proof after each message from Vr. It follows that
Pr[〈P′∗,V′0〉(x, 1k) = 1] = Pr[〈P∗r ,Vr〉(x, 1k) = 1] ≤ η〈P,V〉 + neg(k).

Lemma 13. For all x ∈ ΠN, for every k ∈ N, any prover P′∗, and 1 ≤ i ≤ t+1,
it holds that

SD
(
〈P′∗,V′i〉(x, 1k), 〈P′∗,V′i−1〉(x, 1k)

)
≤ neg(k) .

Proof. The only difference in two consecutive hybrid protocols 〈P′∗,V′i−1〉 and
〈P′∗,V′i〉 is the simulated vs. the real proof in the i-th round when executing
〈P′,V′〉. Assume towards a contradiction that there exists x ∈ ΠN, a prover P′∗,
and 1 ≤ j ≤ t+ 1 such that for some polynomial p it holds that

SD
(
〈P′∗,V′j〉(x, 1k), 〈P′∗,V′j−1〉(x, 1k)

)
≥ p(k) .

We show that there exists an unbounded verifier V∗x, and a partial transcript
(c, r, τ, α) up to round j such that (c, r, τ, α) ∈ Lj and

SD
(

(Px,V
∗
x)(c, r, τ, α; 1k),SV

∗
x(c, r, τ, α; 1k)

)
≥ p(k) .

We define V∗x and the partial transcript as follows. To obtain the partial tran-
script, run P′∗ and simulate V′ honestly during the first j − 1 rounds of 〈P′,V′〉
and compute the j-th round message α. Let (c, r, τ, α) be the partial transcript
so far. We define V∗x to be identical to the behavior of P′∗ in the proof of the
j-th round. Note that we can complete the partial transcript to a full transcript
of 〈P′,V′〉 by continuing with the internal run of P′∗ and providing it with sim-
ulated proofs for the remaining rounds j+ 1, . . . , t+ 1, as if they were generated
by the honest V′. Thus, if the proof provided at round j is simulated then the



complete transcript is drawn from 〈P′∗,V′j−1〉(x, 1k) and otherwise it is drawn

from 〈P′∗,V′j〉(x, 1k). Therefore, we obtain that

SD
(

(Px,V
∗
x)(c, r, τ, α; 1k),SV

∗
x(c, r, τ, α; 1k)

)
≥ SD

(
〈P′∗,V′j〉(x, 1k), 〈P′∗,V′j−1〉(x, 1k)

)
.

Hence,

SD
(

(Px,V
∗
x)(c, r, τ, α; 1k),SV

∗
x(c, r, τ, α; 1k)

)
≥ p(k) ,

contradicting the statistical zero-knowledge property (against unbounded veri-
fiers) of 〈Px,Vx〉. ut

Given that we have polynomially many hybrids and they are all statistically
close, Lemma 13 completes the proof of soundness. ut

Statistical zero-knowledge. At a high level, the zero-knowledge property of the
compiled protocol 〈P′,V′〉 follows from the zero-knowledge property of the un-
derlying honest-verifier protocol 〈P,V〉. That is, the proofs of correctness pro-
vided at each round by the verifier force the produced transcript to follow the
same distribution as in the execution with an honest verifier, which ensures that
the resulting protocol also achieves zero-knowledge. We formally show that the
simulator given in Figure 6 satisfies the statistical zero-knowledge requirement.

Proposition 14. For all PPT V∗, x ∈ ΠY, and k ∈ N, there exists a negligible
function neg(·) such that

SD
(
S̃V
∗
(x, 1k), (P′,V∗)(x, 1k)

)
≤ neg(k) ,

where S̃V
∗

is the output distribution of SV
∗

conditioned on not outputting fail.

We prove Proposition 14 via a series of lemmas about the capability of any
malicious verifier to deviate from the honest behavior, both in the real execution
and in the simulated execution. We start by showing that in Step 2 of 〈P′,V′〉
any verifier must produce a transcript distribution that is statistically close to
the transcript distribution of the honest verifier.

Lemma 15. For all PPT V∗, x ∈ ΠY, and k ∈ N, there exists a negligible
function neg(·) such that

Pr[〈P,V(r)〉(x) 6= τt ∧ transcript 6= ⊥] ≤ neg(k) ,

where (transcript, r) ← (P′,V∗)(x, 1k), and transcript 6= ⊥ denotes that all
the intermediate proofs of correctness in the transcript are accepting, τi is the
projection of transcript on the messages in 〈P,V〉 up to round i (including),
and 〈P,V(r)〉(x) denotes the transcript produced in the honest execution of 〈P,V〉
on input x with verifier’s randomness r.



Input: Given x ∈ ΠY and security parameter 1k. Let E be the extractor for 〈Px,Vx〉
and let SV be the honest-verifier simulator for 〈P,V〉. The simulator S with oracle
access to V∗, denoted by SV∗ , proceeds as follows:

1. Sample (view, r)← SV(x, 1k), where view = (β1, . . . βt) and βi is the i-th message
of P in the simulated execution of 〈P,V〉, and r is the randomness of V.

2. Proceed with V∗(x) in the coin-flipping phase of 〈P′,V′〉 in order to learn a com-
mitment c. Participate as honest Vx in the proof of knowledge for the committed
value in c. Denote the transcript of this proof of knowledge θc. If θc is accepting
then use the knowledge extractor EVx to extract the committed value rV. If the
extractor fails output fail.

3. Send rP = r ⊕ rV to V∗, and proceed to the honest-verifier protocol execution
phase. To simulate each round 1 ≤ i ≤ t of 〈P,V〉 in 〈P′,V′〉 proceed as follows:
(a) Denote by τi−1 = (α1, β1, . . . , αi−1, βi−1) the transcript of 〈P,V〉 up to round

i− 1 (included).
(b) Upon receiving a message αi from V∗, engage in a proof that (c, rP, τi−1, αi) ∈

Li as the honest verifier Vx. Denote the transcript of this proof θi.
(c) If Vx on θi rejects then abort, otherwise send βi to V∗.

4. Output the simulated transcript and the induced randomness r.

Fig. 6. Simulator SV∗ for the compiled protocol 〈P′,V′〉. The simulator SV∗ samples a
simulated transcript for the honest-verifier protocol which it uses to provide answers
to V∗ in the honest-verifier protocol execution phase, as well as to force the prover’s
randomness in the coin-flipping phase.

Proof. For (transcript, r) ← (P′,V∗)(x, 1k), we denote by 〈P,V(r)〉(x)i the
message of V at round i. We denote by αi the message of V∗ and by θi the
transcript of the proof at round i in transcript.

Pr[〈P,V(r)〉(x) 6= τt ∧ transcript 6= ⊥]

≤ Pr[∃i ∈ [t] : αi 6= 〈P,V(r)〉(x)i ∧ θi is accepting ]

≤
∑
i∈[t]

Pr[αi 6= 〈P,V(r)〉(x)i ∧ θi is accepting ]

≤ neg(k) ,

where (transcript, r)← (P′,V∗)(x, 1k), and the last inequality follows from
the soundness of 〈Px,Vx〉 using the union bound. ut

Lemma 16. For all PPT V∗, x ∈ ΠY, and k ∈ N, there exists a negligible
function neg(·) such that

Pr [V(x, view; r) 6= τt ∧ transcript 6= ⊥] ≤ neg(k) ,

where (view, r)← SV(x, 1k), and transcript is a simulated transcript produced

by S̃V
∗
(x, 1k) using (view, r) as described in Figure 6. We use transcript 6= ⊥



to denote that all the intermediate proofs of correctness in the transcript are
accepting, τi is the projection of transcript on the 〈P,V〉 messages up to round
i (included), and V(x, view; r) denotes the transcript produced by V on input x
with randomness r and receiving messages in view.

Proof. We denote by V(x, view; r)i the message of V at round i in 〈P,V〉, and
by αi and θi the message and proof of V∗ in transcript at round i. We denote
by c the commitment of V∗ to rV in transcript.

Pr [V(x, view; r) 6= τt ∧ transcript 6= ⊥]

≤ Pr
[
V(x, view; r) 6= τt ∧ transcript 6= ⊥ ∧ EV∗ 6= fail

]
≤ Pr [c is not binding ] + Pr

[
∃i∈[t]:αi 6=V(x,view;r)i∧θi is accepting ∧
EV∗ 6=fail∧∃! r∗,d∗:Openx(c,r

∗,d∗)=accept

]
≤ neg(k) +

∑
i∈[t]

Pr
[

αi 6=V(x,view;r)i∧θi is accepting ∧
EV∗ 6=fail∧∃! r∗,d∗:Openx(c,r

∗,d∗)=accept

]

≤ neg(k) ,

where (view, r)← SV(x, 1k), and transcript is a simulated transcript produced

by S̃V
∗
(x, 1k) using (view, r) as described in Figure 6. ut

Proof (Proposition 14). For any PPT verifier V∗, conditioned on the simulator
not outputting fail, it follows from the statistical binding of Comx together with
the honest-verifier statistical zero-knowledge property provided by SV that the
distribution of the simulated transcript in the coin-flipping phase produced by
S̃V
∗

is statistically close to the transcript distribution of the coin-flipping phase
in 〈P′,V∗〉. In particular, the produced randomness for V∗ in S̃V

∗
is statistically

close to uniform. From the following facts we obtain the desired:

1. From Lemma 15 it follows that only a neg(k) fraction of 〈P′,V∗〉 transcripts
disagree with 〈P,V〉 and the randomness distribution of 〈P′,V∗〉 is uniform
as in 〈P,V〉.

2. From Lemma 16 it follows that only a neg(k) fraction of transcripts pro-

duced by S̃V
∗

disagree with SV and the randomness distribution of S̃V
∗

is
statistically close to uniform, as in SV.

3. The behavior of S̃V
∗

in all the 〈Px,Vx〉 proofs is identical to the behavior of
P′.

Combining the above we obtain that for all PPT V∗, x ∈ ΠY, and k ∈ N, it
holds that the full transcript distribution of S̃V

∗
(x, 1k) is statistically close to

the transcript distribution of 〈P′,V∗〉(x, 1k). ut

We complete the proof of statistical zero-knowledge by bounding the proba-
bility of SV

∗
outputting fail.



Proposition 17. For all PPT V∗, x ∈ ΠY, and k ∈ N, it holds that

Pr[SV
∗
(x, 1k) = fail] ≤ 1/2 .

Proof. Let V ∗ be any PPT verifier and let x ∈ ΠY be some input. Note that
SV
∗

fails only when V∗ provides an accepting proof of knowledge θc of the value
committed in c while the extractor fails to extract this value. That is,

Pr[SV
∗
(x, 1k) = fail] ≤ Pr[Vx(c, θc) = accept ∧ EV∗(x, c, θc) = fail] ,

where (c, θc) ← SV
∗
(x, 1k). Since SV

∗
behaves exactly as P′ during the com-

mitment c and the proof θc in Step 2 of the simulation, we can switch to
(c, θc)← 〈P′,V∗〉(x, 1k) and obtain the following series of inequalities:

≤ Pr[Vx(c, θc) = accept] · (1− Pr[EV∗(x, c, θc) 6= fail])

≤ Pr[Vx(c, θc) = accept] · (1− Pr[Vx(c, θc) = accept] + neg(k))

< 1/2 ,

where (c, θc)← 〈P′,V∗〉(x, 1k). ut
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